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Chapter 23 
Electrical Potential 
 
Conceptual Problems 
 
1 • [SSM] A proton is moved to the left in a uniform electric field that 
points to the right. Is the proton moving in the direction of increasing or 
decreasing electric potential? Is the electrostatic potential energy of the proton 
increasing or decreasing? 
 
Determine the Concept The proton is moving to a region of higher potential. The 
proton’s electrostatic potential energy is increasing. 
 
2 • An electron is moved to the left in a uniform electric field that points 
to the right. Is the electron moving in the direction of increasing or decreasing 
electric potential? Is the electrostatic potential energy of the electron increasing or 
decreasing? 
 
Determine the Concept The electron is moving to a region of higher electric 
potential. The electron’s electrostatic potential energy is decreasing. 
 
3 • If the electric potential is uniform throughout a region of space, what 
can be said about the electric field in that region? 
 
Determine the Concept If V is constant, its gradient is zero; consequently the 
electric field is zero throughout the region. 
 
4 • If V is known at only a single point in space, can E  be found at that 
point? Explain your answer. 
 
Determine the Concept No. E can be determined without knowing V at a 
continuum of points. 
 
5 •• [SSM] Figure 23-29 shows a point particle that has a positive charge 
+Q and a metal sphere that has a charge –Q. Sketch the electric field lines and 
equipotential surfaces for this system of charges. 
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Picture the Problem The electric field 
lines, shown as solid lines, and the 
equipotential surfaces (intersecting the 
plane of the paper), shown as dashed 
lines, are sketched in the  adjacent 
figure. The point charge +Q is the point 
at the right, and the metal sphere with 
charge −Q is at the left. Near the two 
charges the equipotential surfaces are 
spheres, and the field lines are normal 
to the metal sphere at the sphere’s 
surface. 

 

 
6 •• Figure 23-30 shows a point particle that has a negative charge –Q and 
a metal sphere that has a charge +Q. Sketch the electric field lines and 
equipotential surfaces for this system of charges.  
 
Picture the Problem The electric field 
lines, shown as solid lines, and the 
equipotential surfaces (intersecting the 
plane of the paper), shown as dashed 
lines, are sketched in the adjacent 
figure. The point charge +Q is the point 
at the right, and the metal sphere with 
charge +Q is at the left. Near the two 
charges the equipotential surfaces are 
spheres, and the field lines are normal 
to the metal sphere at the sphere’s 
surface. Very far from both charges, the 
equipotential surfaces and field lines 
approach those of a point charge 2Q 
located at the midpoint. 

 
 

 

 
7 •• Sketch the electric field lines and equipotential surfaces for the region 
surrounding the charged conductor shown in Figure 23-31, assuming that the 
conductor has a net positive charge. 
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Picture the Problem The equipotential 
surfaces are shown with dashed lines, 
the field lines are shown in solid lines. 
It is assumed that the conductor carries 
a positive charge. Near the conductor 
the equipotential surfaces follow the 
conductor’s contours; far from the 
conductor, the equipotential surfaces 
are spheres centered on the conductor. 
The electric field lines are 
perpendicular to the equipotential 
surfaces. 

 

 

 
8 •• Two equal positive point charges are separated by a finite distance. 
Sketch the electric field lines and the equipotential surfaces for this system. 
  
Picture the Problem The equipotential 
surfaces are shown with dashed lines, 
the electric field lines are shown with 
solid lines. Near each charge, the 
equipotential surfaces are spheres 
centered on each charge; far from the 
charges, the equipotential surface is a 
sphere centered at the midpoint 
between the charges. The electric field 
lines are perpendicular to the 
equipotential surfaces. 

 

 
9 •• Two point charges are fixed on the x-axis. (a)  Each has a positive 
charge q.  One is at x = –a and the other is at x = +a. At the origin, which of the 
following is true?  
 
(1)   E = 0  and V = 0,  
(2)   E = 0  and V = 2kq/a,  
(3) ( )iakqE ˆ2 2= and V = 0,  
(4) ( )iakqE ˆ2 2=  and V = 2kq/a,   
(5) None of the above. 
 
(b) One has a positive charge +q and the other has a negative charge –q.  The 
positive point charge is at x = –a and the negative point charge is at x = +a.  At the 
origin, which of the following is true?  
 
(1)   E = 0  and V = 0,  
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(2)   E = 0  and V = 2kq/a,  
(3) ( )iakqE ˆ2 2= and V = 0,  
(4) ( )iakqE ˆ2 2=  and V = 2kq/a,   
(5) None of the above. 
 
Picture the Problem We can use Coulomb’s law and the superposition of fields 
to find E at the origin and the definition of the electric potential due to a point 
charge to find V at the origin. 
 
(a) Apply Coulomb’s law and the 
superposition of fields to find the 
electric field E at the origin: 
 

0ˆˆ
22

atat

=−=

+= ++−+

i
a
kqi

a
kq

EEE aqaq

 

 
The potential V at the origin is given 
by: 
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and )2( is correct. 

 
(b) Apply Coulomb’s law and the 
superposition of fields to find the 
electric field E at the origin: i
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The potential V at the origin is given 
by: 
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and )3( is correct. 

 
10 •• The electrostatic potential (in volts) is given by V(x, y, z) = 4.00 x  + 
V0, where V0 is a constant, and x is in meters. (a) Sketch the electric field for this 
potential. (b) Which of the following charge distributions is most likely 
responsible for this potential: (1) A negatively charged flat sheet in the z = 0 
plane, (2) a point charge at the origin, (3) a positively charged flat sheet in the  
x = 0 plane, or (4) a uniformly charged sphere centered at the origin. Explain your 
answer. 
 

Picture the Problem We can use iE ˆ
x
V

∂
∂

−= to find the electric field 

corresponding to the given potential and then compare its form to those produced 
by the four alternatives listed. 
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(a) Find the electric field 
corresponding to this potential 
function: 
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If x > 0, then [ ] 1=
∂
∂ x
x

 and: 
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If x < 0, then [ ] 1−=
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∂ x
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A sketch of the electric field in this region follows: 
 

x

y

 
(b) )1( is correct because field lines end on negative charges. 

 
11 •• [SSM] The electric potential is the same everywhere on the surface 
of a conductor. Does this mean that the surface charge density is also the same 
everywhere on the surface? Explain your answer. 
 
Determine the Concept No. The local surface charge density is proportional to 
the normal component of the electric field, not the potential on the surface. 
 
12 •• Three identical positive point charges are located at the vertices of an 
equilateral triangle. If the length of each side of the triangle shrinks to one-fourth 
of its original length, by what factor does the electrostatic potential energy of this 
system change? (The electrostatic potential energy approaches zero if the length of 
each side of the triangle approaches infinity.) 
 
Picture the Problem Points A, B, and 
C are at the vertices of an equilateral 
triangle of side a. The electrostatic 
potential energy of the system of the 
three equal positive point charges is the 
total work that must be done on the 
charges to bring them from infinity to 
this configuration. 

A

B C

a

a

a

+q

+q+q
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The electrostatic potential energy is 
the work required to assemble the 
three charges at the vertices of the 
equilateral triangle: 
 

CBA WWWU ++=                   (1) 

Place the first charge at point A. To 
accomplish this step, the work WA 
that is needed is zero: 
 

0A =W  
 

Bring the second charge to point B. 
The work required is AB qVW = , 

where VA is the potential at point B 
due to the first charge at point A a 
distance a away: 
 

a
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Similarly, WC is given by: 
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Substituting for WA, WB, and WC in 
equation (1) yields: 
 

a
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a
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a
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222 320 =++=  

If the triangle is expanded to four 
times its original size, its electrostatic 
potential energy U ′ becomes: 
 

U
a
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a
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Hence the electrostatic potential energy 
of this system changes by a factor of 

4 . 

 
Estimation and Approximation Problems 
 
13 • [SSM] Estimate maximum the potential difference between a 
thundercloud and Earth, given that the electrical breakdown of air occurs at fields 
of roughly 3.0 × 106 V/m. 
  
Picture the Problem The field of a thundercloud must be of order 3.0 ×106 V/m 
just before a lightning strike.   
 
Express the potential difference 
between the cloud and the earth as a 
function of their separation d and 
electric field E between them: 
 

EdV =  
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Assuming that the thundercloud is at 
a distance of about 1 km above the 
surface of the earth, the potential 
difference is approximately: 
 

( )( )
V100.3

m10V/m100.3
9

36

×=

×=V
 

Note that this is an upper bound, as there will be localized charge distributions on 
the thundercloud which raise the local electric field above the average value. 
 
14 • The specifications for the gap width of typical automotive spark plug is 
approximately equal to the thickness of the cardboard used for matchbook covers. 
Because of the high compression of the air-gas mixture in the cylinder, the 
dielectric strength of the mixture is roughly 2.0 × 107 V/m. Estimate the 
maximum potential difference across the spark gap during operating conditions. 
 
Picture the Problem The potential difference between the electrodes of the spark 
plug is the product of the electric field in the gap and the separation of the 
electrodes. We’ll assume that the separation of the electrodes is 1.0 mm. 
 
Express the potential difference 
between the electrodes of the spark 
plug as a function of their separation 
d and electric field E between them: 
 

EdV =  

Substitute numerical values and 
evaluate V: 

( )( )
kV0.2

m100.1V/m100.2 37

=

××= −V
 

 
15 •• The radius of a proton is approximately 1.0 × 10–15 m. Suppose two 
protons having equal and opposite momenta undergo a head-on collision.  
Estimate the minimum kinetic energy (in MeV) required by each proton to allow 
the protons to overcome electrostatic repulsion and collide. Hint: The rest energy 
of a proton is 938 MeV. If the kinetic energies of the protons are much less than 
this rest energy, then a non-relativistic calculation is justified. 
 
Picture the Problem We can use conservation of energy to relate the initial 
kinetic energy of the protons to their electrostatic potential energy when they 
have approached each other to the given "radius." 
 
Apply conservation of energy to 
relate the initial kinetic energy of the 
protons to their electrostatic 
potential when they are separated by 
a distance r: 
  

ffii UKUK +=+  
or, because Ui = Kf = 0, 

fi UK =  
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Because each proton has kinetic 
energy K: 
 

r
eK

0

2

4
2

∈π
=  ⇒ 

r
eK

0

2

8 ∈π
=  

Substitute numerical values and evaluate K: 
 

( )
( )

MeV72.0

J10602.1
eV1J10153.1

m100.1
mN

C10854.88

C10602.1
19

13

15
2

2
12

219

=

×
××=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×

×
= −

−

−−

−

π
K

 

 
Remarks: Because the kinetic energies of the protons is approximately 0.08% 
of their rest energy ( 0.08%MeV 938MeV 72.0rest ≈=EK ,) the non-
relativistic calculation was justified. 
 
16 • When you touch a friend after walking across a rug on a dry day, you 
typically draw a spark of about 2.0 mm. Estimate the potential difference between 
you and your friend just before the spark. 
 
Picture the Problem The magnitude of the electric field for which dielectric 
breakdown occurs in air is about 3.0 MV/m. We can estimate the potential 
difference between you and your friend from the product of the length of the 
spark and the dielectric constant of air. 
 
Express the product of the length of 
the spark and the dielectric constant 
of air: 

( )( ) kV6.0mm2.0MV/m3.0 ==V  

 
17 • Estimate the maximum surface charge density that can exist at the end 
of a sharp lightning rod so that no dielectric breakdown of air occurs. 
 
Picture the Problem The maximum electric field maxE  just outside the end of the 
lightning rod is related to the maximum surface charge density σmax. 
 
Express the maximum electric field 
just outside the end of the lightning 
rod as a function of the maximum 
surface charge density σmax: 
 

0

max
max ∈

σ
=E ⇒ max0max E∈σ =  
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Substitute numerical values and evaluate σmax: 
 

26
2

2
12

max C/m 27
m
V100.3

mN
C10854.8 μσ ≈⎟

⎠
⎞

⎜
⎝
⎛ ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −  

 
18 •• The electric-field strength near the surface of Earth is about 300 V/m.  
(a) Estimate the magnitude of the charge density on the surface of Earth.  
(b) Estimate the total charge on Earth. (c) What is value of the electric potential at 
Earth′s surface?  (Assume the potential is zero at infinity.) (d) If all Earth′s 
electrostatic potential energy could be harnessed and converted to electric energy 
at reasonable efficiency, how long could it be used to run the consumer households 
in the United States? Assume the average American household consumes about 
500 kW·h of electric energy per month. 
 
Picture the Problem (a) The charge density is the product of ∈0 and the 
magnitude of the electric field at the surface of Earth. (b) The total charge on 
Earth is the product of its surface charge density and its area. (c) The electric 
potential at Earth’s surface is given by RkQV = where Q is the charge on Earth 
and R is its radius. (d) We can estimate how long Earth’s electrostatic energy 
could run households in the United States by dividing the energy available by the 
rate of consumption of electrical energy. 
 
(a) The magnitude of the charge 
density σ on the surface of Earth is 
proportional to the electric field 
strength E at the surface of Earth: 
 

E0∈σ =  
 

Substitute numerical values and 
evaluate σ: 

2

2

2
12

nC/m 66.2

m
V300

mN
C10854.8

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −σ
 

 
(b) The total charge on Earth is given 
by: 
 

24 RAQ πσσ ==  

Substitute numerical values and 
evaluate Q: 
 

( )

MC 35.1

km 6370
m
nC 656.24 2

2

=

⎟
⎠
⎞

⎜
⎝
⎛= πQ

 

 
(c) The electric potential V at the 
surface of Earth is given by: 
 

R
kQV =  

where R is Earth’s radius. 
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Multiplying and dividing by R and 
substituting for 2RkQ yields: 
 

ERR
R
kQ

R
kQV =⎟

⎠
⎞

⎜
⎝
⎛== 2  

Substitute numerical values and 
evaluate V: 
 

( ) GV 91.1km 6370
m
V300 =⎟

⎠
⎞

⎜
⎝
⎛=V  

(d) Express the available energy: ( )QVeeUE 2
1

avail ==  
where e is the efficiency of energy 
conversion. 
 

Assuming an efficiency of 1/3 
yields: 
 

( ) QVQVE 6
1

2
1

3
1

avail ==  
 

Express the rate at which energy 
must be supplied to households in 
the United States: 
 

households
household

per  reqreq NPP =  

 

Assuming 80 million households in the United States, substitute numerical values 
and evaluate the lifetime of the electrical energy derived from Earth’s electrostatic 
energy: 
 

( )( )

h 2.2

households 61080
h 24

d 1
d 4.30

month  1
monthhousehold
h

s 3600kWh
5006

GV 91.1MC 1.35
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6
1
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Electrostatic Potential Difference, Electrostatic Energy and 
Electric Field 
 
19 • A point particle has a charge equal to +2.00 μC and is fixed at the 
origin. (a) What is the electric potential V at a point 4.00 m from the origin 
assuming that V = 0 at infinity? (b) How much work must be done to bring a 
second point particle that has a charge of +3.00 μC from infinity to a distance of 
4.00 m from the +2.00-μC charge? 
 
Picture the Problem The Coulomb potential at a distance r from the origin 
relative to V = 0 at infinity is given by V = kq/r where q is the charge at the origin. 
The work that must be done by an outside agent to bring a charge from infinity to 
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a position a distance r from the origin is the product of the magnitude of the 
charge and the potential difference due to the charge at the origin.  
 
(a) The Coulomb potential of the 
charge is given by: 
 

r
kqV =  

 
Substitute numerical values and 
evaluate V: 

( )( )

kV49.4kV 494.4

m00.4
C00.2/CmN10988.8 229

==

⋅×
=

μV
 

 
(b) The work that must be done is 
given by: 
 

VqW Δ=  

Substitute numerical values and 
evaluate W: 

( )( ) mJ5.13kV494.4C00.3 == μW  

 
 
20 •• The facing surfaces of two large parallel conducting plates separated 
by 10.0 cm have uniform surface charge densities that are equal in magnitude but 
opposite in sign. The difference in potential between the plates is 500 V. (a) Is the 
positive or the negative plate at the higher potential? (b) What is the magnitude of 
the electric field between the plates? (c) An electron is released from rest next to 
the negatively charged surface. Find the work done by the electric field on the 
electron as the electron moves from the release point to the positive plate. Express 
your answer in both electron volts and joules. (d) What is the change in potential 
energy of the electron when it moves from the release point plate to the positive 
plate? (e) What is its kinetic energy when it reaches the positive plate?  
  
Picture the Problem Because the electric field is uniform, we can find its 
magnitude from E = ΔV/Δx. We can find the work done by the electric field on the 
electron from the difference in potential between the plates and the charge of the 
electron and find the change in potential energy of the electron from the work 
done on it by the electric field. We can use conservation of energy to find the 
kinetic energy of the electron when it reaches the positive plate. 
 
(a) Because the electric force on a test charge is away from the positive plate and 
toward the negative plate, the positive plate is at the higher potential. 
 
(b) Express the magnitude of the 
electric field between the plates in 
terms of their separation and the 
potential difference between them: 
 

kV/m5.00
m0.100

V500
Δ
Δ

===
x
VE  
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(c) Relate the work done by the 
electric field on the electron to the 
difference in potential between the 
plates and the charge of the electron: 
 

( )( )
J1001.8

V005C10602.1Δ
17

19

−

−

×=

×== VqW
 

Converting 8.01×10−17 J to eV 
yields: ( )

eV500

J101.602
eV1J108.01 19

17

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×= −
−W

 

 
(d) Relate the change in potential 
energy of the electron to the work 
done on it as it moves from the 
negative plate to the positive plate: 
 

eV500−=−=Δ WU  

(e) Apply conservation of energy 
to obtain: 

eV500=Δ−=Δ UK  

 
21 •• A uniform electric field that has a magnitude 2.00 kV/m points in the 
+x direction. (a) What is the electric potential difference between the x = 0.00 m 
plane and the x = 4.00 m plane? A point particle that has a charge of +3.00 μC is 
released from rest at the origin. (b) What is the change in the electric potential 
energy of the particle as it travels from the x = 0.00 m plane to the x = 4.00 m 
plane? (c) What is the kinetic energy of the particle when it arrives at the  
x = 4.00 m plane? (d) Find the expression for the electric potential V(x) if its value 
is chosen to be zero at x = 0.  
 
Picture the Problem (a) and (b) We can use the definition of potential difference 
to find the potential difference V(4.00 m) − V(0) and (c) conservation of energy to 
find the kinetic energy of the charge when it is at x = 4.00 m. (d) We can find V(x) 
if V(x) is assigned various values at various positions from the definition of 
potential difference. 
 
(a) Apply the definition of finite potential difference to obtain: 
 

( ) ( ) ( )( ) kV8.00m4.00kN/C2.000m00.4
m00.4

0

−=−=−=⋅−=− ∫∫ EddVV
b

a

E  

 
(b) By definition, ΔU is given by: ( )( )

mJ0.24

kV00.8C00.3ΔΔ

−=

−== μVqU
 

 



      Electric Potential 
 

 

2203

 
(c) Use conservation of energy to 
relate ΔU and ΔK: 

0=Δ+Δ UK  
or 

00m4 =Δ+− UKK  

 
Because K0 = 0: mJ0.24m4 =Δ−= UK  

 
Use the definition of finite potential 
difference to obtain: 
 

( ) ( ) ( )
( )( )0

00

kV/m00.2 xx
xxExVxV x

−−=
−−=−

 

 
(d) For V(0) = 0: ( ) ( )( )0kV/m00.20 −−=− xxV  

or 
( ) ( )xxV kV/m00.2−=  

 
22 •• In a potassium chloride molecule the distance between the potassium 
ion (K+) and the chlorine ion (Cl–) in a potassium chloride molecule is  
2.80 × 10–10 m. (a) Calculate the energy (in eV) required to separate the two ions 
to an infinite distance apart. (Model the two ions as two point particles initially at 
rest.)  (b) If twice the energy determined in Part (a) is actually supplied, what is 
the total amount of kinetic energy that the two ions have when they were an 
infinite distance apart? 
 
Picture the Problem In general, the work done by an external agent in separating 
the two ions changes both their kinetic and potential energies. Here we’re 
assuming that they are at rest initially and that they will be at rest when they are 
infinitely far apart. Because their potential energy is also zero when they are 
infinitely far apart, the energy Wext required to separate the ions to an infinite 
distance apart is the negative of their potential energy when they are a distance r 
apart. 
 
(a) Express the energy required to 
separate the ions in terms of the 
work required by an external agent 
to bring about this separation: 
 

( )
r

ke
r

eek
r
qkq

UUKW
2

iext 0ΔΔ

=
−

−=−=

−=+=

+−
 

 

Substitute numerical values and evaluate extW : 
 

( )( ) J10238.8
m102.80

C10602.1/CmN10988.8 19
10

219229

ext
−

−

−

×=
×

×⋅×
=W  
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Convert this energy to eV: ( )

eV14.5

J101.602
eV1J10238.8 19

19
ext

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×= −
−W

 

 
(b) Apply the work-energy theorem 
to the system of ions to obtain: 
 

ifext ΔΔ2 UKUKW −=+=  
where fK  is the kinetic energy of the 
ions when they are an infinite distance 
apart. 
 

Solving for fK yields: iextf 2 UWK +=  
 

From Part (a), exti WU −= : eV14.52 extextextf ==−= WWWK  

 
23 •• [SSM] Protons are released from rest in a Van de Graaff accelerator 
system. The protons initially are located where the electrical potential has a value 
of 5.00 MV and then they travel through a vacuum to a region where the potential 
is zero. (a) Find the final speed of these protons. (b) Find the accelerating electric-
field strength if the potential changed uniformly over a distance of 2.00 m.  
  
Picture the Problem We can find the final speeds of the protons from the 
potential difference through which they are accelerated and use E = ΔV/Δx to find 
the accelerating electric field. 
 
(a) Apply the work-kinetic energy 
theorem to the accelerated protons: 
 

fKKW =Δ= ⇒ 2
2
1 mvVe =Δ  

 

Solve for v to obtain: 
m

Vev Δ
=

2  

 
Substitute numerical values and 
evaluate v: 

( )( )

m/s1009.3

kg101.673
MV5.00C101.6022

7

27

19

×=

×
×

= −

−

v
 

 
(b) Assuming the same potential 
change occurred uniformly over the 
distance of 2.00 m, we can use the 
relationship between E,  ΔV, and Δx  
express and evaluate E:  

MV/m2.50
m2.00

MV5.00
Δ
Δ

===
x
VE  
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24 •• The picture tube of a television set was, until recently, invariably a 
cathode-ray tube. In a typical cathode-ray tube, an electron ″gun″ arrangement is 
used to accelerate electrons from rest to the screen. The electrons are accelerated 
through a potential difference of 30.0 kV. (a) Which region is at a higher electric 
potential, the screen or the electron’s starting location? Explain your answer.  
(b) What is the kinetic energy (in both eV and joules) of an electron as it reaches 
the screen?  
 
Picture the Problem The work done on the electrons by the electric field changes 
their kinetic energy. Hence we can use the work-kinetic energy theorem to find 
the kinetic energy and the speed of impact of the electrons. 
 
(a) Because positively charged objects are accelerated from higher potential to 
lower potential regions, the screen must be at the higher electric potential to 
accelerate electrons toward it. 
 
(b) Use the work-kinetic energy 
theorem to relate the work done by 
the electric field to the change in the 
kinetic energy of the electrons: 
 

fKKW =Δ=  
or 

VeK Δ=f                                 (1) 
 

Substitute numerical values and 
evaluate Kf: 

 

( )( ) eV1000.3kV30.01 4
f ×== eK  

 

Convert this energy to eV: ( )

J1081.4

eV
J101.602eV1000.3

15

19
4

f

−

−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×=K

 

 
25 ••• (a) A positively charged particle is on a trajectory to collide head-on 
with a massive positively charge nucleus that is initially at rest  The particle 
initially has kinetic energy Ki.  In addition, the particle is initially far from the 
nucleus. Derive an expression for the distance of closest approach. Your 
expression should be in terms of the initial kinetic energy K of the particle, the 
charge ze on the particle, and the charge Ze on the nucleus, where both z and Z are 
integers.  (b) Find the numerical value for the distance of closest approach 
between a 5.00 MeV α-particle and between a 9.00 MeV α-particle and a 
stationary gold nucleus. (The values 5.00 MeV and 9.00 MeV are the initial 
kinetic energies of the alpha particles. Neglect the motion of the gold nucleus 
following the collisions.)  (c) The radius of the gold nucleus is about 157 10−×  m . 
If  α-particles approach the nucleus closer than 157 10−× m , they experience the 
strong nuclear force in addition to the electric force of repulsion. In the early 20th 
century, before the strong nuclear force was known, Ernest Rutherford bombarded 
gold nuclei with α-particles that had kinetic energies of about 5 MeV. Would you 
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expect this experiment to reveal the existence of this strong nuclear force? 
Explain your answer. 
 
Picture the Problem We know that energy is conserved in the interaction 
between the α particle and the massive nucleus. Under the assumption that the 
recoil of the massive nucleus is negligible, we know that the initial kinetic energy 
of the α particle will be transformed into potential energy of the two-body system 
when the particles are at their distance of closest approach. 
 
(a) Apply conservation of energy to 
the system consisting of the 
positively charged particle and the 
massive nucleus: 
 

0=Δ+Δ UK  
or 

0ifif =−+− UUKK  

Because Kf = Ui = 0: 0fi =+− UK  
 

Letting r be the separation of the 
particles at closest approach, 
express fU : 
 

( )( )
r

kzZe
r

zeZek
r
qkq

U
2

particlenucleus
f ===

Substitute for fU to obtain: 
0

2

i =+−
r

kzZeK ⇒
i

2

K
kzZer =  

 
(b) For a 5.00-MeV α particle and a stationary gold nucleus: 
 

( )( )( )( )
( )( ) fm46

J/eV10602.1MeV5.00
C101.602792/CmN108.988

19

219229

5 =
×

×⋅×
= −

−

r  

For a 9.00-MeV α particle and a stationary gold nucleus: 
 

( )( )( )( )
( )( ) fm25

J/eV10602.1MeV9.00
C101.602792/CmN108.988

19

219229

9 =
×

×⋅×
= −

−

r  

 
(c) No. The distance of closest approach for a 5-MeV alpha particle found above 
(46 fm) is much larger than the 7 fm radius of a gold nucleus. Hence the scattering 
was solely the result of the inverse-square Coulomb force. 
 
Potential Due to a System of Point Charges 
 
26 • Four point charges, each having a magnitude of 2.00 μC, are fixed at 
the corners of a square whose edges are 4.00-mlong.  Find the electric potential at 
the center of the square if (a) all the charges are positive, (b) three of the charges 
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are positive and one charge is negative, and (c) two charges are positive and two 
charges are negative.  (Assume the potential is zero very far from all charges.) 
 
Picture the Problem Let the numerals 1, 2, 3, and 4 denote the charges at the 
four corners of square and r the distance from each charge to the center of the 
square. The potential at the center of square is the algebraic sum of the potentials 
due to the four charges.  
 
Express the potential at the center of 
the square: 

( ) ∑
=

=+++=

+++=

4

1
4321

4321

i
iq

r
kqqqq

r
k

r
kq

r
kq

r
kq

r
kqV

 

 
(a) If the charges are positive: ( )( )

kV4.25

C00.24
m22.00

/CmN108.988 229

=

⋅×
= μV

 

 
(b) If three of the charges are 
positive and one is negative: 
 

( )( )

kV7.12

C00.22
m22.00

/CmN108.988 229

=

⋅×
= μV

 

 
(c) If two are positive and two are 
negative: 

0=V  

 
27 • [SSM] Three point charges are fixed at locations on the x-axis:  q1 is 
at x = 0.00 m, q2 is at x = 3.00 m, and q3 is at x = 6.00 m.  Find the electric 
potential at the point on the y axis at y = 3.00 m if (a) q1 = q2 = q3 = +2.00 μC,  
(b) q1 = q2 = +2.00 μC and q3 = –2.00 μC, and (c) q1 = q3 = +2.00 μC and  
q2 = –2.00 μC. (Assume the potential is zero very far from all charges.) 
 
Picture the Problem The potential at the point whose coordinates are (0, 3.00 m) 
is the algebraic sum of the potentials due to the charges at the three locations 
given. 
 
Express the potential at the point 
whose coordinates are (0, 3.00 m): ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++== ∑

= 3

3

2

2

1

1
3

1 r
q

r
q

r
qk

r
qkV

i i

i  
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(a) For q1 = q2 = q3 = 2.00 μC: 
 

( )( )

kV9.12

m53.00
1

m23.00
1

m3.00
1C00.2/CmN10988.8 229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⋅×= μV

 

 
(b) For q1 = q2 = 2.00 μC and q3 = −2.00 μC: 
 

( )( )

kV55.7

m53.00
1

m23.00
1

m3.00
1C00.2/CmN10988.8 229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⋅×= μV

 

 
(c) For q1 = q3 = 2.00 μC and q2 = −2.00 μC: 
 

( )( )

kV43.4

m53.00
1

m23.00
1

m3.00
1C00.2/CmN10988.8 229

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⋅×= μV

 

  
28 • Points A, B, and C are fixed at the vertices of an equilateral triangle 
whose edges are 3.00-m long. A point particle with a charge of +2.00 μC is fixed 
at each of vertices A and B. (a) What is the electric potential at point C? (Assume 
the potential is zero very far from all charges.) (b) How much work is required to 
move a point particle having a charge of +5.00 μC from a distance of infinity to 
point C? (c) How much additional work is required to move the +5.00-μC point 
particle from point C to the midpoint of side AB? 
 
Picture the Problem (a) The potential at vertex C is the algebraic sum of the 
potentials due to the point charges at vertices A and B.  (b) The work required to 
bring a charge from infinity to vertex C equals the change in potential energy of 
the system during this process. (c) The additional work required to move the 
+5.00-μC point particle from point C to the midpoint of side AB is the product of 
+5.00-μC and the difference in potential between point C and the midpoint of side 
AB. 
 
(a) Express the potential at vertex C 
as the sum of the potentials due to 
the point charges at vertices A and B: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

B

B

A

A
C r

q
r
qkV  
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Because qA = qB = q2: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

BA
C rr

kqV 11
2  

 
Substitute numerical values and evaluate VC: 
 

( )( )

kV0.12kV 98.11

m3.00
1

m3.00
1C00.2/CmN10988.8 229

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅×= μCV

 

 
(b) Express the required work in 
terms of the change in the potential 
energy of the system: 
 

CCC UUUUW =−== ∞→∞ Δ  
 

Substituting for UC yields: 
 

CC VqW 5=→∞  

Substitute numerical values and 
evaluate CW →∞ : 
 

( )( )
mJ9.95

kV11.98μC5.00

=

=→∞ CW
 

(c) Express the required work in 
terms of the change in the potential 
energy of the system: 
 
 

C
AB

C UUUW −==→
 of

midpointmidpoint Δ            

Substituting for 
AB

U
 of

midpoint and UC 

yields: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−=→

C
AB

C
AB

C

VVq

VqVqW

 of
midpoint5

5
 of

midpoint5midpoint

  (1) 

 
The potential at the midpoint of AB 
is the sum of the potentials due to the 
point charges at vertices A and B: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

B

B

A

A

AB r
q

r
qkV

 of
midpoint  

Because qA = qB = q2 and rA = rB = r: 
 r

kqV
AB

2

 of
midpoint

2
=  

where r is the distance from vertex A 
(and vertex B) to the midpoint of side 
AB of the triangle. 
 

Substituting in equation (1) and 
simplifying yields: ⎟

⎠
⎞

⎜
⎝
⎛ −=→ CC V

r
kqqW 2

5midpoint
2
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Substitute numerical values and evaluate midpoint→CW : 

 

( ) ( )( )

mJ 9.59

kV 98.11
m 50.1

C 00.2/CmN10988.82C 00.5
229

midpoint

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⋅×
+=→

μμCW
 

  
29 •• Three identical point particles with charge q are at the vertices of an 
equilateral triangle that is circumscribed by a circle of radius a that lies in the  
z = 0 plane and is centered at the origin. The values of q and a are +3.00 μC and 
60.0 cm, respectively. (Assume the potential is zero very far from all charges.) 
(a) What is the electric potential at the origin? (b) What is the electric potential at 
the point on the z axis at z = a? (c) How would your answers to Parts (a) and (b) 
change if the charges were still on the circle but one is no longer at a vertex of the 
triangle? Explain your answer.  
 
Picture the Problem The electric potential at the origin and at z = a is the 
algebraic sum of the potentials at those points due to the individual charges 
distributed along the equator. 
 
(a) Express the potential at the 
origin as the sum of the potentials 
due to the charges placed at 120° 
intervals along the equator of the 
sphere: 
 

a
kq

r
qkV

i i

i 3
3

1
origin == ∑

=

 

 

Substitute numerical values and 
evaluate originV : 

( )( )

kV135

m600.0
C00.3/CmN10988.83 229

origin

=

⋅×
=

μV

 
(b) Using geometry, find the 
distance from each charge to z = a: 
 

m2600.0=a  

Proceed as in (a) with 
m2600.0=a : 

( )( )

kV3.95

m2600.0
C00.3/CmN10988.83

'
3

229

3

1
'

=

⋅×
=

== ∑
=

μ

a
kq

r
qkV

i i

i
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(c) Because the two field points are equidistant from all points on the circle, the 
answers for Parts (a) and (b) would not change. 
 
30 •• Two point charges q and q′ are separated by a distance a. At a 
point a/3 from q and along the line joining the two charges the potential is zero. 
(Assume the potential is zero very far from all charges.) (a) Which of the 
following statements is true?  
 

(1) The charges have the same sign.  
(2)  The charges have opposite signs.  
(3) The relative signs of the charges can not be determined by using data 
given.  
 

(b) Which of the following statements is true?  
 

(1) q'q > . 

(2) q'q < . 

(3) q'q = . 
(4) The relative magnitudes of the charges cannot be determined by 
using the data given. 

 
(c) Find the ratio q/q′.  

Picture the Problem We can use the fact that the electric potential at the point of 
interest is the algebraic sum of the potentials at that point due to the charges q and 
q′ to find the ratio q/q'. 
 
(a) The only way that, in the absence of other point charges, the potential can be 
zero at a/3 is if q and q′ have opposite signs. 2 is correct. 

 
(b) Because the point of interest is closer to q, the magnitude of q must be less 
than the magnitude of q′. 2 is correct. 

 
(c) Express the potential at the point 
of interest as the sum of the 
potentials due to the two charges: 
 

0
3
2

3
1

=+
a

kq'
a

kq  

Simplify to obtain: 
0

2
=+

q'q ⇒
2
1

−=
q'
q  
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31 •• [SSM] Two identical positively charged point particles are fixed on 
the x-axis at x = +a and x = –a. (a) Write an expression for the electric potential 
V(x) as a function of x for all points on the x-axis. (b) Sketch V(x) versus x for all 
points on the x axis. 
 
Picture the Problem For the two charges, axr −= and ax +  respectively and 

the electric potential at x is the algebraic sum of the potentials at that point due to 
the charges at x = +a and x = −a.  
 
(a) Express V(x) as the sum of the 
potentials due to the charges at 
x = +a and x = −a: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−
=

axax
kqV 11  

(b) The following graph of V as a function of  x/a was plotted using a spreadsheet 
program: 

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

x/a 

 
 
32 •• A point charge of +3e is at the origin and a second point charge of –2e 
is on the x-axis at x = a. (a) Sketch the potential function V(x) versus x for all 
points on the x axis. (b) At what point or points, if any, is V= zero on the x axis? 
(c) What point or points, if any, on the x-axis is the electric field zero? Are these 
locations the same locations found in Part (b)? Explain your answer. (d) How 
much work is needed to bring a third charge +e to the point x = 1

2 a on the x-axis? 
 
Picture the Problem For the two charges, axr −= and x  respectively and the 

electric potential at x is the algebraic sum of the potentials at that point due to the 
charges at x = a and x = 0. We can use the graph and the function found in Part (a) 
to identify the points at which V(x) = 0. We can find the work needed to bring a 
third charge +e to the point ax 2

1= on the x axis from the change in the potential 
energy of this third charge. 
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 (a) The potential at x is the sum of 
the potentials due to the point 
charges +3e and −2e: 
 

( ) ( ) ( )
ax
ek

x
ekxV

−
−

+=
23  

The following graph of V(x) for ke = 1 and a =1 was plotted using a spreadsheet 
program. 

-15

-10

-5

0

5

10

15

20

25

-3 -2 -1 0 1 2 3

x  (m)

V
 (V

)

 
 

(b) From the graph we can see that 
V(x) = 0 when: 
 

∞±=x  

Examining the function, we see that 
V(x) is also zero provided: 
 

023
=

−
−

axx
 

For x > 0, V(x) = 0 when: 
 

ax 3=  

 
For 0 < x < a, V(x) = 0 when: ax 6.0=  

(c) The electric field at x is the sum 
of the electric fields due to the 
point charges +3e and −2e: 

( ) ( ) ( )
( )22

23
rx
ek

x
ekxE

−
−

+=  

 
Setting E(x) = 0 and simplifying 
yields: 
 

036 22 =+− aaxx  

Solve this equation to find the points 
on the x-axis where the electric field 
is zero: 
 

ax 4.5= and ax 55.0=  
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Note that the zeros of the electric field are different from the zeros of the electric 
potential. This is generally the case although, in special cases, they can be the 
same.  
 
(d) Express the work that must be 
done in terms of the change in 
potential energy of the charge: 
 

( )aqVUW 2
1=Δ=  

Evaluate the potential at ax 2
1= : ( ) ( ) ( )

a
ke

a
ke

a
ke

aa
ek

a
ekaV

246

23

2
1

2
12

1

=−=

−
−

+=
 

 
Substitute to obtain: 

a
ke

a
keeW

222
=⎟

⎠
⎞

⎜
⎝
⎛=  

 
33 ••• [SSM] A dipole consists of equal but opposite point charges +q and 
–q. It is located so that its center is at the origin, and its axis is aligned with the z-
axis (Figure 23-32) The distance between the charges is L. Let r be the vector 
from the origin to an arbitrary field point and θ be the angle that r  makes with the 
+z direction. (a) Show that at large distances from the dipole (that is for r >> L), 
the dipole’s electric potential is given by 2 2θ θ≈ ⋅ =ˆ( , ) cosV r k r kp rp r , where 
p  is the dipole moment of the dipole and θ is the angle between r  and p . (b) At 
what points in the region r >> L, other than at infinity, is the electric potential 
zero?  
 
Picture the Problem The potential at the arbitrary field point is the sum of the 
potentials due to the equal but opposite point charges. 
 
(a) Express the potential at the 
arbitrary field point at a large 
distance from the dipole: 
  

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−
+=+=

−+

+−

−+

−+
−+

rr
rrkq

rr
kq

r
qk

r
kqVVV

11
 

 
Referring to the figure, note that, for 
the far field (r >> L): 
 

θcosLrr ≈− +−  and rrr ≈≈ −+  
 

Substituting and simplifying yields: ( ) 22

coscos,
r

kqL
r

LkqrV θθθ =⎟
⎠
⎞

⎜
⎝
⎛=  

or, because qLp = , 
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( ) 2

cos,
r

kprV θθ =  

 
Finally, because θcosˆ prp =⋅ : 
 

( ) 2

ˆ
,

r
rpkrV ⋅

=θ  

 
(b) ( ) 0, =θrV where 0cos =θ : 
 

°== − 900cos 1θ ⇒ V = 0 at points on 
the z axis. Note that these locations are 
equidistant from the two oppositely-
charged ends of the dipole. 

 
34 ••• A charge configuration consists of three point charges located on 
the z axis (Figure 23-33).  One has a charge equal to –2q, and is located at the 
origin. The other two each have a charge equal to +q, one is located at z = +L and 
the other is located at z = –L.  This charge configuration can be modeled as two 
dipoles: one centered at z =  +L/2 and with a dipole moment in the +z direction, 
the other centered at z = –L/2 and with a dipole moment in the –z direction.  Each 
of these dipoles has a dipole moment that has a magnitude equal to qL. Two 
dipoles arranged in this fashion form a linear electric quadrupole. (There are 
other geometrical arrangements of dipoles that create quadrupoles but they are not 
linear.) (a) Using the result from Problem 33, show that at large distances from 
the quadrupole (that is for r >> L), the electric potential is given by 

2 32θ θ=quad( , ) cosV r kB r , where B  = qL2.  (B is the magnitude of the 
quadrupole moment of the charge configuration.)  (b) Show that on the positive z 
axis, this potential gives an electric field (for z >> L) of ( )46= ˆkB zE k . (c) Show 
that you get the result of Part (b) by adding the electric fields from the three point 
charges. 
 
Picture the Problem (a) The electric potential due to the linear electric 
quadrupole is the sum of the potentials of the two dipoles. (b) The electric field on 
the y axis can be obtained from the electric potential on the y axis using 

k
z

VE z
z

ˆaxis 
axis ∂

∂
−= . 

 
(a) The electric potential due to the 
linear electric quadrupole is given 
by: 
 

↓↑ += VVVquad  

From Problem 23-33: 
 2

cos

↑
↑ =

r
kqLV θ and 2

cos

↓
↓ −=

r
kqLV θ  
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Substituting for ↑V and ↓V yields: 
 22quad

coscos

↓↑

−=
r

kqL
r

kqLV θθ  

 
Simplify to obtain: 
 

( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

↓↑

↑↓↑↓

↓↑

↑↓

22

22

22

quad

cos

cos

rr
rrrr

kqL

rr
rr

kqLV

θ

θ

 

 
Referring to the figure, note that, for 
the far field (r >> L): 
 

θcosLrr ≈− ↑↓ , rrr 2≈+ ↓↑ , and 
rrr 2≈≈ ↓↑  

 
Substitute and simplify to obtain: 
 

( )

3

22

4quad

cos2

cos2cos,

r
kqL

r
rLkqLrV

θ

θθθ

=

⎟
⎠
⎞

⎜
⎝
⎛≈

 

 
Because 2qLB = : 
 

( ) 3

2

quad
cos2,
r

kBrV θθ ≈  

 
(b) The electric field on the z axis is 
related to the electric potential on the 
z axis: 
 

k
z

VE z
z

ˆaxis 
axis ∂

∂
−=  

On the y axis, θ  = 0 and 1cos =θ . 
Hence: 
 

3axis 
2
y
kBVy ≈  

Substituting for Vz axis yields: 
 k

z
kBk

z
kB

z
Ez

ˆ6ˆ2
43axis =⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=  

(c) The E field on the z axis is given 
by: 
 

( ) ( )
k

LzzLz
kqEz

ˆ121
222axis ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+−
−

=  

Letting 22 zLw = yields: 
 ( ) ( )

k
wwz

kqEz
ˆ

1
12

1
1

222axis ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−
−

=  
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Expand ( ) 21 −− w and ( ) 21 −+ w binomially to obtain: 
 

( ) sorder term-higher 3211 22 +++=− − www  
and 

( ) sorder term-higher 3211 22 ++−=+ − www  
 

For w << 1: 
 

( ) 22 3211 www ++≈− −  
and 
( ) 22 3211 www +−≈+ −  
 

Substituting in the expression for axis zE and simplifying yields: 
 

( ) ( )kw
z
kqkwwww

z
kqEz

ˆ6ˆ3212321 2
2

22
2axis =+−+−++≈  

 
Finally, substitute for w to obtain: 
 

k
z
kB

k
z

kqLk
z
L

z
kqEz

ˆ6

ˆ6ˆ6

4

4

2

2

2

2axis 

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈

 

 
Computing the Electric Field from the Potential 
 
35 • A uniform electric field is in the –x direction. Points a and b are on the 
x-axis, with a at x = 2.00 m and b at x = 6.00 m. (a) Is the potential difference  
Vb – Va positive or negative? (b) If −b aV V  is 100 kV, what is the magnitude of 
the electric field? 
 
Picture the Problem We can use the relationship Ex = − (dV/dx) to decide the 
sign of Vb − Va and E = ΔV/Δx to find E. 
 
(a) Because Ex = − (dV/dx), V is 
greater for larger values of x. So: 
 

positive. is ab VV −  

(b) Express E in terms of Vb − Va and 
the separation of points a and b: 
 

x
VV

x
VE ab

x Δ
−

=
Δ
Δ

=  

Substitute numerical values and 
evaluate Ex: 

kV/m25.0
m2.00m 6.00

kV100
=

−
=xE  
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36 • An electric field is given by the expression ibxE ˆ3= , where b = 2.00 
kV/m4. Find the potential difference between the point at x = 1.00 m and the point 
at x = 2.00 m.  Which of these points is at the higher potential? 
  
Picture the Problem Because V(x) and Ex are related through Ex = − dV/dx, we 
can find V from E by integration. 
 
Separate variables in Ex = − dV/dx 
and substitute for b to obtain: 

dxxdxEdV x ⎟
⎠
⎞

⎜
⎝
⎛−=−= 4

3

m
kV00.2  

 
Integrate V from V1 to V2 and x from 
x = 1.00 m to x = 2.00 m: 

[ ] m2.00
m00.1

4
4
1

4

m 00.2

m 00.1

3
4

12

m
kV00.2

m
kV00.2

2

1

x

dxx

VVdV
V

V

⎟
⎠
⎞

⎜
⎝
⎛−=

⎟
⎠
⎞

⎜
⎝
⎛−=

−=

∫

∫

 

 
Simplify to obtain: kV50.712 −=−VV  

 
Because kV50.712 += VV , the point at x = 2.00 m is at the higher potential. 
 
37 •• The electric field on the x axis due to a point charge fixed at the origin 
is given by ( )ixbE ˆ2= , where b = 6.00 kV·m and 0x ≠ . (a) Find the magnitude 
and sign of the point charge. (b) Find the potential difference between the points 
on the x-axis at x = 1.00 m and x = 2.00 m.  Which of these points is at the higher 
potential.  
 
Picture the Problem We can integrate dxdVE xx −=  to obtain V(x) and then 
use this function to find the electric potential difference between the given points. 
 
(a) We know that this field is due to a point charge because it varies inversely 
with the square of the distance from the point charge. Because xE is positive, the 
sign of the charge must be positive. 
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Because the given electric field is 
that due to a point charge, it follows 
that: m

kV 00.6=kq ⇒
k

q m
kV 00.6

=  

 
Substitute the numerical value of k 
and evaluate q: nC 668

C
mN 10988.8

m
kV 00.6

2

2
9

=
⋅

×
=q  

 
(b) The potential difference between 
the points on the x-axis at x = 1.00 m 
and x = 2.00 m is given by: 
 

21Δ VVV −=                             (1) 
 

From 
dx

dVE x
x −= we have: ∫∫∫

∞

−

∞∞

−=−=
xx

x

x

dxxkqdxEdV 2  

or 

( ) ( )
x

kqVxV =∞−  

 
Letting ( ) 0=∞V yields: ( )

xx
kqxV mkV 00.6 ⋅

==  

 
Substituting in equation (1) yields: 

kV 00.3
m 00.2

mkV 00.6
m 00.1

mkV 00.6
21

=

⋅
−

⋅
=−VV

 

 
Because kV 00.321 += VV , the point at x = 2.00 m is at the higher potential. 
 
38 •• The electric potential due to a particular charge distribution is 
measured at many points along the x-axis.  A plot of this data is shown in Figure 
23-34. At what location (or locations) is the x component of the electric field 
equal to zero? At this location (or these locations) is the potential also equal to 
zero? Explain your answer.  
 
Picture the Problem Because dxdVEx −= , we can find the point(s) at which  
Ex = 0 by identifying the values for x for which dV/dx = 0. 
 
Examination of the graph indicates that dV/dx = 0 at approximately 4.5 m. Thus 
Ex = 0 at m5.4≈x . At this location, the potential is not zero. The electric field 

is zero when the slope of the potential function is zero. 



 Chapter 23    
 

2220 

 
Use the graph of V(x) to estimate the 
negative of the slope at the given 
points: 

( )
m
V 2m 1

m 1  

≈−=
=x

x dx
dVE , 

( )
m
V .30m 3

m 3  

≈−=
=x

x dx
dVE , 

and 

( )
m
V .50m 7

m 7  

−≈−=
=x

x dx
dVE  

 
39 •• Three identical point charges, each with a charge equal to q, lie in the 
xy plane. Two of the charges are on the y-axis at y = –a and y = +a, and the third 
charge is on the x-axis at x = a. (a) Find the potential as a function of position 
along the x axis. (b) Use the Part (a) result to obtain an expression for Ex(x), the x 
component of the electric field as a function of x, on. Check your answers to Parts 
(a) and (b) at the origin and as x approaches ∞ to see if they yield the expected 
results.  
 
Picture the Problem Let r1 be the distance from (0, a) to (x, 0), r2 the distance 
from (0, −a), and r3 the distance from (a, 0) to (x, 0). We can express V(x) as the 
sum of the potentials due to the charges at (0, a), (0, −a), and (a, 0) and then find 
Ex from −dV/dx. 
 
(a) Express V(x) as the sum of the 
potentials due to the charges at (0, 
a), (0, −a), and (a, 0): 
 

( )
3

3

2

2

1

1

r
kq

r
kq

r
kqxV ++=  

where q1 = q2 = q3 = q 

At x = 0, the fields due to q1 and q2 cancel, so Ex(0) = −kq/a2; this is also obtained 
from (b) if x = 0. 
 
As x→∞, i.e., for x >> a, the three charges appear as a point charge 3q, so 
Ex = 3kq/x2; this is also the result one obtains from (b) for x >> a. 
 
Substitute for the ri to obtain: 
 

( ) ax
axax

kq
axaxax

kqxV ≠⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

+
+

+
=

12111
222222

 

 
(b) For x > a, x − a > 0 and:  axax −=−  
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Use Ex = −dV/dx to find Ex: 
 

( ) ( ) ( )
ax

ax
kq

ax
kqx

axax
kq

dx
dxEx >

−
+

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

−= 2232222

212  

 
For x < a, x − a < 0 and:  ( ) xaaxax −=−−=−  

 
Use Ex = −dV/dx to find Ex: 
 

( )
( ) ( )

ax
xa

kq
ax

kqx
xaax

kq
dx
dxEx <

−
−

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+

−= 2232222

212  

 
Calculations of V for Continuous Charge Distributions 
 
40 • A charge of +10.0 μC is uniformly distributed on a thin spherical shell 
of radius 12.0 cm. (Assume the potential is zero very far from all charges.)  
(a) What is the magnitude of the electric field just outside and just inside the 
shell? (b) What is the magnitude of the electric potential just outside and just 
inside the shell? (c) What is the electric potential at the center of the shell?  
(d) What is the magnitude of the electric field at the center of the shell? 
  
Picture the Problem We can construct Gaussian surfaces just inside and just 
outside the spherical shell and apply Gauss’s law to find the electric field at these 
locations. We can use the expressions for the electric potential inside and outside 
a spherical shell to find the potential at these locations. 
 
(a) Apply Gauss’s law to a spherical 
Gaussian surface of radius  
r < 12.0 cm: 
 

0
0

enclosed

S

==⋅∫ ∈
QdAE  

because the charge resides on the outer 
surface of the spherical surface. Hence 

( ) 0cm0.12 =<rE  

 
Apply Gauss’s law to a spherical 
Gaussian surface of radius  
r > 12.0 cm: 

( )
0

24
∈

π qrE =  

and 

( ) 2
0

24
cm0.12

r
kq

r
qrE ==>

∈π
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Substitute numerical values and evaluate ( )cm0.12>rE : 
 

( ) ( )( )
( )

MV/m24.6
m0.120

C0.10/CmN108.988cm0.12 2

229

=
⋅×

=>
μrE  

 
(b) Express and evaluate the potential just inside the spherical shell: 
 

( ) ( )( ) kV749
m0.120

C0.10/CmN108.988 229

=
⋅×

==≤
μ

R
kqRrV  

 
Express and evaluate the potential just outside the spherical shell: 
 

( ) ( )( ) kV749
m0.120

C0.10/CmN108.988 229

=
⋅×

==≥
μ

r
kqRrV  

 
(c) The electric potential inside  a uniformly charged spherical shell is 
constant and given by: 
 

( ) ( )( ) kV749
m0.120

C0.10/CmN108.988 229

=
⋅×

==≤
μ

R
kqRrV  

 
(d) In Part (a) we showed that: ( ) 0cm0.12 =<rE  

 
41 • [SSM] An infinite line charge of linear charge density +1.50 μC/m 
lies on the z-axis. Find the electric potential at distances from the line charge of 
(a) 2.00 m, (b) 4.00 m, and (c) 12.0 m. Assume that we choose V = 0 at a distance 
of 2.50 m from the line of charge. 
 
Picture the Problem We can use the expression for the potential due to a line 

charge ( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

a
rkrV ln2 λ , where V = 0 at some distance r = a, to find the 

potential at these distances from the line. 
 
Express the potential due to a line 
charge as a function of the distance 
from the line: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=

a
rkrV ln2 λ  
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Because V = 0 at r = 2.50 m: 

⎟
⎠
⎞

⎜
⎝
⎛−=

a
k m50.2ln20 λ  

                          ⇒ ⎟
⎠
⎞

⎜
⎝
⎛=

a
m50.2ln0  

and 

( ) 10lnm50.2 1 == −

a
⇒ a = 2.50 m 

 
Thus we have a = 2.50 m and: 
 

( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×−=

m50.2
lnm/CN10696.2

m50.2
ln

m
C5.1

C
mN10988.82

4

2

2
9

r

rrV μ

 

 
(a) Evaluate V(2.00 m): ( )

kV02.6

m50.2
m00.2ln

C
mN10696.2m 00.2 4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

×−=V

 

 
(b) Evaluate V(4.00 m): ( )

kV7.12

m50.2
m00.4ln

C
mN10696.2m 00.4 4

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

×−=V

 

 
(c) Evaluate V(12.0 m): ( )

kV3.42

m50.2
m0.12ln

C
mN10696.2m 0.12 4

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

×−=V

 

 
42 • (a) Find the maximum net charge that can be placed on a spherical 
conductor of radius 16 cm before dielectric breakdown of the air occurs. (b) What 
is the electric potential of the sphere when it has this maximum charge? (Assume 
the potential is zero very far from all charges.) 
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Picture the Problem We can relate the dielectric strength of air (about 3 MV/m) 
to the maximum net charge that can be placed on a spherical conductor using the 
expression for the electric field at its surface. We can find the potential of the 
sphere when it carries its maximum charge using RkQV max= . 
 
(a) Express the dielectric strength of 
a spherical conductor in terms of the 
charge on the sphere: 
 

2
max

breakdown R
kQE = ⇒

k
REQ

2
breakdown

max =  

Substitute numerical values and 
evaluate maxQ : 

( )( )

C9

C545.8

C
mN108.988

m0.16MV/m3

2

2
9

2

max

μ

μ

≈

=
⋅

×
=Q

 

 
(b) Because the charge carried by 
the sphere could be either positive 
or negative: 
 ( )

V 105

m16.0

C545.8
C

mN10988.8

5

2

2
9

max
max

×±=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

±=

±=

μ

R
kQV

 
43 • Find the maximum surface charge density σmax that can exist on the 
surface of any conductor before dielectric breakdown of the air occurs. 
 
Picture the Problem We can solve the equation giving the electric field at the 
surface of a conductor for the greatest surface charge density that can exist before 
dielectric breakdown of the air occurs. 
 
Relate the electric field at the 
surface of a conductor to the surface 
charge density: 
 

0∈
σ

=E  

Solve for σ  under dielectric 
breakdown of the air conditions: 
 

breaddown0max E∈σ =  

Substitute numerical values and 
evaluate σmax: 

( )( )
25

2212
max

C/m103

MV/m3m/NC108.854
−

−

×≈

⋅×=σ
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44 •• A conducting spherical shell of inner radius b and outer radius c is 
concentric with a small metal sphere of radius a < b. The metal sphere has a 
positive charge Q. The total charge on the conducting spherical shell is –Q.  
(Assume the potential is zero very far from all charges.) (a) What is the electric 
potential of the spherical shell? (b) What is the electric potential of the metal 
sphere? 
 
Picture the Problem The diagram is a cross-sectional view showing the charges 
on the sphere and the spherical conducting shell. A portion of the Gaussian 
surface over which we’ll integrate E in order to find V in the region r > b is also 
shown. For a < r < b, the sphere acts like point charge Q and the potential of the 
metal sphere is the sum of the potential due to a point charge at its center and the 
potential at its surface due to the charge on the inner surface of the spherical shell. 

 
 
(a) Express Vr > b: ∫ >> −= drEV brbr  

 
Apply Gauss’s law for r > b: 0ˆ

0

enclosed
S

==⋅∫ ∈
QdAr nE  

and Er>b = 0 because Qenclosed = 0 for  
r > b. 
 

Substitute for Er>b to obtain: 
 

( ) 00 =−= ∫> drV br  

 
(b) Express the potential of the 
metal sphere: 
 

surfacecenter itsat  VVV Qa +=  

Express the potential at the surface 
of the metal sphere: 
 

( )
b

kQ
b

QkV −=
−

=surface  
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Substitute and simplify to obtain: 
⎟
⎠
⎞

⎜
⎝
⎛ −=−=

ba
kQ

b
kQ

a
kQVa

11  

 
45 •• [SSM] Two coaxial conducting cylindrical shells have equal and 
opposite charges. The inner shell has charge +q and an outer radius a, and the 
outer shell has charge –q and an inner radius b. The length of each cylindrical 
shell is L, and L is very long compared with b. Find the potential difference,  
Va – Vb between the shells. 
 
Picture the Problem The diagram is 
a cross-sectional view showing the 
charges on the inner and outer 
conducting shells. A portion of the 
Gaussian surface over which we’ll 
integrate E in order to find V in the 
region a < r  < b is also shown. Once 
we’ve determined how E varies with 
r, we can find Va – Vb from 

∫−=− drEVV rab .  
 
Express the potential difference  
Vb – Va: 
 

∫−=− drEVV rab ⇒ ∫=− drEVV rba  

Apply Gauss’s law to cylindrical 
Gaussian surface of radius r and 
length L: 
 

( )
0

S
2ˆ

∈
π qrLEdA r ==⋅∫ nE  

Solving for Er yields: 
rL

qEr
02 ∈π

=  

 
Substitute for Er and integrate from  
r = a to b: 

⎟
⎠
⎞

⎜
⎝
⎛=

=− ∫

a
b

L
kq

r
dr

L
qVV

b

a
ba

ln2

2 0∈π
 

 
46 •• Positive charge is placed on two conducting spheres that are very far 
apart and connected by a long very-thin conducting wire. The radius of the 
smaller sphere is 5.00 cm and the radius of the larger sphere is 12.0 cm. The 
electric field strength at the surface of the larger sphere is 200 kV/m. Estimate the 
surface charge density on each sphere. 
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Picture the Problem Let L and S refer to the larger and smaller spheres, 
respectively.  We can use the fact that both spheres are at the same potential to 
estimate the electric fields near their surfaces. Knowing the electric fields, we can 
use E0∈σ = to estimate the surface charge density of each sphere. 
 
Express the electric fields at the 
surfaces of the two spheres: 
 

2
S

S
S R

kQE =  and 2
L

L
L R

kQE =  

 
Divide the first of these equations by 
the second to obtain: 
 2

SL

2
LS

2
L

L

2
S

S

L

S

RQ
RQ

R
kQ
R
kQ

E
E

==  

 
Because the potentials are equal at 
the surfaces of the spheres: 
 

S

S

L

L

R
kQ

R
kQ

=  and 
L

S

L

S

R
R

Q
Q

=  

 

Substitute for 
L

S

Q
Q to obtain: 

 
S

L
2
SL

2
LS

L

S

R
R

RR
RR

E
E

== ⇒ L
S

L
S E

R
RE =  

 
Substitute numerical values and 
evaluate ES: 

( ) kV/m480kV/m200
cm5.00
cm12.0

S ==E  

 
Use E0∈σ = to estimate the surface charge density of each sphere: 
 

( )( ) 22212
cm120cm12 C/m77.1kV/m200m/NC108.854 μσ =⋅×== −E∈  

and 
( )( ) 22212

cm50cm5 C/m25.4kV/m804m/NC108.854 μσ =⋅×== −E∈  

 
47 •• Two concentric conducting spherical shells have equal and opposite 
charges. The inner shell has outer radius a and charge +q; the outer shell has inner 
radius b and charge –q. Find the potential difference, Va – Vb between the shells. 
 
Picture the Problem The diagram is a cross-sectional view showing the charges 
on the concentric spherical shells. The Gaussian surface over which we’ll 
integrate E in order to find V in the region r ≥ b is also shown. We’ll also find E 
in the region for which a < r < b. We can then use the relationship ∫−= EdrV  to 

find aV  and bV  and their difference. 
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Gaussian
   Surface

a

b

+q

q−

 
 
Express bV : 

∫
∞

≥−=
b

brb drEV  

 
Apply Gauss’s law for r ≥ b: 0ˆ

0

enclosed
S

==⋅∫ ∈
QdAr nE  

and 0  =≥ brE  because 0enclosed =Q  for  
r ≥ b. 
 

Substitute for brE   ≥ to obtain: 
 

( ) 00 =−= ∫
∞

b

b drV  

 
Express aV : 

∫ ≥−=
a

b
ara drEV  

 
Apply Gauss’s law for r ≥ a: ( )

0

24
∈

π qrE ar =≥  

and 

22
04 r

kq
r

qE ar ==≥ ∈π
 

 
Substitute for arE ≥ to obtain: 
 b

kq
a
kq

r
drkqV

a

b
a −=−= ∫ 2  

 
The potential difference between the 
shells is given by: ⎟

⎠
⎞

⎜
⎝
⎛ −==−

ba
kqVVV aba

11  

 
48 •• The electric potential at the surface of a uniformly charged sphere is 
450 V. At a point outside the sphere at a (radial) distance of 20.0 cm from its 
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surface, the electric potential is 150 V. (The potential is zero very far from the 
sphere.) What is the radius of the sphere, and what is the charge of the sphere? 
 
Picture the Problem Let R be the radius of the sphere and Q its charge. We can 
express the potential at the two locations given and solve the resulting equations 
simultaneously for R and Q. 
 
Relate the potential of the sphere at 
its surface to its radius: 
 

V450=
R

kQ                              (1) 

Express the potential at a distance of 
20.0 cm from its surface: 

V150
m200.0

=
+R

kQ                (2) 

 
Divide equation (1) by equation (2) 
to obtain: 

V150
V450

m200.0

=

+R
kQ
R

kQ

 

or 

3m200.0
=

+
R

R
⇒ cm0.10=R  

 
Solving equation (1) for Q yields: ( )

k
RQ V450=  

 
Substitute numerical values and 
evaluate Q: 

( ) ( )
( )

nC01.5

/CmN108.988
m0.100V450 229

=

⋅×
=Q

 

 
49 •• Consider two infinite parallel thin sheets of charge, one in the x = 0 
plane and the other in the x = a plane.  The potential is zero at the origin. (a) Find 
the electric potential everywhere in space if the planes have equal positive charge 
densities +σ. (b) Find the electric potential everywhere in space if the sheet in the 
x = 0 plane has a charge density +σ and the sheet in the x = a plane has a charge 
density –σ .  
 
Picture the Problem Let the charge density on the infinite plane at x = a be σ1 
and that on the infinite plane at x = 0 be σ2. Call that region in space for which  
x < 0, region I, the region for which 0 < x < a, region II, and the region for which 
a < x, region III. We can integrate E due to the planes of charge to find the electric 
potential in each of these regions. 
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(a) Express the potential in region I 
in terms of the electric field in that 
region: 
 

∫ ⋅−=
x

dV
0

II xE  

 

Express the electric field in region I 
as the sum of the fields due to the 
charge densities σ1 and σ2: 
 iii

iiE

ˆˆ
2

ˆ
2

ˆ
2

ˆ
2

000

0

2

0

1
I

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

−=−−=

−−=

 

 
Substitute for IE  and evaluate VI: ( )

xx

VxdxV
x

00

00 0
I

0

0

∈
σ

∈
σ

∈
σ

∈
σ

=+=

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∫

 

 
Express the potential in region II in 
terms of the electric field in that 
region: 
 

( )0IIII VdV +⋅−= ∫ xE  

 

Express the electric field in region II 
as the sum of the fields due to the 
charge densities σ1 and σ2: 
 0ˆ

2
ˆ

2

ˆ
2

ˆ
2

00

0

2

0

1
II

=+−=

+−=

ii

iiE

∈
σ

∈
σ

∈
σ

∈
σ

 

 
Substitute for IIE  and evaluate VII: ( ) ( ) 0000

0
II =+=−= ∫ VdxV

x

 

 
Express the potential in region III in 
terms of the electric field in that 
region: 

∫ ⋅−=
x

a

dV xEIIIIII  
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Express the electric field in region III 
as the sum of the fields due to the 
charge densities σ1 and σ2: 
 iii

iiE

ˆˆ
2

ˆ
2

ˆ
2

ˆ
2

000

0

2

0

1
III

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

=+=

+=

 

 
Substitute for IIIE and evaluate VIII: 

( )ax

axdxV
x

a

−−=

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

0

000
III

∈
σ

∈
σ

∈
σ

∈
σ

 

 
(b) Proceed as in (a) with σ1 = −σ 
and σ2 = σ to obtain: 0I =V , xV

0
II ∈

σ
−= , and  

0III =V  

 
These results are summarized in the following table: 
 

Region x ≤ 0 0 ≤ x ≤ a x ≥ a 
Part (a) x

0∈
σ 0 

 
 

( )ax −−
0∈

σ

Part (b) 0 x
0∈

σ
−  0 

 
 
50 ••• The expression for the potential along the axis of a thin uniformly 

charge disk is given by 
2

22 1 1RV k z
z

σ
⎛ ⎞

= π + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (Equation 23-20), where R and 

σ are the radius and the charge per unit area of the disk, respectively.  Show that 
this expression reduces to V kQ z=  for Rz >> , where 2Q Rσπ=  is the total 
charge on the disk. Explain why this result is expected.  Hint: Use the binomial 
theorem to expand the radical. 
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Picture the Problem  
 
Expand the radical expression 
binomially to obtain: 
 

( )( )

sorder termhigher  
!2

2
111

2

2

2
2
1

2
1

2

2

2

2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=+

z
R

z
R

z
R

 

 
For Rz >> : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+≈+ 2

2

2

2

2
111

z
R

z
R  

and 

2

2

2

2

2
11

z
R

z
R

≈−+  

 
Substituting in Equation 23-20 
yields: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 2

2

2

2

2
2

z
Rzk

z
RzkV σπσπ  

 
The total charge on the disk is given 
by: 

2Q Rσπ= ⇒ 2R
Q

π
σ =  

 
Substitute for σ and simplify to 
obtain: 22

2

2 z
Qzk

z
Rz

R
QkV =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

π
π  

 
If 0≥z , then zz = and: 

 z
kQ

z
kQ

z
kzQV === 2  

 
If 0<z , then zz −= and: 

 

( )
z

kQ
z

kQ
z

QzkV =
−

=
−

= 2  

 
Thus, for Rz >> , Equation 23-20 

reduces to: z
kQV =  

 
51 •• [SSM] A rod of length L has a total charge Q uniformly distributed 
along its length. The rod lies along the y-axis with its center at the origin. (a) Find 
an expression for the electric potential as a function of position along the x-axis. 
(b) Show that the result obtained in Part (a) reduces to V kQ x=  for Lx >> . 
Explain why this result is expected. 
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Picture the Problem Let the charge 
per unit length be λ = Q/L and dy be a 
line element with charge λdy. We can 
express the potential dV at any point on 
the x axis due to the charge element λdy 
and integrate to find V(x, 0).  
 
(a) Express the element of potential 
dV due to the line element dy: 

dy
r

kdV λ
=  

where 22 yxr += and 
L
Q

=λ . 

 
Substituting for r and λ yields: 
 22 yx

dy
L

kQdV
+

=  

 
Use a table of integrals to integrate 
dV from y = −L/2 to y = L/2: 
 

( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

++
=

+
= ∫

−

2
4
12

4
12

2
12

4
12

2

2
22

ln

0,

LLx

LLx
L

kQ

yx
dy

L
kQxV

L

L

 

 
(b) Factor x from the numerator 
and denominator within the 
parentheses to obtain: 
 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+

++
=

x
L

x
L

x
L

x
L

L
kQxV

24
1

24
1

ln0,

2

2

2

2

 

 

Use ba
b
a lnlnln −=⎟

⎠
⎞

⎜
⎝
⎛ to obtain: 

 

( )
⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

x
L

x
L

x
L

x
L

L
kQxV

24
1ln

24
1ln0, 2

2

2

2

 

 

Let 2

2

4x
L

=ε and use ( ) ...11 2
8
1

2
121 +−+=+ εεε  to expand 2

2

4
1

x
L

+ : 

 

1...
48

1
42

11
4

1
2

2

2

2

221

2

2

≈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

x
L

x
L

x
L  for Lx >> . 
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Substitute for 
21

2

2

4
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

x
L to obtain: 

 

( )
⎭
⎬
⎫

⎟
⎠
⎞

⎜
⎝
⎛ −−

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +=

x
L

x
L

L
kQxV

2
1ln

2
1ln0,  

 

Let 
x

L
2

=δ and use ( ) ...1ln 2
2
1 +−=+ δδδ  to expand ⎟

⎠
⎞

⎜
⎝
⎛ ±

x
L
2

1ln : 

 

2

2

422
1ln

x
L

x
L

x
L

−≈⎟
⎠
⎞

⎜
⎝
⎛ +  and 2

2

422
1ln

x
L

x
L

x
L

−−≈⎟
⎠
⎞

⎜
⎝
⎛ −  for x >> L. 

 

Substitute for ⎟
⎠
⎞

⎜
⎝
⎛ +

x
L
2

1ln and ⎟
⎠
⎞

⎜
⎝
⎛ −

x
L
2

1ln and simplify to obtain: 

 

( )
x

kQ
x

L
x

L
x

L
x

L
L

kQxV =
⎭
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

⎩
⎨
⎧

−= 2

2

2

2

4242
0,  

 
Because, for Lx >> , the charge carried by the rod is far enough away from the 

point of interest to look like a point charge, this result is what we would expect. 
 
52 •• A rod of length L has a charge Q uniformly distributed along its 
length. The rod lies along the y-axis with one end at the origin. (a) Find an 
expression for the electric potential as a function of position along the x-axis.  
(b) Show that the result obtained in Part (a) reduces to V kQ x=  for Lx >> . 
Explain why this result is expected. 
 
Picture the Problem Let the charge 
per unit length be λ = Q/L and dy be a 
line element with charge λdy. We can 
express the potential dV at any point on 
the x axis due to λdy and integrate to 
find V(x, 0).  
 
(a) Express the element of potential 
dV due to the line element dy: 

dy
r

kdV λ
=  

where 22 yxr += and 
L
Q

=λ . 
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Substituting for r and λ yields: 
 22 yx

dy
L

kQdV
+

=  

 
Use a table of integrals to integrate 
dV from y = 0 to y = L: 
 

( )

( )
( ) ( )[ ]xLxL

L
kQ

yxy
L

kQ
yx

dy
L

kQxV

L

L

lnln

ln

0,

22

0
22

0
22

−++=

++=

+
= ∫

 

 

Because ⎟
⎠
⎞

⎜
⎝
⎛=−

b
aba lnlnln : ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=

x
LxL

L
kQxV

22

ln0,   (1) 

 
(b) Factor x2 under the radical to obtain: 
 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
x

x
LxL

x

x
LxL

x
LxL

2
2

2
2

22
1

ln

1

lnln             

 
Because Lx >> : 

 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

x
L

x
xL

x
LxL

1ln

lnln
222

 

 

Expanding ⎟
⎠
⎞

⎜
⎝
⎛ +

x
L1ln  binomially 

yields: 
 

sorder termhigher  
2
11ln

2

+

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ +

x
L

x
L

x
L

 

Again, because Lx >> : 

 x
L

x
L

≈⎟
⎠
⎞

⎜
⎝
⎛ +1ln

 

Substitute in equation (2) to obtain: 
 x

L
x

LxL
≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++ 22

ln  
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Finally, substituting in equation (1) 
yields: 
 

( )
x

kQ
x
L

L
kQxV =⎥⎦

⎤
⎢⎣
⎡=0,  

Because, for Lx >> , the charge carried by the rod is far enough away from the 

point of interest to look like a point charge, this result is what we would expect. 
 
53 •• [SSM] A disk of radius R has a surface charge distribution given by 
σ = σ0r2/R2 where σ0 is a constant and r is the distance from the center of the disk. 
(a) Find the total charge on the disk. (b) Find an expression for the electric 
potential at a distance z from the center of the disk on the axis that passes through 
the disk′s center and is perpendicular to its plane. 
  
Picture the Problem We can find Q by 
integrating the charge on a ring of 
radius r and thickness dr from r = 0 to  
r = R and the potential on the axis of 
the disk by integrating the expression 
for the potential on the axis of a ring of 
charge between the same limits. 

r

x

R

dr

σ

 
 
(a) Express the charge dq on a 
ring of radius r and thickness dr: 
 

drr
R

dr
R
rrdrrdq

3
2

0

2

2

0

2

22

πσ

σπσπ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

 

 
Integrate from r = 0 to r = R to 
obtain: 

2
02

1

0

3
2

02
Rdrr

R
Q

R

πσ
πσ

== ∫  

 
(b)Express the potential on the axis 
of the disk due to a circular element 

of charge drr
R

dq 3
2

02πσ
= : 

 

dr
rx

r
R
k

r
kdqdV

22

3

2
02

' +
==

σπ  

 

Integrate from r = 0 to r = R to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
=

+
= ∫ 3

2
3

222 3
22

22

2
0

0
22

3

2
0 xRxxR

R
k

rx
drr

R
kV

R σπσπ  
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54 ••• A disk of radius R has a surface charge distribution given by σ = σ0R/r 
where σ0 is a constant and r is the distance from the center of the disk. (a) Find 
the total charge on the disk. (b) Find an expression for the electric potential at a 
distance x from the center of the disk on the axis that passes through the disk′s 
center and is perpendicular to its plane. 
 
Picture the Problem We can find Q by 
integrating the charge on a ring of 
radius r and thickness dr from r = 0 to  
r = R and the potential on the axis of 
the disk by integrating the expression 
for the potential on the axis of a ring of 
charge between the same limits. 

r

x

R

dr

σ

 
 
(a) Express the charge dq on a ring 
of radius r and thickness dr: 
 Rdr

dr
r
Rrdrrdq

0

0

2

22

πσ

σπσπ

=

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
Integrate from r = 0 to r = R to 
obtain: 

2
0

0
0 22 RdrRQ

R

πσπσ == ∫  

 
(b) Express the potential on the axis 
of the disk due to a circular element 
of charge drrdq σπ2= : 
 

22

02
' rx

Rdrk
r

kdqdV
+

==
σπ

 

Integrate from r = 0 to r = R to 
obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=

+
= ∫

x
RxRRk

rx
drRkV

R

22

0

0
220

ln2

2

σπ

σπ

 

 
55 •• A rod of length L has a total charge Q uniformly distributed along its 
length. The rod lies along the x-axis with its center at the origin. (a) What is the 
electric potential as a function of position along the x-axis for x > L/2? (b) Show 
that for x >> L/2, your result reduces to that due to a point charge Q. 
 
Picture the Problem We can express the electric potential dV at x due to an 
elemental charge dq on the rod and then integrate over the length of the rod to 
find V(x). In the second part of the problem we use a binomial expansion to show 
that, for x >> L/2, our result reduces to that due to a point charge Q. 
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(a) Express the potential at x due to 
the element of charge dq located at 
u: 
 

ux
duk

r
kdqdV

−
==

λ  

or, because λ = Q/L, 

ux
du

L
kQdV

−
=  

 
Integrate V from u = −L/2 to u = L/2 
and simplify to obtain: ( )

( )

( ) ( )[ ]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=

++−−=

−=

−
=

−

−
∫

Lx
Lx

L
kQ

LxLx
L

kQ

ux
L

kQ

ux
du

L
kQxV

L

L

L

L

2
1
2
1

2
1

2
1

2

2

2

2

ln

lnln

ln
 

 
(b) Divide the numerator and 
denominator of the argument of the 
logarithm by x to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
+

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+

a
a

x
L
x

L

Lx

Lx

1
1ln

2
1

2
1

ln

2

2ln  

where a = L/2x. 
 

Divide 1 + a by 1 − a and simplify to 
obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +≈

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

++=⎟
⎠
⎞

⎜
⎝
⎛

−
+

x
L

x
L

x
L

x
L

a
aa

a
a

1ln

2
1ln

1
221ln

1
1ln

2

2

2

 

provided x >> L. 
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Expand ⎟
⎠
⎞

⎜
⎝
⎛ +

x
L1ln  binomially to 

obtain: 
 

x
L

x
L

≈⎟
⎠
⎞

⎜
⎝
⎛ +1ln  

provided x >> L. 
 

Substitute to express V(x) for  
x >> L/2: ( )

x
kQ

x
L

L
kQxV == , the potential due 

to a point charge Q. 
 
56 ••• A circle of radius a is removed from the center of a uniformly charged 
thin circular disk of radius b and charge per unit area σ. (a) Find an expression for 
the potential on the x axis a distance x from the center of the disk. (b) Show that 
for x >> b the electric potential on the axis of the uniformly charged disk with 
cutout approaches kQ/x, where Q = σπ(b2– a2) is the total charge on the disk. 
  
Picture the Problem The potential on the axis of the uniformly charged disk is 
the sum of the potential bV  due to the disk of radius b and the potential aV   due to 

the disk of radius a that has been removed. We can think of the charged disk that 
has been removed as having a negative charge density −σ. Note that if x >> b, 
then it is also true that x >> a.  
 
(a)The potential on the axis of the 
circular disk is: 
 

( ) ( ) ( )xVxVxV ab +=  
where  

( ) ( )[ ]xbxkxVb −+= 21222 σπ  
and 

( ) ( ) ( )[ ]xaxkxVa −+−= 21222 σπ  
 

Substitute for ( )xVb  and ( )xVa  and simplify to obtain: 
 

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ]
( )2222

21222122

21222122

2

2
22

axbxk

axbxk
xaxkxbxkxV

+−+=

+−+=

−+−+−+=

σπ

σπ

σπσπ

 

 

(b) Expanding 
21

2

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

x
b

 binomially 

yields: 
 

2

2

2

221

2

2

2
1

sorder termhigher  
2

11

x
b

x
b

x
b

+≈

+

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
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Expanding 
21

2

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

x
a binomially 

yields: 
 

2

221

2

2

2
11

x
a

x
a

+≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  

Substituting in the expression for ( )xV  and simplifying yields: 
 

( ) ( )
x

abk
x

a
x

bxk
x

a
x

bxkxV
22

2

2

2

2

2

2

2

2

22
2

2
1

2
12 −

=⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+≈

σπσπσπ  

 
The total charge on the disk is: 
 

( )22 abQ −= σπ ⇒ ( )22 ab
Q
−

=
π

σ  

 
Substituting for σ yields: 

( ) ( ) ( )
x

kQ
x

ab
ab

Qk
xV =

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≈

22
22π

π

 
57 ••• The expression  for the electric potential inside a uniformly charged 

solid sphere is given by ( )
2

23
2
kQ rV r

R R
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, where R is the radius of the sphere 

and r is the distance from the center.  This expression was obtained in Example 
23-12 by first finding the electric field. In this problem, you derive the same 
expression by modeling the sphere as a nested collection of thin spherical shells, 
and then adding the potentials of these shells at a field point inside the sphere. The 
potential dV that is a distance r′ from the center of a uniformly charged thin 
spherical shell that has a radius r′ and a charge dQ is given by dV = kdQ/r′ for  
r′ ≥ r and dV = kdQ/r for r′ ≤ r (Equation 23-22). Consider a sphere of radius R 
containing a charge Q that is uniformly distributed and you want to find V at some 
point inside the sphere (that is for r < R). (a) Find an expression for the charge dQ 
on a spherical shell of radius r′ and thickness dr′. (b) Find an expression for the 
potential dV at r due to the charge in a shell of radius r′ and thickness dr′, where  
r ≤ r′ ≤ R. (c) Integrate your expression in Part (b) from r′ = r to r′ = R to find the 
potential at r due to all the charge in the region farther from r than the center of 
the sphere. (d) Find an expression for the potential dV at r due to the charge in a 
shell of radius r′ and thickness dr′, where r′ ≤ r. (e) Integrate your expression in 
Part (d) from r′ = 0 to r′ = r to find the potential at r due to all the charge in the 
region closer than r to the center of the sphere.  (f) Find the total potential V at r 
by adding your Part (c) and Part (e) results. 
 
Picture the Problem The diagram shows a uniformly charged sphere of radius R 
and the field point P at which we wish to find the total potential. We can use the 
definition of charge density to find the charge inside a sphere of radius r and the 
potential at r due to this charge. We can express the potential at r due to the 
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charge in a shell of radius r′ and thickness dr′ at r′ ≥ r using rkdq'dV = and 
then integrate this expression from r′ = r to r′ = R to find V.   

Q

P

Rr

r'

 
 
(a) The charge dQ in a shell of radius 
r′ and thickness dr′ at r′ > r is given 
by: 
 

''' drAdVdQ ρρ ==  
 

Because 2'4' rA π= : 
 

''4 2 drrdQ ρπ=  

Because the sphere is uniformly 
charged: 
 

33
3
4 4

3
R
Q

R
Q

V
Q

ππ
ρ ===  

Substituting for ρ and simplifying 
yields: dr'r'

R
Qdr'

R
Qr'dQ 2

33
2 3

4
34 =⎟

⎠
⎞

⎜
⎝
⎛=

π
π  

 
(b) Express the potential dV in the 
interval Rrr ≤≤ ' due to dQ: 'r

kdQdV =  

 
Substituting for dQ and simplifying 
yields: ''33

' 3
2

3 drr
R
kQdr'r'

R
Q

r
kdV =⎟

⎠
⎞

⎜
⎝
⎛=  

 
(c) Integrate dV from r′ = r to r′ = R 
to find V: 
 

( )22
33 2

33 rR
R
kQr'dr'

R
kQV

R

r

−== ∫  

 
(d) The potential dV at r due to the 
charge in a shell of radius r′ and 
thickness dr′, where r′ ≤ r, is given 
by:  

( ) ''4''4

'''

2
2

drr
r
k

r
drrk

r
drAk

r
dVk

r
kdQdV

ρππρ

ρρ

==

===
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Substituting for ρ and simplifying 
yields: 

''3

''4

2
3

2
3

3
4

drr
rR

kQ

drr
R

Q
r
kdV

⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π
π

 

 
(e) Integrate from r′ = 0 to r′ = r to 
find the potential at r due to all the 
charge in the region closer than r to 
the center of the sphere: 
 

2
3

0

2
3 ''3 r

R
kQdrr

rR
kQV

r

=⎟
⎠
⎞

⎜
⎝
⎛= ∫  

(f) The sum of our results from Part 
(c) and Part (e) is: 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−+=

2

2

22
3

2
3

3
2

2
3

R
r

R
kQ

rR
R
kQr

R
kQV

 

 
58 •• Calculate the electric potential at the point a distance R/2 from the 
center of a uniformly charged thin spherical shell of radius R and charge Q.  
(Assume the potential is zero far from the shell.) 
 
Picture the Problem We can find the potential relative to infinity at a distance 
R/2 from the center of the spherical shell by integrating the electric field for 0 to 
∞. We can apply Gauss’s law to find the electric field both inside and outside the 
spherical shell. 
 
The potential relative to infinity at a 
distance R/2 from the center of the 
spherical shell is given by: 
 

drEdrErdEV
R

R
Rr

R

Rr

R

∫∫∫ <
∞

>
∞

−−=⋅−=
22

       

Because there is no charge inside the 
spherical shell, Er < R = 0 and: 
 

0
2

=∫ < drE
R

R
Rr  and drEV

R

Rr∫
∞

>−=   (1) 

 
Apply Gauss’s law to a spherical 
surface of radius r > R to obtain: 
 

( )
00

inside2

S n 4
∈∈

π QQrEdAE Rr === >∫  

Solving for Er>R yields: 
 22

04 r
kQ

r
QE Rr ==> ∈π

 

 
Substitute for Er>R in equation (1) to 
obtain: ∫

∞

−=
R

r
drkQV 2  

 



      Electric Potential 
 

 

2243

Evaluating this integral yields: 
R

kQ
r

kQV
R

=⎥⎦
⎤

⎢⎣
⎡−−=

∞

1  

 
59 •• [SSM] A circle of radius a is removed from the center of a uniformly 
charged thin circular disk of radius b. Show that the potential at a point on the 
central axis of the disk a distance z from its geometrical center is given by 

( ) ( )2 2 2 22V z k z b z aπ σ= + − + , where σ is the charge density of the disk.   

 
Picture the Problem We can find the electrostatic potential of the conducting 
washer by treating it as two disks with equal but opposite charge densities.  
 
The electric potential due to a 
charged disk of radius R is given by: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 112 2

2

x
RxkxV σπ  

Superimpose the electrostatic potentials of the two disks with opposite charge 
densities and simplify to obtain: 
 

( )

( )2222

2222

2

22

2

22

2

22

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2112

11112

112112

axbxk

x
ax

x
bxxk

x
ax

x
bxxk

x
ax

x
bxxk

x
a

x
bxk

x
a

x
bxk

x
axk

x
bxkxV

+−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

σπ

σπσπ

σπσπ

σπ

σπσπ

 

 
The charge density σ is given 
by: 
 

( )22 ab
Q
−

=
π

σ  

 
Substituting for σ yields: 
 

( ) ( )( )2222
22

2 axbx
ab

kQxV +−+
−

=  
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Equipotential Surfaces 

60 • An infinite flat sheet of charge has a uniform surface charge density 
equal to 3.50 μC/m2. How far apart are the equipotential surfaces whose 
potentials differ by 100 V? 
 
Picture the Problem We can equate the expression for the electric field due to an 
infinite plane of charge and −ΔV/Δx and solve the resulting equation for the 
separation of the equipotential surfaces. 
 
Express the electric field due to the 
infinite plane of charge: 
 

02∈
σ

=E  

Relate the electric field to the 
potential: 
 

x
VE

Δ
Δ

−=  

 
Equate these expressions and solve 
for Δx to obtain: 
 

σ
∈ Vx Δ

=Δ 02  

Substitute numerical values and 
evaluate xΔ : ( )

mm0.506

μC/m3.50

V100
mN

C108.8542
Δ 2

2

2
12

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−

x  

 
61 •• [SSM] Consider two parallel uniformly charged infinite planes that 
are equal but oppositely charged. (a) What is (are) the shape(s) of the 
equipotentials in the region between them? Explain your answer. (b) What is (are) 
the shape(s) of the equipotentials in the regions not between them? Explain your 
answer. 
 
Picture the Problem The two parallel planes, with their opposite charges, are 
shown in the pictorial representation. 

x

y

z

+Q

−Q
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(a) Because the electric field between the charged plates is uniform and 
perpendicular to the plates, the equipotential surfaces are planes parallel to the 
charged planes. 
 
(b) The regions to either side of the two charged planes are equipotential regions, 
so any surface in either of these regions is an equipotential surface. 
 
62 •• A Geiger tube consists of two elements, a long metal cylindrical shell 
and a long straight metal wire running down its central axis. Model the tube as if 
both the wire and cylinder are infinitely long. The central wire is positively 
charged and the outer cylinder is negatively charge. The potential difference 
between the wire and the cylinder is 1.00 kV. (a) What is the direction of the 
electric field inside the tube? (b) Which element is at a higher electric potential? 
(c) What is (are) the shape(s) of the equipotentials inside the tube? (d) Consider 
two equipotentials described in Part (c). Suppose they differ in electric potential 
by 10 V.  Do two such equipotentials near the central wire have the same spacing 
as they would near the outer cylinder? If not, where in the tube are the 
equipotentials that are more widely spaced? Explain your answer. 
 
Determine the Concept 
(a) The direction of the electric field inside the tube is the direction of the force 
the electric field exerts on a positively charged object. Because the wire is 
positively charged and the tube is negatively charged, and because of the 
cylindrical geometry of the Geiger tube, the electric field is directed radially away 
from the central wire. 
 
(b) Because it would require more work to bring a positively charged object from 
infinity to the surface of the wire than it would to bring this test object to the 
surface of the cylindrical tube, the central wire is at the higher electric potential. 
 
(c) Because of the cylindrical geometry of the Geiger tube, the equipotential 
surfaces are cylinders concentric with the central wire. 
 
(d) No. Because the magnitude of the electric field, which is the rate of change 
with distance (also known as the gradient) of the potential decreases with distance 
from the wire, the spacing between adjacent equipotential surfaces having the 
same potential difference between them decreases as you get farther from the 
central wire. 
 
63 •• [SSM] Suppose the cylinder in the Geiger tube in Problem 62 has an 
inside diameter of 4.00 cm and the wire has a diameter of 0.500 mm. The cylinder 
is grounded so its potential is equal to zero. (a) What is the radius of the 
equipotential surface that has a potential equal to 500 V? Is this surface closer to 
the wire or to the cylinder?  (b) How far apart are the equipotential surfaces that 
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have potentials of 200 and 225 V? (c) Compare your result in Part (b) to the 
distance between the two surfaces that have potentials of 700 and 725 V 
respectively. What does this comparison tell you about the electric field strength 
as a function of the distance from the central wire? 
 
Picture the Problem If we let the electric potential of the cylinder be zero, then 
the surface of the central wire is at +1000 V and we can use Equation 23-23 to 
find the electric potential at any point between the outer cylinder and the central 
wire. 
 
(a) From Equation 23-23 we have: 
 

( )
r

RkrV refln2 λ=                     (1) 

where Rref is the radius of the outer 
cylinder and r is the distance from the 
center of the central wire and r  < Rref. 
 

Solving for 2kλ yields: 
 

( )

r
R
rVk
refln

2 =λ  

 
At the surface of the wire, V = 1000 V 
and r = 0.250 mm. Hence: 

V 2.228

mm250.0
cm 00.2ln

V 10002 ==λk  

and 

( ) ( )
r

rV cm 00.2lnV 2.228=       

 
Setting V = 500 V yields: ( )

r
cm 00.2lnV 2.228V 500 =  

or 

191.2cm 00.2ln =
r

⇒ 191.2cm 00.2 e
r

=  

 
Solve for r to obtain: 
 

cm 224.0cm 00.2
191.2 ==

e
r , closer to 

the wire. 
 

(b) The separation of the equipotential 
surfaces that have potential values of 
200 and 225 V is: 
 

V 200V 225Δ rrr −=                      (2) 

Solving equation (1) for r yields: ( ) V 2.2282
ref cm 00.2

V
k
V

eeRr
−−

== λ  
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Substitute for the radii in equation (2), simplify, and evaluate Δr to obtain: 
 

( ) ( ) ( )

mm 864.0

cm 00.2cm 00.2cm 00.2Δ V 2.228
V 200

V 2.228
V 225

V 2.228
V 200

V 2.228
V 225

=

−=−=
−−−−

eeeer
 

 
(c) The distance between the 700 V 
and the 725 V equipotentials is: 
 

( )

mm 0966.0

cm 00.2Δ V 2.228
V 007

V 2.228
V 257

=

−=
−−

eer
 

 
This closer spacing of these two equipotential surfaces was to be expected. Close 
to the central wire, two equipotential surfaces with the same difference in 
potential should be closer together to reflect the fact that the higher electric field 
strength is greater closer to the wire. 
 
64 •• A point particle that has a charge of  +11.1 nC is at the origin.  
(a) What is (are) the shapes of the equipotential surfaces in the region around this 
charge? (b) Assuming the potential to be zero at r = ∞, calculate the radii of the 
five surfaces that have potentials equal to 20.0 V, 40.0 V, 60.0 V, 80.0 V and 
100.0 V, and sketch them to scale centered on the charge. (c) Are these surfaces 
equally spaced? Explain your answer. (d) Estimate the electric field strength 
between the 40.0-V and 60.0-V equipotential surfaces by dividing the difference 
between the two potentials by the difference between the two radii. Compare this 
estimate to the exact value at the location midway between these two surfaces. 
  
Picture the Problem We can integrate the expression for the electric field due to 
a point charge to find an expression for the electric potential of the point particle. 
 
(a) The equipotential surfaces are spheres centered on the charge. 
 
(b) From the relationship 
between the electric potential 
due to the point charge and the 
electric field of the point charge 
we have: 
 

∫∫∫ −−=⋅−=
b

a

b

a

r

r

r

r

b

a

drrkQddV 2rE  

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−

ab
ab rr

kQVV 11   

 
Taking the potential to be zero at 
ra = ∞ yields: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

b
b r

kQV 10 ⇒
r

kQV = ⇒
V
kQr =  
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Because Q = +1.11 × 10–8 C: 
 

( )
VV

r C
mN77.99C1011.1

C
mN108.988

28
2

2
9 ⋅

=
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

=

−

    (1) 

 
Use equation (1) to complete the following table: 
 

V (V) 20.0 40.0 60.0 80.0 100.0
r (m) 4.99 2.49 1.66 1.25 1.00  

  
The equipotential surfaces are 
shown in cross-section to the 
right: 
 

20.0 V

40.0 V

60.0 V
80.0 V

100.0 V
point charge

 
(c) No. The equipotential surfaces are closest together where the electric field 
strength is greatest. 
 
(d) The average value of the 
magnitude of the electric field between 
the 40.0-V and 60.0-V equipotential 
surfaces is given by: 
 

rr
VE

Δ
V 60V 40

Δ
Δ −

−=−=  

Drop perpendiculars to the r axis from 
40.0 V and 60.0 V to approximate the radii 
corresponding to each of these potential 
surfaces: 
 

m
V29

m7.1m4.2
V 60V 40

est =
−
−

−≈E  

The exact value of the electric field at the location midway between these two 
surfaces is given by 2rkQE = , where r is the average of the radii of the 40.0-V 
and 60.0-V equipotential surfaces. Substitute numerical values and evaluate 
Eexact. 
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( )
m
V23

2
m 49.2m 66.1

C1011.1
C

mN108.988

2

8
2

2
9

exact =

⎟
⎠
⎞

⎜
⎝
⎛ +

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

=

−

E  

 
The estimated value for E differs by about 21% from the exact value. 
 
Electrostatic Potential Energy 
 
65 • Three point charges are on the x-axis: q1 is at the origin, q2 is at  
x = +3.00 m, and q3 is at x = +6.00 m.  Find the electrostatic potential energy of 
this system of charges for the following charge values:  
(a) q1 = q2 = q3 = +2.00 μC; (b) q1 = q2 = +2.00 μC and q3 = –2.00 μC; and  
(c) q1 = q3 = +2.00 μC and q2 = –2.00 μC.  (Assume the potential energy is zero 
when the charges are very far from each other.) 
 
The electrostatic potential energy of 
this system of three point charges is the 
work needed to bring the charges from 
an infinite separation to the final 
positions shown in the diagram. 

 

0 3 6
, mx

q q q1 2 3

 

 
Express the work required to 
assemble this system of charges: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

++=

3,2

32

3,1

31

2,1

21

3,2

32

3,1

31

2,1

21

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkqU

 

 
Find the distances r1,2, r1,3, and r2,3: 
 

m6andm,3m,3 3,13,22,1 === rrr  

(a) Evaluate U for q1 = q2 = q3 = 2.00 μC: 
 

( )( ) ( )( )

( )( )

mJ0.30

m00.3
C00.2C00.2

m00.6
C00.2C00.2

m00.3
C00.2C00.2

C
mN10988.8 2

2
9

=

⎟⎟
⎠

⎞
+

⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU
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(b) Evaluate U for q1 = q2 = 2.00 μC and q3 = −2.00 μC: 
 

( )( ) ( )( )

( )( )

mJ99.5

m00.3
C00.2C00.2

m00.6
C00.2C00.2

m00.3
C00.2C00.2

C
mN10988.8 2

2
9

−=

⎟⎟
⎠

⎞−
+

⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU

 

 
(c) Evaluate U for q1 = q3 = 2.00 μC and q2 = −2.00 μC: 
 

( )( ) ( )( )

( )( )

mJ0.18

m00.3
C00.2C00.2

m00.6
C00.2C00.2

m00.3
C00.2C00.2

C
mN10988.8 2

2
9

−=

⎟⎟
⎠

⎞−
+

⎜⎜
⎝

⎛
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU

 

 
66 • Point charges q1, q2, and q3 are fixed at the vertices of an equilateral 
triangle whose sides are 2.50 m-long.  Find the electrostatic potential energy of 
this system of charges for the following charge values:  
(a) q1 = q2 = q3 = +4.20 μC, (b) q1 = q2 = +4.20 μC and q3 = –4.20 μC; and  
(c) q1 = q2 = –4.20 μC and q3 = +4.20 μC. (Assume the potential energy is zero 
when the charges are very far from each other.) 
 
Picture the Problem The electrostatic 
potential energy of this system of three 
point charges is the work needed to 
bring the charges from an infinite 
separation to the final positions shown 
in the diagram. q1 q3

q2

2.50 m

2.50 m

2.
50

 m

 
 
Express the work required to 
assemble this system of charges: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

++=

3,2

32

3,1

31

2,1

21

3,2

32

3,1

31

2,1

21

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkqU

 

 
Find the distances r1,2, r1,3, and r2,3: 
 

m50.23,13,22,1 === rrr  
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(a) Evaluate U for q1 = q2 = q3 = 4.20 μC: 
 

( )( ) ( )( )

( )( )

mJ190

m50.2
C20.4C20.4

m50.2
C20.4C20.4

m50.2
C20.4C20.4

C
mN10988.8 2

2
9

=

⎥
⎦

⎤
+

+⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU

 

 
(b) Evaluate U for q1 = q2 = 4.20 μC and q3 = −4.20 μC: 
 

( )( ) ( )( )

( )( )

mJ4.63

m50.2
C20.4C20.4

m50.2
C20.4C20.4

m50.2
C20.4C20.4

C
mN10988.8 2

2
9

−=

⎥
⎦

⎤−
+

−
+⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU

 

 
(c) Evaluate U for q1 = q2 = −4.20 μC and q3 = +4.20 μC: 

 
( )( ) ( )( )

( )( )

mJ4.63

m50.2
C20.4C20.4

m50.2
C20.4C20.4

m50.2
C20.4C20.4

C
mN10988.8 2

2
9

−=

⎥
⎦

⎤−
+

−
+⎢

⎣

⎡ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμ

μμμμU

 

 
67 •• [SSM]  (a) How much charge is on the surface of an isolated 
spherical conductor that has a 10.0-cm radius and is charged to 2.00 kV? (b)What 
is the electrostatic potential energy of this conductor? (Assume the potential is 
zero far from the sphere.) 
 
Picture the Problem The potential of an isolated spherical conductor is given by 

rkQV = , where Q is its charge and r its radius, and its electrostatic potential 
energy by QVU 2

1= . We can combine these relationships to find the sphere’s 
electrostatic potential energy. 
 
(a) The potential of the isolated 
spherical conductor at its surface is 
related to its radius: 
 

R
kQV = ⇒

k
RVQ =  

where R is the radius of the spherical 
conductor. 
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Substitute numerical values and 
evaluate Q: 
 

( )( )

nC 22.3nC 25.22
C

mN10988.8

kV 00.2cm 0.10

2

2
9

==

⋅
×

=Q

 

 
(b) Express the electrostatic potential 
energy of the isolated spherical 
conductor as a function of its charge 
Q and potential V: 
 

QVU 2
1=  

Substitute numerical values and 
evaluate U: 

( )( ) J3.22kV 00.2nC 25.222
1 μ==U  

 
68 ••• Four point charges, each having a charge with a magnitude of  
2.00 μC, are at the corners of a square whose sides are 4.00 m-long. Find the 
electrostatic potential energy of this system under the following conditions: (a) all 
of the charges are negative, (b) three of the charges are positive and one of the 
charges is negative, and (c) the charges at two adjacent corners are positive and 
the other two charges are negative. (d) the charges at two opposite corners are 
positive and the other two charges are negative.  (Assume the potential energy is 
zero when the point charges are very far from each other.) 
 
Picture the Problem The electrostatic 
potential energy of this system of four 
point charges is the work needed to 
bring the charges from an infinite 
separation to the final positions shown 
in the diagram.  

q4 q3

q2q1

4.00 m

4.00 m

m 2

00.4

 
 
The work required to assemble this system of charges equals the potential 
energy of the assembled system: 
 

⎟
⎟
⎠

⎞
+++⎜

⎜
⎝

⎛
++=

+++++=

4,3

43

4,2

42

3,2

32

4,1

41

3,1

31

2,1

21

4,3

43

4,2

42

3,2

32

4,1

41

3,1

31

2,1

21

r
qq

r
qq

r
qq

r
qq

r
qq

r
qqk

r
qkq

r
qkq

r
qkq

r
qkq

r
qkq

r
qkqU
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Find the distances r1,2, r1,3, r1,4, r2,3, 
r2,4, and r3,4,: 
 

m00.44,14,33,22,1 ==== rrrr  

and 
m200.44,23,1 == rr  

 
(a) Evaluate U for q1 = q2 = q3 = q4 = −2.00 μC: 
 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

mJ7.48

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

C
mN10988.8 2

2
9

=

⎥
⎦

⎤−−
+

−−
+

−−
+

−−
+

−−
+⎢

⎣

⎡ −−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμμμ

μμμμ

μμμμU

 

 
(b) Evaluate U for q1 = q2 = q3 = 2 μC and  q4 = −2.00 μC: 
 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

0

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

C
mN10988.8 2

2
9

=

⎥
⎦

⎤−
+

−
+

+
−

+

+⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμμμ

μμμμ

μμμμU

 

 
(c) Let q1 = q2 = 2.00 μC and  q3  = q4 = −2.00 μC: 
 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

mJ7.12

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

C
mN10988.8 2

2
9

−=

⎥
⎦

⎤−−
+

−
+

−
+

−
+

−
+⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμμμ

μμμμ

μμμμU
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(d) Let q1 = q3 = 2.00 μC and q2  = q4 = −2.00 μC: 
 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

mJ2.23

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

m00.4
C00.2C00.2

m200.4
C00.2C00.2

m00.4
C00.2C00.2

C
mN10988.8 2

2
9

−=

⎥
⎦

⎤−
+

−−
+

−
+

−
+

+⎢
⎣

⎡ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

μμμμ

μμμμ

μμμμU

 

 
69 •• [SSM] Four point charges are fixed at the corners of a square 
centered at the origin. The length of each side of the square is 2a. The charges are 
located as follows: +q is at (–a, +a), +2q is at (+a, +a), –3q is at (+a, –a), and +6q 
is at (–a, –a). A fifth particle that has a mass m and a charge +q is placed at the 
origin and released from rest. Find its speed when it is a very far from the origin. 
 
Picture the Problem The diagram 
shows the four point charges fixed at 
the corners of the square and the fifth 
charged particle that is released from 
rest at the origin. We can use 
conservation of energy to relate the 
initial potential energy of the particle to 
its kinetic energy when it is at a great 
distance from the origin and the 
electrostatic potential at the origin to 
express Ui. 

a

a

a2

x

y
q q2

q3−q6

qm,

 

 
Use conservation of energy to relate 
the initial potential energy of the 
particle to its kinetic energy when it 
is at a great distance from the origin: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0if =−UK  

Express the initial potential energy 
of the particle to its charge and the 
electrostatic potential at the origin: 
 

( )0i qVU =  

Substitute for Kf and Ui to obtain: 
 ( ) 002

2
1 =− qVmv ⇒

( )
m

qVv 02
=  
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Express the electrostatic potential at 
the origin: 
 

( )

a
kq

a
kq

a
kq

a
kq

a
kqV

2
6

2
6

2
3

2
2

2
0

=

+
−

++=
 

 
Substitute for V(0) and simplify to 
obtain: ma

kq
a

kq
m
qv 26

2
62

=⎟
⎠

⎞
⎜
⎝

⎛
=  

 
70 •• Consider two point particles that each have charge +e, are at rest, and 
are separated by 1.50 × 10–15 m. (a) How much work was required to bring them 
together from a very large separation distance? (b) If they are released, how much 
kinetic energy will each have when they are separated by twice their separation at 
release? (c) The mass of each particle is 1.00 u (1.00 AMU). What speed will 
each have when they are very far from each other? 
 
Picture the Problem (a) In the absence of other charged bodies, no work is 
required to bring the first proton from infinity to its initial position. We can use 
the work- energy theorem to find the work required to bring the second proton to 
a position 1.50 × 10−15 m away from the first proton. (b) and (c) We can apply 
conservation of mechanical energy to the two-proton system to find the kinetic 
energy of each proton when they are separated by twice their separation at release 
and when they are separated by a large distance. 
 
(a) Apply the work-energy theorem 
to the second proton to obtain: 
 

r
ke

r
keUKW

22

ext 0ΔΔ =+=+=  

Substitute numerical values and evaluate extW : 
 

( )

keV 609 
J 101.602

eV 1J 10538.1
m 1050.1

C 10602.1
C

mN10988.8

19
13

15

219
2

2
9

ext

=

×
××=

×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

= −
−

−

−

W  

 
(b) Apply conservation of mechanical 
energy to the separating protons to 
obtain: 

0ΔΔ =+ UK ⇒ 0ifif =−+− UUKK  
or, because Ki = 0, 

0iff =−+ UUK  
 

Substituting for Ui and Uf and 
simplifying yields: 

r
ke

r
ke

r
ke

r
ke

r
keUUK

2

2
2

22

f

2

i

2

fif

=

−=−=−=
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Remembering that Kf is the kinetic energy of both protons, substitute numerical 
values and evaluate Kf, each proton: 
 

( )
( )

keV 402 
J 101.602

eV 1J 10844.3

m 1050.12

C 10602.1
C

mN10988.8

2
1

19
14

15

219
2

2
9

protoneach  f,

=

×
××=

×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

=

−
−

−

−

K

 

 
(c) Apply conservation of mechanical 
energy to the separating protons to 
obtain: 
 

0ΔΔ =+ UK ⇒ 0ifif =−+− UUKK  
or, because Ki = Uf = 0, 

0if =−UK ⇒ 0i
2

p2
1 =−∞ Uvm  

 
Solving for v∞ yields: 

p

i2
m
Uv =∞ where Ui is half the initial 

potential energy of the two-proton 
system. 
 

Substitute numerical values and 
evaluate v∞: 

m/s 1059.9

kg 10673.1
eV

J 101.602keV 4802

6

27

19

×=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

= −

−

∞v  

 
71 ••• Consider an electron and a proton that are initially at rest and are 
separated by 2.00 nm. Neglecting any motion of the much more massive proton, 
what is the minimum (a) kinetic energy and (b) speed that the electron must be 
projected at so it reaches a point a distance of 12.0 nm from the proton? Assume 
the electron’s velocity is directed radially away from the proton. (c) How far will 
the electron travel away from the proton if it has twice that initial kinetic energy? 
 
Picture the Problem We can apply the conservation of mechanical energy to the 
electron-proton system to find the minimum initial kinetic energy (that is, the 
initial kinetic energy that corresponds to a final kinetic energy of zero) required in 
Part (a) and, in Part (c), to find how far the electron will travel away from the 
proton if it has twice the initial kinetic energy found in Part (a). 
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(a) Apply conservation of 
mechanical energy to the electron-
stationary proton system with 

0f =K  to obtain: 
  

0ΔΔ =+ UK ⇒ 0ifmin i, =−+− UUK  

 
 

Solving for min i,K and substituting 
for fU and iU yields: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−=−=

i

2

f

2

ifmin i, r
ke

r
keUUK  

or, simplifying further, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

fi

2
min i,

11
rr

keK                    

 
Substitute numerical values and evaluate min i,K : 
 

( )

J 1061.9J 10611.9

nm 0.12
1

nm 00.2
1C 10602.1

C
mN10988.8

2020

219
2

2
9

min i,

−−

−

×=×=

⎟
⎠
⎞

⎜
⎝
⎛ −×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=K

 

 
(b) Relate the minimum initial kinetic 
energy of the electron to its initial 
speed: 

2
ie2

1
min i, vmK = ⇒

e

min i,
i

2
m

K
v =  

 
Substitute numerical values and 
evaluate vi: 

( )

m/s 1059.4

kg 10109.9
J 10611.92

5

31

20

i

×=

×
×

= −

−

v
 

 
(c) Apply conservation of mechanical 
energy to the electron- proton system 
to obtain:  
 

0ΔΔ =+ UK ⇒ 0ifif =−+− UUKK  
 
 

Assuming, as we did in Part (a), that 
0f =K  yields: 

 

02 ifmin i, =−+− UUK  

Substituting for fU and iU yields: 
 

02
i

2

f

2

min i, =+−−
r

ke
r

keK  

 
Solve for fr  to obtain: 
 

2
min i,

i
f 2

1
ke
K
rr

−
=  
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Substituting numerical values and evaluating fr  yields a negative value; a result 
that is not physical and suggests that, contrary to our assumption, 0f ≠K . To 
confirm that this is the case, assume that the electron escapes from the proton 
(it’s final electrostatic potential will then be equal to zero) and find the initial 
kinetic energy required for this to occur. 
 
If the electron is to escape the 
influence of the proton, its final 
electrostatic potential energy will be 
zero and: 
 

i

2

i

2

iescape i, r
ke

r
keUK =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=−=  

Substitute numerical values and evaluate escape i,K : 
 

( )
J 1015.1

nm00.2

C 10602.1
C

mN10988.8
19

219
2

2
9

escape i,
−

−

×=
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

=K  

 
Because escape i,min i,2 KK > , the electron escapes from the proton with residual 
kinetic energy. 
 
General Problems 
 
72 • A positive point charge equal to 4.80 × 10–19 C is separated from a 
negative point charge of the same magnitude by 6.40 × 10–10 m. What is the 
electric potential at a point 9.20 × 10–10 m from each of the two charges? 
 
Picture the Problem Because the charges are point charges, we can use the 
expression for the Coulomb potential to find the field at any distance from them.  
 
Using the expression for the potential 
due to a system of point charges, 
express the potential at the point  
9.20 ×10−10 m from each of the two 
charges: 
 

( )−+

−+

+=

+=

qq
r
k

r
kq

r
kqV

 

Because q+ = −q−: 0=V  

 
73 • [SSM] Two positive point charges, each have a charge of +q, and are 
fixed on the y-axis at y = +a and y = –a. (a) Find the electric potential at any point 
on the x-axis. (b) Use your result in Part (a) to find the electric field at any point 
on the x-axis. 
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Picture the Problem The potential V at 
any point on the x axis is the sum of the 
Coulomb potentials due to the two 
point charges. Once we have found V, 
we can use ( )ixVE x

ˆ∂∂−= to find the 
electric field at any point on the x axis. 

x

−a
+q

a
+q

r

y

 
(a) Express the potential due to a 
system of point charges: ∑=

i i

i

r
kqV  

 
Substitute to obtain: ( )

22

2222

-at  chargeat  charge

2
ax

kq
ax

kq
ax

kq

VVxV aa

+
=

+
+

+
=

+= +

 

 
(b) The electric field at any point on 
the x axis is given by: 
 

( )

( ) i

iiE

ˆ2

ˆ2ˆ

2322

22

ax
kqx

ax
kq

dx
d

x
Vx x

+
=

⎥
⎦

⎤
⎢
⎣

⎡

+
−=

∂
∂

−=

 

 
74 • If a conducting sphere is to be charged to a potential of 10.0 kV, what 
is the smallest possible radius of the sphere so that the electric field near the 
surface of the sphere will not exceed the dielectric strength of air? 
 
Picture the Problem The radius of the sphere is related to the electric field and 
the potential at its surface. The dielectric strength of air is about 3 MV/m. 
 
Relate the electric field at the surface 
of a conducting sphere to the 
potential at the surface of the sphere: 
 

( )
r
rVEr = ⇒

( )
rE
rVr =  

When E is a maximum, r is a 
minimum: 
 

( )
max

min E
rVr =  

Substitute numerical values and 
evaluate minr : 

mm3
MV/m3

kV 10.0
min ≈=r  
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75 •• [SSM] Two infinitely long parallel wires have a uniform charge per 
unit length λ and –λ respectively. The wires are parallel with the z-axis.  The 
positively charged wire intersects the x-axis at x = –a, and the negatively charged 
wire intersects the x-axis at x = +a.  (a) Choose the origin as the reference point 
where the potential is zero, and express the potential at an arbitrary point (x, y) in 
the xy plane in terms of x, y, λ, and a. Use this expression to solve for the 
potential everywhere on the y axis. (b) Using a = 5.00 cm and λ = 5.00 nC/m,  
obtain the equation for the equipotential in the xy plane that passes through the 
point x = 1

4 a, y = 0. (c) Use a spreadsheet program to plot the equipotential found 
in part (b). 
 
Picture the Problem The geometry of the wires is shown below. The potential at 
the point whose coordinates are (x, y) is the sum of the potentials due to the 
charge distributions on the wires. 

a−a

λ −λ
x

(x,y)
y

r r
1 2

 
 
(a) Express the potential at the 
point whose coordinates are (x, y): 
 

( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+= −

1

2

0

2

ref

1

ref

2

ref

1

ref

at  wireat  wire

ln
2

lnln2

ln2ln2

,

r
r

r
r

r
rk

r
rk

r
rk

VVyxV aa

∈π
λ

λ

λλ

 

where V(0) = 0. 
 

Because ( ) 22
1 yaxr ++= and 

( ) :22
2 yaxr +−=  

 

( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+−
=

22

22

0

ln
2

,
yax

yax
yxV

∈π
λ  

 
On the y-axis, x = 0 and: 
 ( )

( ) 01ln
2

ln
2

,0

0

22

22

0

==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
=

∈π
λ

∈π
λ

ya
yayV
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(b) Evaluate the potential at 
( ) ( ) :0cm,25.10,4

1 =a  ( ) ( )
( )

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−
=

5
3ln

2

ln
2

0,

0

2
4
1

2
4
1

0
4
1

∈π
λ

∈π
λ

aa

aa
aV

 

 
Equate V(x,y) and ( )0,4

1 aV : 
 

( )
( ) 22

22

5

5
5
3

yx

yx

++

+−
=  

 
Solve for y to obtain: 2525.21 2 −−±= xxy  

 
(c) A spreadsheet program to plot 2525.21 2 −−±= xxy  is shown below. The 
formulas used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A2 1.25 a4

1  
A3 A2 + 0.05 x + Δx 
B2 SQRT(21.25*A2 − A2^2 − 25) 2525.21 2 −−= xxy  
B4 −B2 2525.21 2 −−−= xxy  

    
 A B C 
1 x ypos yneg 
2 1.25 0.00 0.00 
3 1.30 0.97 −0.97 
4 1.35 1.37 −1.37 
5 1.40 1.67 −1.67 
6 1.45 1.93 −1.93 
7 1.50 2.15 −2.15 
    

370 19.65 2.54 −2.54 
371 19.70 2.35 −2.35 
372 19.75 2.15 −2.15 
373 19.80 1.93 −1.93 
374 19.85 1.67 −1.67 
375 19.90 1.37 −1.37 
376 19.95 0.97 −0.97  
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The following graph shows the equipotential curve in the xy plane for 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

5
3ln

2
0,

0
4
1

∈π
λaV . 

-10

-8

-6

-4

-2

0

2

4

6
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10
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m
)

 
 
76 •• The equipotential curve graphed in Problem 75 should be a circle.  
(a) Show mathematically that it is a circle. (b) The equipotential circle in the xy 
plane is the intersection of a three-dimensional equipotential surface and the xy 
plane. Describe the three-dimensional surface using one or two sentences. 
 
Picture the Problem We can use the expression for the potential at any point in 
the xy plane to show that the equipotential curve is a circle. 
 
(a) Equipotential surfaces must 
satisfy the condition:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1

2

0

ln
2 r

rV
∈π

λ  

 
Solving for r2/r1 yields: 
 Ce

r
r V

==
∈
λ

π 02

1

2  or 12 Crr =  

where C is a constant. 
 

Substitute for r1 and r2 to obtain: ( ) ( )[ ]22222 yaxCyax ++=+−  
 

Expand this expression, combine 
like terms, and simplify  to obtain: 
 

22
2

2
2

1
12 ayx

C
Cax −=+

−
+

+  
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Complete the square by adding 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

2

2

2
2

1
1

C
Ca to both sides of the equation: 

 

( )22

22
2

2

2

2
22

2

2

2
2

2

2
2

1
4

1
1

1
1

1
12

−
=−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
−
+

+
C

Caa
C
Cay

C
Cax

C
Cax  

 

Letting 
1
12 2

2

−
+

=
C
Caα and  

1
2 2 −

=
C

Caβ  yields: 

 

( ) ,222 βα =++ yx the equation of 
circle in the xy plane with its center at 
(−α,0).  

(b) The three-dimensional surfaces are cylinders whose axes are parallel to the 
wires and are in the y = 0 plane. 
 
77 ••• The hydrogen atom in its ground state can be modeled as a positive 
point charge of magnitude +e (the proton) surrounded by a negative charge 
distribution that has a charge density (the electron) that varies with the distance 
from the center of the proton r as: ( ) arer 2

0
−−= ρρ  (a result obtained from 

quantum mechanics), where a = 0.523 nm is the most probable distance of the 
electron from the proton. (a) Calculate the value of ρ0 needed for the hydrogen 
atom to be neutral. (b) Calculate the electrostatic potential (relative to infinity) of 
this system as a function of the distance r from the proton. 
 
Picture the Problem (a) Expressing the charge dq in a spherical shell of volume 
4πr2dr within a distance r of the proton and setting the integral of this expression 
equal to the charge of the electron will allow us to solve for the value of ρ0 
needed for charge neutrality. (b) The electrostatic potential of this system is the 
sum of the electrostatic potentials due to the proton and electron’s charge density. 
The potential due to the proton is ke/r. We can use the given charge density to 
express the potential function due to the electron’s charge distribution and then 
integrate this function to find the potential due to the electron.   
 
(a) Express the charge dq in a 
spherical shell of volume  
dV = 4πr2dr at a distance r from 
the proton: 
 

( )( )
drer

drredVdq
ar

ar

22
0

22
0

4

4
−

−

−=

−==

πρ

πρρ
 

 

Express the condition for charge 
neutrality: 
 

drere ar2

0

2
04 −

∞

∫−= πρ  

 
From a table of integrals we have: 
 ( )2222

3
2 +−=∫ bxxb

b
edxex

bx
bx  
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Using this result yields: 
 4

3
2

0

2 adrer ar =−
∞

∫  

 
Substitute in the expression for e to 
obtain: 
 

3
0

3

0 4
4 aae πρπρ −=−= ⇒ 30 a

e
π

ρ −=  

 
Substitute numerical values and 
evaluate ρ0: 
 

( )
38

3

19

0

C/m 1056.3

nm 523.0
C 10602.1

×−=

×
−=

−

π
ρ

 

 
(b) The electrostatic potential of this 
proton-electron system is the sum of 
the electrostatic potentials due to the 
proton and the electron’s charge 
density: 
  

21 VVV +=                                (1) 
where  

r
kQ

r
keV 1

1 += , 

( )
∫
∞

=
r r

drrrkV
'

''4' 2

2
πρ               (2) 

and  

( ) ''4'
0

2
1 drrrQ

r

∫= πρ  

 
Substituting for ( )'rρ  in the 
expression for Q1 yields: 
 

''4 '2

0

2
01 drerQ ar

r
−∫= πρ  

From a table of integrals we have: 
 ( )2222

3
2 +−=∫ bxxb

b
edxex

bx
bx  

 

Using this result to evaluate '' '2

0

2 drer ar
r

−∫  yields: 

 

( )

4
244

8

2
8

244
8

2224
8

'

3
2

2

23

3
2

2

23

0

2
2

23
2

0

2

ar
a

r
a

ea

ar
a

r
a

ea

x
a

x
a

eadrex

ar

ar

rax
ax

r

+⎟
⎠
⎞

⎜
⎝
⎛ ++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟

⎠
⎞

⎜
⎝
⎛ ++−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+−=

−

−

−
−∫

 

and 
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⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++−=

−

4
244

8
4

3
2

2

23

01
ar

a
r

a
eaQ

ar

πρ  

 
Substituting for Q1 in the expression for V1 yields: 
 

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++−+=

−

4
244

8
4 3

2
2

23
0

1
ar

a
r

a
ea

r
k

r
keV

arρπ
 

 
Substitute for 0ρ  from Part (a) and simplify to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=

−

−

122

4
244

8

4

2
2

2

3
2

2

233

1

r
a

r
a

e
r
ke

ar
a

r
a

ea
r

a
ek

r
keV

ar

arπ
π

 

 
Substituting for ( )'rρ  in equation (2) 
and simplifying yields: 
 

∫

∫
∞

−

∞ −

=

=

r

ar

r

ar

drrek

r
drrekV

''4

'
''4

2
0

22
0

2

ρπ

πρ

 

 
From a table of integrals we have: 
 ( )12 −=∫ bx

b
edxxe

bx
bx  

 
Using this result to evaluate 

∫
∞

−

r

ar drre ''2  yields: 

 ⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎟
⎠
⎞

⎜
⎝
⎛ +=

−

∞
−

∞
−∫

12
4

12
4

2
2

2
2

2

r
a

ea

x
a

eaxdxe

ax

r

ax

r

ax

 

 

Substitute for ∫
∞

−

r

ar drre ''2 and 0ρ  in the 

expression for V2 to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛−=

−

−

121

12
4

4

2

2
2

32

r
a

e
a

ke

r
a

ae
a
ekV

ar

ax

π
π

 

 
Substituting for V1 and V2 in equation (1) and simplifying yields: 
 

ararar e
ra

ker
a

e
a
ker

a
r

a
e

r
keV 222

2
2 1112122 −−− ⎟

⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ ++=  
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78 •• Charge is supplied to the metal dome of a Van de Graaff generator by 
the belt at the rate of 200 μC/s when the potential difference between the belt and 
the dome is 1.25 MV.  The dome transfers charge to the atmosphere at the same 
rate, so the 1.25 MV potential difference is maintained. What minimum power is 
needed to drive the moving belt and maintain the 1.25 MV potential difference? 
 
Picture the Problem We can use the definition of power and the expression for 
the work done in moving a charge through a potential difference to find the 
minimum power needed to drive the moving belt. 
 
Relate the power needed to drive the 
moving belt to the rate at which the 
generator is doing work: 
 

dt
dWP =  

Express the work done in moving a 
charge q through a potential 
difference ΔV: 
 

VqW Δ=  

Substitute for W to obtain: [ ]
dt
dqVVq

dt
dP Δ=Δ=  

 
Substitute numerical values and 
evaluate P: 

( )( ) W250C/s200MV25.1 == μP  

 
79 •• A positive point charge +Q is located on the x axis at x = –a. (a) How 
much work is required to bring an identical point charge from infinity to the point 
on the x axis at x = +a? (b) With the two identical point charges in place at  
x = –a and x = +a, how much work is required to bring a third point charge –Q 
from infinity to the origin? (c) How much work is required to move the charge –Q 
from the origin to the point on the x axis at x = 2a along the semicircular path 
shown (Figure 23-35)? 
 
Picture the Problem We can use fiq VQW →→ Δ=position final to find the work 

required to move these charges between the given points.  
 
(a) Express the required work in 
terms of the charge being moved and 
the potential due to the charge at  
x = +a and simplify to obtain: 
 

( ) ( )[ ]

( )
a

kQ
a

kQQaQV

VaVQVQW aaQ

22

Δ
2

=⎟
⎠
⎞

⎜
⎝
⎛==

∞−== +→∞+→+
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(b) Express the required work in 
terms of the charge being moved and 
the potentials due to the charges at  
x = +a and x = −a and simplify to 
obtain: 
 

( ) ( )[ ]

( )

a
kQ

a
kQ

a
kQQ

VVQQV

VVQVQW

aa

Q

2

at  
charge

-at 
charge

00

2

0

0Δ

−
=⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎥
⎦

⎤
⎢
⎣

⎡
+−=−=

∞−−=−=

+

→∞→−

 

 
(c) Express the required work in 
terms of the charge being moved and 
the potentials due to the charges at  
x = +a and x = −a and simplify to 
obtain: 
 

( ) ( )[ ]

( )

a
kQ

a
kQ

a
kQ

a
kQQ

VVVQ

VaVQ
VQW

aa

aaQ

3
2

2
3

0

02

2

at 
 charge

-at  
charge

202

=

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

⎥
⎦

⎤
⎢
⎣

⎡
−+−=

−−=

Δ−=

+

→→−

 

 
80 •• A charge of +2.00 nC is uniformly distributed on a ring of radius  
10.0 cm that lies in the x = 0 plane and is centered at the origin. A point charge of 
+1.00 nC is initially located on the x axis at x = 50.0 cm. Find the work required 
to move the point charge to the origin. 
 
Picture the Problem Let q represent the charge being moved from x = 50.0 cm to 
the origin, Q the ring charge, and a the radius of the ring. We can use 

fiq VqW →→ Δ=position final , where V is the expression for the axial field due to a ring 

charge, to find the work required to move q from x = 50.0 cm to the origin. 
 
Express the required work in terms 
of the charge being moved and the 
potential due to the ring charge at  
x = 50.0 cm and x = 0: 
 

( ) ( )[ ]m500.00Δ VVqVqW −==  

The potential on the axis of a 
uniformly charged ring is given by: 
 

( )
22 ax

kQxV
+

=  

 
At x = 50.0 cm: ( )

( ) 22m 500.0
m 500.0

a

kQV
+

=  

 
At x = 0: ( )

a
kQ

a
kQV ==

2
0  
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Substituting for V(0) and V(0.500 m) yields: 
  

( ) ( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=

2222 m 500.0

11

m 500.0 aa
kQq

a

kQ
a

kQqW  

 
Substitute numerical values and evaluate W: 
 

( )( )

( ) ( )

eV100.9

J101.602
eV1J10445.1J104.1J10445.1

m0.100m500.0

1
m 100.0

1

nC00.1nC00.2
C

mN10988.8

11

19
777

22

2

2
9

×=

×
××=×=×=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

−
−−−

W

 

 
81 •• Two metal spheres each have a radius of 10.0 cm. The centers of the 
two spheres are 50.0 cm apart. The spheres are initially neutral, but a charge Q is 
transferred from one sphere to the other, creating a potential difference between 
the spheres of 100 V. A proton is released from rest at the surface of the 
positively charged sphere and travels to the negatively charged sphere. (a) What 
is the proton′s kinetic energy just as it strikes the negatively charged sphere?  
(b) At what speed does it strike the sphere? 
 
Picture the Problem The proton′s kinetic energy just as it strikes the negatively 
charged sphere is the product of its charge and the potential difference through 
which it has been accelerated. We can find the speed of the proton as it strikes the 
negatively charged sphere from its kinetic energy and, in turn, its kinetic energy 
from the potential difference through which it is accelerated. 
 
(a) Apply the work-kinetic energy 
theorem to the proton to obtain: 
 

ifnet Δ KKKW −==  
or, because Ki = 0, 

pfnet KKW ==  
 
The net work done on the proton is 
given by: 
  

VqW pnet =  

Equating netW  and pK  yields: 

 
( ) eV 100V 100pp === eVqK  
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(b) Use the definition of kinetic 
energy to express the speed of the 
proton when it strikes the negatively 
charged sphere: 
 

2
p2

1
p vmK = ⇒

pp

p Δ22
m

V
m
K

v ==         

Substitute numerical values and 
evaluate v: 

( )( )

m/s1038.1

kg101.673
V100C101.6022

5

27

19

×=

×
×

= −

−

v
 

 
82 •• (a) Using a spreadsheet program, graph V(z) versus z for a uniformly 
charged ring in the z = 0 plane and centered at the origin. The potential on the z 
axis is given by 2 2( )V z kQ a z= +  (Equation 23-19). (b) Use your graph to 
estimate the points on the z axis where the electric field strength is greatest. 
  
Picture the Problem (b) The electric field strength is greatest where the 
magnitude of the slope of the graph of electric potential is greatest. 
 
(a) A spreadsheet solution is shown below for kQ = a = 1. The formulas used to 
calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
A4 A3 + 0.1 z + Δz 
B3 1/(1+A3^2)^(1/2) 

22 za
kQ

+
 

 
 

 A B 
1   
2 z/a V(z/a)
3 −5.0 0.196 
4 −4.8 0.204 
5 −4.6 0.212 
6 −4.4 0.222 
7 −4.2 0.232 
8 −4.0 0.243 
9 −3.8 0.254 
   

49 4.2 0.232 
50 4.4 0.222 
51 4.6 0.212 
52 4.8 0.204 
53 5.0 0.196  
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The following graph, plotted using a spreadsheet program, shows V as a function 
of z/a: 

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5
z/a

V
 (V

)

 
Examining the graph we see that the magnitude of the slope is maximum at 

7.0≈az and at 7.0−≈az . 
 
83 •• A spherical conductor of radius R1 is charged to 20 kV. When it is 
connected by a long very-thin conducting wire to a second conducting sphere far 
away, its potential drops to 12 kV. What is the radius of the second sphere? 
 
Picture the Problem Let R2 be the radius of the second sphere and Q1 and Q2 the 
charges on the spheres when they have been connected by the wire. When the 
spheres are connected, the charge initially on the sphere of radius R1 will 
redistribute until the spheres are at the same potential. 
 
Express the common potential of the 
spheres when they are connected: 1

1kV12
R

kQ
=                              (1) 

and 

 
2

2kV12
R

kQ
=                             (2)       

 
Express the potential of the first 
sphere before it is connected to the 
second sphere: 
 

( )
1

21kV20
R

QQk +
=                   (3) 

Solve equation (1) for Q1: 
 

( )
k

RQ 1
1

kV12
=  
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Solve equation (2) for Q2: 
 

( )
k

RQ 2
2

kV12
=  

 
Substitute for Q1 and Q2 in equation 
(3) and simplify to obtain: 

( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎟
⎠
⎞

⎜
⎝
⎛ +

=

1

2

1

21

kV12kV12

kV12kV12

kV20

R
R

R
k

R
k

Rk

 

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2128
R
R

⇒ 12 3
2 RR =  

 
84 •• A metal sphere centered at the origin has a surface charge density that 
has a magnitude of 24.6 nC/m2 and a radius less than 2.00 m. A distance of   
2.00 m from the origin, the electric potential is 500 V and the electric field 
strength is 250 V/m.  (Assume the potential is zero very far from the sphere.)  
(a) What is the radius of the metal sphere? (b) What is the sign of the charge on 
the sphere? Explain your answer. 
 
Picture the Problem We can use the definition of surface charge density to relate 
the radius R of the sphere to its charge Q and the potential function ( ) rkQrV = to 
relate Q to the potential at r = 2.00 m. 
 
(a) Use its definition, relate the 
surface charge density σ to the 
charge Q on the sphere and the 
radius R of the sphere: 
 

24 R
Q
π

σ = ⇒
πσ4
QR =  

Relate the potential to the charge on 
the sphere: 
 

( )
r

kQrV = ⇒
( )

k
rrVQ =  

Substitute for Q in the expression for 
R and simplify to obtain: 

( ) ( )

( )
σ

∈
πσ

∈π
σπ

rrV

rrV
k
rrVR

0

0

4
4

4

=

==
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Substitute numerical values and evaluate R: 

 
( )( )( ) cm0.60

nC/m6.24
V500m2.00m/NC10854.8

2

2212

=
⋅×

=
−

R  

 
(b) The charge on the sphere is positive. The formula for the electric potential 
outside a uniformly charged spherical shell is rkQV = . If V is positive, then so 
is Q. 
 
85 •• Along the central axis of a uniformly charged disk, at a point 0.60 m 
from the center of the disk, the potential is 80 V and the magnitude of the electric 
field is 80 V/m.  At a distance of 1.5 m, the potential is 40 V and the magnitude of 
the electric field is 23.5 V/m. (Assume the potential is zero very far from the 
sphere.) Find the total charge on the disk. 
 
Picture the Problem We can use the definition of surface charge density to relate 
the radius R of the disk to its charge Q and the potential function ( ) rkQrV = to 
relate Q to the potential at r = 1.5 m. 
 
Use its definition, relate the surface 
charge density σ to the charge Q on 
the disk and the radius R of the disk: 
 

2R
Q

π
σ = ⇒ 2RQ πσ=               (1) 

Relate the potential at r to the charge 
on the disk: 
 

( ) ( )xRxkrV −+= 222 σπ                       

Substitute V(0.60 m) = 80 V: ( ) ⎟
⎠
⎞⎜

⎝
⎛ −+= m60.0m60.02V80 22 Rkσπ

                   
Substitute V(1.5 m) = 40 V: 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −+= m5.1m5.12V40 22 Rkσπ     

 
Divide the first of these equations by 
the second to obtain: 

( )
( ) m5.1m5.1

m60.0m60.0
2

22

22

−+

−+
=

R

R
 

 
Solving for R yields: m80.0=R  

 
Express the electric field on the 
axis of a disk charge: ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

22
12

Rx

xkEx σπ  
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Solving for σ yields: 
 

22

0

22

1

2

12

Rx
x
E

Rx
xk

E

x

x

+
−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

=

∈

π
σ

 

 
Substitute for σ in equation (1) to 
obtain: 

22

2
0

1

2

Rx
x

ERQ x

+
−

=
∈π  

 
Substitute numerical values and evaluate Q: 
 

( ) ( )

( ) ( )

nC1.7

m0.80m1.5

m1.51

V/m23.5m 80.0
mN

C108.8542

22

2
2

2
12

=

+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−π
Q  

 
86 •• A radioactive 210Po nucleus emits an α-particle that has a charge +2e. 
When the α-particle is a large distance from the nucleus it has a kinetic energy of 
5.30 MeV. Assume that the α-particle had negligible kinetic energy as it left at 
the surface of the nucleus.  The ″daughter″ (or residual) nucleus 206Pb has a 
charge +82e. Determine the radius of the 206Pb nucleus. (Neglect the radius of the 
α particle and assume the 206Pb nucleus remains at rest.) 
 
Picture the Problem We can use U = kq1q2/r to relate the electrostatic potential 
energy of the particles to their separation. 
 
Express the electrostatic potential 
energy of the two particles in terms 
of their charge and separation: 

r
qkqU 21= ⇒

U
qkqr 21=  

 
 
Substitute numerical values and evaluate r: 
 

( )( )( )( ) fm6.44

eV
C101.602MeV30.5

C101.602822/CmN108.988
19

219229

=
×

×

×⋅×
= −

−

r  

 
87 ••• [SSM] Configuration A consists of two point particles, one particle 
has a charge of +q and is on the x axis at x = +d and the other particle has a charge 
of –q and is at x = –d (Figure 23-36a).  (a) Assuming the potential is zero at large 
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distances from these charged particles, show that the potential is also zero 
everywhere on the x = 0 plane.  (b)  Configuration B consists of a flat metal plate 
of infinite extent and a point particle located a distance d from the plate (Figure 
23-36b)  The point particle has a charge equal to +q and the plate is grounded.  
(Grounding the plate forces its potential to equal zero.) Choose the line 
perpendicular to the plate and through the point charge as the x axis, and choose 
the origin at the surface of the plate nearest the particle.  (These choices put the 
particle on the x axis at x = +d.) For configuration B, the electric potential is zero 
both at all points in the half-space x ≥ 0 that are very far from the particle and at 
all points on the x = 0 plane—just as was the case for configuration A. (c) A 
theorem, called the uniqueness theorem, implies that throughout the half-space  
x ≥ 0 the potential function V—and thus the electric field E —for the two 
configurations are identical. Using this result, obtain the electric field E  at every 
point in the x = 0 plane in the configuration B. (The uniqueness theorem tells us 
that in configuration B the electric field at each point in the x = 0 plane is the same 
as it is in configuration A.) Use this result to find the surface charge density σ at 
each point in the conducting plane (in configuration B). 
  
Picture the Problem We can use the relationship between the potential and the 
electric field to show that this arrangement is equivalent to replacing the plane by 
a point charge of magnitude −q located a distance d beneath the plane. In (b) we 
can first find the field at the plane surface and then use σ = ∈0E to find the 
surface charge density. In (c) the work needed to move the charge to a point 2d 
away from the plane is the product of the potential difference between the points 
at distances 2d and 3d from −q multiplied by the separation Δx of these points. 
 
(a) The potential anywhere on the plane is 0 and the electric field is perpendicular 
to the plane in both configurations, so they must give the same potential 
everywhere in the xy plane. Also, because the net charge is zero, the potential at 
infinity is zero. 
 
(b) The surface charge density is 
given by: 
 

E0∈σ =                                   (1) 

At any point on the plane, the 
electric field points in the negative x 
direction and has magnitude: 
 

θcos22 rd
kqE
+

=  

where θ is the angle between the 
horizontal and a vector pointing from 
the positive charge to the point of 
interest on the xz plane and r is the 
distance along the plane from the origin 
(that is, directly to the left of the 
charge).    
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Because :cos
22 rd

d
+

=θ  

 
( )

( ) 2322
0

23222222

4 rd
qd

rd
kqd

rd
d

rd
kqE

+
=

+
=

++
=

∈π

 

 
Substitute for E in equation (1) and 
simplify to obtain: ( ) 2/3224 rd

qd
+

=
π

σ  

 
88 ••• A particle that has a mass m and a positive charge q is constrained to 
move along the x-axis. At x = –L and x = L are two ring charges of radius L 
(Figure 23-38). Each ring is centered on the x-axis and lies in a plane 
perpendicular to it. Each ring has a total positive charge Q uniformly distributed 
on it. (a) Obtain an expression for the potential V(x) on the x axis due to the 
charge on the rings. (b) Show that V(x) has a minimum at x = 0. (c) Show that for 

Lx << , the potential approaches the form V(x) = V(0) + α x2. (d) Use the result 
of Part (c) to derive an expression for the angular frequency of oscillation of the 
mass m if it is displaced slightly from the origin and released.  (Assume the 
potential equals zero at points far from the rings.) 
 
Picture the Problem We can express the potential due to the ring charges as the 
sum of the potentials due to each of the ring charges. To show that V(x) is a 
minimum at x = 0, we must show that the first derivative of V(x) = 0 at x = 0 and 
that the second derivative is positive. In Part (c) we can use a Taylor expansion to 
show that, for Lx << , the potential approaches the form V(x) = V(0) + α x2. In 

Part (d) we can obtain the potential energy function from the potential function 
and, noting that it is quadratic in x, find the ″spring″ constant and the angular 
frequency of oscillation of the particle provided its displacement from its 
equilibrium position is small. 
 
(a) Express the potential due to the 
ring charges as the sum of the 
potentials due to each of their 
charges: 
 

( )
right the
to ring

left the
to ring VVxV +=  

The potential for a ring of charge is: 
 

( )
22 ax

kQxV
+

=  

where a is the radius of the ring and Q 
is its charge. 
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For the ring to the left we have: 
 ( ) 22left the

to ring
LLx

kQV
++

=  

 
For the ring to the right we have: 
 ( ) 22right  the

to ring
LLx

kQV
+−

=  

 
Substitute for 

left the
to ringV and 

right  the
to ringV to obtain: 

 

( )
( ) ( ) 2222 LLx

kQ

LLx

kQxV
+−

+
++

=  

 
(b) Evaluate dV/dx to obtain: 
 

( )[ ] ( )[ ] extremafor 023222322
=

⎪⎭

⎪
⎬
⎫

++

+
−

⎪⎩

⎪
⎨
⎧

+−

−
=

LxL

xL

LxL

xLkQ
dx
dV  

 
Solving for x yields: x = 0 

 
Evaluate d2V/dx2 to obtain: 
 

( )
( )[ ] ( )[ ]

( )
( )[ ]

( )[ ] ⎪⎭

⎪
⎬
⎫

+−
−

++

+
+

+−
−

⎪⎩

⎪
⎨
⎧

+−

−
=

2322

2522

2

23222522

2

2

2

1

313

LxL

LxL

xL

LxLLxL

xLkQ
dx

Vd

 

 
Evaluating this expression for  
x = 0 yields: 
 

( ) 0
22

0
32

2

>=
L

kQ
dx
Vd  

          ⇒ 0.  at  maximum a is )( =xxV  
 

(c) The Taylor expansion of V(x) 
is: 

( ) ( ) ( ) ( )
sorder termhigher  
0''0'0 2

2
1

+

++= xVxVVxV
 

 
For x << L: 
 

( ) ( ) ( ) ( ) 2
2
1 0''0'0 xVxVVxV ++≈  
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Substitute our results from Parts (a) 
and (b) to obtain: ( ) ( )

2
3

2
32

1

24
2

22
02

x
L

kQ
L
kQ

x
L

kQx
L
kQxV

+=

⎟
⎠

⎞
⎜
⎝

⎛++=
 

or 
( ) ( ) 20 xVxV α+=  

where 

( )
L
kQV 20 = and 

324 L
kQ

=α  

 
(d) Express the angular frequency of 
oscillation of a simple harmonic 
oscillator: 
 

m
k '

=ω  

where k′ is the restoring constant. 

From our result for Part (c) and the 
definition of electric potential: ( ) ( )

( ) 2
2
1

2
3

'0
222

10

xkqV

x
L

kqQqVxU

+=

⎟
⎠
⎞

⎜
⎝
⎛+=

 

where 
322

'
L

kqQk =  

 
Substituting for k′ in the expression 
for ω yields: 322 Lm

kqQ
=ω  

 
89 ••• Three concentric conducting thin spherical shells have radii a, b, and c 
so that a < b < c. Initially, the inner shell is uncharged, the middle shell has a 
positive charge +Q, and the outer shell has a charge –Q. (Assume the potential 
equals zero at points far from the shells.) (a) Find the electric potential of each of 
the three shells. (b) If the inner and outer shells are now connected by a 
conducting wire that is insulated as it passes through a small hole in the middle 
shell, what is the electric potential of each of the three shells, and what is the final 
charge on each shell? 
 
Picture the Problem The diagram shows part of the shells in a cross-sectional 
view under the conditions of Part (a) of the problem. We can use Gauss’s law to 
find the electric field in the regions defined by the three surfaces and then find the 
electric potentials from the electric fields.  In Part (b) we can use the redistributed 
charges to find the charge on and potentials of the three surfaces. 
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a
b

c

Q−
Q+

 
 
(a) Apply Gauss’s law to a spherical 
Gaussian surface of radius r  ≥ c to 
obtain: 
 

( ) 04
0

enclosed2 ==
∈

π QrEr  

and Er = 0 because the net charge 
enclosed by the Gaussian surface is 
zero. 
 

Because Er(c) = 0: 
 

( ) 0=cV  

Apply Gauss’s law to a spherical 
Gaussian surface of radius  
b < r  < c to obtain: 
 

( )
0

24
∈

π QrEr =  

and 

( ) 2r
kQcrbEr =<<  

 
Use ( )crbEr << to find the 
potential difference between c 
and b: 
 

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −=

−=− ∫

cb
kQ

r
drkQcVbV

b

c

11

2

 

 
Because V(c) = 0: ( ) ⎟

⎠
⎞

⎜
⎝
⎛ −=

cb
kQbV 11  

 
The inner shell carries no charge, so 
the field between r = a and r = b is 
zero and: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −==

cb
kQbVaV 11  
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(b) When the inner and outer shells 
are connected their potentials 
become equal as a consequence of 
the redistribution of charge.  a

b

c

Q−Q+

 
The charges on surfaces a and c are 
related according to: 
 

QQQ ca −=+                           (1) 
 

Qb does not change with the 
connection of the inner and outer 
shells: 
 

QQ =b  

Express the potentials of shells a 
and c: 
 

( ) ( ) 0== cVaV  

In the region between the r = a and  
r = b, the field is kQa/r2 and the 
potential at r = b is then: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

ab
kQbV a

11                   (2) 

The enclosed charge for b < r < c 
is Qa + Q, and by Gauss’s law the 
field in this region is: 
 

( )
2r

QQkE a
crb

+
=<<  

Express the potential difference 
between b and c: 

( ) ( ) ( )

( )bV
bc

QQkbVcV a

−=

⎟
⎠
⎞

⎜
⎝
⎛ −+=−

11
 

because V(c) = 0. 
 

Solve for V(b) to obtain: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+=

cb
QQkbV a

11         (3) 

 
Equate equations (2) and (3) and 
solve for Qa to obtain: 

( )
( )acb

bcaQQa −
−

−=                  (4) 

 
Substitute equation (4) in equation 
(1) and solve for Qc to obtain: 

( )
( )acb

abcQQc −
−

−=                  (5) 
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Substitute equations (4) and (5) in 
equation (3) to obtain: ( ) ( )( )

( )acb
abbckQbV

−
−−

= 2  

 
90 ••• Consider two concentric spherical thin metal shells of radii a and b, 
where b > a. The outer shell has a charge Q, but the inner shell is grounded. This 
means that the potential on the inner shell is the same as the potential at points far 
from the shells. Find the charge on the inner shell. 
  
Picture the Problem The diagram 
shows a cross-sectional view of a 
portion of the concentric spherical 
shells. Let the charge on the inner shell 
be q. The dashed line represents a 
spherical Gaussian surface over which 
we can integrate dAnE ˆ⋅ in order to 
find Er for r ≥ b. We can find V(b) from 
the integral of Er between r = ∞ and  
r = b. We can obtain a second 
expression for V(b) by considering the 
potential difference between a and b 
and solving the two equations 
simultaneously for the charge q on the 
inner shell. 

 
 

Q
q

a
b

r

 

 
Apply Gauss’s law to a spherical 
surface of radius r ≥ b: 
 

( )
0

24
∈

π qQrEr
+

= ⇒
( )

2r
qQkEr

+
=  

Use Er to find V(b): ( ) ( ) ( )
b

qQk
r
drqQkbV

b +
=+−= ∫

∞
2  

 
We can also determine V(b) by 
considering the potential 
difference between a, i.e., 0 and 
b: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

ab
kqbV 11  

Equate these expressions for V(b) to 
obtain: 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −=

+
ab

ka
b

qQk 11
⇒ Q

b
aq −=  

 
91 ••• [SSM] Show that the total work needed to assemble a uniformly 
charged sphere that has a total charge of Q and radius R is given by 

( )2
03 20Q Rπ ∈ . Energy conservation tells us that this result is the same as the 
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resulting electrostatic potential energy of the sphere. Hint: Let ρ be the charge 
density of the sphere that has charge Q and radius R. Calculate the work dW to 
bring in charge dq from infinity to the surface of a uniformly charged sphere that 
has radius r (r < R) and charge density ρ. (No additional work is required to 
smear dq throughout a spherical shell of radius r, thickness dr, and charge 
density ρ. Why?) 
  
Picture the Problem We can use the hint to derive an expression for the 
electrostatic potential energy dU required to bring in a layer of charge of 
thickness dr and then integrate this expression from r = 0 to R to obtain an 
expression for the required work. 
 
If we build up the sphere in layers, 
then at a given radius r the net charge 
on the sphere will be given by: 
 

Q(r) = Q
r
R

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

3

 

When the radius of the sphere is r, 
the potential relative to infinity is: 
 

( ) ( )
3

2

00 44 R
rQ

r
rQrV

∈π∈π
==  

 
Express the work dW  required to 
bring in charge dQ  from infinity to 
the surface of a uniformly charged 
sphere of radius r: 
 

( )

drr
R

Q

dr
R
Qr

R
rQ

dQrVdUdW

4
6

0

2

3
2

3

2

0

4
3

4
34

4

∈π

π
π

∈π

=

⎟
⎠
⎞

⎜
⎝
⎛=

==

 

 
Integrate dW from 0 to R to obtain: 

R
Q

R
Qr

R
Q

drr
R

QUW

R

R

0

2

0

2

0

5

6
0

2

0

4
6

0

2

20
3

20
3

54
3

4
3

∈π

∈π∈π

∈π

=

=⎥
⎦

⎤
⎢
⎣

⎡
=

== ∫

 

 
92 ••• (a) Use the result of Problem 91 to calculate the classical electron 
radius, the radius of a uniform sphere that has a charge –e has and an electrostatic 
potential energy equal to the rest energy of the electron (5.11 × 105 eV). Comment 
on the shortcomings of this model for the electron. (b) Repeat the calculation in 
Part (a) for a proton using its rest energy of 938 MeV. Experiments indicate the 
proton has an approximate radius of about 1.2 × 10-15 m. Is your result close to 
this value? 
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Picture the Problem We can equate the rest energy of an electron and the result 
of Problem 91 in order to obtain an expression that we can solve for the classical 
electron radius. 
 
(a) From Problem 91 we have: 

R
eU

0

2

20
3

∈π
=  

 
The rest energy of the electron is 
given by: 
 

2
00 cmE =  

 

Equate these energies to obtain: 
 

2
0

0

2

20
3 cm

R
e

=
∈π

 

 
Solving for R yields: 

2
00

2

20
3

cm
eR

∈π
=                     (1) 

 
Substitute numerical values and evaluate R: 
 

( ) m1069.1

eV
J10602.1eV1011.5

mN
C10854.820

C10602.13 15
19

5
2

2
12

219
−

−
−

−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×

×
=

π
R  

 
This model does not explain how the electron holds together against its own 
mutual repulsion. 

 
(b) For a proton, equation (1) yields: 
 

( ) m1021.9

eV
J10602.1MeV 938

mN
C10854.820

C10602.13 19
19

2

2
12

219
−

−
−

−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×

×
=

π
R  

 
This result is way too small to agree with the experimental value of 1.2 × 10−15 m. 
 
93 ••• [SSM] (a) Consider a uniformly charged sphere that has radius R 
and charge Q and is composed of an incompressible fluid, such as water. If the 
sphere fissions (splits) into two halves of equal volume and equal charge, and if 
these halves stabilize into uniformly charged spheres, what is the radius R′ of 
each? (b) Using the expression for potential energy shown in Problem 90, 
calculate the change in the total electrostatic potential energy of the charged fluid. 
Assume that the spheres are separated by a large distance. 
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Picture the Problem Because the post-fission volumes of the fission products are 
equal, we can express the post-fission radii in terms of the radius of the pre-
fission sphere.  
 
(a) Relate the initial volume V of the 
uniformly charged sphere to the 
volumes V′ of the fission products: 
 

'2VV =  

Substitute for V and V ′: ( )3
3
43

3
4 '2 RR ππ =  
 

Solving for R′ yields: RRR 794.0
2

1'
3

==  

 
(b) Express the difference ΔE in the 
total electrostatic energy as a result 
of fissioning: 
 

EEE −=Δ '  

From Problem 91 we have: 
 R

QE
0

2

20
3

∈π
=  

 
After fissioning: 

( )

E
R

Q

R

Q
R

QE

630.0
20

3
2
2

2
120

32
'20

'32'

0

23

30

2
2
1

0

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈π

∈π∈π
 

 
Substitute for E and E′ to obtain: EEEE 370.0630.0 −=−=Δ  
 
94 ••• Problem 93  can be modified to be used as a very simple model for 
nuclear fission. When a 235U nucleus absorbs a neutron, it can fission into the 
fragments 140Xe, 94Sr, and 2 neutrons. The 235U has 92 protons, while 140Xe has 54 
protons and 94Sr has 38 protons. Estimate the energy released during this fission 
process (in MeV), assuming that the mass density of the nucleus is constant and 
has a value of 4 × 1017 kg/m3. 
 
Picture the Problem We can use the definition of density to express the radius R 
of a nucleus as a function of its atomic mass N. We can then use the  result 
derived in Problem 93  to express the electrostatic energies of the 235U nucleus 
and the nuclei of the fission fragments 140Xe and 94Sr. 
 
The energy released by this fission 
process is: 

( )
SrXeU 94140235 UUUE +−=Δ     (1) 
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Express the mass of a nucleus in 
terms of its density and volume: 

3
3
4 RNm ρπ= ⇒ 3

4
3

πρ
NmR =  

where N is the nuclear number. 
 

Substitute numerical values and 
evaluate R as a function of N: 
 

( )
( )

( ) 3116

313
317

27

m1097.9

kg/m1044
kg10660.13

N

NR

−

−

×=

×
×

=
π  

 
The 'radius' of the 235U nucleus is 
therefore: 
 

( )( )
m1015.6

235m1097.9
15

3116

−

−

×=

×=UR
 

 
From Problem 91 we have: 

R
QU

0

2

20
3

∈π
=  

 
Substitute numerical values and evaluate the electrostatic energy of the 235U 
nucleus: 
 

( )
( )

MeV1189
J/eV10602.1

eV1J1090.1

m1015.6
mN

C10854.820

C10602.1923

19
10

15
2

2
12

219

U235

=
×

××=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×

××
=

−
−

−−

−

π
U

 

 
The radii of 140Xe and 94Sr are: 
 

( )( )
m10177.5

140m1097.9
15

3116
Xe149

−

−

×=

×=R
 

and 
( )( )

m10533.4

94m1097.9
15

3116
Sr94

−

−

×=

×=R
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Proceed as above to find the electrostatic energy of the fission fragments 140Xe 
and 94Sr: 
 

( )
( )( )

MeV486
J/eV10602.1

eV1J10791.7

m1018.5mN/C10854.820
C10602.1543

19
11

152212

219

Xe140

=
×

××=

×⋅×
××

=

−
−

−−

−

π
U

 

and 
( )

( )( )
MeV275

J/eV10602.1
eV1J10412.4

m1053.4mN/C10854.820
C10602.1383

19
11

152212

219

Sr94

=
×

××=

×⋅×
××

=

−
−

−−

−

π
U

 

 
Substitute for 

U235U , 
Xe140U , and 

Sr94U in equation (1) and evaluate 
ΔE: 

( )
MeV 284

MeV275MeV486MeV1189Δ

≈

+−=E
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