
Chapter 22 
The Electric Field II: Continuous Charge 
Distributions 
 
Conceptual Problems 
 
1 • [SSM] Figure 22-37 shows an L-shaped object that has sides which 
are equal in length.  Positive charge is distributed uniformly along the length of 
the object. What is the direction of the electric field along the dashed 45o line? 
Explain your answer. 
 
Determine the Concept The resultant field is directed along the dashed line; 
pointing away from the intersection of the two sides of the L-shaped object. This 
can be seen by dividing each leg of the object into 10 (or more) equal segments 
and then drawing the electric field on the dashed line due to the charges on each 
pair of segments that are equidistant from the intersection of the legs. 
 
2 • Positive charge is distributed uniformly along the entire length of the x 
axis, and negative charge is distributed uniformly along the entire length of the y 
axis.  The charge per unit length on the two axes is identical, except for the sign. 
Determine the direction of the electric field at points on the lines defined by y  = x 
and y = –x. Explain your answer. 
 
Determine the Concept The electric fields along the lines defined by y  = x and  
y = –x are the superposition of the electric fields due to the charge distributions 
along the axes. The direction of the electric field is the direction of the force 
acting on a test charge at the point(s) of interest. Typical points are shown at two 
points on each of the two lines.  
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3 • True or false:  
 
(a) The electric field due to a hollow uniformly charged thin spherical shell is 

zero at all points inside the shell.  
(b) In electrostatic equilibrium, the electric field everywhere inside the material 

of a conductor must be zero. 
(c) If the net charge on a conductor is zero, the charge density must be zero at 

every point on the surface of the conductor. 
 
(a) True (assuming there are no charges inside the shell). 
 
(b) True. The charges reside on the surface of conductor. 
 
(c) False. Consider a spherical conducting shell. Such a surface will have equal 
charges on its inner and outer surfaces but, because their areas differ, so will their 
charge densities. 
 
4 • If the electric flux through a closed surface is zero, must the electric 
field be zero everywhere on that surface? If not, give a specific example. From the 
given information can the net charge inside the surface be determined? If so, what 
is it? 
 
Determine the Concept No, this is not necessarily true. The only conclusion that 
we can draw is that there is equal positive and negative flux. For example, the net 
flux through a Gaussian surface completely enclosing a dipole is zero. If the 
electric flux is zero through the closed surface, we can conclude that the net 
charge inside the surface is zero. 
 
5 • True or false: 
 
(a) Gauss’s law holds only for symmetric charge distributions. 
(b) The result that E = 0 everywhere inside the material of a conductor under 

electrostatic conditions can be derived from Gauss’s law. 
 
(a)  False.  Gauss’s law states that the net flux through any surface is given 
by insideS nnet 4 kQdAE πφ == ∫ . While it is true that Gauss’s law is easiest to apply to 

symmetric charge distributions, it holds for any surface. 
 
(b)  True. Because the charges on a conductor, under electrostatic conditions, 
reside on the surface of the conductor, the net flux inside the conductor is zero. 
Hence, by Gauss’s law, the electric field inside the conductor must also be zero. 
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6 •• A single point charge q is located at the center of both an imaginary 
cube and an imaginary sphere. How does the electric flux through the surface of 
the cube compare to that through the surface of the sphere? Explain your answer. 
 
Determine the Concept Because the net flux is proportional to the net charge 
enclosed, and this is the same for both surfaces, the electric flux through the 
surface of the cube is the same as the electric flux through the surface of the 
sphere.  
 
7 •• [SSM] An electric dipole is completely inside a closed imaginary 
surface and there are no other charges. True or False: 
 
(a) The electric field is zero everywhere on the surface. 
(b) The electric field is normal to the surface everywhere on the surface. 
(c) The electric flux through the surface is zero. 
(d) The electric flux through the surface could be positive or negative. 
(e) The electric flux through a portion of the surface might not be zero. 
 
(a) False. Near the positive end of the dipole, the electric field, in accordance with 
Coulomb’s law, will be directed outward and will be nonzero. Near the negative 
end of the dipole, the electric field, in accordance with Coulomb’s law, will be 
directed inward and will be nonzero. 
 
(b) False. The electric field is perpendicular to the Gaussian surface only at the 
intersections of the surface with a line defined by the axis of the dipole. 
 
(c) True. Because the net charge enclosed by the Gaussian surface is zero, the net 
flux, given by insideS nnet 4 kQdAE πφ == ∫ , through this surface must be zero. 

 
(d) False. The flux through the closed surface is zero. 
 
(e) True. All Gauss’s law tells us is that, because the net charge inside the surface 
is zero, the net flux through the surface must be zero. 
 
8 •• Explain why the electric field strength increases linearly with r, rather 
than decreases inversely with r2, between the center and the surface of a 
uniformly charged solid sphere.   
 
Determine the Concept We can show that the charge inside a uniformly charged 
solid sphere of radius r is proportional to r3 and that the area of a sphere is 
proportional to r2. Using Gauss’s law, it follows that the electric field must be 
proportional to r3/r2 = r. 
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Use Gauss’s law to express the 
electric field inside a spherical 
charge distribution of constant 
volume charge density: 
 

A
kQE inside4π

=  

where . 24 rA π=

Express  as a function of ρ 
and r: 

insideQ

 

3
3
4

inside rVQ πρρ ==  
 

Substitute for to obtain: insideQ
rk

r
rk

E
3

4
4

4
2

3
3
4 πρ
π
πρπ

==  

 
This result shows that the electric field increases linearly as you move out from 
the center of a spherical charge distribution. 

9 •• [SSM] Suppose that the total charge on the conducting spherical 
shell in Figure 22-38 is zero. The negative point charge at the center has a 
magnitude given by Q.  What is the direction of the electric field in the following 
regions?  (a) r < R1 ,  (b) R2 > r > R1 , (c) and r > R2 . Explain your answer. 

 
Determine the Concept We can apply Gauss’s law to determine the electric field 
for r < R1, R2 > r > R1, and r > R2. We also know that the direction of an electric 
field at any point is determined by the direction of the electric force acting on a 
positively charged object located at that point.  
 
(a) From the application of Gauss’s law we know that the electric field in this 
region is not zero. A positively charged object placed in the region for which  
r < R1 will experience an attractive force from the charge –Q located at the center 
of the shell. Hence the direction of the electric field is radially inward. 
 
(b) Because the total charge on the conducting sphere is zero, the charge on its 
inner surface must be positive (the positive charges in the conducting sphere are 
drawn there by the negative charge at the center of the shell) and the charge on its 
outer surface must be negative. Hence the electric field in the region R2 > r > R1 
is radially outward. 
 
(c) Because the charge on the outer surface of the conducting shell is negative, 
the electric field in the region r > R2 is radially inward. 

10 •• The conducting shell in Figure 22-38 is grounded, and the negative 
point charge at the center has a magnitude given by Q. Which of the following 
statements is correct? 
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(a) The charge on the inner surface of the shell is +Q and the charge on the 
outer surface is –Q. 

(b) The charge on the inner surface of the shell is +Q and the charge on the 
outer surface is zero. 

(c) The charge on both surfaces of the shell is +Q. 
(d) The charge on both surfaces of the shell is zero. 
 
Determine the Concept We can decide what will happen when the conducting 
shell is grounded by thinking about the distribution of charge on the shell before it 
is grounded and the effect on this distribution of grounding the shell. 
 
The negative point charge at the center of the conducting shell induces a positive 
charge on the inner surface of the shell and a negative charge on the outer surface. 
Grounding the shell attracts positive charge from ground; resulting in the outer 
surface becoming electrically neutral.  (b) is correct.    
 
11 •• The conducting shell in Figure 22-38 is grounded, and the negative 
point charge at the center has a magnitude given by Q. What is the direction of the 
electric field in the following regions?  (a) r < R1 ,  (b) R2 > r > R1 , (c) and r > R2. 
Explain your answers. 
 
Determine the Concept We can apply Gauss’s law to determine the electric field 
for r < R1, R2 > r > R1, and r > R2. We also know that the direction of an electric 
field at any point is determined by the direction of the electric force acting on a 
positively charged object located at that point.  
 
(a) From the application of Gauss’s law we know that the electric field in this 
region is not zero. A positively charged object placed in the region for which  
r < R1 will experience an attractive force from the charge –Q located at the center 
of the shell. Hence the direction of the electric field is radially inward. 
 
(b) Because the conducting shell is grounded, its inner surface is positively 
charged and its outer surface will have zero net charge. Hence the electric field in 
the region R2 > r > R1 is radially outward. 
 
(c) Because the conducting shell is grounded, the net charge on the outer surface 
of the conducting shell is zero, and the electric field in the region r > R2 is zero. 
 
Estimation and Approximation  
 
12 •• In the chapter, the expression for the electric field due to a uniformly 
charged disk (on its axis), was derived. At any location on the axis, the field 
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magnitude is
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

−1

2

2

112
z
RkE σπ . At large distances ( z >> R), it was 

shown that this equation approaches 2zkQE ≈ . Very near the disk  ( z  << R), 
the field strength is approximately that of an infinite plane of charge or 

σπkE 2≈ . Suppose you have a disk of radius 2.5 cm that has a uniform surface 
charge density of 3.6 μC/m2. Use both the exact and appropriate expression from 
those given above to find the electric-field strength on the axis at distances of  
(a) 0.010 cm, (b) 0.040 cm, and (c) 5.0 m.  Compare the two values in each case 
and comment on the how well the approximations work in their region of validity. 
  
Picture the Problem For z << R, we can model the disk as an infinite plane. For  
z >> R, we can approximate the ring charge by a point charge. 
 
(a) Evaluate the exact expression for z = 0.010 cm: 
 

( )( )
( )
( )

N/C10 0.2N/C10 025.2

cm 010.0
cm 5.21

11C/m6.3/CmN10988.82

55

2

2

2229
cm 010.0

×=×=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−⋅×=
=

μπ
z

E
 

 
For z << R, the electric field strength 
near an infinite plane of charge is 
given by: 
 

σπkE 2≈  

 
 

Evaluate the approximate expression for z = 0.010 cm: 
 

( )( )
N/C100.2

N/C10033.2C/m6.3/CmN10988.82
5

52229
approx

×=

×=⋅×= μπE
 

 
The approximate value agrees to within 0.40% with the exact value and is larger 
than the exact value. 
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(b) Evaluate the exact expression for z = 0.040 cm: 
 

( )( )
( )
( )

N/C10 0.2N/C10 001.2

cm 040.0
cm 5.21

11C/m6.3/CmN10988.82

55

2

2

2229
cm 040.0

×=×=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−⋅×=
=

μπ
z

E
 

 
The approximate value agrees to within 1.2% with the exact value and is smaller 
than the exact value. 
 
(c) Evaluate the exact expression for z = 5.0 m: 
 

( )( )
( )
( )

N/C 5.2N/C 541.2

m .05
cm 5.21

11C/m6.3/CmN10988.82

2

2

2229
m 0.5

==

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−⋅×=
=

μπ
z

E
 

 
Because z >> R, we can use 
Coulomb’s law for the electric field 
due to a point charge to obtain: 
 

( ) 2

2

2 z
rk

z
kQzE σπ

==  

 

Evaluate ( )m 0.5E : 

 

( ) ( )( ) ( )
( )

N/C5.2

N/C 541.2
m0.5

C/m6.3cm5.2/CmN10988.8m0.5 2

22229

approx

=

=
⋅×

=
μπE

 

 
The approximate value agrees, to four significant figures, with the exact value. 
 

Calculating E
r

 From Coulomb’s Law 
 
13 •• [SSM]  A uniform line charge that has a linear charge density l equal 
to 3.5 nC/m is on the x axis between x = 0 and x = 5.0 m. (a) What is its total 
charge? Find the electric field on the x axis at (b) x = 6.0 m, (c) x = 9.0 m, and  
(d) x = 250 m.   
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(e) Estimate the electric field at x = 250 m, using the approximation that the 
charge is a point charge on the x axis at x = 2.5 m, and compare your result with 
the result calculated  in Part (d). (To do this you will need to assume that the 
values given in this problem statement are valid to more than two significant 
figures.) Is your approximate result greater or smaller than the exact result? 
Explain your answer. 
 
Picture the Problem We can use the definition of λ to find the total charge of the 
line of charge and the expression for the electric field on the axis of a finite line of 
charge to evaluate Ex at the given locations along the x axis. In Part (d) we can 
apply Coulomb’s law for the electric field due to a point charge to approximate the 
electric field at x = 250 m. 
 
(a) Use the definition of linear charge 
density to express Q in terms of λ: 

( )( )
nC18

nC17.5m5.0nC/m3.5

=

=== LQ λ
 

 
Express the electric field on the axis 
of a finite line charge: 
 

( ) ( )Lxx
kQxEx −

=
00

0  

(b) Substitute numerical values and evaluate Ex at x = 6.0 m: 
 

( ) ( )( )
( )( ) N/C26

m5.0m6.0m6.0
nC17.5/CmN108.988m6.0

229

=
−

⋅×
=xE  

 
(c) Substitute numerical values and evaluate Ex at x = 9.0 m: 
 

( ) ( )( )
( )( ) N/C4.4

m5.0m9.0m9.0
nC17.5/CmN108.988m9.0

229

=
−

⋅×
=xE  

 
(d) Substitute numerical values and evaluate Ex at x = 250 m: 
 

( ) ( )( )
( )( ) mN/C6.2mN/C 56800.2

m5.0m502m502
nC17.5/CmN108.988m502

229

==
−

⋅×
=xE  

 
(e) Use Coulomb’s law for the 
electric field due to a point charge to 
obtain: 
 

( ) 2x
kQxEx =  
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Substitute numerical values and evaluate Ex(250 m): 
 

( ) ( )( )
( )

mN/C6.2mN/C56774.2
m 2.5m250

nC17.5/CmN108.988m250 2

229

==
−
⋅×

=xE  

 
This result is about 0.01% less than the exact value obtained in (d). This suggests 
that the line of charge is too long for its field at a distance of 250 m to be modeled 
exactly as that due to a point charge. 
 
14 • Two infinite non-conducting sheets of charge are parallel to each 
other, with sheet A in the x = –2.0 m plane and sheet B in the x = +2.0 m plane.  
Find the electric field in the region x < –2.0 m, in the region x > +2.0 m, and 
between the sheets for the following situations. (a) When each sheet has a 
uniform surface charge density equal to +3.0 μC/m2 and (b) when sheet A has a 
uniform surface charge density equal to +3.0 μC/m2 and sheet B has a uniform 
surface charge density equal to –3.0 μC/m2. (c) Sketch the electric field-line 
pattern for each case. 
 
Picture the Problem Let the charge 
densities on the two plates be σ1 and σ2 
and denote the three regions of interest 
as 1, 2, and 3. Choose a coordinate 
system in which the positive x direction 
is to the right. We can apply the 
equation for E

r
near an infinite plane of 

charge and the superposition of fields 
to find the field in each of the three 
regions. 

 

321

σ
σ1
2

 

 
(a) Use the equation for E

r
near an 

infinite plane of charge to express the 
field in region 1 when  
σ1 = σ2  = +3.0 μC/m2: 
 

i

ii

EEE

ˆ4

ˆ2ˆ2 21

1 21

σπ

σπσπ

σσ

k

kk

−=

−−=

+=
rrr

 

Substitute numerical values and evaluate :1E
r

 
 

( )( ) ( )iiE ˆN/C104.3ˆC/m0.3/CmN10988.84 52229
1 ×−=⋅×−= μπ

r
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Proceed as above for region 2: 

0

ˆ2ˆ2

ˆ2ˆ2 212 21

=

−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 
Proceed as above for region 3: 
 

( )

( )i

i

iiiEEE

ˆN/C104.3

ˆC/m0.3
C

mN10988.84

ˆ4ˆ2ˆ2

5

2
2

2
9

213 21

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

=+=+=

μπ

σπσπσπσσ kkk
rrr

 

 
(b) Use the equation for E

r
near an 

infinite plane of charge to express and 
evaluate the field in region 1 when σ1 
= +3.0 μC/m2 and σ2  = −3.0 μC/m2: 
 

0

ˆ2ˆ2

ˆ2ˆ2 211 21

=

−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 
Proceed as above for region 2: 
 

( )

( )i

i

iiiEEE

ˆN/C104.3

ˆC/m0.3
C

mN10988.84

ˆ4ˆ2ˆ2

5

2
2

2
9

212 21

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
×=

=+=+=

μπ

σπσπσπσσ kkk
rrr

 

 
Proceed as above for region 3: 

0

ˆ2ˆ2

ˆ2ˆ2 213 21

=

−=

−=+=

ii

iiEEE

σπσπ

σπσπσσ

kk

kk
rrr

 

 
(c) The electric field lines for (a) and (b) are shown below: 
 
(a) 

 

(b) 
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15 • A charge of 2.75 μC is uniformly distributed on a ring of radius 8.5 
cm. Find the electric field strength on the axis at distances of (a) 1.2 cm, (b) 3.6 
cm, and (c) 4.0 m from the center of the ring. (d) Find the field strength at 4.0 m 
using the approximation that the ring is a point charge at the origin, and compare 
your results for Parts (c) and (d). Is your approximate result a good one? Explain 
your answer. 
 
Picture the Problem The magnitude of the electric field on the axis of a ring of 
charge is given by ( ) ( ) 2322 azkQxzEx += where Q is the charge on the ring and 
a is the radius of the ring. We can use this relationship to find the electric field on 
the axis of the ring at the given distances from the ring. 
 
Express E

r
on the axis of a ring 

charge: 
 

( )
( ) 2322 az

kQxzEx
+

=  

 
(a) Substitute numerical values and evaluate Ex for z = 1.2 cm: 
 

( ) ( )( )( )
( ) ( )[ ] N/C107.4

cm5.8cm2.1

cm2.1C75.2/CmN10988.8cm2.1 5
2322

229

×=
+

⋅×
=

μ
xE  

 
(b) Proceed as in (a) with z = 3.6 cm: 
 

( ) ( )( )( )
( ) ( )[ ] N/C101.1

cm5.8cm6.3

cm6.3C75.2/CmN10988.8cm6.3 6
2322

229

×=
+

⋅×
=

μ
xE  

 
(c) Proceed as in (a) with z = 4.0 m: 
 

( ) ( )( )( )
( ) ( )[ ] N/C105.1

cm5.8m0.4

m0.4C75.2/CmN10988.8m0.4 3
2322

229

×=
+

⋅×
=

μ
xE  

 
(d) Using Coulomb’s law for the 
electric field due to a point charge, 
express Ez: 
 

( ) 2z
kQzEz =  

Substitute numerical values and evaluate Ex at z = 4.0 m: 
 

( ) ( )( )
( )

N/C105.1
m0.4

C75.2/CmN10988.8m0.4 3
2

229

×=
⋅×

=
μ

zE  
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While this result agrees exactly, to two significant figures, with the result 
obtained in Part (c), it should be slightly larger because the point charge is nearer 
x = 4.0 m than is the ring of charge. 
 
16 • A non-conducting disk of radius R lies in the z = 0 plane with its center 
at the origin. The disk has a uniform surface charge density σ. Find the value of z 
for which    . Note that at this distance, the magnitude of the electric-
field strength is half the electric-field strength at points on the x axis that are very 
close to the disk. 

Ez = σ / 4∈0(

 
Picture the Problem The electric field on the axis of a disk charge is given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rz
xkqEz π . We can equate this expression and ( )02

1 2∈σ=zE  and 

solve for z. 
 
Express the electric field on the axis 
of a disk charge: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

Rz
xkqEz π  

 
We’re given that: ( )

0
02

1

4
2

∈
σ∈σ ==zE  

 
Equate these expressions: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
0

12
4 Rz

xkσπ
∈
σ  

 
Substituting for k yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

22
00

1
4

12
4 Rz

xσ
∈π

π
∈
σ  

 
Solve for z  to obtain: 
 3

Rz =  

 
 
17 • [SSM] A ring that has radius a lies in the z = 0 plane with its center 
at the origin.  The ring is uniformly charged and has a total charge Q. Find Ez on 
the z axis at (a) z = 0.2a, (b) z = 0.5a, (c) z = 0.7a, (d) z = a, and (e) z = 2a. (f) Use 
your results to plot Ez versus z for both positive and negative values of z. (Assume 
that these distances are exact.) 
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Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

az
zkqEz π to find the electric 

field at the given distances from the center of the charged ring. 
 
(a) Evaluate Ez(0.2a): ( ) ( )

( )[ ]
2

2322

189.0

2.0

2.02.0

a
kQ

aa

akQaEz

=

+
=

 

 
(b) Evaluate Ez(0.5a): ( ) ( )

( )[ ]
2

2322

358.0

5.0

5.05.0

a
kQ

aa

akQaEz

=

+
=

 

 
(c) Evaluate Ez(0.7a): ( ) ( )

( )[ ]
2

2322

385.0

7.0

7.07.0

a
kQ

aa

akQaEz

=

+
=

 

 
(d) Evaluate Ez(a): ( ) [ ] 22322

354.0
a
kQ

aa
kQaaEz =
+

=  

 
(e) Evaluate Ez(2a): ( )

( )[ ] 22322
179.0

2

22
a
kQ

aa

kQaaEz =
+

=  
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(f) The field along the x axis is plotted below. The z coordinates are in units of z/a 
and E is in units of kQ/a2. 

-0.4

-0.2

0.0

0.2

0.4

-3 -2 -1 0 1 2 3

z/a

E x

 
 
18 • A non-conducting disk of radius a lies in the z = 0 plane with its center 
at the origin. The disk is uniformly charged and has a total charge Q.  Find Ez on 
the z axis at (a) z = 0.2a, (b) z = 0.5a, (c) z = 0.7a, (d) z = a, and (e) z = 2a. (f) Use 
your results to plot Ez versus z for both positive and negative values of z. (Assume 
that these distances are exact.)   
 

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

az
zkqEz π , where a is the radius 

of the disk, to find the electric field on the axis of a charged disk. 
 
The electric field on the axis of a 
charged disk of radius a is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
0

22

1
2

12

az
zQ

az
zkQEz

∈

π

 

 
(a) Evaluate Ez(0.2a): 

( )
( )

0

22
0

402.0

2.0

2.01
2

2.0

∈

∈

Q

aa

aQaEz

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=
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(b) Evaluate Ez(0.5a): 
( )

( )

0

22
0

276.0

5.0

5.01
2

5.0

∈

∈

Q

aa

aQaEz

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=

 

 
(c) Evaluate Ez(0.7a): 

( )
( )

0

22
0

213.0

7.0

7.01
2

7.0

∈

∈

Q

aa

aQaEz

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=

 

 
(d) Evaluate Ez(a):  ( )

0

22
0

146.0

1
2

∈

∈

Q
aa

aQaEz

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

 

 
(e) Evaluate Ez(2a): 

( )
( )

0

22
0

0528.0

2

21
2

2

∈

∈

Q

aa

aQaEz

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=

 

 
The field along the x axis is plotted below. The x coordinates are in units of z/a 
and E is in units of .0∈Q  

0.0

0.4

0.8

1.2

1.6

2.0

-3 -2 -1 0 1 2 3

z/a

E x
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19 •• (a) Using a spreadsheet program or graphing calculator, make a graph 
of the electric field strength on the axis of a disk that has a radius a = 30.0 cm and 
a surface charge density σ = 0.500 nC/m2. (b) Compare your results to the results 
based on the approximation E = 2πkσ (the formula for the electric-field strength 
of a uniformly charged infinite sheet). At what distance does the solution based on 
approximation differ from the exact solution by 10.0 percent?  
 
Picture the Problem The electric field on the x axis of a disk of radius r carrying 

a surface charge density σ is given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

22
12

az
zkEz σπ . The electric 

field due to an infinite sheet of charge density σ is independent of the distance 
from the plane and is given by σπkE 2sheet = . 
 
(a) A spreadsheet program to graph Ex as a function of x is shown below. The 
formulas used to calculate the quantities in the columns are as follows: 
 

Cell Content/Formula Algebraic Form 
k B3 9.00E+09 

B4 σ 5.00E−10 
r B5 0.3 
x0A8 0 

x0 + 0.01 A9 0.01 
B8 2*PI()*$B$3*$B$4*(1−A8/ 

(A8^2+$B$5^2)^2)^0.5) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

22
12

az
zkσπ  

C8 2*PI()*$B$3*$B$4 σπk2   
 

 A B C 
1    
2    
3 k= 9.00E+09 N⋅m2/C2

4 σ= 5.00E-10 C/m2

5 a= 0.300 m 
6    
7 z E(z) Esheet
8 0.00 28.27 28.3 
9 0.01 27.33 28.3 
10 0.02 26.39 28.3 
11 0.03 25.46 28.3 
12 0.04 24.54 28.3 
13 0.05 23.63 28.3 
14 0.06 22.73 28.3 
15 0.07 21.85 28.3 
    

73 0.65 2.60 28.3 
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74 0.66 2.53 28.3 
75 0.67 2.47 28.3 
76 0.68 2.41 28.3 
77 0.69 2.34 28.3 
78 0.70 2.29 28.3  

 
(b)  The following graph shows E as a function of z. The electric field from an 
infinite sheet with the same charge density is shown for comparison. The 
magnitudes differ by more than 10.0 percent for x ≥ 0.0300 m. 

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

z, m 

E,
 N

/C
 

E
E _sheet

 
 
20 •• (a) Show that the electric-field strength E on the axis of a ring charge 
of radius a has maximum values at z = ±a/ 2 .  (b) Sketch the field strength E 
versus z for both positive and negative values of z. (c) Determine the maximum 
value of E . 
   
Picture the Problem The electric field on the axis of a ring charge as a function 
of distance z along the axis from the center of the ring is given by 

( ) 2322 az
kQzEz
+

= . We can show that it has its maximum and minimum values at 

2az += and 2az −= by setting its first derivative equal to zero and solving 
the resulting equation for z. The graph of Ez will confirm that the maximum and 
minimum occur at these coordinates. 
 
(a) The variation of Ez with z on the 
axis of a ring charge is given by: ( ) 2322 az

kQzEz
+

=  

 



  Chapter 22 
 

 

2106 

 
Differentiate this expression with respect to z to obtain: 
 

( )
( ) ( )

( )
( ) ( )( ) ( )

( )
( ) ( )

( )322

212222322

322

2122
2
32322

322

23222322

2322

32

az
azzazkQ

az

zazzaz
kQ

az

az
dz
dzaz

kQ
az
x

dz
dkQ

dz
dEx

+

+−+
=

+

+−+
=

+

+−+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

 

 
( ) ( )

( )
03

322

212222322

=
+

+−+

az
azzaz , 

Set this expression equal to zero for 
extrema and simplify: 

( ) ( ) 03 212222322 =+−+ azzaz , 
and 

03 222 =−+ zaz  
 

Solving for z yields: 
 2

az ±=  

as our candidates for maxima or 
minima. 
 

(b) A plot of the magnitude of Ez, in units of kQ/a2, versus z/a follows. This graph 
shows that the extrema at 2az ±= are, in fact, maxima. 

0.0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

z/a

E (z /a )
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(c) Evaluate ⎟
⎠

⎞
⎜
⎝

⎛±
2

aEz and simplify to obtain the maximum value of the 

magnitude of Ez: 
 

( ) 22322
2
123

2
2max, 9

322

2

2
2 a

kQ
aa

akQ

aa

akQ
aEE zz =

+
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
±

⎟
⎠

⎞
⎜
⎝

⎛±
=⎟

⎠

⎞
⎜
⎝

⎛±=  

 
Remarks: Note that our result in Part (c) confirms the maxima obtained 
graphically in Part (b). 
 
21 •• A line charge that has a uniform linear charge density λ lies along the 
x axis from x = x1 to x = x2 where x1 < x2.  Show that the x component of the 

electric field at a point on the y-axis is given by Ex =
kλ
y

cosθ2 − cosθ1( ) where  

θ1 = tan–1 (x1/y), θ2 = tan–1 (x2/y) and y ≠ 0. 
 
Picture the Problem The line charge and point (0, y) are shown in the diagram. 
Also shown is a line element of length dx and the field E

r
d its charge produces at 

(0, y). We can find dEx from E
r

d and then integrate from x = x1 to x = x2. 

 
 
Express the x component of E

r
d : 

( ) dx
yx
xk

dx
yx

x
yx

k

dx
yx

kdEx

2322

2222

22 sin

+
−=

++
−=

+
−=

λ

λ

θλ
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Integrate from x = x1 to x2 and 
simplify to obtain: ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
+

+
−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=

+
−= ∫

22
1

22
2

22
1

22
2

22

2322

11

1
2

1

2

1

yx
y

yx
y

y
k

yxyx
k

yx
k

dx
yx

xkE

x

x

x

x
x

λ

λ

λ

λ

 

 
From the diagram we see that: 

22
2

2cos
yx

y
+

=θ or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

y
x21

2 tanθ  

and 

22
1

1cos
yx

y
+

=θ or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

y
x11

1 tanθ  

 
Substitute to obtain: [ ]

[ ]12

12

coscos

coscos

θθλ

θθλ

−=

+−−=

y
k

y
kEx

 

 
22 •• A ring of radius a has a charge distribution on it that varies as  
λ(θ) = λ0 sin θ, as shown in Figure 22-39. (a) What is the direction of the electric 
field at the center of the ring? (b) What is the magnitude of the field at the center 
of the ring? 
 
Picture the Problem The following diagram shows a segment of the ring of 
length ds that has a charge dq = λds. We can express the electric field at the 
center of the ring due to the charge dq and then integrate this expression from  

E
r

d

θ = 0 to 2π to find the magnitude of the field in the center of the ring. 
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(a) and (b) The field at the center 
of the ring due to the charge dq is:  

E
r

d

 
ji

EEE
ˆsinˆcos θθ dEdE

ddd yx

−−=

+=
rrr

         (1) 

 
The magnitude dE of the field at the 
center of the ring is: 2r

kdqdE =  

 
Because dq = λds: 
 2r

dskdE λ
=  

 
The linear charge density varies with 
θ according to λ(θ) = λ0 sin θ : 
 

2
0 sin

r
dskdE θλ

=  

Substitute rdθ for ds: 
 r

dk
r

rdkdE θθλθθλ sinsin 0
2

0 ==  

 
Substitute for dE in equation (1) 
to obtain: 
 

j

iE

ˆsin

ˆcossin

2
0

0

r
dk

r
dkd

θθλ

θθθλ

−

−=
r

 

 
Integrate  from θ = 0 to 2π and simplify to obtain: E

r
d

 

j
r
kj

r
kjd

r
kid

r
kE ˆˆ0ˆsinˆ2sin
2

00
2

0

20
2

0

0 λπλπθθλθθλ ππ

−=−=−−= ∫∫
r

 

 
(b) The field at the origin is in the negative y direction and its magnitude is 

r
k 0λπ

. 
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23 •• A line of charge that has uniform linear charge density λ lies on the x 
axis from x = 0 to x = a. Show that the y component of the electric field at a point 

on the y axis is given by
   
Ey =

kλ
y

a
y 2 + a2

,    y ≠ 0 . 

 
Picture the Problem The line of 
charge and the point whose coordinates 
are (0, y) are shown in the diagram. 
Also shown is a segment of the line of 
length dx and charge dq. The field due 
to this charge at (0, y) is .E

r
d  We can 

find dEy from and then integrate 
from x = 0 to x = a to find the y 
component of the electric field at a 
point on the y axis. 

E
r

d

x
adx

y

 Ed
r

θ

 ( )y,0

dq

 
 

2r
kdqdE =  

where  222 yxr +=
 

(a) Express the magnitude of the 
field due to charge dq of the 
element of length dx: 

E
r

d

Because :dxdq λ=  
22 yx

dxkdE
+

=
λ  

 
Express the y component of dE: 
 

dx
yx

kdEy θλ cos22 +
=  

 
Refer to the diagram to express 
cosθ in terms of x and y: 22

cos
yx

y
+

=θ  

 
Substitute for cosθ in the 
expression for dEy  to obtain: ( ) dx

yx
ykdEy 2322 +

=
λ  

 
Integrate from x = 0 to x = a and simplify to obtain: 
 

( ) 22
0

222
0

2322

1
ya

a
y

k
yxy

xykdx
yx

ykE

a
a

y
+

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

+
= ∫

λλλ  
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24 ••• Calculate the electric field a distance z from a uniformly charged 
infinite flat non-conducting sheet by modeling the sheet as a continuum of infinite 
straight lines of charge. 
 
Picture the Problem The field due to a 
line of charge is given by 

( )
r

rE λ
∈π 02

1
=  where r is the 

perpendicular distance to the line. The 
diagram shows a point P, at which we 
will calculate the electric field due a 
continuum of infinite straight non-
conducting lines of charge, and a few of 
the lines of charge. P is a distance L 
from the plane and the origin of the 
coordinate system is directly below P. 
Note that the horizontal components of 
the field at P, by symmetry, add up to 
zero. Hence we need only find the sum 
of all the z components of the field. 

 
 
 

θ

y y=0

dy

P

xr

 ( )rEd
r

 

 
Because the horizontal components 
of the electric field add up to zero, 
the resultant field is given by: 
 

( )∫
−

⊥ ==
2

2

cos
π

π

θrdEEE           (1) 

 

Express the field due to an infinite 
line of  charge: 
 

( )
r

drdE λ
∈π 02

1
= , where r is the 

perpendicular distance to the line of 
charge. 
 

The surface charge density σ of the 
plane and the linear charge density 
of the charged rings λ are related: 
 

dyd σλ =  

Substitute for λd  to obtain: ( )
r
dyrdE σ

∈π 02
1

=  

 
Substituting for dE(r) in equation (1)  
yields:  ∫

−

=
2

20

cos
2

1 π

π

θσ
∈π r

dyE  

 
Referring to the diagram, note that: θtanxy = ⇒  θθ dxdy 2sec=
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Substitute for dy in the expression for  
E to obtain: 
 

∫
−

=
2

2

2

0

cossec
2

π

π

θθθ
∈π
σ

r
dxE  

 
Because θcosrx = : 

∫

∫

−

−
⊥

=

=

2

20

2

2

22

0

2

cossec
2

π

π

π

π

θ
∈π
σ

θθθ
∈π
σ

d

dE

 

 
Integrating this expression yields: 

00

2

20 222 ∈
σπ

∈π
σθ

∈π
σ π

π

=== ∫
−

dE  

 
25 •• [SSM] Calculate the electric field a distance z from a uniformly 
charged infinite flat non-conducting sheet by modeling the sheet as a continuum 
of infinite circular rings of charge. 
 
Picture the Problem The field at a 
point on the axis of a uniformly 
charged ring lies along the axis and is 
given by Equation 22-8. The diagram 
shows one ring of the continuum of 
circular rings of charge. The radius of 
the ring is a and the distance from its 
center to the field point P is x. The ring 
has a uniformly distributed charge Q.  
The resultant electric field at P is the 
sum of the fields due to the continuum 
of circular rings. Note that, by 
symmetry, the horizontal components 
of the electric field cancel. 

x Pa

da

 Ed
r

Q

 
 
Express the field of a single 
uniformly charged ring with charge 
Q and radius a on the axis of the ring 
at a distance x away from the plane 
of the ring: 
 

iEE x
ˆ=

r
, where

( ) 2322 ax
kQxE x
+

=  

Substitute dq for Q and dEx  for Ex to 
obtain: 
 

( ) 2322 ax
kxdqdEx
+

=  
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The resultant electric field at P is the 
sum of the fields due to all the circular 
rings. Integrate both sides to calculate 
the resultant field for the entire plane. 
The field point remains fixed, so x is 
constant: 
 

( ) ( )∫∫ +
=

+
= 23222322 ax

dqkx
ax

kxdqE  

 

daadq πσ2=  
so 

( )

( )∫

∫
∞

∞

+
=

+
=

0
2322

0
2322

2

2

ax
daakx

ax
daakxE

σπ

σπ

 

 

To evaluate this integral we change 
integration variables from q to a. 
The charge dAdq σ=  where 

daadA π2= is the area of a ring of 
radius a and width da: 
 

( ) da
u
aada

ax
du =

+
= 21

222
1  

or 
uduada =  

 

To integrate this expression, 
let 22 axu += . Then: 
 

Noting that when a = 0, u = x, 
substitute and simplify to obtain: ∫∫

∞
−

∞

==
xx

duukxdu
u
ukxE 2

3 22 πσπσ  

 
Evaluating the integral yields: 
 

02
212

∈
σσππσ ==⎟

⎠
⎞

⎜
⎝
⎛−=

∞

k
u

kxE
x

 

 
26 ••• A thin hemispherical shell of radius R has a uniform surface charge σ. 
Find the electric field at the center of the base of the hemispherical shell. 
  
Picture the Problem Consider the ring 
with its axis along the z direction 
shown in the diagram. Its radius is  
z = rcosθ and its width is rdθ. We can 
use the equation for the field on the 
axis of a ring charge and then integrate 
to express the field at the center of the 
hemispherical shell. 

dE

θ

θ

θ
c
o

s
r

sinr θ
θrd

r
d

x

z

y
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Express the field on the axis of 
the ring charge: 
 

( )
3

232222 cossin

r
kzdq

rr
kzdqdE

=

+
=

θθ  

where z = rcosθ 
 

Express the charge dq on the ring: ( )
θθπσ

θθπσσ

dr
rdrdAdq

sin2
sin2

2=

==
 

 
Substitute to obtain: ( )

θθθσπ

θθπσθ

dk
r

drrkdE

cossin2

sin2cos
3

2

=

=  

 
Integrating dE from θ = 0 to π/2 
yields: 

[ ] σπθσπ

θθθσπ

π

π

kk

dkE

==

= ∫
2

0
2

2
1

2

0

sin2

cossin2
 

 
Gauss’s Law 
 
27 • A square that has 10-cm-long edges is centered on the x axis in a 
region where there exists a uniform electric field given by ( )iE ˆkN/C 00.2=

r
 .  

(a) What is the electric flux of this electric field through the surface of a square if 
the normal to the surface is in the +x direction? (b) What is the electric flux 
through the same square surface if the normal to the surface makes a 60º angle 
with the y axis and an angle of 90° with the z axis? 
 
Picture the Problem The definition of electric flux is ∫ ⋅=

S
ˆdAnE

r
φ . We can 

apply this definition to find the electric flux through the square in its two 
orientations. 
 
(a) Apply the definition of φ to 
find the flux of the field when the 
square is parallel to the yz plane: 
 

( )

( )

( )( )
/CmN0.20

m100.0kN/C00.2

kN/C00.2

ˆˆkN/C00.2

2

2
S

S

⋅=

=

=

⋅=

∫
∫

dA

dAiiφ
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(b) Proceed as in (a) with 
: °=⋅ 30cosˆˆ ni

( )

( )
( )( )

/CmN17

30cosm100.0kN/C00.2

30coskN/C00.2

30coskN/C00.2

2

2
S

S

⋅=

°=

°=

°=

∫
∫

dA

dAφ

 

 
28 • A single point charge (q =  +2.00 μC) is fixed at the origin. An 
imaginary spherical surface of radius 3.00 m is centered on the x axis at  
x = 5.00 m. (a) Sketch electric-field lines for this charge (in two dimensions) 
assuming twelve equally-spaced field lines in the xy plane leave the charge 
location, with one of the lines in the +x direction. Do any lines enter the spherical 
surface? If so, how many? (b) Do any lines leave the spherical surface? If so, how 
many? (c) Counting the lines that enter as negative and the ones that leave as 
positive, what is the net number of field lines that penetrate the spherical surface? 
(d) What is the net electric flux through this spherical surface? 
 
Determine the Concept We must show the twelve electric field lines originating 
at q and, in the absence of other charges, radially symmetric with respect to the 
location of q. While we’re drawing twelve lines in this problem, the number of 
lines that we draw is always, by agreement, in proportion to the magnitude of q. 
 
(a) The sketch of the field lines and of 
the spherical surface is shown in the 
diagram to the right.  

q

 
Given the number of field lines drawn from q, 3 lines enter the spherical surface. 
Had we chosen to draw 24 field lines, 6 would have entered the spherical surface. 
 
(b) Three lines leave the spherical surface.  
 
(c) Because the three lines that enter the spherical surface also leave the spherical 
surface, the net number of field lines that pass through the surface is zero. 
 
(d) Because as many field lines leave the spherical surface as enter it, the net flux 
is zero. 
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29 • [SSM] An electric field is given by ( ) ( )iE ˆN/C 300sign ⋅= x
r

, where 
sign(x) equals –1 if x < 0, 0 if x = 0, and +1 if  x > 0. A cylinder of length 20 cm 
and radius 4.0 cm has its center at the origin and its axis along the x axis such that 
one end is at x = +10 cm and the other is at x = –10 cm. (a) What is the electric 
flux through each end? (b) What is the electric flux through the curved surface of 
the cylinder? (c) What is the electric flux through the entire closed surface?  
(d) What is the net charge inside the cylinder?  
 
Picture the Problem The field at both circular faces of the cylinder is parallel to 
the outward vector normal to the surface, so the flux is just EA. There is no flux 
through the curved surface because the normal to that surface is perpendicular 
to  The net flux through the closed surface is related to the net charge inside by 
Gauss’s law. 

.E
r

 
 
(a) Use Gauss’s law to calculate 
the flux through the right circular 
surface: 
 

( ) ( )( )
/CmN5.1

m040.0ˆˆN/C300

ˆ

2

2

rightrightright

⋅=

⋅=

⋅=

π

φ

ii

AnE
r

 

 
Apply Gauss’s law to the left 
circular surface: 
 

( ) ( )( )( )
/CmN5.1

m040.0ˆˆN/C300

ˆ

2

2

leftleftleft

⋅=

−⋅−=

⋅=

π

φ

ii

AnE
r

 

 
(b) Because the field lines are 
parallel to the curved surface of 
the cylinder: 
 

0curved =φ  
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(c) Express and evaluate the net 
flux through the entire cylindrical 
surface: 
 /CmN0.3

0/CmN5.1/CmN5.1
2

22

curvedleftrightnet

⋅=

+⋅+⋅=

++= φφφφ

 

 
(d) Apply Gauss’s law to obtain: 
 insidenet 4 kQπφ = ⇒

k
Q

π
φ
4

net
inside =  

 
Substitute numerical values and 
evaluate : insideQ ( )

C107.2

/CmN10988.84
/CmN0.3

11

229

2

inside

−×=

⋅×
⋅

=
π

Q
 

 
30 • Careful measurement of the electric field at the surface of a black box 
indicates that the net outward electric flux through the surface of the box is  
6.0 kN⋅m2/C. (a) What is the net charge inside the box? (b) If the net outward 
electric flux through the surface of the box were zero, could you conclude that 
there were no charges inside the box? Explain your answer. 
 
Picture the Problem We can use Gauss’s law in terms of ∈0 to find the net 
charge inside the box. 
 
(a) Apply Gauss’s law in terms of ∈0 
to find the net charge inside the box: 
 

0

inside
net ∈

φ
Q

= ⇒ net0inside φ∈=Q  

 
Substitute numerical values and evaluate : insideQ
 

C103.5
C

mkN0.6
mN

C10854.8 8
2

2

2
12

inside
−− ×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×=Q  

 
(b) You can only conclude that the net charge is zero. There may be an equal 
number of positive and negative charges present inside the box.  
 
31 • A point charge (q = +2.00 μC) is at the center of an imaginary sphere 
that has a radius equal to 0.500 m. (a) Find the surface area of the sphere. (b) Find 
the magnitude of the electric field at all points on the surface of the sphere.  
(c) What is the flux of the electric field through the surface of the sphere?  
(d) Would your answer to Part (c) change if the point charge were moved so that 
it was inside the sphere but not at its center? (e) What is the flux of the electric 
field through the surface of an imaginary cube that has 1.00-m-long edges and 
encloses the sphere? 
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Picture the Problem We can apply Gauss’s law to find the flux of the electric 
field through the surface of the sphere. 
 
(a) Use the formula for the surface 
area of a sphere to obtain: 
 

( )
2

222

m14.3

m142.3m500.044

=

=== ππ rA
 

 
(b) Apply Coulomb’s law to find E: 
 

( ) ( )
N/C1019.7

N/C10190.7
m500.0
C00.2

m/NC10854.84
1

4
1

4

4
222122

0

×=

×=
⋅×

== −

μ
π∈π r

qE
 

 
(c) Apply Gauss’s law to obtain: 

( )( )
/CmN1026.2

m142.3N/C10190.7

ˆ

25

24

SS

⋅×=

×=

=⋅= ∫∫ EdAdAnE
r

φ

 

 
(d) No. The flux through the surface is independent of where the charge is located 
inside the sphere. 
 
(e) Because the cube encloses the 
sphere, the flux through the surface 
of the sphere will also be the flux 
through the cube: 

/CmN1026.2 25
cube ⋅×=φ  

 
32 • What is the electric flux through one side of a cube that has a single 
point charge of –3.00 μC placed at its center? HINT: You do not need to integrate 
any equations to get the answer. 
 
Picture the Problem The flux through the cube is given by 0insidenet ∈φ Q= , 

where Qinside is the charge at the center of the cube. The flux through one side of 
the cube is one-sixth of the total flux through the cube. 
 
The flux through one side of the 
cube is one-sixth of the total flux 
through the cube: 
 

0
tot6

1
face 1 6∈

φφ Q
==  



                      The Electric Field II: Continuous Charge Distributions 
 

 

2119

Substitute numerical values and 
evaluate face 1φ : 

C
mN1065.5

mN
C 10854.86

C00.3

2
4

2

2
12

face 1

⋅
×−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×

−
=

−

μφ

 

 
33 • [SSM] A single point charge is placed at the center of an imaginary 
cube that has 20-cm-long edges. The electric flux out of one of the cube’s sides is 
–1.50 kN⋅m2/C. How much charge is at the center? 
 
Picture the Problem The net flux through the cube is given by 0insidenet ∈φ Q= , 

where is the charge at the center of the cube. insideQ
 
The flux through one side of the 
cube is one-sixth of the total flux 
through the cube: 
 

0

inside
net6

1
faces 1 6∈

φφ
Q

==  

Solving for  yields: insideQ
 

faces 20inside 6 φ∈=Q  

Substitute numerical values and evaluate : insideQ
 

nC 7.79
C

mkN50.1
mN

C 10854.86 2

2

2

2
12

inside −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −Q  

 
34 •• Because the formulas for Newton’s law of gravity and for Coulomb’s 
law have the same inverse-square dependence on distance, a formula analogous to 
the formula for Gauss’s law can be found for gravity. The gravitational field  at 
a location is the force per unit mass on a test mass m

gr

0 placed at that location. 
Then, for a point mass m at the origin, the gravitational field gr  at some position 
( r ) is 
r ( )rg ˆ2rGm=

r
. Compute the flux of the gravitational field through a 

spherical surface of radius R centered at the origin, and verify that the 
gravitational analog of Gauss’s law is φnet = −4πGminside . 
 
Picture the Problem We’ll define the flux of the gravitational field in a manner 
that is analogous to the definition of the flux of the electric field and then 
substitute for the gravitational field and evaluate the integral over the closed 
spherical surface. 
 
Define the gravitational flux as: 
 

∫ ⋅=
Sg ˆdAngrφ  
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Substitute for and evaluate the 
integral to obtain: 

gr

 

( )

inside

2
2
inside

S2
inside

S 2
inside

net

4

4

ˆˆ

Gm

r
r

Gm

dA
r

Gm

dA
r

Gm

π

π

φ

−=

⎟
⎠
⎞

⎜
⎝
⎛−=

−=

⋅⎟
⎠
⎞

⎜
⎝
⎛−=

∫

∫ nr

 

 
35 •• An imaginary right circular cone (Figure 22-40) that has a base angle θ 
and a base radius R is in a charge free region that has a uniform electric field E

r
 

(field lines are vertical and parallel to the cone’s axis). What is the ratio of the 
number of field lines per unit area penetrating the base to the number of field lines 
per unit area penetrating the conical surface of the cone?  Use Gauss's law in your 
answer. (The field lines in the figure are only a representative sample.) 
 
Picture the Problem Because the cone 
encloses no charge, we know, from 
Gauss’s law, that the net flux of the 
electric field through the cone’s surface 
is zero. Thus, the number of field lines 
penetrating the curved surface of the 
cone must equal the number of field 
lines penetrating the base and the 
entering flux must equal the exiting 
flux. 

R
θ

E
r

n̂θ

 
 
The flux penetrating the base of the 
cone is given by: 
 

baseentering EA=φ  

 

The flux penetrating the curved 
surface of the cone is given by: 
 

∫∫ =⋅=
SSexiting cosˆ dAEdAnE θφ

r
 

 

Equating the fluxes and simplifying 
yields: 
 

( )
surface
curvedSbase coscos AdAA θθ == ∫  

The ratio of the density of field lines 
is: 
 

θcos
surface
curved

base =
A
A  

 
36 •• In the atmosphere and at an altitude of  250 m, you measure the 
electric field to be 150 N/C directed downward and you measure the electric field 
to be 170 N/C directed downward at an altitude of 400 m.  Calculate the volume 
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charge density of the atmosphere in the region between altitudes of 250 m and 
400 m, assuming it to be uniform.  (You may neglect the curvature of Earth. 
Why?) 
 
Picture the Problem We’ll model this portion of Earth’s atmosphere as though it 
is a cylinder with cross-sectional area A and height h. Because the electric flux 
increases with altitude, we can conclude that there is charge inside the cylindrical 
region and use Gauss’s law to find that charge and hence the charge density of the 
atmosphere in this region. 
 
The definition of volume charge 
density is: 
 

V
Q

=ρ  

Express the charge inside a cylinder 
of base area A and height h for a 
charge density ρ: 
 

AhQ ρ=  

Taking upward to be the positive 
direction, apply Gauss’s law to the 
charge in the cylinder: 
 

( ) ( ) 0000 ∈∈ AEAEAEAEQ hh −=−−=  
where we’ve taken our zero at 250 m 
above the surface of a flat Earth. 
 

Substitute to obtain: ( ) ( )
h
EE

Ah
AEAE hh 0000 ∈∈ρ −

=
−

=  

 
Substitute numerical values and evaluate ρ: 
 

( )( ) 312
2212

C/m102.1
m250m400

m/NC10854.8N/C170N/C150 −
−

×−=
−

⋅×−
=ρ  

where we’ve been able to neglect the curvature of Earth because the maximum 
height of 400 m is approximately 0.006% of the radius of Earth. 
 
Gauss’s Law Applications in Spherical Symmetry Situations 

37 • A thin non-conducting spherical shell of radius R1 has a total 
charge q1 that is uniformly distributed on its surface. A second, larger thin non-
conducting spherical shell of radius R2 that is coaxial with the first has a charge q2 
that is uniformly distributed on its surface. (a) Use Gauss’s law to obtain 
expressions for the electric field in each of the three regions:  
r < R1, R1 < r < R2, and r > R2. (b) What should the ratio of the charges q1/q2 and 
the relative signs for q1 and q2 be for the electric field to be zero throughout the 
region r > R2? (c) Sketch the electric field lines for the situation in Part (b) when 
q1 is positive. 
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Picture the Problem To find En in these three regions we can choose Gaussian 
surfaces of appropriate radii and apply Gauss’s law. On each of these surfaces, Er 
is constant and Gauss’s law relates Er to the total charge inside the surface. 
 

inside
0

S n
1 QdAE
∈

=∫  

and 

rE ˆ
0

inside
1 A

Q
Rr ∈
=<

r
 where  is a unit radial 

vector. 

r̂

 

(a) Use Gauss’s law to find the 
electric field in the region r < R1: 
 

Because  = 0: insideQ 0
1
=<RrE

r
 

 
Apply Gauss’s law in the region  
R1 < r < R2: 
 

( ) rrE ˆˆ
4 2

1
2

0

1
11 r

kq
r

q
RrR ==<< π∈

r
 

 
Using Gauss’s law, find the 
electric field in the region r > R2: 
 

( )
( )rrE ˆˆ

4 2
21

2
0

21
2 r

qqk
r
qq

Rr
+

=
+

=> π∈

r
 

 
(b) Set to obtain: 0

2
=>RrE

 
021 =+ qq ⇒ 1

2

1 −=
q
q  

 
(c) The electric field lines for the 
situation in (b) with q1 positive is 
shown to the right. 

 
 
38 • A spherical shell of radius 6.00 cm carries a uniform surface charge 
density of A non-conducting thin spherical shell of radius 6.00 cm has a uniform 
surface charge density of 9.00 nC/m2. (a) What is the total charge on the shell? 
Find the electric field at the following distances from the sphere’s center:  
(b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. 
  
Picture the Problem We can use the definition of surface charge density and the 
formula for the area of a sphere to find the total charge on the shell. Because the 
charge is distributed uniformly over a spherical shell, we can choose a spherical 
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Gaussian surface and apply Gauss’s law to find the electric field as a function of 
the distance from the center of the spherical shell.  
 
(a) Using the definition of surface 
charge density, relate the charge on 
the sphere to its area: 
 

24 rAQ πσσ ==  
 

Substitute numerical values and 
evaluate Q: 

( )( )
nC407.0nC4072.0

m0600.0nC/m00.94 22

==

= πQ
 

 
Apply Gauss’s law to a spherical 
surface of radius r that is 
concentric the spherical shell to 
obtain: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒ 
0

inside
n

24
∈

π
Q

Er =  

 

Solving for En yields: 
 2

inside
2

0

inside
n

1
4 r

kQ
r

QE ==
∈π

 

 
(b) The charge inside a sphere 
whose radius is 2.00 cm is zero and 
hence: 
 

( ) 0cm00.2n =E  

(c) The charge inside a sphere 
whose radius is 5.90 cm is zero 
and hence: 
 

( ) 0cm90.5n =E  

(d) The charge inside a sphere whose radius is 6.10 cm is 0.4072 nC and 
hence: 
 

( ) ( )( )
( )

N/C983
m0610.0

nC4072.0/CmN10988.8cm10.6 2

229

n =
⋅×

=E  

 
(e) The charge inside a sphere whose radius is 10.0 cm is 0.4072 nC and hence: 
 

( ) ( )( )
( )

N/C366
m100.0

nC4072.0/CmN10988.8cm10 2

229

n =
⋅×

=E  

 
39 •• [SSM] A non-conducting sphere of radius 6.00 cm has a uniform 
volume charge density of 450 nC/m3. (a) What is the total charge on the sphere? 
Find the electric field at the following distances from the sphere’s center:  
(b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm.  
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Picture the Problem We can use the definition of volume charge density and the 
formula for the volume of a sphere to find the total charge of the sphere. Because 
the charge is distributed uniformly throughout the sphere, we can choose a 
spherical Gaussian surface and apply Gauss’s law to find the electric field as a 
function of the distance from the center of the sphere.  
 
(a) Using the definition of volume 
charge density, relate the charge on 
the sphere to its volume: 
 

3
3
4 rVQ πρρ ==  

 

Substitute numerical values and 
evaluate Q: 

( )( )
nC407.0nC4072.0

m0600.0nC/m450 33
3
4

==

= πQ
 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the spherical 
shell to obtain: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒ 
0

inside
n

24
∈

π QEr =  

 

Solving for En yields: 
 2

inside
2

0

inside
n

1
4 r

kQ
r

QE ==
∈π

 

 
Because the charge distribution is 
uniform, we can find the charge 
inside the Gaussian surface by 
using the definition of volume 
charge density to establish the 
proportion: 
 

V'
Q

V
Q inside=  

where V′ is the volume of the Gaussian 
surface. 

Solve for  to obtain: insideQ
 3

3

inside R
rQ

V
V'QQ ==  

 
Substitute for to obtain: insideQ
 

( ) r
R
kQ

r
QRrE 32

0

inside
n

1
4

==<
∈π

 

 
(b) Evaluate En at r = 2.00 cm: 
 

( ) ( )( )
( )

( ) N/C339m0.0200
m0.0600

nC0.4072/CmN10988.8cm00.2 3

229

n =
⋅×

=E  
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(c) Evaluate En at r = 5.90 cm: 
 

( ) ( )( )
( )

( ) kN/C00.1m0.0590
m0.0600

nC0.4072/CmN10988.8cm90.5 3

229

n =
⋅×

=E  

 
Apply Gauss’s law to the Gaussian 
surface with r > R: 
 

0

inside
n

24
∈

π QEr = ⇒ 22
inside

n r
kQ

r
kQE ==  

(d) Evaluate En at r = 6.10 cm: 
 

( ) ( )( )
( )

N/C983
m0.0610

nC0.4072/CmN10988.8cm10.6 2

229

n =
⋅×

=E  

 
(e) Evaluate En at r = 10.0 cm: 
 

( ) ( )( )
( )

N/C366
m0.100

nC0.4072/CmN10988.8cm0.10 2

229

n =
⋅×

=E  

 
40  •• Consider the solid conducting sphere and the concentric conducting 
spherical shell in Figure 22-41. The spherical shell has a charge –7Q. The solid 
sphere has a charge +2Q. (a) How much charge is on the outer surface and how 
much charge is on the inner surface of the spherical shell? (b) Suppose a metal 
wire is now connected between the solid sphere and the shell. After electrostatic 
equilibrium is re-established, how much charge is on the solid sphere and on each 
surface of the spherical shell? Does the electric field at the surface of the solid 
sphere change when the wire is connected? If so, in what way? (c) Suppose we 
return to the conditions in Part (a), with +2Q on the solid sphere and –7Q on the 
spherical shell. We next connect the solid sphere to ground with a metal wire, and 
then disconnect it. Then how much total charge is on the solid sphere and on each 
surface of the spherical shell? 
 
Determine the Concept The charges on a conducting sphere, in response to the 
repulsive Coulomb forces each experiences, will separate until electrostatic 
equilibrium conditions exit. The use of a wire to connect the two spheres or to 
ground the outer sphere will cause additional redistribution of charge. 
 
(a) Because the outer sphere is conducting, the field in the thin shell must vanish. 
Therefore, −2Q, uniformly distributed, resides on the inner surface, and −5Q, 
uniformly distributed, resides on the outer surface. 
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(b) Now there is no charge on the inner surface and −5Q on the outer surface of 
the spherical shell. The electric field just outside the surface of the inner sphere 
changes from a finite value to zero. 
 
(c) In this case, the −5Q is drained off, leaving no charge on the outer surface and 
−2Q on the inner surface. The total charge on the outer sphere is then −2Q. 
 
41 •• A non-conducting solid sphere of radius 10.0 cm has a uniform 
volume charge density. The magnitude of the electric field at 20.0 cm from the 
sphere’s center is 1.88 × 103 N/C. (a) What is the sphere’s volume charge 
density? (b) Find the magnitude of the electric field at a distance of 5.00 cm from 
the sphere’s center. 
 
Picture the Problem (a) We can use the definition of volume charge density, in 
conjunction with Equation 22-18a, to find the sphere’s volume charge density.  
(b) We can use Equation 22-18b, in conjunction with our result from Part (a), to 
find the electric field at a distance of 5.00 cm from the solid sphere’s center. 
 
(a) The solid sphere’s volume charge 
density is the ratio of its charge to its 
volume: 
 

3
3
4

insideinside

R
Q

V
Q

π
ρ ==                   (1) 

For r ≥  R, Equation 22-18a gives 
the electric field at a distance r 
from the center of the sphere: 
 

2
inside

0
r 4

1
r

QE
∈π

=                     (2) 

 

Solving for  yields: insideQ
 

2
r0inside 4 rEQ ∈π=  

 
Substitute for  in equation 
(1) and simplify to obtain: 

insideQ

 

3

2
r0

3
3
4

2
r0 34

R
rE

R
rE ∈

π
∈πρ ==  

 
Substitute numerical values and evaluate ρ: 
 

( )( )( )
( )

3

3
3

232212

C/m00.2

C/m997.1
cm 0.10

cm 0.20N/C 1088.1m/NC108.8543

μ

μρ

=

=
×⋅×

=
−

 

 
(b)  For r ≤ R, the electric field at a 
distance r from the center of the 
sphere is given by: 

r
R

QE 3
inside

0
r 4

1
∈π

=                  (3) 
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Express  for r ≤ R: insideQ ρπρ 3
3
4

 is radius
 whosesphereinside rVQ

r
==  

 
Substituting for insideQ  in equation (3) 
and simplifying yields: 
 

3
0

4

3

3
3
4

0
r 34

1
R

rr
R
r

E
∈
ρρπ

∈π
==  

Substitute numerical values and evaluate Er(5.00 cm): 
 

( ) ( )( )
( )( )

N/C 470
cm 0.10m/NC108.8543

cm 00.5C/m997.1cm 00.5 32212

43

r =
⋅×

=
−

μE  

 
42 •• A non-conducting solid sphere of radius R has a volume charge 
density that is proportional to the distance from the center. That is,  ρ = Ar for  
r ≤ R, where A is a constant.  (a) Find the total charge on the sphere. (b) Find the 
expressions for the electric field inside the sphere (r < R) and outside the sphere  
(r > R).  (c) Sketch the magnitude of the electric field as a function of the distance 
r from the sphere’s center. 
   
Picture the Problem We can find the total charge on the sphere by expressing the 
charge dq in a spherical shell and integrating this expression between r = 0 and  
r = R. By symmetry, the electric fields must be radial. To find Er inside the 
charged sphere we choose a spherical Gaussian surface of radius r < R. To find Er 
outside the charged sphere we choose a spherical Gaussian surface of radius r > R. 
On each of these surfaces, Er is constant. Gauss’s law then relates Er to the total 
charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 

( )
drAr

drArrdrrdq
3

22

4
44

π

πρπ

=

==  

Integrate this expression from  
r = 0 to R to find the total charge 
on the sphere: 
 

[ ] 4
0

4

0

34 ARArdrrAQ R
R

πππ === ∫  

 

(b) Apply Gauss’s law to a spherical 
surface of radius r > R that is 
concentric with the nonconducting 
sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ ⇒
0

inside
r

24
∈

π QEr =  
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Solving for Er yields: 
 

( )

2
0

4

2

4

2
inside

2
0

inside
r

4

1
4

r
AR

r
RkA

r
kQ

r
Q

RrE

∈
π

∈π

==

==>

 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the 
nonconducting sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ ⇒ 
0

inside
r

24
∈

π QEr =  

 

Solve for Er to obtain: ( )

0

2

0
2

4

0
2

inside
r

4

44

∈

∈π
π

∈π

Ar

r
Ar

r
QRrE

=

==<

 

 
(c) The following graph of Er versus r/R, with Er in units of A/(4∈0), was plotted 
using a spreadsheet program. 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r/R

E r

 
 

Remarks: Note that the results for (a) and (b) agree at r = R. 
 
43 •• [SSM] A sphere of radius R has volume charge density ρ = B/r for 
 r < R , where B is a constant and ρ = 0 for r > R. (a) Find the total charge on the 
sphere. (b) Find the expressions for the electric field inside and outside the charge 
distribution (c) Sketch the magnitude of the electric field as a function of the 
distance r from the sphere’s center. 
 
Picture the Problem We can find the total charge on the sphere by expressing the 
charge dq in a spherical shell and integrating this expression between r = 0 and  



                      The Electric Field II: Continuous Charge Distributions 
 

 

2129

r = R. By symmetry, the electric fields must be radial. To find Er inside the 
charged sphere we choose a spherical Gaussian surface of radius r < R. To find Er 
outside the charged sphere we choose a spherical Gaussian surface of radius r > R. 
On each of these surfaces, Er is constant. Gauss’s law then relates Er to the total 
charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 Brdr

dr
r
Brdrrdq

π

πρπ

4

44 22

=

==  

 
Integrate this expression from  
r = 0 to R to find the total charge 
on the sphere: 
 

[ ]
2

0
2

0

2

24

BR

BrdrrBQ R
R

π

ππ

=

=== ∫
 

 
(b) Apply Gauss’s law to a spherical 
surface of radius r > R that is 
concentric with the nonconducting 
sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ or 
0

inside
r

24
∈

π QEr =  

Solving for Er yields: 
 

( )

2
0

2

2

2

2
inside

2
0

inside
r

2
2

1
4

r
BR

r
BRk

r
kQ

r
Q

RrE

∈
π

∈π

==

==>

 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the nonconducting 
sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ ⇒ 
0

inside
r

24
∈

π QEr =  

 

Solving for Er yields: ( )

0

0
2

2

0
2

inside
r

2

4
2

4

∈

∈π
π

∈π

B

r
Br

r
QRrE

=

==<
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(c) The following graph of Er versus r/R, with Er in units of B/(2∈0), was plotted 
using a spreadsheet program. 

0.0
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r /R

E r

 
Remarks: Note that our results for (a) and (b) agree at r = R. 
  
44 •• A sphere of radius R has volume charge density ρ = C/r2 for r < R, 
where C is a constant and ρ = 0 for r > R. (a) Find the total charge on the sphere. 
(b) Find the expressions for the electric field inside and outside the charge 
distribution (c) Sketch the magnitude of the electric field as a function of the 
distance r from the sphere’s center.   
  
Picture the Problem We can find the total charge on the sphere by expressing the 
charge dq in a spherical shell and integrating this expression between r = 0 and  
r = R. By symmetry, the electric fields must be radial. To find Er inside the 
charged sphere we choose a spherical Gaussian surface of radius r < R. To find Er 
outside the charged sphere we choose a spherical Gaussian surface of radius r > R. 
On each of these surfaces, Er is constant. Gauss’s law then relates Er to the total 
charge inside the surface. 
 
(a) Express the charge dq in a shell 
of thickness dr and volume 4πr2 dr: 
 

Cdrdr
r
Crdrrdq ππρπ 444 2

22 ===  

 
Integrate this expression from  
r = 0 to R to find the total charge 
on the sphere: 
 

[ ] CRCrdrCQ R
R

πππ 444 0
0

=== ∫  
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(b) Apply Gauss’s law to a 
spherical surface of radius r > R 
that is concentric with the 
nonconducting sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ ⇒ 
0

inside
r

24
∈

π QEr =  

 

Solving for Er yields: 
 

( )

2
0

2

2
inside

2
0

inside
r

4

1
4

r
CR

r
CRk

r
kQ

r
Q

RrE

∈
π

∈π

==

==>

 

 
Apply Gauss’s law to a spherical 
surface of radius r < R that is 
concentric with the 
nonconducting sphere to obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ or 
0

inside
r

24
∈

π QEr =  

 

Solving for Er yields: ( )

r
C

r
Cr

r
QRrE

0

0
2

0
2

inside
r 4

4
4

∈

∈π
π

∈π

=

==<

 

 
(c) The following graph of Er versus r/R, with Er in units of ( )RC 0/∈ , was 
plotted using a spreadsheet program. 
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E r

 
 
45 ••• A non-conducting spherical shell of inner radius R1 and outer radius R2 
has a uniform volume charge density ρ. (a) Find the total charge on the shell.   
(b) Find expressions for the electric field everywhere. 
 



  Chapter 22 
 

 

2132 

Picture the Problem By symmetry, the electric fields resulting from this charge 
distribution must be radial. To find Er for r < R1 we choose a spherical Gaussian 
surface of radius r < R1. To find Er for R1 < r < R2 we choose a spherical Gaussian 
surface of radius R1 < r < R2. To find Er for r > R2 we choose a spherical Gaussian 
surface of radius r > R2. On each of these surfaces, Er is constant. Gauss’s law 
then relates Er to the total charge inside the surface. 
 
(a) The charge in an infinitesimal 
spherical shell of radius r and 
thickness dr is: 
 

drrdVdQ 24πρρ ==  

Integrate dQ from r = R1 to r to find 
the total charge in the spherical shell 
in the interval R1 < r < R2: 

( )3
1

3

3
2

inside

3
4

3
44

11

Rr

CrdrrQ
r

R

r

R

−=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

πρ

ππρ
 

 
(b)  Apply Gauss’s law to a 
spherical surface of radius r that 
is concentric with the 
nonconducting spherical shell to 
obtain: 
 

inside
0

S r
1 QdAE
∈

=∫ ⇒ 
0

inside
r

24
∈

π QEr =  

 

Solving for Er yields: 
 

( ) 2
inside

2
0

inside
r

1
4 r

kQ
r

QrE ==
∈π

 

 
Evaluate Er(r < R1): 
 

( ) 01
4 2

inside
2

0

inside
1r ===<

r
kQ

r
QRrE

∈π
 

because ρ(r < R1) = 0 and, therefore,  
Qinside = 0. 
 

Evaluate Er(R1 < r < R2): 
 

( )

( )

( )3
1

3
22

0

3
1

3
22

2
inside

21r

3

3
4

RR
r

RR
r
k
r

kQ
RrRE

−=

−=

=<<

∈
ρ

ρπ  
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( )3
1

3
2inside 3

4 RRQ −=
πρ  For r > R2: 

and 

( ) ( )

( )3
1

3
22

0

3
1

3
222r

3

3
4

RR
r

RR
r
kRrE

−=

−=>

∈
ρ

ρπ

 

Remarks: Note that E is continuous at r = R2. 
    
Gauss’s Law Applications in Cylindrical Symmetry Situations 

46 • For your senior project you are in charge of designing a Geiger tube 
for detecting radiation in the nuclear physics laboratory. This instrument will 
consist of a long metal cylindrical tube that has a long straight metal wire running 
down its central axis. The diameter of the wire is to be 0.500 mm and the inside 
diameter of the tube will be 4.00 cm. The tube is to be filled with a dilute gas in 
which electrical discharge (breakdown) occurs when the electric field reaches 
5.50 × 106 N/C. Determine the maximum linear charge density on the wire if 
breakdown of the gas is not to happen. Assume that the tube and the wire are 
infinitely long. 
 
Picture the Problem The electric field of a line charge of infinite length is given 

by 
r

Er
λ

∈π 02
1

= , where r is the distance from the center of the line of charge and 

λ is the linear charge density of the wire. 
 
The electric field of a line charge of 
infinite length is given by: 
 

r
Er

λ
∈π 02

1
=  

 
Because Er varies inversely with r, 
its maximum value occurs at the 
surface of the wire where r = R, the 
radius of the wire: 
 

R
E λ

∈π 0
max 2

1
=  

Solving for λ yields: 
 

max02 RE∈πλ =  

Substitute numerical values and evaluate λ: 
 

( ) nC/m  5.76
C
N 1050.5mm 250.0

mN
C10854.82 6

2

2
12 =⎟

⎠
⎞

⎜
⎝
⎛ ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −πλ  
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47 ••• In Problem 54, suppose ionizing radiation produces an ion and an 
electron at a distance of 2.00 cm from the long axis of the central wire of the 
Geiger tube. Suppose that the central wire is positively charged and has a linear 
charge density equal to 76.5 pC/m. (a) In this case, what will be the electron’s 
speed as it impacts the wire? (b) Qualitatively, how will the electron’s speed 
compare to that of the ion’s final speed when it impacts the outside cylinder? 
Explain your reasoning. 
 
Picture the Problem Because the inward force on the electron increases as its 
distance from the wire decreases, we’ll need to integrate the net electric force 
acting on the electron to obtain an expression for its speed as a function of its 
distance from the wire in the Geiger tube. 
 
(a) The force the electron experiences 
is the radial component of the force on 
the electron and is the product of its 
charge and the radial component of 
the electric field due to the positively 
charged central wire: 
 

rre eEF =,  

The radial electric field due to the 
charged wire is given by: 
 

r
Er

λ
∈π 02

1
=  

 
Substituting for  yields: rE
 r

eF re
1

2 0
, ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

∈π
λ  where the minus 

sign indicates that the force acting on 
the electron is radially inward. 
 

Apply Newton’s 2nd law to the 
electron to obtain: 

dr
dvmv

dt
dr

dr
dvm

dr
dr

dt
dvm

dt
dvm

r
e

==

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1
2 0∈π

λ

 

 
Separating variables yields: 

r
dr

m
evdv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

02 ∈π
λ  

 
Express the integral of this equation 
to obtain: 
 

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

1

f

00 2

r

r

v

r
dr

m
evdv
∈π
λ where the 

lower limit on the left-hand side is zero 
because the electron is initially at rest. 
 

Integrating yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1

2

0

2
f2

1 ln
2 r

r
m
ev
∈π
λ  
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Solve for vf to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
f ln

r
r

m
ev
∈π
λ  

 
Substitute numerical values and evaluate vf:  
 

( )

( )

m/s 1046.1

mm 250.0
m 0.0025m 0200.0ln

mN
C10854.8kg 10109.9

m
pC 5.76C 10602.1

6

2

2
1231

19

f

×=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

××

⎟
⎠
⎞

⎜
⎝
⎛×

=
−−

−

π
v

 

 
(b) The positive ion is accelerated radially outward and will impact the tube 
instead of the wire. Because of its much larger mass, the impact speed of the ion 
will be much less than the impact speed of the electron. 
 
48 •• Show that the electric field due to an infinitely long, uniformly 
charged thin cylindrical shell of radius a having a surface charge density σ is 
given by the following expressions: E = 0 for 0 ≤ R < a and ER = σ a ∈0 R( )  for 

.  R > a
  
Picture the Problem From symmetry, the field in the tangential direction must 
vanish. We can construct a Gaussian surface in the shape of a cylinder of radius r 
and length L and apply Gauss’s law to find the electric field as a function of the 
distance from the centerline of the infinitely long, uniformly charged cylindrical 
shell. 
 

inside
0

S n
1 QdAE
∈

=∫  Apply Gauss’s law to the cylindrical 
surface of radius r and length L that 
is concentric with the infinitely long, 
uniformly charged cylindrical shell: 

or 

0

inside2
∈

π QrLER =  

where we’ve neglected the end areas 
because no there is no flux through 
them. 
 

Solve for : RE
 Lr

kQ
rL

QER
inside

0

inside 2
2

==
∈π

 

 
For r < R, Qinside = 0 and: ( ) 0=< RrER  
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For r > R, Qinside = λL and: ( ) ( )

r
R

r
Rk

r
k

Lr
LkRrER

0

2222

∈
σ

σπλλ

=

===>

 

 
49 •• A thin cylindrical shell of length 200 m and radius 6.00 cm has a 
uniform surface charge density of 9.00 nC/m2. (a) What is the total charge on the 
shell? Find the electric field at the following radial distances from the long axis of 
the cylinder. (b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. (Use the 
results of Problem 48.) 
 
Picture the Problem We can use the definition of surface charge density to find 
the total charge on the shell. From symmetry, the electric field in the tangential 
direction must vanish. We can construct a Gaussian surface in the shape of a 
cylinder of radius r and length L and apply Gauss’s law to find the electric field as 
a function of the distance from the centerline of the uniformly charged cylindrical 
shell. 
 
(a) Using its definition, relate the 
surface charge density to the total 
charge on the shell: 
 

σπσ RLAQ 2==  
 
 

Substitute numerical values and 
evaluate Q: 
 

( )( )( )
nC679

nC/m9.00m200m0.06002 2

=

= πQ
 

 
(b) From Problem 48 we have, 
for r = 2.00 cm: 

( ) 0cm00.2 =E  

 
(c) From Problem 48 we have, 
for r = 5.90 cm: 

( ) 0cm90.5 =E  

 
(d) From Problem 48 we have, for r = 6.10 cm: 
 

( )
r

RrE
0∈
σ

=  

and 

( ) ( )( )
( )( ) kN/C00.1

m0.0610m/NC108.854
m0.0600nC/m9.00cm10.6 2212

2

=
⋅×

= −E  
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(e) From Problem 48 we have, for r = 10.0 cm: 
 

( ) ( )( )
( )( ) N/C610

m100.0m/NC108.854
m0.0600nC/m9.00cm0.10 2212

2

=
⋅×

= −E  

 
50 •• An infinitely long non-conducting solid cylinder of radius a has a 
uniform volume charge density of ρ0. Show that the electric field is given by the 
following expressions:   ER = ρ0R 2∈0( ) for 0 ≤ R < a  and ER = ρ0a2 2∈0 R( ) 
for  , where R is the distance from the long axis of the cylinder.  R > a
 
Picture the Problem From symmetry, the field tangent to the surface of the 
cylinder must vanish. We can construct a Gaussian surface in the shape of a 
cylinder of radius r and length L and apply Gauss’s law to find the electric field as 
a function of the distance from the centerline of the infinitely long nonconducting 
cylinder. 
 

inside
0

S n
1 QdAE
∈

=∫  Apply Gauss’s law to a cylindrical 
surface of radius r and length L that 
is concentric with the infinitely long 
nonconducting cylinder: 

or 

0

inside2
∈

π QrLER =  

where we’ve neglected the end areas 
because there is no flux through them. 
 

Solving for  yields: RE
 Lr

kQ
rL

QER
inside

0

inside 2
2

==
∈π

 

 
Express for r < R: insideQ ( ) ( )LrVrQ 2

0inside πρρ ==  
 

( ) ( ) r
Lr

LrkRrER
0

0
2

0

2
2

∈
ρπρ

==<  
Substitute to obtain: 

or, because , 2Rρπλ =

( ) r
R

RrER 2
02 ∈π
λ

=<  

 
Express for r > R: insideQ ( ) ( )LRVrQ 2

0inside πρρ ==  
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( ) ( )
r

R
Lr

LRkRrER
0

2
0

2
0

2
2

∈
ρπρ

==>  
Substitute for to obtain: insideQ

or, because  2Rρπλ =

( )
r

RrER
02 ∈π

λ
=>  

 
51 •• [SSM] A solid cylinder of length 200 m and radius 6.00 cm has a 
uniform volume charge density of 300 nC/m3. (a) What is the total charge of the 
cylinder? Use the formulas given in Problem 50 to calculate the electric field at a 
point equidistant from the ends at the following radial distances from the 
cylindrical axis:  (b) 2.00 cm, (c) 5.90 cm, (d) 6.10 cm, and (e) 10.0 cm. 
 
Picture the Problem We can use the definition of volume charge density to find 
the total charge on the cylinder. From symmetry, the electric field tangent to the 
surface of the cylinder must vanish. We can construct a Gaussian surface in the  
shape of a cylinder of radius r and length L and apply Gauss’s law to find the 
electric field as a function of the distance from the centerline of the uniformly 
charged cylinder. 
 
(a) Use the definition of volume 
charge density to express the 
total charge of the cylinder:  
 

( )LRVQ 2
tot πρρ ==  

 

Substitute numerical values to 
obtain: 
 

( )( ) ( )
nC679

m200m0.0600nC/m300 23
tot

=

= πQ
 

 
(b) From Problem 50, for r < R, 
we have: 

( ) rrE
02∈

ρ
=  

 
For r = 2.00 cm: 
 

( ) ( )( )
( ) N/C339

m/NC108.8542
m0.0200nC/m300cm00.2 2212

3

=
⋅×

= −E  

 
(c) For r = 5.90 cm: 
 

( ) ( )( )
( ) kN/C00.1

m/NC108.8542
m0.0590nC/m300cm90.5 2212

3

=
⋅×

= −E  
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From Problem 50, for r > R, we have: ( )
r

RrE
0

2

2∈
ρ

=  

 
(d) For r = 6.10 cm: 
 

( ) ( )( )
( )( ) kN/C00.1

m0610.0m/NC108.8542
m0600.0nC/m300cm10.6 2212

23

=
⋅×

= −E  

 
(e) For r = 10.0 cm: 
 

( ) ( )( )
( )( ) N/C610

m100.0m/NC108.8542
m0600.0nC/m300cm0.10 2212

23

=
⋅×

= −E  

 
52 •• Consider two infinitely long, coaxial thin cylindrical shells. The inner 
shell has a radius a1 and has a uniform surface charge density of σ1, and the outer 
shell has a radius a2 and has a uniform surface charge density of σ2. (a) Use 
Gauss’s law to find expressions for the electric field in the three regions: 

,   , and   , where R is the distance from the axis.    0 ≤ R < a1 a1 < R < a2 R > a2

(b) What is the ratio of the surface charge densities σ2/σ1 and their relative signs 
if the electric field is to be zero everywhere outside the largest cylinder? (c) For 
the case in Part (b), what would be the electric field between the shells?  
(d) Sketch the electric field lines for the situation in Part (b) if σ1 is positive. 
 
Picture the Problem From symmetry; the field tangent to the surfaces of the 
shells must vanish. We can construct a Gaussian surface in the shape of a cylinder 
of radius r and length L and apply Gauss’s law to find the electric field as a 
function of the distance from the centerline of the infinitely long, uniformly 
charged cylindrical shells. 
 
(a) Apply Gauss’s law to the 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long, uniformly charged 
cylindrical shell: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒
0

inside2
∈

π
QrLER =  

where we’ve neglected the end areas 
because there is no flux through them. 
 

Solving for  yields: RE
 Lr

kQER
inside2

=                           (1) 

 
For r < R1,  = 0 and: insideQ ( ) 01 =< RrER  

 
Express  for RinsideQ 1 < r < R2: LRAQ 1111inside 2πσσ ==  
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Substitute in equation (1) to obtain: 
 

( ) ( )

r
R

Lr
LRkRrRER

0

11

11
21

22

∈
σ

πσ

=

=<<

 

 
Express  for r > RinsideQ 2: 
 LRLR

AAQ

2211

2211inside

22 πσπσ
σσ
+=

+=
 

 
Substitute in equation (1) to obtain: 
 

( ) ( )

r
RR
Lr

LRLRkRrER

0

2211

2211
2

222

∈
σσ

πσπσ

+
=

+
=>

 

 
(b) Set E = 0 for r > R2 to obtain: 

0
0

2211 =
+

r
RR

∈
σσ ⇒

1

2

2

1

R
R

−=
σ
σ  

 
(c) Because the electric field is 
determined by the charge inside the 
Gaussian surface, the field under 
these conditions would be as given 
above: 
 

( )
r

RRrRER
0

11
21 ∈

σ
=<<  

(d) Because σ1 is positive, the field 
lines are directed as shown to the 
right: 

 
 
53 •• Figure 22-42 shows a portion of an infinitely long, concentric cable in 
cross section. The inner conductor has a charge of 6.00 nC/m and the outer 
conductor has no net charge. (a) Find the electric field for all values of R, where R 
is the perpendicular distance from the common axis of the cylindrical system.  
(b) What are the surface charge densities on the inside and the outside surfaces of 
the outer conductor? 
 
Picture the Problem The electric field is directed radially outward. We can 
construct a Gaussian surface in the shape of a cylinder of radius r and length L 
and apply Gauss’s law to find the electric field as a function of the distance from 
the centerline of the infinitely long, uniformly charged cylindrical shell. 
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(a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
inner conductor: 

inside
0

S n
1 QdAE
∈

=∫ ⇒
0

inside2
∈

π
QrLER =  

where we’ve neglected the end areas 
because there is no flux through them. 
 

Solving for  yields: RE
 Lr

kQER
inside2

=                              (1) 

 
For r < 1.50 cm,  = 0 and: insideQ ( ) 0cm50.1 =<rER  

 
Letting R = 1.50 cm, express 

 for 1.50 cm < r < 4.50 cm: insideQ
 

RLLQ πσλ 2inside ==  
 

Substitute in equation (1) to obtain: 
 

( ) ( )

r
k
Lr

LkrER

λ

λ

2

2cm50.4cm50.1

=

=<<
 

Substitute numerical values and evaluate En(1.50 cm < r < 4.50 cm): 
 

( ) ( )( ) ( )
rr

rER
m/CN108nC/m6.00/CmN108.9882cm50.4cm50.1 229 ⋅

=⋅×=<<  

 
Express  for  insideQ 0inside =Q  

and 
( ) 0cm50.6cm50.4 =<< rER  

 

4.50 cm < r < 6.50 cm: 
 

Letting σ2 represent the charge 
density on the outer surface, 
express for r > 6.50 cm: insideQ
 

LRAQ 2222inside 2πσσ ==  
where R2 = 6.50 cm. 
 

Substitute in equation (1) to 
obtain: 
 

( ) ( )
r

R
Lr

LRkRrER
0

2222
2

22
∈
σπσ

==>  

 
In (b) we show that σ2 = 21.22 nC/m2. Substitute numerical values to obtain: 
 

( ) ( )( )
( ) rr

rER
m/CN156

mN/C10854.8
cm50.6nC/m22.21cm50.6 2212

2 ⋅
=

⋅×
=> −  
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inside
inside 2 Rπ

λσ −
=  

and 

outside
outside 2 Rπ

λσ =  

 

(b) The surface charge densities on 
the inside and the outside surfaces of 
the outer conductor are given by: 
 

( )
2

2
inside

nC/m2.21

nC/m22.21
m0450.02

nC/m00.6

−=

−=
−

=
π

σ
 

Substitute numerical values and 
evaluate σinside and σoutside: 

and 

( )
2

outside

nC/m7.14

m0650.02
nC/m00.6

=

=
π

σ
 

 
54 •• An infinitely long non-conducting solid cylinder of radius a has a non-
uniform volume charge density. This density varies linearly with R, the 
perpendicular distance from its axis, according to ρ(R) = βR, where β is a 
constant. (a) Show that the linear charge density of the cylinder is given by  
λ = 2πβa3/3. (b) Find expressions for the electric field for R < a and R > a. 
    
Picture the Problem From symmetry considerations, we can conclude that the 
field tangent to the surface of the cylinder must vanish. We can construct a 
Gaussian surface in the shape of a cylinder of radius r and length L and apply 
Gauss’s law to find the electric field as a function of the distance from the 
centerline of the infinitely long nonconducting cylinder. 
 

inside
0

S n
1 QdAE
∈

=∫  (a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

or 

0

inside
n2

∈
π QrLE = ⇒

0

inside

2 ∈πrL
QER =  (1) 

where we’ve neglected the end areas 
because there is no flux through them. 
 

Express  for ρ(r) = ar: insidedQ ( ) ( )
Ldrar

drrLardVrdQ
2

inside

2

2

π

πρ

=

==
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Integrate from r = 0 to R 
to obtain: 

insidedQ

 
3

0

3

0

2
inside

3
2

3
22

RaL

raLdrraLQ
RR

π

ππ

=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

 

 
Divide both sides of this equation by 
L to obtain an expression for the 
charge per unit length λ of the 
cylinder: 
 

3
2 3

inside aR
L

Q πλ ==  

(b) Substitute for in equation 
(1) and simplify to obtain: 

insideQ

( ) 2

00

3

32
3

2

ra
Lr

raL

RrER ∈∈π

π

==<  

 
For r > R: 3

inside 3
2 RaLQ π

=  

 
Substitute for in equation (1) 
and simplify to obtain: 

insideQ

( )
0

3

0

3

32
3

2

∈∈π

π

r
aR

rL

RaL

RrER ==>  

 
55  •• [SSM] An infinitely long non-conducting solid cylinder of radius a 
has a non-uniform volume charge density. This density varies with R, the 
perpendicular distance from its axis, according to ρ(R) = bR2, where b is a 
constant. (a) Show that the linear charge density of the cylinder is given by  
λ = πba4/2. (b) Find expressions for the electric field for R < a and R > a. 
 
Picture the Problem From symmetry; the field tangent to the surface of the 
cylinder must vanish. We can construct a Gaussian surface in the shape of a 
cylinder of radius r and length L and apply Gauss’s law to find the electric field as 
a function of the distance from the centerline of the infinitely long nonconducting 
cylinder. 
 

inside
0

S n
1 QdAE
∈

=∫  (a) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

or 

0

inside
n2

∈
π

QrLE = ⇒
0

inside

2 ∈πrL
QER =   (1) 

where we’ve neglected the end areas 
because there is no flux through them. 
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Express for ρ(r) = brinsidedQ 2: ( ) ( )
Ldrbr

drrLbrdVrdQ
3

2
inside

2

2

π

πρ

=

==  

 
Integrate from r = 0 to R 
to obtain: 

insidedQ

 
4

0

4

0

3
inside

2

4
22

RbL

rbLdrrbLQ
RR

π

ππ

=

⎥
⎦

⎤
⎢
⎣

⎡
== ∫

 

 
Divide both sides of this equation by 
L to obtain an expression for the 
charge per unit length λ of the 
cylinder: 
 

2

4
inside bR
L

Q πλ ==  

(b) Substitute for  in equation 
(1) and simplify to obtain: 

insideQ

( ) 3

00

4

42
2 rb
Lr

rbL

RrER ∈∈π

π

==<  

 
For r > R: 4

inside 2
RbLQ π

=  

 
Substitute for in equation (1) 
and simplify to obtain: 

insideQ

( )
0

4

0

4

42
2

∈∈π

π

r
bR

rL

RbL

RrER ==>  

 
56 ••• An infinitely long, non-conducting cylindrical shell of inner radius a1 
and outer radius a2 has a uniform volume charge density ρ. Find expressions for 
the electric field everywhere. 
 
Picture the Problem From symmetry; the field tangent to the surface of the 
cylinder must vanish. We can construct a Gaussian surface in the shape of a 
cylinder of radius r and length L and apply Gauss’s law to find the electric field as 
a function of the distance from the centerline of the infinitely long nonconducting 
cylindrical shell. 
 

inside
0

S n
1 QdAE
∈

=∫  Apply Gauss’s law to a cylindrical 
surface of radius r and length L that 
is concentric with the infinitely long 
nonconducting cylindrical shell: 

or 

0

inside
n2

∈
π QrLE = ⇒

0

inside

2 ∈
=

rL
QER π

 

where we’ve neglected the end areas 
because no flux crosses them. 
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For r < R1, = 0: insideQ ( ) 01 =< RrER  

 
Express  for RinsideQ 1 < r < R2: 

( )2
1

2

22
inside

RrL

LaLrVQ

−=

−==

ρπ

ρπρπρ
 

 
Substitute for and simplify to 
obtain: 

insideQ ( ) ( )

( )
r
Rr

Lr
RrLRrRER

0

2
1

2

0

2
1

2

21

2

2

∈
ρ

∈π
ρπ

−
=

−
=<<

 

 
Express for r > RinsideQ 2: 

( )2
1

2
2

22
inside

RRL

LaLbVQ

−=

−==

ρπ

ρπρπρ
 

 
Substitute for and simplify to 
obtain: 

insideQ ( ) ( )

( )
r
RR

rL
RRLbrER

0

2
1

2
2

0

2
1

2
2

2

2

∈
ρ

∈π
ρπ

−
=

−
=>

 

 
57 ••• [SSM] The inner cylinder of Figure 22-42 is made of non-
conducting material and has a volume charge distribution given by ρ(R) = C/R, 
where C = 200 nC/m2. The outer cylinder is metallic, and both cylinders are 
infinitely long. (a) Find the charge per unit length (that is, the linear charge 
density) on the inner cylinder. (b) Calculate the electric field for all values of R. 
 
Picture the Problem We can integrate the density function over the radius of the 
inner cylinder to find the charge on it and then calculate the linear charge density 
from its definition. To find the electric field for all values of r we can construct a 
Gaussian surface in the shape of a cylinder of radius r and length L and apply 
Gauss’s law to each region of the cable to find the electric field as a function of 
the distance from its centerline. 
 
(a) Find the charge  on the 
inner cylinder: 

innerQ
( )

CLRdrCL

rLdr
r
CVdrQ

R

RR

ππ

πρ

22

2

0

00
inner

==

==

∫

∫∫
 

 
Relate this charge to the linear 
charge density: 
 

CR
L
CLR

L
Q ππλ 22inner

inner ===  
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Substitute numerical values and 
evaluate λinner: 
 

( )( )
nC/m8.18

m0.0150nC/m2002inner

=

= πλ
 

 

inside
0

S n
1 QdAE
∈

=∫  (b) Apply Gauss’s law to a 
cylindrical surface of radius r and 
length L that is concentric with the 
infinitely long nonconducting 
cylinder: 

or 

0

inside
n2

∈
π QrLE = ⇒

0

inside

2 ∈πrL
QER =  

where we’ve neglected the end areas 
because there is no flux through them. 
 

Substitute to obtain, for  
r < 1.50 cm: 

( )
002

2cm50.1
∈∈π

π C
Lr

CLrrER ==<  

 
Substitute numerical values and 
evaluate ER(r < 1.50 cm): ( )

kN/C22.6

m/NC108.854
nC/m200cm50.1 2212

2

=

⋅×
=< −rER

 

 
Express for  insideQ
1.50 cm < r < 4.50 cm: 
 

CLRQ π2inside =  
 

Substitute to obtain, for  
1.50 cm < r < 4.50 cm: 

( )

r
CR

rL
RLCrER

0

02
2cm50.4cm50.1

∈
=

∈
=<<

π
π

 

where R = 1.50 cm. 
 

Substitute numerical values and evaluate En(1.50 cm < r < 4.50 cm): 
 

( ) ( )( )
( ) rr

rER
m/CN339

m/NC108.854
m0.0150nC/m200cm50.4cm50.1 2212

2 ⋅
=

⋅×
=<< −  

 
Because the outer cylindrical shell 
is a conductor: 
 

( ) 0cm50.6cm50.4 =<< rER  

For r > 6.50 cm, CLRQ π2inside =  
and: 

( )
r

rER
m/CN339cm50.6 ⋅

=>  
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Electric Charge and Field at Conductor Surfaces 
 
58 • An uncharged penny is in a region that has a uniform electric field of 
magnitude 1.60 kN/C directed perpendicular to its faces. (a) Find the charge 
density on each face of the penny, assuming the faces are planes. (b) If the radius 
of the penny is 1.00 cm, find the total charge on one face. 
 
Picture the Problem Because the penny is in an external electric field, it will 
have charges of opposite signs induced on its faces. The induced charge σ is 
related to the electric field by E = σ/∈0. Once we know σ, we can use the 
definition of surface charge density to find the total charge on one face of the 
penny. 
 
(a) Relate the electric field to the 
charge density on each face of 
the penny: 

0∈
σ

=E ⇒ E0∈σ =  

 
 

Substitute numerical values and 
evaluate σ: 

( )( )
22

2212

nC/m2.14nC/m17.14

kN/C1.60m/NC108.854

==

⋅×= −σ
 

 
(b) Use the definition of surface 
charge density to obtain: 
 

2r
Q

A
Q

π
σ == ⇒  2rQ σπ=

 
Substitute numerical values and 
evaluate Q: 

( )( )
pC4.45

m0.0100nC/m14.17 22

=

= πQ
 

 
59 • A thin metal slab has a net charge of zero and has square faces that 
have 12-cm-long sides. It is in a region that has a uniform electric field that is 
perpendicular to its faces. The total charge induced on one of the faces is 1.2 nC. 
What is the magnitude of the electric field? 
  
Picture the Problem Because the metal slab is in an external electric field, it will 
have charges of opposite signs induced on its faces. The induced charge σ is 
related to the electric field by ./ 0∈σ=E   
 
Relate the magnitude of the electric 
field to the charge density on the 
metal slab: 
 

0∈
σ

=E  

Use its definition to express σ :  
2L

Q
A
Q
==σ  
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Substitute for σ  to obtain: 
0

2 ∈L
QE =  

 
Substitute numerical values and 
evaluate E: ( ) ( )

kN/C9.4

m/NC108.854m0.12
nC1.2

22122

=

⋅×
=

−
E

 

 
60 •• A charge of -6.00 nC is uniformly distributed on a thin square sheet of 
non-conducting material of edge length 20.0 cm. (a) What is the surface charge 
density of the sheet? (b) What are the magnitude and direction of the electric field 
next to the sheet and proximate to the center of the sheet? 
 
Picture the Problem We can apply its definition to find the surface charge 
density of the nonconducting material and calculate the electric field at either of 
its surfaces from σ/(2∈0).  
 
(a) Use its definition to find σ : 

( )
2

2 nC/m150
m0.200
nC6.00

−=
−

==
A
Qσ  

 
(b) The magnitude of the electric 
field just outside the surface of the 
sheet on the side that is charged is 
given by: 
 

( )
kN/C47.8

m/NC108.8542
nC/m150

2 2212

2

0

=

⋅×
−

== −∈
σE

 

 
The direction of the field on the side of the sheet that is charged is the direction of 
the electric force acting on a test charge. Because the surface is negatively 
charged, this force and, hence, the electric field, is directed toward the surface. 
 
Because the sheet is constructed from non-conducting material, no charge is 
induced on the second surface of the sheet and there is, therefore, no electric field 
just outside the sheet surface on this side. 
 
61 • A conducting spherical shell that has zero net charge has an inner 
radius R1 and an outer radius R2. A positive point charge q is placed at the center 
of the shell. (a) Use Gauss’s law and the properties of conductors in electrostatic 
equilibrium to find the electric field in the three regions: 0 ≤ r < R1 ,   , 
and   , where r is the distance from the center. (b) Draw the electric field 
lines in all three regions. (c) Find the charge density on the inner surface (r = R

R1 < r < R2

r > R2

1) 
and on the outer surface (r = R2) of the shell. 
 
Picture the Problem We can construct a Gaussian surface in the shape of a 
sphere of radius r with the same center as the shell and apply Gauss’s law to find 
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the electric field as a function of the distance from this point. The inner and outer 
surfaces of the shell will have charges induced on them by the charge q at the 
center of the shell. 
 
(a) Apply Gauss’s law to a spherical 
surface of radius r that is concentric 
with the point charge: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒
0

inside24
∈

π
QEr r =  

 

Solving for  yields: rE
 0

2
inside

4 ∈π r
QEr =                           (1) 

 
For r < R1, = q. Substitute 
in equation (1) and simplify to 
obtain: 

insideQ

 

( ) 2
0

21 4 r
kq

r
qRrEr ==<
∈π

 

 

0inside =Q  
and 

( ) 021 =<< RrREr  

Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. 
Hence, for R1 < r < R2: 
 
For r > R2, = q. Substitute 
in equation (1) and simplify to 
obtain: 

insideQ

 

( ) 2
0

22 4 r
kq

r
qRrEr ==>
∈π

 

 

(b) The electric field lines are 
shown in the diagram to the right: 

 
(c) A charge –q is induced on the 
inner surface. Use the definition of 
surface charge density to obtain: 
 

2
1

inner 4 R
q
π

σ −=  

 

A charge q is induced on the outer 
surface. Use the definition of surface 
charge density to obtain: 

2
2

outer 4 R
q
π

σ =  
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62 •• The electric field just above the surface of Earth has been measured to 
typically be 150 N/C pointing downward. (a) What is the sign of the net charge on 
Earth’s surface under typical conditions? (b)What is the total charge on Earth’s 
surface implied by this measurement? 
 
Picture the Problem We can construct a spherical Gaussian surface at the 
surface of Earth (we’ll assume Earth is a sphere) and apply Gauss’s law to relate 
the electric field to its total charge.  
 
(a) Because the direction of an electric field is the direction of the force acting on 
a positively charged object, the net charge on Earth’s surface must be negative. 
 
(b)Apply Gauss’s law to a spherical 
surface of radius RE that is 
concentric with Earth: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒
0

inside
n

2
E4

∈
π

QER =  

 

Solve for  to obtain: Earthinside QQ =
k
ERERQ n

2
E

n
2
E0Earth 4 == ∈π  

 
Substitute numerical values and 
evaluate : EarthQ

( ) ( )

kC 677

/CmN108.988
N/C150m106.37

229

26

Earth

=

⋅×
×

=Q
 

 
63 •• [SSM] A positive point charge of 2.5 μC is at the center of a 
conducting spherical shell that has a net charge of zero, an inner radius equal to 
60 cm, and an outer radius equal to 90 cm. (a) Find the charge densities on the 
inner and outer surfaces of the shell and the total charge on each surface. (b) Find 
the electric field everywhere. (c) Repeat Part (a) and Part (b) with a net charge of 
+3.5 μC placed on the shell. 
  
Picture the Problem Let the inner and outer radii of the uncharged spherical 
conducting shell be R1 and R2 and q represent the positive point charge at the 
center of the shell. The positive point charge at the center will induce a negative 
charge on the inner surface of the shell and, because the shell is uncharged, an 
equal positive charge will be induced on its outer surface. To solve Part (b), we 
can construct a Gaussian surface in the shape of a sphere of radius r with the 
same center as the shell and apply Gauss’s law to find the electric field as a 
function of the distance from this point. In Part (c) we can use a similar strategy 
with the additional charge placed on the shell. 

 
(a) Express the charge density on the 
inner surface: A

qinner
inner =σ  
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Express the relationship between the 
positive point charge q and the 
charge induced on the inner surface 

: innerq
 

0inner =+ qq ⇒ qq −=inner  

Substitute for and A to obtain: innerq
 

2
1

inner 4 R
q

π
σ −

=  

 
Substitute numerical values and 
evaluate σinner: ( )

2
2inner C/m55.0

m60.04
C5.2 μ−=

−
=

π
μσ  

 
Express the charge density on the 
outer surface: A

qouter
outer =σ  

 
Because the spherical shell is 
uncharged: 
 

0innerouter =+ qq  

Substitute for qouter to obtain: 
 2

2

inner
outer 4 R

q
π

σ −
=  

 
Substitute numerical values and 
evaluate σouter: ( )

2
2outer C/m25.0

m90.04
C5.2 μ==

π
μσ  

 
(b) Apply Gauss’s law to a 
spherical surface of radius r that 
is concentric with the point 
charge: 
 

inside
0

S n
1 QdAE
∈

=∫ ⇒
0

inside24
∈

π
QEr r =  

 

Solve for : rE
 0

2
inside

4 ∈π r
QEr =                           (1) 

 
For r < R1 = 60 cm, Qinside = q. Substitute in equation (1) and evaluate  
Er(r < 60 cm) to obtain: 
 

( ) ( )( )

( ) 2
24

2

229

2
0

2

1/CmN103.2

C5.2/CmN10988.8
4

cm 60

r

rr
kq

r
qrEr

⋅×=

⋅×
===<

μ
∈π
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Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. Hence, 
for 60 cm < r < 90 cm: 
 

0inside =Q  
and 

( ) 0cm90cm60 =<< rEr  

 

For r > 90 cm, the net charge inside the Gaussian surface is q and: 
 

( ) ( ) 2
24

2

1/CmN103.2cm90
rr

kqrEr ⋅×==>  

 
C5.2inner μ−=q  

and 
2

inner C/m55.0 μ−=σ as before. 

 

(c) Because E = 0 in the conductor: 
 

C5.3innerouter μ=+ qq  
and 

C0.6-C5.3 innerouter μμ == qq  

Express the relationship between 
the charges on the inner and 
outer surfaces of the spherical 
shell: 
 
σouter is now given by: 

( )
2

2outer C/m59.0
m90.04
C0.6 μ==

π
μσ  

 
For r < R1 = 60 cm, Qinside = q 
and Er(r < 60 cm) is as it was in 
(a): 
 

( ) ( ) 2
24 1/CmN103.2cm 60

r
rEr ⋅×=<

 

Because the spherical shell is a 
conductor, a charge –q will be 
induced on its inner surface. 
Hence, for 60 cm < r < 90 cm: 
 

0inside =Q  
and 

( ) 0cm90cm60 =<< rEr  

 

For r > 0.90 m, the net charge inside the Gaussian surface is 6.0 μC and: 
 

( ) ( )( ) ( ) 2
24

2
229

2

1/CmN104.51C0.6/CmN10988.8cm90
rrr

kqrEr ⋅×=⋅×==> μ  

 
64 •• If the magnitude of an electric field in air is as great as 3.0 × 106 N/C, 
the air becomes ionized and begins to conduct electricity. This phenomenon is 
called dielectric breakdown. A charge of 18 μC is to be placed on a conducting 
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sphere. What is the minimum radius of a sphere that can hold this charge without 
breakdown? 
 
Picture the Problem From Gauss’s law we know that the electric field at the 
surface of the charged sphere is given by 2RkQE = where Q is the charge on the 
sphere and R is its radius. The minimum radius for dielectric breakdown 
corresponds to the maximum electric field at the surface of the sphere. 
 
Use Gauss’s law to express the 
electric field at the surface of the 
charged sphere: 
 

2R
kQE =  

Express the relationship between 
E and R for dielectric breakdown: 
 

2
min

max R
kQE = ⇒

max
min E

kQR =  

Substitute numerical values and 
evaluate Rmin: 

( )( )

cm23

N/C100.3
C18/CmN10988.8

6

229

min

=

×
⋅×

=
μR

 

 
65 ••• [SSM] A square conducting slab carries a net charge of 80 μC.  The 
dimensions of the slab are 1.0 cm × 5.0 m × 5.0 m.  To the left of the slab is an 
infinite non-conducting flat sheet with charge density 2.0 μC/m2.  The faces of the 
slab are parallel to the sheet.  (a) Find the charge on each face of the slab.  
(Assume that on each face of the slab the surface charge is uniformly distributed, 
and that the amount of charge on the edges of the slab is negligible.) (b) Find the 
electric field just to the left of the slab and just to the right of the slab. 
 
Picture the Problem (a) We can use 
the fact that the net charge on the 
conducting slab is the sum of the 
charges Qleft and Qright on its left and 
right surfaces to obtain a linear 
equation relating these charges. 
Because the electric field is zero inside 
the slab, we can obtain a second linear 
equation in Qleft and Qright that we can 
solve simultaneously with the first 
equation to find Qleft and Qright. (b) We 
can find the electric field on each side 
of the slab by adding the fields due to 
the charges on the surfaces of the slab 
and the field due to the plane of charge. 

σ
μ

2
C

/m
   0.2

=

leftQ rightQ

leftQE
r

rightQE
r

sheetE
r

In
fin

ite
 n

on
-c

on
du

ct
in

g 
fla

t s
he

et
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(a) The net charge on the conducting 
slab is the sum of the charges on the 
surfaces to the left and to the right: 
 

C 80rightleft μ=+QQ                  (1) 

Because the electric field is equal to 
zero inside the slab: 0

222 0

right

0

left

0

sheet =−+
∈

σ
∈
σ

∈
σ

 

 
Letting A represent the area of the 
charged surfaces of the slab and 
substituting for leftσ  and righttσ  

yields: 
 

0
222 0

right

0

left

0

sheet =−+
∈∈∈

σ
A

Q
A
Q

 

 
 

Simplifying to obtain: 
 

0rightleftsheet =−+ QQAσ            

( ) 0
m

C 0.2m 0.5 rightleft2
2 =−+⎟

⎠
⎞

⎜
⎝
⎛ QQμ  

or 
C50rightleft μ−=−QQ                (2) 

 

Substituting numerical values yields: 
 

Solve equations (1) and (2) 
simultaneously to obtain: 
 

C 15left μ=Q  and C 65right μ=Q  

(b) Express the total field just to the 
left of the slab: 
 rrr

EEEE

ˆ
2

ˆ
2

ˆ
2 0

right

0

left

0

sheet

sheet
slab  the
ofleft  rightleft

∈
σ

∈
σ

∈
σ

−−=

++= QQ

rrrr

 

where r is a unit vector pointing away 
from the slab. 

ˆ

 
Substituting for leftσ  and rightσ  and 

simplifying yields: 
( )

r

rrrE

ˆ
2

ˆ
2

ˆ
2

ˆ
2

0

rightleftsheet

0

right

0

left

0

sheet

slab  the
ofleft  

∈
σ

∈∈∈
σ

A
QQA

A
Q

A
Q

+−
=

−−=
r

 

 
Substitute numerical values and evaluate 

slab  the
ofleft  E

r
: 

 

( ) ( ) ( )
( ) ( ) ( ) rrE ˆkN/C68ˆ

m/NC108.854m 0.52
 C65C 51C/m0.2m 0.5

22122

22

slab  the
ofleft  −=

⋅×
+−

=
−

μμμr
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Express the total field just to the 
right of the slab: 
 rrr

EEEE Q

ˆ
2

ˆ
2

ˆ
2 0

right

0

left

0

sheet

slab   theof
surfaceright  sheet

slab  the
ofright  left

∈
σ

∈
σ

∈
σ

++=

++=
rrrr

 

 
Substituting for leftσ  and rightσ  and 

simplifying yields: 
 ( )

r

rrrE

ˆ
2

ˆ
2

ˆ
2

ˆ
2

0

leftrightsheet

0

right

0

left

0

sheet

slab  the
ofright  

∈
σ

∈∈∈
σ

A
QQA

A
Q

A
Q

++
=

++=
r

 

 
Substitute numerical values and evaluate 

slab  the
ofright  E

r
: 

 

( ) ( ) ( )
( ) ( ) ( ) rrE ˆMN/C29.0ˆ

m/NC108.854m 0.52
 C15C 65C/m0.2m 0.5

22122

22

slab  the
ofright  =

⋅×
++

=
−

μμμr
 

 
 
General Problems 
 
66 •• Consider the concentric metal sphere and spherical shells that are 
shown in Figure 22-43. The innermost is a solid sphere that has a radius R1.  A 
spherical shell surrounds the sphere and has an inner radius R2 and an outer radius 
R3. The sphere and the shell are both surrounded by a second spherical shell that 
has an inner radius R4 and an outer radius R5. None of these three objects initially 
have a net charge. Then, a negative charge –Q0 is placed on the inner sphere and a 
positive charge +Q0 is placed on the outermost shell. (a) After the charges have 
reached equilibrium, what will be the direction of the electric field between the 
inner sphere and the middle shell? (b) What will be the charge on the inner 
surface of the middle shell? (c) What will be the charge on the outer surface of the 
middle shell? (d) What will be the charge on the inner surface of the outermost 
shell?  (e) What will be the charge on the outer surface of the outermost shell?  
(f) Plot E as a function of r for all values of r. 
 
Determine the Concept We can determine the direction of the electric field 
between spheres I and II by imagining a test charge placed between the spheres 
and determining the direction of the force acting on it. We can determine the 
amount and sign of the charge on each sphere by realizing that the charge on a 
given surface induces a charge of the same magnitude but opposite sign on the 
next surface of larger radius. 
 
(a) The charge placed on sphere III has no bearing on the electric field between 
spheres I and II. The field in this region will be in the direction of the force 
exerted on a test charge placed between the spheres. Because the charge at the 
center is negative, center.  therdpoint towa  willfield the  
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(b) The charge on sphere I (−Q0) will induce a charge of the same magnitude but 
opposite sign  on sphere II: 0Q+  

 
(c) The induction of charge +Q0 on the inner surface of sphere II will leave its 
outer surface with a charge of the same magnitude but opposite sign: 0Q−  

 
(d) The presence of charge −Q0 on the outer surface of sphere II will induce a 
charge of the same magnitude but opposite sign on the inner surface of sphere 
III: 0Q+  

 
(e) The presence of charge +Q0 on the inner surface of sphere III will leave the 
outer surface of sphere III neutral: 0  

 
(f) A graph of E as a function of r is 
shown to the right: 

 
 
67 •• [SSM] A large, flat, nonconducting, non-uniformly charged surface 
lies in the x = 0 plane. At the origin, the surface charge density is +3.10 μC/m2. A 
small distance away from the surface on the positive x axis, the x component of 
the electric field is 4.65 × 105 N/C. What is Ex a small distance away from the 
surface on the negative x axis? 
 
Picture the Problem Because the difference between the field just to the right of 
the surface and the field just to the left of the surface is the field due 
to the nonuniform surface charge, we can express as the difference between 

 and 

pos,xE neg,xE

neg,xE

pos,xE .0∈σ  

 
Express the electric field just to the 
left of the origin in terms of  
and 

pos,xE

0∈σ : 
 

0
pos,neg, ∈

σ
−= xx EE  
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Substitute numerical values and evaluate : neg,xE
 

kN/C 115
m/NC108.854

C/m3.10N/C1065.4 2212

2
5

neg, =
⋅×

−×= −

μE x  

 
68 •• An infinitely long line charge that has a uniform linear charge density 
equal to –1.50 μC/m lies parallel to the y axis at x = –2.00 m.  A positive point 
charge that has a magnitude equal to 1.30 μC is located at x = 1.00 m, y = 2.00 m. 
Find the electric field at x = 2.00 m, y = 1.50 m. 
 
Picture the Problem Let P denote the point of interest at (2.00 m, 1.50 m). The 
electric field at P is the sum of the electric fields due to the infinite line charge 
and the point charge. 
 

rr ( )50.1,00.2P

00.200.1000.2−

( )2.00 ,00.1
μC   30.1=q

m ,x

00.1

00.2

m ,y

C/m   50.1−= μλ

 
 
Express the resultant electric field at P: qEEE

rrr
+= λ  

 
Find the field at P due the infinite line charge: 
 

( )( ) ( )iir
r
kE ˆkN/C741.6ˆ

m00.4
C/m50.1/CmN10988.82ˆ2 229

−=
−⋅×

==
μλ

λ

r
 

 
Express the field at P due the point 
charge: 
 

rE ˆ
2r

kq
q =

r
 

 
m118.1=r  Referring to the diagram above, 

determine r and : r̂ and 
jir ˆ4472.0ˆ8944.0ˆ −=  
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Substitute and evaluate : ( )mm,1.502.00qE

r

 

( ) ( )( )
( )

( )
( )( )
( ) ( ) ji

ji

jiEq

ˆkN/C180.4ˆkN/C361.8

ˆ4472.0ˆ8944.0kN/C348.9

ˆ4472.0ˆ8944.0
m118.1

C30.1/CmN10988.8mm,1.502.00 2

229

−=

−=

−
⋅×

=
μr

 

 
Substitute and simplify to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jiiE
ˆkN/C18.4ˆkN/C62.1

ˆkN/C180.4ˆkN/C361.8ˆkN/C741.6mm,1.502.00

−=

−+−=
r

 

 
69 •• [SSM] A thin, non-conducting, uniformly charged spherical shell of 
radius R (Figure 22-44a) has a total positive charge of Q. A small circular plug is 
removed from the surface. (a) What is the magnitude and direction of the electric 
field at the center of the hole? (b) The plug is now put back in the hole (Figure 22-
44b). Using the result of Part (a), find the electric force acting on the plug.  
(c) Using the magnitude of the force, calculate the ″electrostatic pressure″ 
(force/unit area) that tends to expand the sphere. 
 
Picture the Problem If the patch is small enough, the field at the center of the 
patch comes from two contributions.  We can view the field in the hole as the sum 
of the field from a uniform spherical shell of charge Q plus the field due to a 
small patch with surface charge density equal but opposite to that of the patch cut 
out.    
 
(a) Express the magnitude of the 
electric field at the center of the hole: 
 

hole
shell

 spherical EEE +=  

Apply Gauss’s law to a spherical 
gaussian surface just outside the 
given sphere: 
 

( )
00

enclosed2

shell
  spherical 4

∈∈
π QQrE ==  

Solve for to obtain: 
shell

  sphericalE

 
2

0shell
  spherical 4 r

QE
∈π

=
 

 
The electric field due to the small 
hole (small enough so that we can 
treat it as a plane surface) is: 
 

0
hole 2∈

σ−
=E  
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Substitute and simplify to obtain: 

( )
outwardradially  

8

424

24

2
0

2
0

2
0

0
2

0

r
Q

r
Q

r
Q

r
QE

∈π

π∈∈π

∈
σ

∈π

=

−=

−
+=

 

 
(b) Express the force on the patch: 
 

qEF =  
where q is the charge on the patch. 
 

Assuming that the patch has radius 
a, express the proportion between 
its charge and that of the spherical 
shell: 
 

22 4 r
Q

a
q

ππ
= or Q

r
aq 2

2

4
=  

 

Substitute for q and E in the 
expression for F to obtain: 
 

outwardradially  
32

84

4
0

22

2
0

2

2

r
aQ

r
QQ

r
aF

∈π

∈π

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 

 
(c) The pressure is the force exerted 
on the patch divided by the area of 
the patch: 4

0
2

2

2

4
0

22

32
32

r
Q

a
r

aQ

P
∈ππ

∈π
==  

 
70 •• An infinite thin sheet in the y = 0 plane has a uniform surface charge 
density σ1 = +65 nC/m2. A second infinite thin sheet has a uniform charge density 
σ2 = +45 nC/m2 and intersects the y = 0 plane at the z axis and makes an angle of 
30º with the xz plane, as shown in Figure 22-45.  Find the electric field at  
(a) x = 6.0 m, y = 2.0 m and (b) x = 6.0 m, y = 5.0 m. 
 
Picture the Problem Let the numeral 1 refer to the plane with charge density σ 1 
and the numeral 2 to the plane with charge density σ 2. We can find the electric 
field at the two points of interest by adding the electric fields due to the charge 
distributions of the two infinite planes. 
 
Express the electric field at any 
point in space due to the charge 
distributions on the two planes: 
 

21 EEE
rrr

+=                                 (1) 
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(a) Express the electric field at (6.0 m, 2.0 m) due to plane 1: 
 

( ) ( ) ( ) jjjE ˆkN/C67.3ˆ
m/NC108.852

nC/m65ˆ
2

mm,2.06.0 2212

2

0

1
1 =

⋅×
+

== −∈
σr

 

 
Express the electric field at (6.0 m, 2.0 m) due to plane 2: 
 

( ) ( ) ( )rrrE ˆkN/C54.2ˆ
m/NC108.852

nC/m45ˆ
2

mm,2.06.0 2212

2

0

2
2 =

⋅×
+

== −∈
σr

 

where is a unit vector pointing from plane 2 toward the point whose coordinates 
are (6.0 m, 2.0 m). 

r̂

 
Refer to the diagram below to obtain: 

 

jir ˆ30cosˆ30sinˆ °−°=  

Substitute to obtain: 
 

( ) ( )( )
( ) ( ji

jiE
ˆkN/C20.2ˆkN/C27.1

ˆ30cosˆ30sinkN/C54.2mm,2.06.02

−+=

°−°=
r

)
 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jijE
ˆkN/C5.1ˆkN/C3.1

ˆkN/C20.2ˆkN/C27.1ˆkN/C67.3mm,2.06.0

+=

−++=
r

 

 
(b) Note that ( ) ( )mm,2.06.0mm,5.06.0 11 EE

rr
=  so that: 

 

( ) ( ) ( ) jjjE ˆkN/C67.3ˆ
mN/C1085.82

nC/m65ˆ
2

m5m,6 2212

2

0
1 =

⋅×
== −∈

σr
 

 
Note also that ( ) ( )mm,2.06.0mm,5.06.0 22 EE

rr
−=  so that: 

 
( ) ( ) ( ) jiE ˆkN/C20.2ˆkN/C27.1mm,5.06.02 +−=

r
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Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ji

jijE
ˆkN/C9.5ˆkN/C3.1

ˆkN/C20.2ˆkN/C27.1ˆkN/C67.3mm,5.06.0

+−=

+−+=
r

 

 
71    ••    Two identical square parallel metal plates each have an area of  
500 cm2. They are separated by 1.50 cm.  They are both initially uncharged. Now 
a charge of +1.50 nC is transferred from the plate on the left to the plate on the 
right and the charges then establish electrostatic equilibrium. (Neglect edge 
effects.) (a) What is the electric field between the plates at a distance of 0.25 cm 
from the plate on the right? (b) What is the electric field between the plates a 
distance of 1.00 cm from the plate on the left? (c) What is the electric field just to 
the left of the plate on the left? (d) What is the electric field just to the right of the 
plate to the right? 
 
Picture the Problem The transfer of charge from the plate on the left to the plate 
on the right leaves the plates with equal but opposite charges. Because the metal 
plates are conductors, the charge on each plate is completely on the surface facing 
the other plate. The symbols for the four surface charge densities are shown in the 
figure. The x component of the electric field due to the charge on surface 1L is 

01L 2∈σ− at points to the left of surface 1L and is 01L 2∈σ+ at points to the 
right of surface 1L, where the +x direction is to the right. Similar expressions 
describe the electric fields due to the other three surface charges. We can use 
superposition of electric fields to find the electric field in each of the three 
regions. 

σ σ σ σ1L 1R 2L 2R

1 2

I II III

 
 
Define σ1 and σ2 so that: 1R1L1 σσσ +=                            

and 
2R2L2 σσσ +=                           
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(a) and (b) In the region between the 
plates (region II): 
 

0

21

0

2

0

1

0

2R

0

2L

0

1R

0

1L
II ,

0
22

0

2222

∈
σσ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

−
=−−+=

−−+=xE
 

 
Let σσσ =−= 12 . Then: 
 

σσσσσ 221 −=−−=−  

Substituting for 21 σσ −  and 
using the definition of σ yields: 00

II ,
2

∈Α∈
σ QEx −=

−
=  

 
Substitute numerical values and evaluate : II ,xE
 

( )
left  the towardkN/C 339

m10 500
mN

C10854.8

nC50.1

26-
2

2
12

II , =
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×
−=

−
xE  

 
(c) The electric field strength just to 
the left of the plate on the left (region 
I) is given by: 
 

0
22

0
22

0

2222

00

0

2

0

1

0

2R

0

2L

0

1R

0

1L
I ,

=−
−

−=

−−−=

−−−−=

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

xE

 

 
(d) The electric field strength just to 
the right of the plate on the right 
(region III) is given by: 
 

0
22

0
22

0

2222

00

0

2

0

1

0

2R

0

2L

0

1R

0

1L
III ,

=+
−

=

−++=

+++=

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

∈
σ

xE

 

 
72 •• Two infinite nonconducting uniformly charged planes lie parallel to 
each other and to the yz plane. One is at x = –2.00 m and has a surface charge 
density of  –3.50 μC/m2. The other is at x = 2.00 m and has a surface charge 
density of 6.00 μC/m2. Find the electric field in the region  
(a) x < –2.00 m, (b) –2.00 m < x < 2.00 m, and (c) x > 2.00 m. 
 
Picture the Problem Let the numeral 1 refer to the infinite plane at x = −2.00 m 
and the numeral 2 to the plane at x = 2.00 m and let I, II, and III identify the 
regions to the left of plane 1, between the planes, and to the right of plane 2, 
respectively. We can use the expression for the electric field of in infinite plane of 
charge to express the electric field due to each plane of charge in each of the three 
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regions. Their sum will be the resultant electric field in each region. 
 

00.2000.2−

μ

m ,x

μ 2C/m   50.3−=σ σ1
2C/m   00.6=2

I II III

 
 
The resultant electric field is the sum 
of the fields due to planes 1 and 2: 
 

21 EEE
rrr

+=                              (1) 

(a) The field due to plane 1 in region 
I is given by: 

( )iE ˆ
2 0

1
1 −=

∈
σr

 

 
The field due to plane 2 in region I is 
given by: 

( )iE ˆ
2 0

2
2 −=

∈
σr

 

 
Substitute for 1E

r
and 2E

r
in equation 

(1) and simplify to obtain: 
 

( ) ( ) iiiE ˆ
2

ˆ
2

ˆ
2 0

21

0

2

0

1

∈∈∈
σσσσ +

−=−+−=
r

 

Substitute numerical values and 
evaluate E

r
: 

 
( )

( )i

iE

ˆkN/C141

ˆ
m/NC10854.82
C/m00.6C/m50.3

2212

22

−=

⋅×
+−

−= −

μμr

 

 
(b) The field due to plane 1 in 
region II is given by: 

iE ˆ
2 0

1
1 ∈

σ
=

r
 

 
The field due to plane 2 in region 
II is given by: 

( )iE ˆ
2 0

2
2 −=

∈
σr

 

 
Substitute for 1E

r
and 2E

r
in equation 

(1) and simplify to obtain: 
 

( ) ( ) iiiE ˆ
2

ˆ
2

ˆ
2 0

21

0

2

0

1

∈∈∈
σσσσ −

=−+=
r
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Substitute numerical values and 
evaluate E

r
: 

 
( )

( )i

iE

ˆkN/C536

ˆ
m/NC10854.82
C/m00.6C/m50.3

2212

22

−=

⋅×
−−

−= −

μμr

 

 
(c) The field due to plane 1 in 
region III is given by: 

iE ˆ
2 0

1
1 ∈

σ
=

r
 

 
The field due to plane 2 in region 
III is given by: 

iE ˆ
2 0

2
2 ∈

σ
=

r
 

 
Substitute for 1E

r
and 2E

r
in equation 

(1) and simplify to obtain: 
 

( ) ( ) iiiE ˆ
2

ˆ
2

ˆ
2 0

21

0

2

0

1

∈∈∈
σσσσ +

=+=
r

 

Substitute numerical values and 
evaluate E

r
: 

 
( )

( )i

iE

ˆkN/C141

ˆ
m/NC10854.82
C/m00.6C/m50.3

2212

22

=

⋅×
+−

−= −

μμr

 

 
73 ••• [SSM] A quantum-mechanical treatment of the hydrogen atom 
shows that the electron in the atom can be treated as a smeared-out distribution of 
negative charge of the form ρ(r) = −ρ0e–2r/a. Here r represents the distance from 
the center of the nucleus and a represents the first Bohr radius which has a 
numerical value of 0.0529 nm. Recall that the nucleus of a hydrogen atom 
consists of just one proton and treat this proton as a positive point charge.   
(a) Calculate ρ0, using the fact that the atom is neutral. (b) Calculate the electric 
field at any distance r from the nucleus.  
 
Picture the Problem Because the atom is uncharged, we know that the integral of 
the electron’s charge distribution over all of space must equal its charge qe. 
Evaluation of this integral will lead to an expression for ρ0. In (b) we can express 
the resultant electric field at any point as the sum of the electric fields due to the 
proton and the electron cloud. 
 
(a) Because the atom is uncharged, 
the integral of the electron’s charge 
distribution over all of space must 
equal its charge e: 
 

( ) ( )∫∫
∞∞

==
0

2

0

4 drrrdVre πρρ  

 

Substitute for ρ(r) and simplify to 
obtain: 
 

∫

∫
∞

−

∞
−

−=

−=

0

22
0

0

22
0

4

4

drer

drree

ar

ar

πρ

πρ
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Use integral tables or integration by 
parts to obtain: 4

3

0

22 adrer ar =∫
∞

−  

 

Substitute for ∫
∞

−

0

22 drer ar to obtain: 

 

0
3

3

0 4
4 ρππρ aae −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

 
Solving for 0ρ  yields: 

30 a
e

π
ρ −=  

 
(b)  The field will be the sum of the 
field due to the proton and that of 
the electron charge cloud:   
 

cloudp EEE +=  

Express the field due to the electron 
cloud: ( ) ( )

2cloud r
rkQrE =  

where Q(r) is the net negative charge 
enclosed a distance r from the proton. 
 

Substitute for  and  to obtain: pE cloudE ( ) ( )
22 r
rkQ

r
kerE +=                     (1) 

 
Q(r) is given by: 

''4

')'('4)(

'2
0

0

2

0

2

drer

drrrrQ

ar
r

r

−∫

∫

=

=

ρπ

ρπ
 

 

From Part (a), 30 a
e

π
ρ −

= : 

''4

''4)(

'2

0

2
3

'2

0

2
3

drer
a

e

drer
a
erQ

ar
r

ar
r

−

−

∫

∫
−

=

⎟
⎠
⎞

⎜
⎝
⎛ −=
π

π
 

 
From a table of integrals: 
 

( )[ ]

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

⎥
⎦

⎤
⎢
⎣

⎡
−−−=

−−−=

−−

−−

−−−∫

2

2
22

3

2

2
232

4
1

2222
4
12

0

2

21
4

221

221

a
r

a
reea

a
r

a
reae

raraeaedxex

arar

arar

ararax
r
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Substituting for '' '2

0

2 drer ar
r

−∫  in the expression for and simplifying yields: )(rQ

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

−
= −−

2

2
22 21

4
)(

a
r

a
reeerQ arar  

 
Substitute for in equation (1) and simplify to obtain: )(rQ
 

( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−=

−−

−−

2

2
22

2

2

2
22

22

21
4
11

21
4

a
r

a
ree

r
ke

a
r

a
ree

r
ke

r
kerE

arar

arar

 

 
74 •• A uniformly charged ring has a radius a, lies in a horizontal plane, and 
has a negative charge given by –Q. A small particle of mass m has a positive 
charge given by q. The small particle is located on the axis of the ring. (a) What is 
the minimum value of q/m such that the particle will be in equilibrium under the 
action of gravity and the electrostatic force? (b) If q/m is twice the value 
calculated in Part (a), where will the particle be when it is in equilibrium? Express 
your answer in terms of a 
   
Picture the Problem We can apply the condition for translational equilibrium to 
the particle and use the expression for the electric field on the axis of a ring 
charge to obtain an expression for q/m. Doing so will lead us to the conclusion 
that q/m will be a minimum when Ez is a maximum and that 

2az −= maximizes Ez. 

 a− a

m,q

y

z ring
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(a) Apply to the particle: ∑ = 0zF

 
0=−mgqEz ⇒

zE
g

m
q
=          (1) 

Note that this result tells us that the 
minimum value of q/m will be where 
the field due to the ring is greatest. 
 

Express the electric field along the z 
axis due to the ring of charge: 
 

( ) 2322 az
kQzEz
+

=  

Differentiate this expression with respect to z to obtain: 
 

( )
( ) ( )

( )
( ) ( )( ) ( )

( )
( ) ( )

( )322

212222322

322

2122
2
32322

322

23222322

2322

32

az
azzazkQ

az

zazzaz
kQ

az

az
dx
dzaz

kQ
az
z

dz
dkQ

dz
dEx

+

+−+
=

+

+−+
=

+

+−+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

 

 
( ) ( )

( )
03

322

212222322

=
+

+−+

az
azzaz , 

Set this expression equal to zero for 
extrema and simplify: 

( ) ( ) 03 212222322 =+−+ azzaz , 
and 

03 222 =−+ zaz  
 

Solve for z to obtain: 
 2

az ±=  

as candidates for maxima or minima. 
 

You can either plot a graph of Ez or 
evaluate its second derivative at 
these points to show that it is a 
maximum at: 
 

2
az −=  

Substitute to obtain an expression 
: max,zE

 
223

2
2max, 27

2

2

2
a

kQ

aa

akQ
Ez =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
−

⎟
⎠

⎞
⎜
⎝

⎛−
=  
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Substitute in equation (1) to obtain: 
 kQ

ga
m
q

2
27 2

=  

 

( ) 2322227 az
kQz

a
kQ

+
=  

or 

3

2

2
6

2

4

1
27

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

a
za

z
a

 

 

(b) If q/m is twice as great as in (a), 
then the electric field should be half 
its value in (a), that is: 
 

Let u = z2/a2 and simplify to obtain: 
 

01243 23 =+−+ uuu  
 
 

The following graph of  was plotted using a spreadsheet 
program. 

( ) 1243 23 +−+= uuuuf

-30

-25

-20

-15

-10

-5

0

5

10

15

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

a

f(
a)

 
 

Use your graphing calculator or trial-
and-error methods to obtain: 
 

04189.0=u  and 596.3=u  
 

The corresponding z values are: az 205.0−=  and az 90.1−=  
 

The condition for a stable equilibrium position is that the particle, when displaced 
from its equilibrium position, experiences a restoring force; that is, a force that 
acts toward the equilibrium position. When the particle in this problem is just 
above its equilibrium position the net force on it must be downward and when it is 
just below the equilibrium position the net force on it must be upward. Note that 
the electric force is zero at the origin, so the net force there is downward and 
remains downward to the first equilibrium position as the weight force exceeds 
the electric force in this interval. The net force is upward between the first and 
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second equilibrium positions as the electric force exceeds the weight force. The 
net force is downward below the second equilibrium position as the weight force 
exceeds the electric force. Thus, the first (higher) equilibrium position is stable 
and the second (lower) equilibrium position is unstable.  
 
You might also find it instructive to use 
your graphing calculator to plot a graph 
of the electric force (the gravitational 
force is constant and only shifts the 
graph of the total force downward). 
Doing so will produce a graph similar 
to the one shown in the sketch to the 
right.  
 

z

F
face

 a90.1−
 a205.0−  

Note that the slope of the graph is negative on both sides of −0.205a whereas it is 
positive on both sides of −1.90a; further evidence that −0.205a is a position of 
stable equilibrium and −1.90a a position of unstable equilibrium. 
 
75 •• A long, thin, non-conducting plastic rod is bent into a circular loop 
that has a radius a. Between the ends of the rod a short gap of length l, where  
l << a, remains. A positive charge of magnitude Q is evenly distributed on the 
loop. (a) What is the direction of the electric field at the center of the loop? 
Explain your answer. (b) What is the magnitude of the electric field at the center 
of the loop? 
 
Picture the Problem The loop with the 
small gap is equivalent to a closed loop 
and a charge of ( )RQ π2l−  at the gap. 
The field at the center of a closed loop 
of uniform line charge is zero. Thus the 
field is entirely due to the charge 

( )RQ π2l− . 

 r

Q

a

 
 
(a) Express the field at the center 
of the loop: 
 

gaploopcenter EEE
rrr

+=                  (1) 

Relate the field at the center of the 
loop to the charge in the gap: 
 

rE ˆ
2gap a

kq
−=

r
 

Use the definition of linear charge 
a

Qq
π

λ
2

==
l

⇒
a

Qq
π2
l

=  
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density to relate the charge in the 
gap to the length of the gap: 
 

 

Substitute for q to obtain: 
 

rE ˆ
2 3gap a
kQ
π

lr
−=                     

 
Substituting in equation (1) yields: 
 

rrE ˆ
2

ˆ
2

0 33center a
kQ

a
kQ

ππ
llr

−=−=  

 
If Q is positive, the field at the origin points radially outward toward the gap. 

 
 

(b) From our result in (a) we see 
that the magnitude of  is: centerE

r
3center 2 a

kQE
π

l
=  

 
76 •• A non-conducting solid sphere that is 1.20 m in diameter and has its 
center on the x axis at x = 4.00 m has a uniform volume charge of density of 
+5.00 μC/m3. Concentric with the sphere is a thin non-conducting spherical shell 
that has a diameter of 2.40 m and a uniform surface charge density of  
–1.50 μC/m2. Calculate the magnitude and direction of the electric field at  
(a) x = 4.50 m, y = 0, (b) x = 4.00 m, y = 1.10 m, and (c) x = 2.00 m, y = 3.00 m. 
 
Picture the Problem We can find the electric fields at the three points of interest, 
labeled 1, 2, and 3 in the diagram, by adding the electric fields due to the charge 
distributions on the nonconducting sphere and the spherical shell. 

0

2

3

1

——

——

m 20.12 =r

m 60.01 =r

3
C/m   00.5=ρ μ

2
C/m   50.1−=σ μ

4.002.00

1.10

3.00

m ,x

m ,y

 
 
Express the electric field due to the shellsphere EEE

rrr
+=                     (1) 
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nonconducting sphere and the 
spherical shell at any point in space: 
 
(a) Because (4.50 m, 0) is inside the 
spherical shell: 
 

( ) 00,m50.4shell =E
r

 

Apply Gauss’s law to a spherical 
surface inside the nonconducting 
sphere to obtain: 
 

( ) iE ˆ
3

4
sphere rkr ρπ

=
r

 

Evaluate ( )m50.0sphereE
r

: 

 

( ) ( )( )( )

( )i

iE

ˆkN/C1.94

ˆm50.0C/m00.5/CmN10988.8
3

4m50.0 2229
sphere

=

⋅×= μπr

 

 
Substitute in equation (1) to 
obtain: 

( ) ( )
( )i

iE
ˆkN/C1.94

0ˆkN/C1.940,m50.4

=

+=
r

 

 
Find the magnitude and direction 
of ( )0,m50.4E

r
: 

 

( ) kN/C940,m50.4 =E  

and 
°= 0θ  

 
(b) Because (4.00 m, 1.10 m) is 
inside the spherical shell: 
 

( ) 0m10.1,m00.4shell =E
r

 

Evaluate ( )m10.1sphereE
r

: 

 

( ) ( )( )( )
( )

( ) j

jE

ˆkN/C6.33

ˆ
m10.13

m600.0C/m00.5/CmN10988.84m10.1 2

32229

sphere

=

⋅×
=

μπr

 

 
Substitute in equation (1) to obtain: ( ) ( )

( ) j

jE
ˆkN/C6.33

0ˆkN/C6.33m 10.1,m00.4

=

+=
r
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( ) kN/C6.33m10.1,m00.4 =E  

and 
°= 90θ  

 

Find the magnitude and direction 
of ( )m10.1,m00.4E

r
: 

 

(c) Because (2.00 m, 3.00 m) 
outside the spherical shell: 
 

( ) rE ˆ
2
shell

shell r
kQr =

r
 

where is a unit vector pointing from r̂
(4.00 m, 0) to (2.00 m, 3.00 m). 
 

Evaluate : shellQ
 ( )( )

C14.27
m20.1C/m50.14 22

shellshell

μ
μπ

σ

−=
−=

= AQ

  

 
m606.3=r  Refer to the following diagram to 

find and r: r̂ and 
jir ˆ8321.0ˆ5547.0ˆ +−=  

r

m ,x

m ,y

3.00

4.002.00

( )3.00 ,00.2

 
Substitute numerical values and evaluate ( )mm,3.002.00shellE

r
: 

 

( ) ( )( )
( )

( )( )
( ) ( ) ji

ji

rE

ˆkN/C61.15ˆkN/C41.10

ˆ8321.0ˆ5547.0kN/C77.18

ˆ
m3.606

C14.27/CmN10988.8m606.3 2

229

shell

−+=

+−−=

−⋅×
=

μr

 

 
Express the electric field due to the 
charged nonconducting sphere at a 
distance r from its center that is 
greater than its radius: 
 

( ) rE ˆ
2

sphere
sphere r

kQ
r =

r
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Find the charge on the sphere: 
 ( )( )

C524.4

m600.0C/m00.5
3

4 32

spheresphere

μ

μπ

ρ

=

=

= VQ

 

 
Evaluate ( )m61.3sphereE

r
: 

 

( ) ( )( )
( )

( )

( )( )
( ) ( ) ji

ji

rrE

ˆkN/C602.2ˆkN/C735.1

ˆ8321.0ˆ5547.0kN/C128.3

ˆkN/C128.3ˆ
m606.3

C524.4/CmN10988.8mm,3.0000.2 2

229

sphere

+−=

+−=

=
⋅×

=
μr

 

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( ) ( )
( )

( ) ( ) ji

j

ijiE

ˆkN/C01.13ˆkN/C675.8

ˆkN/C602.2

ˆkN/C735.1ˆkN/C61.15ˆkN/C41.10m00.3,m00.2

−+=

+

−+−+=
r

 

 
Find the magnitude and direction of ( )m00.3,m00.2E

r
: 

 
( ) ( ) ( ) kN/C6.15kN/C01.13kN/C675.8m00.3,m00.2 22 =−+=E  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= − 304

kN/C675.8
kN/C01.13tan 1θ  

 
77 •• An infinite non-conducting plane sheet of charge that has a surface 
charge density + 3.00 μC/m2 lies in the y = –0.600 m plane.  A second infinite 
non-conducting plane sheet of charge that has a surface charge density of  
–2.00 μC/m2 lies in the x = 1.00 m plane.  Lastly, a non-conducting thin spherical 
shell of radius of 1.00 m and that has its center in the z = 0 plane at the 
intersection of the two charged planes has a surface charge density of  
–3.00 μC/m2. Find the magnitude and direction of the electric field on the x axis at 
(a) x = 0.400 m and (b) x = 2.50 m. 
 
Picture the Problem Let the numeral 1 refer to the infinite plane whose charge 
density is σ 1 and the numeral 2 to the infinite plane whose charge density is  
σ 2. We can find the electric fields at the two points of interest by adding the 
electric fields due to the charge distributions on the infinite planes and the sphere. 
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r

( )600.0,00.1 −
600.0−

400.0 50.2

m ,x

m ,y

σ μ1

σ μ 2
C/m   00.3−=

3

σ
2

2
C/m   00.2−= μ

0

2
C/m   00.2−=

00.1

 
 
Express the electric field due to the 
infinite planes and the sphere at any 
point in space: 
 

21sphere EEEE
rrrr

++=                   (1) 

(a) Because (0.400 m, 0) is inside the 
sphere: 
 

( ) 00,m400.0sphere =E
r

 

Find the field at (0.400 m, 0) due to plane 1: 
 

( ) ( ) ( ) jjjE ˆkN/C4.169ˆ
m/NC10854.82

C/m00.3ˆ
2

0,m400.0 2212

2

0

1
1 =

⋅×
== −

μσ
∈

r
 

 
Find the field at (0.400 m, 0) due to plane 2: 
 

( ) ( ) ( )( ) ( )iiiE ˆkN/C9.112ˆ
m/NC10854.82

C/m00.2ˆ
2

0,m400.0 2212

2

0

2
2 =−

⋅×
−

=−= −

μσ
∈

r
 

 
Substitute in equation (1) to obtain: 
 
( ) ( ) ( ) ( ) ( ) jiijE ˆkN/C4.169ˆkN/C9.112ˆkN/C9.112ˆkN/C4.16900,m400.0 +=++=

r
 

 
Find the magnitude and direction of ( )0,m400.0E

r
: 

 
( ) ( ) ( ) kN/C204kN/C6.203kN/C4.169kN/C9.1120,m400.0 22 ==+=E  

and 

°=°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= − 3.5631.56

kN/C112.9
kN/C4.169tan 1θ  
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(b) Because (2.50 m, 0) is outside 
the sphere: 
 

( ) r
r

kQ
E ˆ0,m400.0 2

sphere
sphere =

r
 

where is a unit vector pointing from  r̂
(1.00 m, −0.600 m) to (2.50 m, 0). 
 

Evaluate : sphereQ

 ( )( )
C70.37

m00.1C/m00.34

4
22

2
spheresphere

μ
μπ

πσσ

−=
−=

== RAQ

 

 
m616.1=r  Referring to the diagram above, 

determine r and : r̂ and 
jir ˆ3714.0ˆ9285.0ˆ +=  

 
 

Substitute and evaluate ( )0,m50.2sphereE
r

: 

 

( ) ( )( )
( )

( )( )
( ) ( ji

ji

rCE

ˆkN/C22.48ˆkN/C5.120

ˆ3714.0ˆ9285.0kN/C8.129

ˆ
m616.1

70.37/CmN10988.80,m50.2 2

229

sphere

−+−=

+−=

−⋅×
=

μr

)
 

 
Find the field at (2.50 m, 0) due to plane 1: 

 

( ) ( ) ( ) jjjE ˆkN/C4.169ˆ
m/NC10854.82

C/m00.3ˆ
2

0,m50.2 2212

2

0

1
1 =

⋅×
== −

μσ
∈

r
 

 
Find the field at (2.50 m, 0) due to plane 2: 
 

( ) ( ) ( )iiiE ˆkN/C9.112ˆ
m/NC10854.82

C/m00.2ˆ
2

0,m50.2 2212

2

0

2
2 −=

⋅×
−

== −

μσ
∈

r
 

 
Substitute in equation (1) to obtain: 
 
( ) ( ) ( ) ( ) ( )

( ) ( ) ji

ijjiE
ˆkN/C2.121ˆkN/C5.233

ˆkN/C9.112ˆkN/C4.169ˆkN/C19.48ˆkN/C5.1200,m400.0

+−=

−++−+−=
r
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Find the magnitude and direction of ( )0,m50.2E

r
: 

 
( ) ( ) ( ) kN/C263kN/C2.121kN/C5.2330,m50.2 22 =+−=E  

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= − 153
kN/C5.233

kN/C2.121tan 1θ  

 
78 •• An infinite non-conducting plane sheet lies in the x = 2.00 m plane and 
has a uniform surface charge density of  +2.00 μC/m2. An infinite non-conducting 
line charge of uniform linear charge density 4.00 μC/m passes through the origin 
at an angle of 45.0º with the x axis in the xy plane. A solid non-conducting sphere 
of volume charge density  –6.00 μC/m3 and radius 0.800 m is centered on the x 
axis at x = 1.00 m. Calculate the magnitude and direction of the electric field in 
the z = 0 plane at x = 1.50 m, y = 0.50 m. 
 
Picture the Problem Let P represent the point of interest at (1.50 m, 0.50 m). We 
can find the electric field at P by adding the electric fields due to the infinite 
plane, the infinite line, and the sphere. Once we’ve expressed the field at P in 
vector form, we can find its magnitude and direction. 
 
Express the electric field at P: 
 

spherelineplane EEEE
rrrr

++=  

 
Find at P: planeE

r

( )
( )i

i

iE

ˆkN/C9.112

ˆ
m/NC10854.82

C/m00.2

ˆ
2

2212

2
0

plane

−=

⋅×
−=

−=

−

μ

σ
∈

r

 

 
Express at P: lineE

r

rE ˆ2
line r

kλ
=

r
 

 
Refer to the following figure to obtain:  

( ) ( ) jir ˆm50.0ˆm50.0 −=
r

 and ( ) ( ) jir ˆ707.0ˆ707.0ˆ −=  
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1.00
45º

P

2.00

0.50

r
r

'r
r

m ,x

m ,y

2
C/m   00.2=σ

3
C/m   00.6−=ρ μ

C
/m

   
00.4

=
λ

μ

μ

1.50

 
Substitute and simplify to obtain: 
 

( )( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( jiji

jiE

ˆkN/C90.71ˆkN/C90.71ˆ707.0ˆ707.0kN/C7.101

ˆ707.0ˆ707.0
m707.0

C/m00.4/CmN10988.82 229

line

−+=−=

−
⋅×

=
μr

)
 

 

'kr' rE ˆ
3

4
sphere ρπ

=
r

 

where 'r̂ is directed toward the center 
of the sphere. 

Letting r′ represent the distance from 
the center of the sphere to P, apply 
Gauss’s law to a spherical surface of 
radius r′ centered at (1 m, 0) to 
obtain an expression for at P: sphereE

r

 
Refer to the diagram used above 
to obtain: 
 
 

( ) ( ) ji'r ˆm50.0ˆm50.0 −−=
r

 
and 

( ) ( ) jir ˆ707.0ˆ707.0ˆ −−='  
 

Substitute numerical values and simplify to obtain: 
 

( )( )( ) ( ) ( )[ ]
( )( ) ( ) ( ) jiji

jiE

ˆkN/C9.112ˆkN/C9.112ˆˆkN/C9.112

ˆ707.0ˆ707.0C/m00.6m707.0/CmN10988.8
3

4 3229
sphere

−+−=+−=

+−⋅×= μπr

 

 
Evaluating E

r
yields: 

 
( ) ( ) ( ) ( )

( )
( ) ( ) ji

j

ijiiE

ˆkN/C9.184ˆkN/C0.154

ˆkN/C9.112

ˆkN/C9.112ˆkN/C90.71ˆkN/C90.71ˆkN/C9.112

−+−=

−+

−+−++−=
r
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( ) ( )
kN/C241

kN/C184.9kN/C0.154 22

=

−+−=E

and 

°=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

= − 220
kN/C184.9
kN/C0.154tan 1θ  

Finally, find the magnitude and 
direction of E

r
: 

 
79  •• [SSM] A uniformly charged, infinitely long line of negative charge 
has a linear charge density of –λ and is located on the z axis. A small positively 
charged particle that has a mass m and a charge q is in a circular orbit of radius R 
in the xy plane centered on the line of charge. (a) Derive an expression for the 
speed of the particle. (b) Obtain an expression for the period of the particle’s 
orbit.  
 
Picture the Problem (a) We can apply 
Newton’s 2nd law to the particle to 
express its speed as a function of its 
mass m, charge q, and the radius of its 
path R, and the strength of the electric 
field due to the infinite line charge E. 
(b) The period of the particle’s motion 
is the ratio of the circumference of the 
circle in which it travels divided by its 
orbital speed. x

y

z

λ

R

−

qm,

 
 
(a) Apply Newton’s 2nd law to 
the particle to obtain: 
 

∑ ==
R
vmqEF

2

radial  

where the inward direction is positive. 
 

Solving for v yields: 
m

qREv =  

 
The strength of the electric field at a 
distance R from the infinite line 
charge is given by: 
 

R
kE λ2

=  

 

Substitute for E and simplify to 
obtain: 
 

m
kqv λ2

=  
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(b) The speed of the particle is equal 
to the circumference of its orbit 
divided by its period: 
 

T
Rv π2

= ⇒
v
RT π2

=  

 

Substitute for v and simplify to 
obtain: λ

π
kq

mRT 2
=  

 
80 •• A stationary ring of radius a that lies in the yz plane has a uniformly 
distributed positive charge Q. A small particle that has mass m and a negative 
charge q is located at the center of the ring. (a) Show that if x << a, the electric 
field along the axis of the ring is proportional to x.  (b) Find the force on the 
particle of mass m as a function of x. (c) Show that if the particle is given a small 
displacement in the +x direction, it will perform simple harmonic motion.  
(d) What is the frequency of that motion? 
 
Picture the Problem Starting with the equation for the electric field on the axis 
of ring charge, we can factor the denominator of the expression to show that, for  
x << a,  Ex is proportional to x. We can use Fx = qEx to express the force acting on 
the particle and apply Newton’s 2nd law to show that, for small displacements 
from equilibrium, the particle will execute simple harmonic motion. Finally, we 
can find the period of the motion from its angular frequency, which we can obtain 
from the differential equation of motion. 
 
(a) Express the electric field on the 
axis of the ring of charge: ( ) 2322 ax

kQxEx
+

=  

 
Factor a2 from the denominator of 
Ex to obtain: 
 

x
a
kQ

a
xa

kQx

a
xa

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << a. 
 

(b) Express the force acting on the 
particle as a function of its charge 
and the electric field: 
 

x
a

kqQqEF xx 3==  
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(c) Because the negatively charged 
particle experiences a linear restoring 
force, we know that its motion will 
be simple harmonic. Apply Newton’s 
2nd law to the negatively charged 
particle to obtain: 

x
a

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
ma
kqQ

dt
xd  

the differential equation of simple 
harmonic motion. 
 

 

(d) Relate the frequency of the 
simple harmonic motion to its 
angular frequency: 
 

π
ω
2

=f                                      (1) 

From the differential equation we 
have: 3

2

ma
kqQ

=ω ⇒ 3ma
kqQ

=ω  

 
Substitute for ω in equation (1) 
and simplify to obtain: 
 

32
1

ma
kqQf

π
=  

 
81 •• [SSM] The charges Q and q of Problem 80 are +5.00 μC and  
–5.00 μC, respectively, and the radius of the ring is 8.00 cm. When the particle is 
given a small displacement in the x direction, it oscillates about its equilibrium 
position at a frequency of 3.34 Hz.  (a) What is the particle’s mass? (b) What is 
the frequency if the radius of the ring is doubled to 16.0 cm and all other 
parameters remain unchanged? 
 
Picture the Problem Starting with the equation for the electric field on the axis 
of a ring charge, we can factor the denominator of the expression to show that, for 
x << a, Ex is proportional to x. We can use Fx = qEx to express the force acting on 
the particle and apply Newton’s 2nd law to show that, for small displacements 
from equilibrium, the particle will execute simple harmonic motion. Finally, we 
can find the angular frequency of the motion from the differential equation and 
use this expression to find the frequency of the motion when the radius of the ring 
is doubled and all other parameters remain unchanged. 
 
(a) Express the electric field on the 
axis of the ring of charge: 
 

( ) 2322 ax
kQxEx
+

=  



                      The Electric Field II: Continuous Charge Distributions 
 

 

2181

Factor a2 from the denominator of Ex 
to obtain: 
 

x
a
kQ

a
xa

kQx

a
xa

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << a. 
 

Express the force acting on the 
particle as a function of its charge 
and the electric field: 
 

x
a

kqQqEF xx 3==  

Because the negatively charged 
particle experiences a linear 
restoring force, we know that its 
motion will be simple harmonic. 
Apply Newton’s 2nd law to the 
negatively charged particle to 
obtain: 

x
a

kqQ
dt

xdm 32

2

−=  

or 

032

2

=+ x
ma
kqQ

dt
xd  

the differential equation of simple 
harmonic motion. 
  

The angular frequency of the simple 
harmonic motion of the particle is 
given by: 
 

3ma
kqQ

=ω                                (1) 

 

Solving for m yields: 
32232 4 af

kqQ
a

kqQm
πω

==  

 
Substitute numerical values and evaluate m: 
 

( ) ( )

( ) ( )
kg 997.0

cm 00.8s 34.34

C00.5C00.5
C

mN10988.8

3212

2

2
9

=
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
×

=
−π

μμ
m  

 
(b) Express the angular frequency of 
the motion if the radius of the ring is 
doubled: 
 

( )32
'

am
kqQ

=ω                           (2) 
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Divide equation (2) by equation 
(1) to obtain: 
 

( )
8

12
2
2

3

3

===

ma
kqQ

am
kqQ

f
f''
π
π

ω
ω  

 
Solve for f ′ to obtain: Hz18.1

8
Hz 3.34

8
===

f'f  

 
82 •• If the radius of the ring in Problem 80 is doubled while keeping the 
linear charge density on the ring the same, does the frequency of oscillation of the 
particle change?  If so, by what factor does it change? 
 
Picture the Problem Starting with the equation for the electric field on the axis 
of a ring charge, we can factor the denominator of the expression to show that, for 
x << a, Ex is proportional to x. We can use Fx = qEx to express the force acting on 
the particle and apply Newton’s 2nd law to show that, for small displacements 
from equilibrium, the particle will execute simple harmonic motion. Finally, we 
can find the angular frequency of the motion from the differential equation and 
use this expression to find its value when the radius of the ring is doubled while 
keeping the linear charge density on the ring constant.  
 
Express the electric field on the 
axis of the ring of charge: 
 

( ) 2322 ax
kQxEx
+

=  

Factor a2 from the denominator 
of Ex to obtain: 
 

x
a
kQ

a
xa

kQx

a
xa

kQxEx

323

2

2
3

23

2

2
2

1

1

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

 

provided x << a. 
 

Express the force acting on the 
particle as a function of its charge 
and the electric field: 
 

x
a

kqQqEF xx 3==  
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Because the negatively charged 
particle experiences a linear 
restoring force, we know that its 
motion will be simple harmonic. 
Apply Newton’s 2nd law to the 
negatively charged particle to 
obtain: 

x
a

kqQ
dt

xdm 32

2

−=  

or  

032

2

=+ x
ma
kqQ

dt
xd , 

the differential equation of simple 
harmonic motion. 
  

The angular frequency of the simple 
harmonic motion of the particle is 
given by: 
 

3ma
kqQ

=ω                                (1) 

 
 

Express the angular frequency of 
the motion if the radius of the 
ring is doubled while keeping the 
linear charge density constant 
(that is, doubling Q): 
 

( )
( )32

2
am
Qkq' =ω                          (2) 

Divide equation (2) by equation 
(1) to obtain: 
 

( )
( )

2
12

2

2
'2'

3

3

===

ma
kqQ

am
Qkq

f
f
π
π

ω
ω  

 
Yes. The frequency changes by a factor of 0.5.  

 
83 ••• A uniformly charged non-conducting solid sphere of radius R has its 
center at the origin and has volume charge density of ρ. (a) Show that at a point 

within the sphere a distance r from the center rrE ˆ
3 0∈
ρ

= . (b) Material is removed 

from the sphere leaving a spherical cavity of radius b = R/2 with its center at x = b 
on the x axis (Figure 22-46). Calculate the electric field at points 1 and 2 shown in 
Figure 22-46. Hint: Model the sphere-with-cavity as two uniform spheres of equal 
positive and negative charge densities.  
 
Picture the Problem In Part (a), you can apply Gauss’s law to express E

r
 as a 

function of r for the uniformly charged nonconducting sphere with its center at 
the origin. In Part (b), you can use the hint to express the field at a generic point 
P(x,y) in the cavity as the sum of the fields due to equal positive and negative 
charge densities and then evaluate this expression at points 1 and 2. 
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(a) The electric field at a distance r 
from the center of the uniformly 
charged nonconducting sphere is 
given by: 
 

rE ˆE=ρ

r
                                  (1) 

where  is a unit vector pointing 
radially outward. 

r̂

Apply Gauss’s law to a spherical 
surface of radius r centered at the 
origin to obtain: 
 

( )
0

inside2

S n 4
∈

πρ
Q

rEdAE ==∫  

 

Relate  to the charge density ρ: insideQ
 3

3
4

inside

r
Q
π

ρ =  ⇒ 3
3
4

inside rQ ρπ=  

 
Substitute for : insideQ
 

( )
0

3
2

3
44
∈
ρππρ

rrE =  

 
Solve for Eρ to obtain: 
 

03∈
ρ

ρ
rE =  

 
Substitute for E in equation (1) to 
obtain: 
 

rE ˆ
3 0

r
∈
ρ

ρ =
r

 

 
(b) The electric field at point P(x,y) 
is the sum of the electric fields due to 
the two charge distributions: 
 

'EE rrEEE ˆˆ ρρρρ −− +=+=
rrr

   (2) 
where 'r̂ is a unit vector normal to a 
spherical Gaussian surface whose 
center is at x = b. 
 

Apply Gauss’s law to a spherical 
surface of radius r′ centered at  
x = b = R/2 to obtain: 
 

( )
0

inside2

S n 4
∈

πρ
Qr'EdAE == −∫  

Relate to the charge density 
−ρ: 

insideQ

 

3
3
4

inside

r'
Q
π

ρ =−  ⇒ 3
3
4

inside r'Q ρπ−=  

 
Substitute for to obtain: insideQ ( )

0

3
2

3
44

∈
ρππρ

r'r'E −=−  

 
Solving for E−ρ yields: r'E

03∈
ρ

ρ −=−  

 
Substitute for Eρ and E−ρ in equation 
(2) to obtain: 
 

rrE ˆ
3

ˆ
3 00

r'r
∈
ρ

∈
ρ

−=
r

             (3) 
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The vectors rr ˆr=
r

and 'r'' rr ˆ=
r are 

given by: 
 

jir ˆˆ yx +=
r

 and ( ) jir ˆˆ ybx' +−=
r

 
where x and y are the coordinates of 
any point in the cavity. 
 

Substitute for and in equation (3) and simplify to obtain: r̂r 'r' r̂
 

( ) ( )[ ] ijijiE ˆ
3

ˆˆ
3

ˆˆ
3 000 ∈

ρ
∈
ρ

∈
ρ bybxyx =+−−+=

r
 

 
Because E

r
is independent of x and y: iEE ˆ

3 0
21 ∈

ρb
==

rr
    

 
84 ••• Show that the electric field throughout the cavity of Problem 83b is 

uniform and is given by 
        

r 
E = ρ

3∈0
b̂  i .  

 
Picture the Problem The electric field in the cavity is the sum of the electric 
field due to the uniform and positive charge distribution of the sphere whose 
radius is a and the electric field due to any charge in the spherical cavity whose 
radius is b. You can use the hint given in Problem 83 to express the field at a 
generic point P(x,y) in the cavity as the sum of the fields due to equal positive and 

negative charge densities to show that iE ˆ
3 0

b
∈
ρ

=
r

. 

 
The electric field at point P(x,y) is 
the sum of the electric fields due to 
the two charge distributions: 
 

'EE rrEEE ˆˆ ρρρρ −− +=+=
rrr

     (1) 
where 'r̂ is a unit vector normal to a 
spherical Gaussian surface whose 
center is at x = b. 
 

Apply Gauss’s law to a spherical 
surface of radius r′ centered at  
x = b = R/2 to obtain: 
 

( )
0

inside2

S n 4
∈

πρ
Qr'EdAE == −∫  

 

Relate to the charge density 
−ρ: 

insideQ

 

3
3
4

inside

r'
Q
π

ρ =−  ⇒ 3
3
4

inside r'Q ρπ−=  

 
Substitute for to obtain: insideQ ( )

0

3
2

3
44

∈
ρππρ

r'r'E −=−  

 
Solving for E−ρ yields: r'E

03∈
ρ

ρ −=−  
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From Problem 83: 
 rE

03∈
ρ

ρ =  

 
Substitute for Eρ and E−ρ in equation 
(1) to obtain: 
 

rrE ˆ
3

ˆ
3 00

r'r
∈
ρ

∈
ρ

−=
r

              (2) 

 
The vectors rr ˆr=

r
and 

'r'' rr ˆ=
r are given by: 
 

jir ˆˆ yx +=
r

 and ( ) jir ˆˆ ybx' +−=
r

 
where x and y are the coordinates of 
any point in the cavity. 
 

Substitute for and in equation (2) and simplify to obtain: r̂r 'r' r̂
 

( ) ( )[ ] ijijiE ˆ
3

ˆˆ
3

ˆˆ
3 000

bybxyx
∈
ρ

∈
ρ

∈
ρ

=+−−+=
r

 

 
85 ••• The cavity in Problem 83b is now filled with a uniformly charged non-
conducting material with a total charge of Q. Calculate the new values of the 
electric field at points 1 and 2 shown in Figure 22-46. 
  
Picture the Problem The electric field at a generic point P(x,y) in the cavity is 
the sum of the fields due to the positive charge density and the total charge Q. 
 
The electric field at point P(x,y) is 
the sum of the electric fields due to 
the two charge distributions: 
 

QEEEE
rrrr

++= −ρρ                  (1) 
where 'r̂ is a unit vector normal to a 
spherical Gaussian surface whose 
center is at x = b. 
 

From Problem 83: 
 ibEE ˆ

3 0∈
ρ

ρρ =+ −

rr
 

 
Substituting in equation (1) yields: 

QEibE
rr

+= ˆ
3 0∈
ρ   

 
Assuming that the cavity is filled 
with positive charge Q: rr'

b
QibE ˆ

4
ˆ

3 3
00 ∈∈ π

ρ
+=

r
 

 
The vectors rr ˆr=

r
and 

'r'' rr ˆ=
r are given by: 
 

jir ˆˆ yx +=
r

 and ( ) jir ˆˆ ybx' +−=
r

 
where x and y are the coordinates of 
any point in the cavity. 
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Substitute for and and simplify to obtain: r̂r 'r' r̂
 

( )[ ]jyibx
b

QibE ˆˆ
4

ˆ
3 3

00

+−+=
∈∈ π

ρr
 

 
At point 1, x = 2b and y = 0: 
 

( ) ( )[ ] i
b

Qbibb
b

QibbE ˆ
43

ˆ2
4

ˆ
3

0,2 2
00

3
00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=−−=

∈π∈
ρ

∈π∈
ρr

 

 
At point 2, x = 0 and y = 0: 
 

( ) ( )[ ] i
b

Qbib
b

QibE ˆ
43

ˆ
4

ˆ
3

0,0 2
00

3
00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−+=

∈π∈
ρ

∈π∈
ρr

 

 
86 ••• A small Gaussian surface in the shape of a cube has faces parallel to 
the xy, xz, and yz planes (Figure 22-47) and is in a region in which the electric 
field is parallel to the x axis. (a) Using the differential approximation, show that 
the net electric flux of the electric field out of the Gaussian surface is given by 

  
φnet ≈

∂Ex

∂x
ΔV , where ΔV is the volume enclosed by the Gaussian surface.  

(b) Using Gauss’s law and the results of Part (a) show that ∂Ex

∂x
=
ρ
∈0

, where ρ is 

the volume charge density inside the cube. (This equation is the one-dimensional 
version of the point form of Gauss’s law.) 
  
Picture the Problem Let the coordinates of one corner of the cube be (x,y,z), and 
assume that the sides of the cube are Δx, Δy, and Δz  and compute the flux through 
the faces of the cube that are parallel to the yz plane. The net flux of the electric 
field out of the gaussian surface is the difference between the flux out of the 
surface and the flux into the surface. 
 
(a) The net flux out of the cube is 
given by: 
 

( ) ( )xxx φφφ −Δ+=net  

Use a Taylor series expansion to express the net flux through faces of the 
cube that are parallel to the yz plane: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...'''...''' 2
2
12

2
1

net +Δ+Δ=−+Δ+Δ+= xxxxxxxxxx φφφφφφφ  
 

Neglecting terms higher than first 
order we have: 

( )x'xφφ Δ≈net  
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( ) zyEx ΔΔ= xφ    
and 

( ) zy
x

Ex' ΔΔ
∂
∂

= xφ  

 

Because the electric field is in the 
x direction, φ (x) is: 
 

Substitute for φ ′(x) to obtain: 
 ( ) ( )

V
x

E

zyx
x

Ezy
x

Ex

x

xx

Δ

ΔΔΔΔΔΔnet

∂
∂

=

∂
∂

=
∂
∂

≈φ
 

 
(b) From Gauss’s law, the net flux 
through any surface is: Vq Δ

00

encl
net ∈

ρ
∈

φ ==  

 
From Part (a): 
 V

x
Ex Δnet ∂
∂

=φ  

 
Equate these two expressions and 
simplify to obtain: 
 

VV
x

Ex ΔΔ
0∈
ρ

=
∂
∂

⇒
0∈
ρ

=
∂
∂

x
Ex  

 
87 ••• [SSM] Consider a simple but surprisingly accurate model for the 
hydrogen molecule: two positive point charges, each having charge +e, are placed 
inside a uniformly charged sphere of radius R, which has a charge equal to –2e. 
The two point charges are placed symmetrically, equidistant from the center of 
the sphere (Figure 22-48). Find the distance from the center, a, where the net 
force on either point charge is zero. 
 
Picture the Problem We can find the distance from the center where the net 
force on either charge is zero by setting the sum of the forces acting on either 
point charge equal to zero. Each point charge experiences two forces; one a 
Coulomb force of repulsion due to the other point charge, and the second due to 
that fraction of the sphere’s charge that is between the point charge and the center 
of the sphere that creates an electric field at the location of the point charge. 
 
Apply  to either of the 
point charges: 

0=∑F

 

0fieldCoulomb =− FF                     (1) 

Express the Coulomb force on the 
proton: 
 ( ) 2

2

2

2

Coulomb 42 a
ke

a
keF ==  

 
The force exerted by the field E is: 
 

eEF =field  
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Apply Gauss’s law to a spherical 
surface of radius a centered at the 
origin: 
 

( )
0

enclosed24
∈

π QaE =  

Relate the charge density of the 
electron sphere to : enclosedQ
 

3
3
4
enclosed

3
3
4

2
a

Q
R
e

ππ
=  ⇒ 3

3

enclosed
2
R
eaQ =  

 
Substitute for : enclosedQ
 
 

( ) 3
0

3
2 24

R
eaaE

∈
π =  

Solve for E to obtain: 
 3

02 R
eaE
∈π

= ⇒ 3
0

2

field 2 R
aeF

∈π
=  

 
Substitute for  and  in 
equation (1): 

CoulombF fieldF
0

24 3
0

2

2

2

=−
R

ae
a

ke
∈π

 

 or 

02
4 3

2

2

2

=−
R

ake
a

ke
⇒ RRa 2

13
8
1

==  

 
88 ••• An electric dipole that has a dipole moment of pr  is located at a 
perpendicular distance R from an infinitely long line charge that has a uniform 
linear charge density λ. Assume that the dipole moment is in the same direction as 
the field of the line of charge. Determine an expression for the electric force on 
the dipole. 
 
Picture the Problem We can find the field due to the infinitely long line charge 
from rkE λ2= and the force that acts on the dipole using drdEpF = . 
 
Express the force acting on the 
dipole: 
 

dr
dEpF =                                  (1) 

The electric field at the location of 
the dipole is given by: r

kE λ2
=  

 
Substitute for E in equation (1) to 
obtain: 2

22
r

pk
r
k

dr
dpF λλ

−=⎥⎦
⎤

⎢⎣
⎡=  

where the minus sign indicates that the 
dipole is attracted to the line charge. 
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	Determine the Concept No, this is not necessarily true. The only conclusion that we can draw is that there is equal positive and negative flux. For example, the net flux through a Gaussian surface completely enclosing a dipole is zero. If the electric flux is zero through the closed surface, we can conclude that the net charge inside the surface is zero.
	 

	 
	 
	 


	Picture the Problem Starting with the equation for the electric field on the axis of a ring charge, we can factor the denominator of the expression to show that, for x << a, Ex is proportional to x. We can use Fx = qEx to express the force acting on the particle and apply Newton’s 2nd law to show that, for small displacements from equilibrium, the particle will execute simple harmonic motion. Finally, we can find the angular frequency of the motion from the differential equation and use this expression to find the frequency of the motion when the radius of the ring is doubled and all other parameters remain unchanged.
	Picture the Problem Starting with the equation for the electric field on the axis of a ring charge, we can factor the denominator of the expression to show that, for x << a, Ex is proportional to x. We can use Fx = qEx to express the force acting on the particle and apply Newton’s 2nd law to show that, for small displacements from equilibrium, the particle will execute simple harmonic motion. Finally, we can find the angular frequency of the motion from the differential equation and use this expression to find its value when the radius of the ring is doubled while keeping the linear charge density on the ring constant. 

