
961 

Chapter 10 
Angular Momentum 
 
Conceptual Problems 
 

1 • True or false: 
(a) If two vectors are exactly opposite in direction, their cross product must be 
zero. 
(b) The magnitude of the cross product of 2 vectors is at a minimum when the two 
vectors are perpendicular. 
(c) Knowing the magnitude of the cross product of two nonzero vectors and their 
individual magnitudes uniquely determines the angle between them.  
 
Determine the Concept The cross product of vectors A and B is defined to be 

nABBA ˆsinφ=× where n̂ is a unit vector normal to the plane defined by A and 
B . 
  
(a) True. If A and B are in opposite direction, then sinφ = sin(180°) = 0. 
 
(b) False. If A and B are perpendicular, then sinφ = sin(90°) = 1 and the cross 
product of A and B is a maximum. 
 

(c) False. ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ×
= −

AB

BA
1sinφ , because of the magnitude of BA× , gives the 

reference angle associated with BA× . 
  

2 • Consider two nonzero vectors    A  and    B . Their cross product has the 
greatest magnitude if     A  and    B  are (a) parallel, (b) perpendicular, (c) antiparallel, 
(d) at an angle of 45° to each other. 
 
Determine the Concept The cross product of the vectors A and B is defined to 
be nABBA ˆsinφ=× where n̂ is a unit vector normal to the plane defined by 
A and B . Hence, the cross product is a maximum when sinφ = 1. This condition 
is satisfied provided A and B are perpendicular. )(b is correct. 
 
3 • What is the angle between a force F and a torque vector τ  produced 
by F ? 
 
Determine the Concept Because nrFFr ˆsinφτ =×= , where n̂  is a unit vector 

normal to the plane defined by r and F , the angle between F  and τ  is .90°  

 



Chapter 10    
 

 

962 

4 • A particle of mass m is moving with a constant speed v along a straight 
line that passes through point P. What can you say about the angular momentum 
of the particle relative to point P? (a) Its magnitude is mv. (b) Its magnitude is 
zero. (c) Its magnitude changes sign as the particle passes through point P. (d) It 
varies in magnitude as the particle approaches point P. 
 
Determine the Concept L and p  are related according to .prL ×= Because the 

motion is along a line that passes through point P, r = 0 and so is L. )(b is 

correct. 
 
5 • [SSM] A particle travels in a circular path and point P is at the 
center of the circle. (a) If the particle’s linear momentum    p  is doubled without 
changing the radius of the circle, how is the magnitude of its angular momentum 
about P affected? (b) If the radius of the circle is doubled but the speed of the 
particle is unchanged, how is the magnitude of its angular momentum about P 
affected? 
 
Determine the Concept L and p  are related according to .prL ×=  
 
(a) Because L  is directly proportional to p , L is doubled. 
 
(b) Because L  is directly proportional to r , L is doubled. 
 
6 • A particle moves along a straight line at constant speed. How does its 
angular momentum about any fixed point vary with time? 
 
Determine the Concept We can determine how the angular momentum of the 
particle about any fixed point varies with time by examining the derivative of the 
cross product of r and p . 
  
The angular momentum of the 
particle is given by: 
 

prL ×=  

Differentiate L with respect to time 
to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×= p

dt
rd

dt
pdr

dt
Ld          (1) 

Because vmp = , netF
dt
pd

= , and 

v
dt
rd

= : 

 

( ) ( )pvFr
dt
Ld

×+×= net  
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Because the particle moves along a 
straight line at constant speed: 
 

0net =F ⇒ 0net =× Fr  

Because v and ( )vmp =  are parallel: 
 

0=× pv  

Substitute in equation (1) to obtain: 
0=

dt
Ld

⇒ L does not change in time. 

 
7 •• True or false: If the net torque on a rotating system is zero, the angular 
velocity of the system cannot change. If your answer is false, give an example of 
such a situation. 
  
False. The net torque acting on a rotating system equals the change in the 
system’s angular momentum; that is, dtdL=netτ  where L = Iω. Hence, if netτ is 
zero, all we can say for sure is that the angular momentum (the product of I and 
ω) is constant.  If I changes, so must ω. An example is a high diver going from a 
tucked to a layout position. 
 
8 •• You are standing on the edge of a frictionless turntable that is 
initially rotating When you catch a ball that was thrown in the same direction that 
you are moving, and on a line tangent to the edge of the turntable. Assume you do 
not move relative to the turntable. (a) Does the angular speed of the turntable 
increase, decrease, or remain the same during the catch? (b) Does the magnitude 
of your angular momentum (about the rotation axis of the table) increase, 
decrease, or remain the same after the catch? (c) How does the ball’s angular 
momentum (relative to the center of the table) change after the catch? (d) How 
does the total angular momentum of the system you-table-ball (about the rotation 
axis of the table) change after the catch? 
 
Determine the Concept You can apply conservation of angular momentum to the 
you-table-ball system to answer each of these questions. 
 
(a) Because the ball is moving in the same direction that you are moving, your 
angular speed will increase when you catch it. 
 
(b) The ball has angular momentum relative to the rotation axis of the table before 
you catch it and so catching it increases your angular momentum relative to the 
rotation axis of the table. 
 
(c) The ball will slow down as a result of your catch and so its angular momentum 
relative to the center of the table will decrease.  
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(d) Because there is zero net torque on the you-table-ball system, its angular 
momentum same.  theremains  
 
9 •• If the angular momentum of a system about a fixed point P is constant, 
which one of the following statements must be true? 
(a) No torque about P acts on any part of the system. 
(b) A constant torque about P acts on each part of the system. 
(c) Zero net torque about P acts on each part of the system. 
(d) A constant external torque about P acts on the system. 
(e) Zero net external torque about P acts on the system. 
  
Determine the Concept If L is constant, we know that the net torque acting on  
the system is zero. There may be multiple constant or time-dependent torques 
acting on the system as long as the net torque is zero. )(e is correct. 
 
10 •• A block sliding on a frictionless table is attached to a string that passes 
through a narrow hole through the tabletop. Initially, the block is sliding with 
speed v0 in a circle of radius r0. A student under the table pulls slowly on the 
string. What happens as the block spirals inward? Give supporting arguments for 
your choice. (The term angular momentum refers to the angular momentum about 
a vertical axis through the hole.) (a) Its energy and angular momentum are 
conserved. (b) Its angular momentum is conserved and its energy increases. (c) Its 
angular momentum is conserved and its energy decreases. (d) Its energy is 
conserved and its angular momentum increases. (e) Its energy is conserved and its 
angular momentum decreases. 
 
Determine the Concept The pull that the student exerts on the block is at right 
angles to its motion and exerts no torque (recall that Fr ×=τ and φτ sinrF= ). 
Therefore, we can conclude that the angular momentum of the block is conserved. 
The student does, however, do work in displacing the block in the direction of the 
radial force and so the block’s energy increases. )(b is correct. 

 
11 •• [SSM] One way to tell if an egg is hardboiled or uncooked without 
breaking the egg is to lay the egg flat on a hard surface and try to spin it. A 
hardboiled egg will spin easily, while an uncooked egg will not. However, once 
spinning, the uncooked egg will do something unusual; if you stop it with your 
finger, it may start spinning again. Explain the difference in the behavior of the 
two types of eggs. 
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Determine the Concept The hardboiled egg is solid inside, so everything rotates 
with a uniform angular speed.  By contrast, when you start an uncooked egg 
spinning, the yolk will not immediately spin with the shell, and when you stop it 
from spinning the yolk will initially continue to spin. 
 
12 •• Explain why a helicopter with just one main rotor has a second smaller 
rotor mounted on a horizontal axis at the rear as in Figure 10-40. Describe the 
resultant motion of the helicopter if this rear rotor fails during flight. 
  
Determine the Concept The purpose of the second smaller rotor is to prevent the 
body of the helicopter from rotating. If the rear rotor fails, the body of the 
helicopter will tend to rotate on the main axis due to angular momentum being 
conserved. 
 
13 •• The spin angular momentum vector for a spinning wheel is parallel 
with its axle and is pointed east. To cause this vector to rotate toward the south, it 
is necessary to exert a force on the east end of the axle in which direction? (a) up, 
(b) down, (c) north, (d) south, (e) east. 
  
Determine the Concept The vector ifΔ LLL −= (and the torque that is 
responsible for this change in the direction of the angular momentum vector) is 
initially points to the south and eventually points south-west. One can use a right-
hand rule to determine the direction of this torque, and hence the force exerted on 
the east end of the axle, required to turn the angular momentum vector from east 
to south. Letting the fingers of your right hand point east, rotate your wrist until 
your thumb points south. Note that fingers, which point in the direction of the 
force that must be exerted on the east end of the axle, points upward. )(a is 

correct. 
 
14 •• You are walking toward the north and with your left hand you are 
carrying a suitcase that contains a massive spinning wheel mounted on an axle 
attached to the front and back of the case. The angular velocity of the gyroscope 
points north. You now begin to turn to walk toward the south. As a result, the 
front end of the suitcase will (a) resist your attempt to turn it and will try to 
maintain its original orientation, (b) resist your attempt to turn and will pull to the 
west, (c) rise upward, (d) dip downward, (e) show no effect whatsoever. 
 
Determine the Concept In turning toward the south, you redirect the angular 
momentum vector from north to south by exerting a torque on the spinning wheel. 
The force that you must exert to produce this torque (use a right-hand rule with 
your thumb pointing either east of north or west of north and note that your 
fingers point upward) is upward. That is, the force you exert on the front end of 
the suitcase is upward and the force the suitcase exerts on you is downward. 
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Consequently, the front end of the suitcase will dip downward. )(d is correct. 

 
15 •• [SSM] The angular momentum of the propeller of a small single-
engine airplane points forward. The propeller rotates clockwise if viewed from 
behind. (a) Just after liftoff, as the nose lifts and the airplane tends to veer to one 
side. To which side does it veer and why? (b) If the plane is flying horizontally 
and suddenly turns to the right, does the nose of the plane tend to move up or 
down? Why? 
 
(a) The plane tends to veer to the right. The change in angular momentum propLΔ  
for the propeller is up, so the net torque τ on the propeller is up as well. The 
propeller must exert an equal but opposite torque on the plane. This downward 
torque exerted on the plane by the propeller tends to cause a downward change in 
the angular momentum of the plane. This means the plane tends to rotate 
clockwise as viewed from above. 
 
(b) The plane tends to veer downward. The change in angular momentum propLΔ  
for the propeller is to the right, so the net torque τ  on the propeller is toward the 
right as well. The propeller must exert an equal but opposite torque on the plane. 
This leftward directed torque exerted by the propeller on the plane tends to cause 
a leftward-directed change in angular momentum for the plane. This means the 
plane tends to rotate clockwise as viewed from the right. 
 
16 •• You have designed a car that is powered by the energy stored in a 
single flywheel with a spin angular momentum L . In the morning, you plug the 
car into an electrical outlet and a motor spins the flywheel up to speed, adding a 
huge amount of rotational kinetic energy to it—energy that will be changed into 
translational kinetic energy of the car during the day. Having taken a physics 
course involving angular momentum and torques, you realize that problems 
would arise during various maneuvers of the car. Discuss some of these problems. 
For example, suppose the flywheel is mounted so L  points vertically upward 
when the car is on a horizontal road. What would happen as the car travels over a 
hilltop? Through a valley?  Suppose the flywheel is mounted so L  points forward, 
or to one side, when the car is on a horizontal road. Then what would happen as 
the car attempts to turn to the left or right? In each case that you examine, 
consider the direction of the torque exerted on the car by the road. 
 
Determine the Concept If L  points up and the car travels over a hill or through a 
valley, the force the road exerts on the wheels on one side (or the other) will 
increase and car will tend to tip. If L  points forward and the car turns left or right, 
the front (or rear) of the car will tend to lift. These problems can be averted by 
having two identical flywheels that rotate on the same shaft in opposite directions. 
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17 •• [SSM] You are sitting on a spinning piano stool with your arms 
folded. (a) When you extend your arms out to the side, what happens to your 
kinetic energy? What is the cause of this change? (b) Explain what happens to 
your moment of inertia, angular speed and angular momentum as you extend your 
arms. 
 
Determine the Concept The rotational kinetic energy of the you-stool system is 

given by .
2

2
2

2
1

rot I
LIK == ω  Because the net torque acting on the you-stool 

system is zero, its angular momentum L  is conserved. 
 
(a) Your kinetic energy decreases. Increasing your moment of inertia I while 
conserving your angular momentum L decreases your kinetic energy 

( )ILK 22= . 
 
(b) Extending your arms out to the side increases your moment of inertia I s and 
decreases your angular speed. The angular momentum of the system is 
unchanged.  
  
18 •• A uniform rod of mass M and length L rests on a horizontal 
frictionless table. A blob of putty of mass m = M/4 moves along a line 
perpendicular to the rod, strikes the rod near its end, and sticks to the rod. 
Describe qualitatively the subsequent motion of the rod and putty. 
 
Determine the Concept The center of mass of the rod-and-putty system moves in 
a straight line, and the system rotates about its center of mass. 
 
Estimation and Approximation 
 
19 •• [SSM] An ice skater starts her pirouette with arms outstretched, 
rotating at 1.5 rev/s. Estimate her rotational speed (in revolutions per second) 
when she brings her arms tight against her body. 
 
Picture the Problem Because we have no information regarding the mass of the 
skater, we’ll assume that her body mass (not including her arms) is 50 kg and that 
each arm has a mass of 4.0 kg. Let’s also assume that her arms are 1.0 m long and 
that her body is cylindrical with a radius of 20 cm. Because the net external torque 
acting on her is zero, her angular momentum will remain constant during her 
pirouette. 
 
Because the net external torque 
acting on her is zero: 

0Δ if =−= LLL  
or 

0outarmsoutarmsinarmsinarms =− ωω II   (1) 
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Express her total moment of inertia 
with her arms out: 
 

armsbodyoutarms III +=  

Treating her body as though it is 
cylindrical, calculate the moment of 
inertia of her body, minus her arms: 
 

( )( )
2

2
2
12

2
1

body

mkg00.1

m0.20kg50

⋅=

== mrI
 

Modeling her arms as though they 
are rods, calculate their moment of 
inertia when she has them out: 
 

( )( )[ ]
2

2
3
1

arms

mkg67.2

m1.0kg42

⋅=

=I
 

Substitute to determine her total 
moment of inertia with her arms out: 2

22
outarms

mkg67.3

mkg67.2mkg00.1

⋅=

⋅+⋅=I
 

 
Express her total moment of inertia 
with her arms in: ( )( )[ ]

2

22

armsbodyinarms

mkg32.1
m0.20kg4.02mkg00.1

⋅=

+⋅=

+= III

 
 

Solve equation (1) for inarmsω  to 

obtain: outarms
inarms

outarms
inarms ωω

I
I

=  

 
Substitute numerical values and 
evaluate inarmsω : ( )

rev/s4

rev/s5.1
mkg32.1
mkg3.67

2

2

inarms

≈

⋅
⋅

=ω
 

 
20 •• Estimate the ratio of angular velocities for the rotation of a diver 
between the full tuck position and the full-layout position.  
 
Picture the Problem Because the net external torque acting on the diver is zero, 
the diver’s angular momentum will remain constant as she rotates from the full 
tuck to the full layout position. Assume that, in layout position, the diver is a thin 
rod of length 2.5 m and that, in the full tuck position, the diver is a sphere of 
radius 0.50 m. 
 
Because the net external torque 
acting on the diver is zero: 

0Δ tucklayout =−= LLL  

or 
0tucktucklayoutlayout =− ωω II         
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Solving for the ratio of the angular 
velocities yields: 
 tuck

layout

layout

tuck

I
I

=
ω
ω  

 
Substituting for the moment of 
inertia of a thin rod relative to an 
axis through its center of mass and 
the moment of inertia of a sphere 
relative to its center of mass and 
simplifying yields: 
 

2

2

2
5
2

2
12
1

layout

tuck

24
5

rmr
m

==
ω
ω  

Substitute numerical values and 
evaluate layouttuck ωω : 

( )
( )

5
m 50.024

m 5.25
2

2

layout

tuck ≈=
ω
ω  

 
21 •• Mars and Earth have nearly identical lengths of days. Earth’s mass is 
9.35 times Mars’ mass, its radius is 1.88 times Mars’ radius, and Mars’ orbital 
radius is, on average, 1.52 times greater than Earth’s orbital radius. The Martian 
year is 1.88 times longer than Earth’s year. Assume they are both uniform spheres 
and their orbits about the Sun are circles. Estimate the ratio (Earth to Mars) of  
(a) their spin angular momenta, (b) their spin kinetic energies, (c) their orbital 
angular momenta, and (d) their orbital kinetic energies. 
 
Picture the Problem We can use the definitions of spin angular momentum, spin 
kinetic energy, orbital angular momentum, and orbital kinetic energy to evaluate 
these ratios. 
 
(a) The ratio of the spin angular 
momenta of Earth and Mars is: 

MM

EE

spinM

E

ω
ω

I
I

L
L

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Because Mars and Earth have nearly 
identical lengths of days, ωE ≈ ωM: 
 M

E

spinM

E

I
I

L
L

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Substituting for the moments of 
inertia and simplifying yields: 

2

M

E

M

E
2
MM5

2

2
EE5

2

spinM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
R
R

M
M

RM
RM

L
L  

 
Substitute numerical values for the 

ratios and evaluate 
spinM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L
L : 

 

( ) 3388.135.9 2

spinM

E ≈≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L
L  

(b) The ratio of the spin kinetic 
energies of Earth and Mars is: 2

MM

2
EE

2
MM2

1

2
EE2

1

spinM

E

ω
ω

ω
ω

I
I

I
I

K
K

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Because Mars and Earth have nearly 
identical lengths of days, ωE ≈ ωM: 
 M

E

spinM

E

I
I

K
K

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Substituting for the moments of 
inertia and simplifying yields: 

2

M

E

M

E
2
MM5

2

2
EE5

2

spinM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
R
R

M
M

RM
RM

K
K  

 
Substitute numerical values for the 

ratios and evaluate 
spinM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
K
K : 

 

( ) 3388.135.9 2

spinM

E ≈≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
K
K  

 

(c) Treating Earth and Mars as point 
objects, the ratio of their orbital 
angular momenta is: MM

EE

orbM

E

ω
ω

I
I

L
L

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Substituting for the moments of 
inertia and angular speeds yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

M

2
MM

E

2
EE

orbM

E

2

2

T
rM

T
rM

L
L

π

π

            

where rE and rM are the radii of the 
orbits of Earth and Mars, respectively. 
 

Simplify to obtain: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

E

M

2

M

E

M

E

orbM

E

T
T

r
r

M
M

L
L  

 
Substitute numerical values for the 

three ratios and evaluate 
orbM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
L
L : 

 

( ) ( ) 888.1
52.1
135.9

2

orbM

E ≈⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
L
L  

(d) The ratio of the orbital kinetic 
energies of Earth and Mars is: 2

MM2
1

2
EE2

1

orbM

E

ω
ω

I
I

K
K

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Substituting for the moments of inertia and angular speeds and simplifying 
yields: 
 

2

E

M

2

M

E

M

E
2

M

2
MM

2

E

2
EE

orbM

E

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
T
T

r
r

M
M

T
rM

T
rM

K
K

π

π
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Substitute numerical values for the 

ratios and evaluate 
orbM

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
K
K : 

( ) ( ) 1488.1
52.1
135.9 2

2

orbM

E ≈⎟
⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
K
K

 

 
22 •• The polar ice caps contain about 2.3 × 1019 kg of ice. This mass 
contributes negligibly to the moment of inertia of Earth because it is located at the 
poles, close to the axis of rotation. Estimate the change in the length of the day 
that would be expected if the polar ice caps were to melt and the water were 
distributed uniformly over the surface of Earth.  
 
Picture the Problem The change in the length of the day is the difference 
between its length when the ice caps have melted and the water has been 
distributed over the surface of the Earth and the length of the day before the ice 
caps melt. Because the net torque acting on the Earth during this process is zero, 
angular momentum is conserved and we can relate the angular speed (which are 
related to the length of the day) of the Earth before and after the ice caps melt to 
the moments of inertia of the Earth-plus-spherical shell the ice caps melt. 
 
Express the change in the length of a 
day as: 
 

beforeafterΔ TTT −=                      (1) 
 

Because the net torque acting on the 
Earth during this process is zero, 
angular momentum is conserved: 
 

0Δ beforeafter =−= LLL  
 

Substituting for Lafter and Lbefore 
yields: 
 

( ) 0beforesphereaftershellsphere =−+ ωω III  

Because Tπω 2= : 
 

( ) 022

before
sphere

after
shellsphere =−+

T
I

T
II ππ  

or, simplifying, 

0
before

sphere

after

shellsphere =−
+

T
I

T
II

 

 
Solve for afterT  to obtain: 
 before

sphere

shell
after 1 T

I
IT ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=  
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Substituting for afterT  in equation (1) 
and simplifying yields: 

before
sphere

shell

beforebefore
sphere

shell1Δ

T
I
I

TT
I
IT

=

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

 

 
Substitute for Ishell  and Isphere and 
simplify to obtain: before

E
before2

EE5
2

2
3
2

3
5Δ T
M
mT

RM
mr

T ==  

 
Substitute numerical values and evaluate ΔT: 
 

( )
( ) s55.0

h
s3600

d
h24d1

kg1098.53
kg102.35Δ 24

19

=⎟
⎠
⎞

⎜
⎝
⎛ ××

×
×

=T  

 
23 •• [SSM] A 2.0-g particle moves at a constant speed of 3.0 mm/s 
around a circle of radius 4.0 mm. (a) Find the magnitude of the angular 
momentum of the particle. (b) If     L = +1( ) , where    is an integer, find the 

value of     +1( ) and the approximate value of   . (c) By how much does   change 
if the particle’s speed increases by one-millionth of a percent, nothing else 
changing? Use your result to explain why the quantization of angular momentum 
is not noticed in macroscopic physics. 
 
Picture the Problem We can use L = mvr to find the angular momentum of the 
particle. In (b) we can solve the equation ( )1+=L for ( )1+ and the 
approximate value of . 
 
(a) Use the definition of angular momentum to obtain: 
 

( )( )( )
/smkg102.4

/smkg102.40m104.0m/s103.0kg102.0
28

28333

⋅×=

⋅×=×××==
−

−−−−mvrL
 

 
(b) Solve the equation 

( )1+=L for ( )1+ : 
( ) 2

2

1 L
=+                              (1) 

 
Substitute numerical values and 
evaluate ( )1+ : ( )

52

2

34

28

102.5

sJ011.05
/smkg102.401

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

⋅×
=+ −

−
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Because >>1, approximate its 
value with the square root of 

( )1+ : 
 

26103.2 ×≈  

(c) The change in  is: −= newΔ                             (2) 
 

If the particle’s speed increases by 
one-millionth of a percent while 
nothing else changes: 
 

( )vvvv 88 10110 −− +=+→  
and 

( )LLLL 88 10110 −− +=+→  
 

Equation (1) becomes: 
( ) ( )[ ]

2

28

newnew
1011 L−+

=+  

and 
( )L8

new
101 −+

≈  

 
Substituting in equation (2) yields: ( ) LLL 8

8

new 10101Δ −
−

=−
+

≈−=  

 
Substitute numerical values and 
evaluate Δ : 

18

34

28
8

103.2

sJ011.05
/smkg102.4010Δ

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

⋅×
= −

−
−

 

and 

%10
103.2
103.2Δ 6

26

18
−≈

×
×

=  

 
The quantization of angular momentum is not noticed in macroscopic physics 
because no experiment can detect a fractional change in  of %10 6− . 

 
24 •••   Astrophysicists in the 1960s tried to explain the existence and structure 
of pulsars—extremely regular astronomical sources of radio pulses whose periods 
ranged from seconds to milliseconds. At one point, these radio sources were given 
the acronym LGM, standing for ″Little Green Men,″ a reference to the idea that 
they might be signals of extraterrestrial civilizations. The explanation given today 
is no less interesting. Consider the following.  Our Sun, which is a fairly typical 
star, has a mass of 1.99 × 1030 kg and a radius of 6.96 × 108 m.  Although it does 
not rotate uniformly, because it isn’t a solid body, its average rate of rotation is 
about 1 rev/25 d.  Stars larger than the Sun can end their life in spectacular 
explosions called supernovae, leaving behind a collapsed remnant of the star 
called a neutron star. Neutron stars have masses comparable to the original 
masses of the stars, but radii of only a few kilometers! The high rotation rates are 
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due to the conservation of angular momentum during the collapse. These stars 
emit beams of radio waves. Because of the rapid angular speed of the stars, the 
beam sweeps past Earth at regular, very short, intervals. To produce the observed 
radio-wave pulses, the star has to rotate at rates from about 1 rev/s to 1000 rev/s. 
(a) Using data from the textbook, estimate the rotation rate of the Sun if it were to 
collapse into a neutron star of radius 10 km. The Sun is not a uniform sphere of 
gas and its moment of inertia is given by I = 0.059MR2. Assume that the neutron 
star is spherical and has a uniform mass distribution. (b) Is the rotational kinetic 
energy of our Sun greater or smaller after the collapse? By what factor does it 
change, and where does the energy go to or come from? 
 
Picture the Problem We can use conservation of angular momentum in Part (a) 
to relate the before-and-after collapse rotation rates of the sun. In Part (b), we can 
express the fractional change in the rotational kinetic energy of the Sun as it 
collapses into a neutron star to decide whether its rotational kinetic energy is 
greater initially or after the collapse. 
 
(a) Use conservation of angular 
momentum to relate the angular 
momenta of the Sun before and after 
its collapse: 
 

aabb ωω II =  ⇒ b
a

b
a ωω

I
I

=       (1) 

Using the given formula, approximate the moment of inertia Ib of the Sun before 
collapse: 
 

( )( ) 24625302
sunb mkg1069.5km106.96kg1099.1059.0059.0 ⋅×=××== MRI  

 
Find the moment of inertia Ia of the 
Sun when it has collapsed into a 
spherical neutron star of radius  
10 km and uniform mass 
distribution: 
 

( )( )
237

230
5
2

2
5
2

a

mkg1096.7

km10kg1099.1

⋅×=

×=

= MRI

 

Substitute numerical values in 
equation (1) and simplify to obtain: 

b
8

b237

246

a

1015.7
mkg1096.7
mkg1069.5

ω

ωω

×=

⋅×
⋅×

=
 

 
Given that ωb = 1 rev/25 d, evaluate 
ωa: 
 

rev/d109.2

rev/d 86.2
d25

rev11015.7

7

8
a

×=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=ω
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Note that the rotational period decreases by the same factor of Ib/Ia and becomes: 
 

s100.3

s3600
h1

h24
d1

rev
rad2

d
rev1086.2

22 3

7a
a

−×=
××××

== πT π
ω
π  

 
(b) Express the fractional change in 
the Sun’s rotational kinetic energy as 
a consequence of its collapse: 
 

1Δ

b

a

b

ba

b

−=
−

=
K
K

K
KK

K
K

 

 

Substituting for the kinetic energies 
and simplifying yields: 11Δ

2
bb

2
aa

2
bb2

1

2
aa2

1

b

−=−=
ω
ω

ω
ω

I
I

I
I

K
K

 

 
Substitute numerical values and evaluate ΔK/Kb: 
 

8
27

8
b

101.71
drev/251

rev/d102.86
1015.7

1Δ
×=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×
⎟
⎠
⎞

⎜
⎝
⎛

×
=

K
K  

 
That is, the rotational kinetic energy increases by a factor of approximately 
7×108. The additional rotational kinetic energy comes at the expense of 
gravitational potential energy, which decreases as the Sun gets smaller. 
 
25 •• The moment of inertia of Earth about its spin axis is approximately 
8.03 × 1037 kg⋅m2. (a) Because Earth is nearly spherical, assume that the moment 
of inertia can be written as I = CMR2, where C is a dimensionless constant,  
M = 5.98 × 1024 kg is the mass of Earth, and R = 6370 km is its radius. Determine 
C. (b) If the earth’s mass were distributed uniformly, C would equal 2/5. From the 
value of C calculated in Part (a), is Earth’s density greater near its center or near 
its surface? Explain your reasoning. 
  
Picture the Problem We can solve 2CMRI = for C and substitute numerical 
values in order to determine an experimental value of C for the earth. We can then 
compare this value to those for a spherical shell and a sphere in which the mass is 
uniformly distributed to decide whether the earth’s mass density is greatest near 
its core or near its crust.  
 
(a) Express the moment of inertia of 
Earth in terms of the constant C: 
 

2CMRI = ⇒ 2MR
IC =  

Substitute numerical values and 
evaluate C: 
 

( )( )
331.0

km6370kg105.98
mkg108.03

224

237

=

×
⋅×

=C
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(b) If all of the mass were in the 
crust, the  moment of inertia of Earth 
would be that of a thin spherical 
shell: 
 

2
3
2

shell spherical MRI =  

If the mass of Earth were uniformly 
distributed throughout its volume, its 
moment of inertia would be: 
 

2
5
2

sphere solid MRI =  

Because experimentally C < 0.4, the mass density must be greater near the center 
of Earth.. 
 
26 ••• Estimate Timothy Goebel’s initial takeoff speed, rotational velocity, 
and angular momentum when he performs a quadruple Lutz (Figure 10-41). Make 
any assumptions you think reasonable, but justify them. Goebel’s mass is about 
60 kg and the height of the jump is about 0.60 m. Note that his angular speed will 
change quite a bit during the jump, as he begins with arms outstretched and pulls 
them in. Your answer should be accurate to within a factor of 2, if you’re careful. 
 
Picture the Problem We’ll assume that he launches himself at an angle of 45° 
with the horizontal with his arms spread wide, and then pulls them in to increase 
his rotational speed during the jump.  We’ll also assume that we can model him as 
a 2.0-m long cylinder with an average radius of 0.15 m and a mass of 60 kg. We 
can then find his take-off speed and ″air time″ using constant-acceleration 
equations, and use the latter, together with the definition of rotational velocity, to 
find his initial rotational velocity. Finally, we can apply conservation of angular 
momentum to find his initial angular momentum. 
 
Using a constant-acceleration 
equation, relate his takeoff speed v0 
to his maximum elevation Δy: 
 

yavv yy Δ+= 22
0

2  
or, because v0y = v0sin(45°), v = 0, and  
ay = − g, 

ygv Δ−°= 245sin0 22
0  

 
Solving for v0 and simplifying 
yields: 
 °

Δ
=

°
Δ

=
45sin

2
45sin

2
20

ygygv  

 
Substitute numerical values and 
evaluate v0: 

( )( )

m/s4.9
sin45

m0.60m/s9.812 2

0

=
°

=v
 

 
Use its definition to express 
Goebel’s angular velocity: 
 

tΔ
Δ

=
θω  
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Use a constant-acceleration equation 
to express Goebel’s ″air time″ Δt: 
 

g
ytt Δ

=Δ=Δ
222 m 0.6 rise  

Substitute numerical values and 
evaluate Δt: 

( ) s699.0
m/s9.81

m60.022Δ 2 ==t  

 
Substitute numerical values and 
evaluate ω: rad/s36

rev
rad2π

s0.699
rev4

=×=ω  

 
Use conservation of angular 
momentum to relate his take-off 
angular velocity ω0 to his average 
angular velocity ω as he performs a 
quadruple Lutz: 
 

ωω II =00  
 

Assuming that he can change his 
moment of inertia by a factor of 2 by 
pulling his arms in, solve for and 
evaluate ω0: 
 

( ) rad/s18rad/s36
2
1

0
0 === ωω

I
I  

Express his take-off angular 
momentum: 
 

000 ωIL =  
 

Assuming that we can model him as 
a solid cylinder of length  with an 
average radius r and mass m, 
express his moment of inertia with 
arms drawn in (his take-off 
configuration): 
 

( ) 22
2
1

0 2 mrmrI ==  
where the factor of 2 represents our 
assumption that he can double his 
moment of inertia by extending his 
arms. 

Substitute for I0 to obtain: 
 

0
2

0 ωmrL =  

Substitute numerical values and 
evaluate L0: 

( )( ) ( )
/smkg24

rad/s18m0.15kg60
2

2
0

⋅=

=L
 

 
The Cross Product and the Vector Nature of Torque and Rotation 

27 • [SSM] A force of magnitude F is applied horizontally in the negative 
x direction to the rim of a disk of radius R as shown in Figure 10-42. Write     F  and 
    r  in terms of the unit vectors   ̂ i ,   

ˆ j , and   ̂  k , and compute the torque produced by 
this force about the origin at the center of the disk. 
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Picture the Problem We can express F and r in terms of the unit vectors  î  and 
ĵ and then use the definition of the cross product to find τ . 

 
Express F in terms of F and the unit 
vector :î  
 

iF ˆF−=  

Express r in terms of R and the unit 
vector :ĵ  
 

jr ˆR=  

Calculate the cross product of r and 
:F  

( ) ( )
kFR

jiFRijFRFr
ˆ

ˆˆˆˆ

=

×=−×=×=τ
 

 
28 • Compute the torque about the origin of the gravitational force 

        F = −mg ˆ j  acting on a particle of mass m located at      r = x ˆ i + y ˆ j  and show that this 
torque is independent of the y coordinate. 
 
Picture the Problem We can find the torque from the cross product of r and .F  

 
Compute the cross product of 
r and :F  

( )( )
( ) ( )

k

jjji

jjiFr

ˆ

ˆˆˆˆ

ˆˆˆ

mgx

mgymgx

mgyx

−=

×−×−=

−+=×=τ

 

 
29 • Find     A × B  for the following choices: (a)      A = 4ˆ i  and     B = 6ˆ i + 6 ˆ j ,  
(b)         A = 4ˆ i  and      B = 6ˆ i + 6 ˆ k , and (c)      A = 2ˆ i + 3ˆ j  and      B = 3ˆ i + 2ˆ j . 
  
Picture the Problem We can use the definitions of the cross products of the unit 
vectors î , ĵ , and k̂ to evaluate    A × B  in each case. 
 
(a) Evaluate A × B  for A  = 4 î  and 
B = 6 î  + ĵ6 : 

( )
( ) ( )
( )

k

k

jiii

jiiBA

ˆ24

ˆ24024

ˆˆ24ˆˆ24

ˆ6ˆ6ˆ4

=

+=

×+×=

+×=×

 

 



Angular Momentum 
 

 

979

(b) Evaluate A × B  for A  = 4 î  and 
B = 6 î + 6 k̂ : 

( )
( ) ( )
( ) ( )

j

j

kiii

kiiBA

ˆ24

ˆ24024

ˆˆ24ˆˆ24

ˆ6ˆ6ˆ4

−=

−+=

×+×=

+×=×

 

 
(c) Evaluate A × B  for 
A = 2 î  + ĵ3  and B =3 î + ĵ2 :
  

( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

k

kk

jj

ijjiii

jijiBA

ˆ5

06ˆ9ˆ406

ˆˆ6

ˆˆ9ˆˆ4ˆˆ6

ˆ2ˆ3ˆ3ˆ2

−=

+−++=

×+

×+×+×=

+×+=×

 

 
30 •• For each case in Problem 31, compute BA× . Compare it to BA  to 

estimate which of the pairs of vectors are closest to being perpendicular. Verify 
your answers by calculating the angle using the dot product.  
 
Picture the Problem Because φsinBABA =× , if vectors A and B are 

perpendicular, then BABA =×  or 1=
×

BA

BA
. The dot product of vectors 

A and B is φcosBABA =⋅ . We can verify our estimations using this definition 

to calculate φ for each pair of vectors. 
 
(a) For A  = 4 î  and B  = 6 î  + ĵ6 : 
 

( )
( )( )

707.0

2
1

224

ˆ24

264

ˆ6ˆ6ˆ4

≈

==
+×

=
× kjii

BA

BA
 

and the vectors A and B are not 
perpendicular. 
 

The angle between A and B is: 
 

( )

,45
224

24cos

224

ˆ6ˆ6ˆ4coscos

1

11

°==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +⋅
=

⋅
=

−

−− jii
BA
BAφ

 

a result confirming that obtained above. 
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(b) For A  = 4 î  and B = 6 î + 6 k̂ : ( )
( )( )
707.0

2
1

224

ˆ24

264

ˆ6ˆ6ˆ4

≈

=
−

=
+×

=
× jkii

BA

BA
 

and the vectors A and B are not 
perpendicular. 
 

The angle between A and B is: 
 

( )

,45
224

24cos

224

ˆ6ˆ6ˆ4coscos

1

11

°==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +⋅
=

⋅
=

−

−− kii
BA
BAφ

 

a result confirming that obtained above. 
 

(c) For A = 2 î  + ĵ3  and 
B =3 î + ĵ2 :  
 

( ) ( )

385.0
13
5

13

ˆ5

1313

ˆ2ˆ3ˆ3ˆ2

≈=

−
=

+×+
=

× kjiji

BA

BA

 

and the vectors A and B are not 
perpendicular. 
 

The angle between A and B is: 
 

( ) ( )

,23
13
12cos

1313

ˆ2ˆ3ˆ3ˆ2cos

cos

1

1

1

°=⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +⋅+
=

⋅
=

−

−

−

jiji

BA
BAφ

 

a result confirming that obtained above. 
 

While none of these sets of vectors are perpendicular, those in (a) and (b) are the 
closest, with φ = 45°, to being perpendicular. 
 
31 ••  A particle moves in a circle that is centered at the origin. The particle has 
position     r  and angular velocity  ω . (a) Show that its velocity is given by     v = ω × r .  
(b) Show that its centripetal acceleration is given by     a c = ω × v = ω × ω × r ( ). 
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Picture the Problem Let r be in the 
xy plane and point in the +x 
direction. Then ω  points in the +z 
direction. We can establish the 
results called for in this problem by 
forming the appropriate cross 
products and by differentiating .v   

 
(a) Expressωusing unit vector 
notation: 
 

kω ˆω=  
 

Express r using unit vector notation: ir ˆr=  
 

Form the cross product of ω and :r  ( )
j

jikikrω
ˆ

ˆˆˆˆˆ

v

rrr

=

=×=×=× ωωω
 

and rωv ×=  

 
(b) Differentiate v with respect to t to express a : 
 

( ) ( )

ct

t

aa

rωωavωr
dt
ωd

dt
rdωr

dt
ωdrω

dt
d

dt
vda

+=

××+=×+×=×+×=×==
 

where ( )rωωa ××=c and ct and aa are the tangential and centripetal 

accelerations, respectively. 
 
32 •• You are given three vectors and their components in the form: 

        A = ax
ˆ i + ay

ˆ j + az
ˆ k ,         B = bx

ˆ i + by
ˆ j + bz

ˆ k , and      C = cx
ˆ i + cy

ˆ j + cz
ˆ k .  Show that the 

following equalities hold: ( ) ( ) ( )ACBBACCBA ×⋅=×⋅=×⋅  
 
Picture the Problem We can establish these equalities by carrying out the details 
of the cross- and dot-products and comparing the results of these operations. 
 
Evaluate the cross product of B and C to obtain: 
 

( ) ( ) ( )kcbcbjcbcbicbcbCB xyyxzxxzyzzy
ˆˆˆ −+−+−=×  

 
Form the dot product of A with B ×C to obtain: 
 

( ) xyzyxzzxyxzyyzxzyx cbacbacbacbacbacbaCBA −+−+−=×⋅      (1) 
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Evaluate the cross product of A and B to obtain: 
 

( ) ( ) ( )kbabajbabaibabaBA xyyxzxxzyzzy
ˆˆˆ −+−+−=×  

 
Form the dot product of C with A × B to obtain: 
 

( ) xyzyxzzxyxzyyzxzyx bacbacbacbacbacbacBAC −+−+−=×⋅      (2) 
 

Evaluate the cross product of C and A to obtain: 
 

( ) ( ) ( )kaaacjaaaciaaacAC xyyxzxxzyzzy
ˆˆˆ −+−+−=×  

Form the dot product of B with C × A to obtain: 
 

( ) xyzyxzzxyxzyyzxzyx acbacbacbacbacbacbACB −+−+−=×⋅      (3)   
 

The equality of equations (1), (2), and (3) establishes the equalities. 
 
33 •• If         A = 3ˆ j ,         A × B = 9ˆ i , and    A ⋅ B   = 12, find    B . 

Picture the Problem We can write B in the form kjiB ˆˆˆ
zyx BBB ++= and use 

the dot product of A and B to find By and their cross product to find Bx and Bz. 
 

Express B  in terms of its 
components: 

kjiB ˆˆˆ
zyx BBB ++=                 (1) 

 
Evaluate A ⋅ :B  123 ==⋅ yBBA ⇒By = 4 

 
Evaluate A × :B  ( )

ik

kjijBA
ˆ3ˆ3

ˆˆ4ˆˆ3

zx

zx

BB

BB

+−=

++×=×
 

 
Because A × B  = 9 :î  Bx = 0 and Bz = 3. 

 
Substitute for By and Bz in equation 
(1) to obtain: 

kjB ˆ3ˆ4 +=  

 
34 •• If         A = 4ˆ i , Bz = 0,     B = 5, and      A × B =12 ˆ k , determine    B . 
 
Picture the Problem Because Bz = 0, we can express B as jiB ˆˆ

yx BB += and 

form its cross product with A  to determine Bx and By. 
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Express B in terms of its 
components: 
 

jiB ˆˆ
yx BB +=                             (1) 

 

Express A × B : ( ) kkjiiBA ˆ12ˆ4ˆˆˆ4 ==+×=× yyx BBB  

 
Solving for By yields: 3=yB  

 
Relate B to Bx and By: 222

yx BBB +=  

 
Solve for and evaluate Bx: 435 2222 =−=−= yx BBB  

Substitute for Bx and By in equation 
(1) to obtain: 

jiB ˆ3ˆ4 +=  

 
35 ••• Given three noncoplanar vectors    A ,    B , and    C , show that     A ⋅ B × C ( ) 
is the volume of the parallelepiped formed by the three vectors. 
  
Picture the Problem Let, without loss of generality, the vector C lie along the x 
axis and the vector B lie in the xy plane as shown below to the left. The diagram to 
the right shows the parallelepiped spanned by the three vectors. We can apply the 
definitions of the cross- and dot-products to show that ( )CBA ×⋅  is the volume of 
the parallelepiped. 
 

 
 
Express the cross-product of B and 

:C  
( )( )kCB ˆsin −=× θBC  

and 
( )

ramparallelog  theof area

sin

=

=× CB θCB
 

 



Chapter 10    
 

 

984 

Form the dot-product of A with the 
cross-product of B and C to obtain: 

( ) ( )
( )( )
( )( )

ipedparallelep

heightbase of area
cossin

cossin

V

ABC
CBA

=

=
=
=×⋅

φθ
φθCBA

 

 
36 ••• Using the cross product, prove the law of sines for the triangle shown 
in Figure 10-43.  That is, if A, B, and C are the lengths of each side of the triangle, 
show that A/sin a = B/sin b = C/sin c. 
  
Picture the Problem Draw the 
triangle using the three vectors as 
shown below. Note that .CBA =+   
We can find the magnitude of the cross 
product of A  and B  and of A  and 
C and then use the cross product of A  
and ,C  using ,CBA =+  to show that 

cABbAC sinsin = or
c

C
b

B
sinsin

= . 

Proceeding similarly, we can extend 
the law of sines to the third side of the 
triangle and the angle opposite it. 

 
 

A
r

B
r

C
r

ab

c

 

 
Express the magnitude of the cross 
product of A and :B  
 

( ) cABcABBA sin180sin =−°=×  

Express the magnitude of the cross 
product of A and :C  
 

bAC sin=×CA  

Form the cross product of A with 
C to obtain: 
 

( )

BA

BAAA

BAACA

×=

×+×=

+×=×

 

because 0=× AA . 
 

Because :BACA ×=×  BACA ×=×  

and 
cABbAC sinsin =  

 
Simplify and rewrite this expression 
to obtain: c

C
b

B
sinsin

=  
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Proceed similarly to extend this 
result to the law of sines: c

C
b

B
a

A
sinsinsin

==  

 
Torque and Angular Momentum 

37 • [SSM] A 2.0-kg particle moves directly eastward at a constant speed 
of 4.5 m/s along an east-west line. (a) What is its angular momentum (including 
direction) about a point that lies 6.0 m north of the line? (b) What is its angular 
momentum (including direction) about a point that lies 6.0 m south of the line?  
(c) What is its angular momentum (including direction) about a point that lies 6.0 
m directly east of the particle? 
 
Picture the Problem The angular momentum of the particle is prL ×=  where 
r is the vector locating the particle relative to the reference point and p  is the 
particle’s linear momentum.  

 
(a) The magnitude of the particle’s 
angular momentum is given by: 
 

( )φφφ sinsinsin rmvrmvrpL ===  
 

Substitute numerical values and 
evaluate L: 

( )( )( )
/smkg54

m6.0m/s4.5kg2.0
2⋅=

=L
 

 
Use a right-hand rule to establish 
the direction of L : 
 

upward /s,mkg54 2⋅=L  

(b) Because the distance to the line 
along which the particle is moving is 
the same, only the direction of 
L differs: 
 

downward /s,mkg54 2⋅=L  

(c) Because 0=× pr for a point on 
the line along which the particle is 
moving: 

 0=L   

 

 
38 • You observe a 2.0-kg particle moving at a constant speed of  
3.5 m/s in a clockwise direction around a circle of radius 4.0 m. (a) What is its 
angular momentum (including direction) about the center of the circle? (b) What 
is its moment of inertia about an axis through the center of the circle and 
perpendicular to the plane of the motion? (c) What is the angular velocity of the 
particle? 
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Picture the Problem The angular momentum of the particle is prL ×=  where 
r is the vector locating the particle relative to the reference point and p  is the 
particle’s linear momentum. 

 
(a) The magnitude of the particle’s 
angular momentum is given by: 
 

( )φφφ sinsinsin rmvrmvrpL ===  
 

Substitute numerical values and 
evaluate the magnitude of L: 

( )( )( )
/smkg28

m4.0m/s3.5kg2.0
2⋅=

=L
 

 
Use a right-hand rule to establish 
the direction of L : 

you fromaway  /s,mkg82 2⋅=L  

(b) Treat the 2.0-kg particle as a 
point particle to obtain: 
 

2mrI =  
 

Substitute numerical values and 
evaluate I: 
 

( )( ) 22 mkg32m4.0kg2.0 ⋅==I  

(c) Because L = Iω, the angular 
speed of the particle is the ratio of its 
angular momentum and its moment 
of inertia: 
 

I
L

=ω  

Substitute numerical values and 
evaluate ω: 

2
2

2

rad/s0.88
mkg32

/smkg28
=

⋅
⋅

=ω  

 
39 •• (a) A particle moving at constant velocity has zero angular momentum 
about a particular point. Use the definition of angular momentum to show that 
under this condition the particle is moving either directly toward or directly away 
from the point. (b) You are a right-handed batter and let a waist-high fastball go 
past you without swinging. What is the direction of its angular momentum 
relative to your navel? (Assume the ball travels in a straight horizontal line as it 
passes you.) 
 
Picture the Problem L and p  are related according to .prL ×=  If L = 0, then 
examination of the magnitude of pr × will allow us to conclude that 0sin =φ  and 
that the particle is moving either directly toward the point, directly away from the 
point, or through the point. 
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(a) Because L = 0: 0=×=×=× vrvrpr mm  
or 

0=× vr  
 

Express the magnitude of :vr ×  0sin ==× φrvvr  

 
Because neither r nor v is zero: 0sin =φ  

where φ is the angle between r and .v  
 

Solving for φ yields: ( ) °°== − 180or00sin 1φ  

 
(b) Use the right-hand rule to establish that the ball’s angular momentum is 
downward. 
 
40 •• A particle that has a mass m is traveling with a constant velocity     v  
along a straight line that is a distance b from the origin O (Figure 10-44). Let dA 
be the area swept out by the position vector from O to the particle during a time 
interval dt. Show that dA/dt is constant and is equal to L 2m , where L is the 
magnitude of the angular momentum of the particle about the origin. 
 
Picture the Problem We can use the formula for the area of a triangle to find the 
area swept out at t = t1, add this area to the area swept out in time dt, and then 
differentiate this expression with respect to time to obtain the given expression for 
dA/dt.  
 
Express the area swept out at t = t1: 12

1
112

1
1 cos bxbrA == θ  

where θl is the angle between 1r and 
v and x1 is the component of 1r  in the 
direction of v . 
 

The area swept out at t = t1 + dt is: dAAA += 1  
 

Substitute for A1 to obtain: ( )dxxbdAAA +=+= 12
1

1  
 

Because dx = vdt: ( )vdtxbA += 12
1  

 
Differentiate A with respect to t to 
obtain: 

constant2
1

2
1 === bv

dt
dxb

dt
dA  
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Because rsinθ = b: ( ) ( )

m
L

rp
m

vrbv

2

sin
2
1sin2

1
2
1

=

== θθ
 

 
41 •• A 15-g coin that has a diameter of 1.5 cm is spinning at 10 rev/s about 
a fixed vertical axis. The coin is spinning on edge with its center directly above 
the point of contact with the tabletop. As you look down on the tabletop, the coin 
spins clockwise. (a) What is the angular momentum (including direction) of the 
coin about its center of mass? Model the coin as a thin disk with a radius R. (To 
find the moment of inertia about the axis, see Table 9-1.) (b) What is its angular 
momentum (including direction) about a point on the tabletop 10 cm from the 
axis?  (c) Now the coin’s center of mass travels in a straight line east across the 
tabletop at 5.0 cm/s, in addition to spinning the same way as in part (a). What is 
the angular momentum (including direction) of the coin about a point on the line 
of motion of the center of mass? (d) When it is both spinning and sliding, what is 
the angular momentum of the coin (including direction) about a point 10 cm north 
of the line of motion of the center of mass?  
 
Picture the Problem We can find the total angular momentum of the coin from 
the sum of its spin and orbital angular momenta. 
 
(a) The spin angular momentum of 
the coin is: 
 

spinspin ωIL =  

From Table 9-1, for L negligible 
compared to R: 
 

2
4
1 MRI =  

 

Substitute for I to obtain: spin
2

4
1

spin ωMRL =  

 
Substitute numerical values and evaluate Lspin: 
 

( )( ) /smkg1033.1
rev

rad2
s

rev10m0.0075kg0.015 252
4
1

spin ⋅×=⎟
⎠
⎞

⎜
⎝
⎛ ×= −πL  

 
Use a right-hand rule to establish 
the direction of spinL : 

 
you from

away  /s,mkg103.1 25

spin
⋅×

=
−

L  

(b)The total angular momentum of 
the coin is the sum of its orbital and 
spin angular momenta: 
 

spinorbitaltotal LLL +=  
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Substitute numerical values and 
evaluate Ltotal: 
 

/smkg103.10 25
spintotal ⋅×=+= −LL  

 

Use a right-hand rule to establish 
the direction of totalL : 
 

you from
away  /s,mkg103.1 25

total
⋅×

=
−

L  

(c) Because 0orbital =L : 

you from
away  /s,mkg103.1 25

total
⋅×

=
−

L  

 
(d) When it is both spinning and 
sliding, the total angular momentum 
of the coin is: 
 

spinorbitaltotal LLL +=                   

The orbital angular momentum of 
the coin is: 
 

MvRL =orbital  
 

The spin angular momentum of the 
coin is: 
 

spin
2

4
1

spinspinspin ωω MRIL ==  

 

Substituting for orbitalL and spinL yields: 

 
spin

2
4
1

total ωMRMvRL +=  

 
Substitute numerical values and evaluate totalL : 
 

( )( )( )

( )( )

you  towardpointing /s,mkg108.8

rev
rad 2

s
rev 10m 0075.0kg 015.0

m0.10m/s0.050kg0.015

25

2
4
1

total

⋅×=

⎟
⎠
⎞

⎜
⎝
⎛ ×+

=

−

π
L

 

 
42 •• (a) Two stars of masses m1 and m2 are located at    r 1 and     r 2 relative to 
some origin O, as shown in Figure 10-45. They exert equal and opposite  
attractive gravitational forces on each other. For this two-star system, calculate 
the net torque exerted by these internal forces about the origin O and show that it 
is zero only if both forces lie along the line joining the particles. (b)The fact that 
the Newton’s third-law pair of forces are not only equal and oppositely directed 
but also lie along the line connecting the two objects is sometimes called the 
strong form of Newton’s third law. Why is it important to add that last phrase? 
Hint: Consider what would happen to these two objects if the forces were offset 
from each other.  
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Picture the Problem Both the forces acting on the particles exert torques with 
respect to an axis perpendicular to the page and through point O and the net 
torque about this axis is their vector sum. 

 
(a) The net torque about an axis 
perpendicular to the page and 
through point O is given by: 

2211
i

inet FrFr ×+×== ∑ττ  

or, because 12 FF −= , 
( ) 121net Frr ×−=τ  

 
Because 21 rr − points along 1F− : ( ) 0121net =×−= Frrτ  

 
(b) If the forces are not along the same line, there will be a net torque (but still no 
net force) acting on the system. This net torque would cause the system to 
accelerate angularly, contrary to observation, and hence makes no sense 
physically. 
 
43 •• A 1.8-kg particle moves in a circle of radius 3.4 m. As you look down 
on the plane of its orbit, it is initially moving clockwise. If we call the clockwise 
direction positive, its angular momentum relative to the center of the circle varies 
with time according to ( ) ( )ttL mN 4.0smN 10 ⋅−⋅⋅= . (a) Find the magnitude and 
direction of the torque acting on the particle. (b) Find the angular velocity of the 
particle as a function of time. 
  
Picture the Problem The angular momentum of the particle changes because a 
net torque acts on it. Because we know how the angular momentum depends on 
time, we can find the net torque acting on the particle by differentiating its 
angular momentum. We can use a constant-acceleration equation and Newton’s 
2nd law to relate the angular speed of the particle to its angular acceleration. 
 
(a) The magnitude of the torque 
acting on the particle is the rate at 
which its angular momentum 
changes: 
 

dt
dL

=netτ  

 

Evaluate dL/dt to obtain: ( )[ ]

mN0.4

mN0.4smN 10net

⋅−=

⋅−⋅⋅= t
dt
dτ

 

Note that, because L decreases as the 
particle rotates clockwise, the angular 
acceleration and the net torque are both 
upward. 
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(b) The angular speed of the particle 
is given by: 
 

orbital

orbital
orbital I

L
=ω  

 
Treating the 1.8-kg particle as a 
point particle, express its moment of 
inertia relative to an axis through the 
center of the circle and normal to it: 
 

2
orbital MRI =  

Substitute for orbitalI  and orbitalL  to 
obtain: 

( )
2orbital

mN 4.0smN 10
MR

t⋅−⋅⋅
=ω  

 
Substitute numerical values and evaluate ωorbital: 
 

( )
( )( )

( )  rad/s0.19rad/s 48.0
m3.4kg8.1

mN0.4smN10 2
2orbital tt

−=
⋅−⋅⋅

=ω  

Note that the direction of the angular velocity is downward. 
 
44 •• You are designing a lathe motor and part of it consists of a uniform 
cylinder whose mass is 90 kg and radius is 0.40 m that is mounted so that it turns 
without friction on its axis, which is fixed. The cylinder is driven by a belt that 
wraps around its perimeter and exerts a constant torque.  At t = 0, the cylinder’s 
angular velocity is zero. At t = 25 s, its angular speed is 500 rev/min. (a) What is 
the magnitude of its angular momentum at t = 25 s? (b) At what rate is the angular 
momentum increasing? (c) What is the magnitude of the torque acting on the 
cylinder? (d) What is the magnitude of the frictional force acting on the rim of the 
cylinder? 
 
Picture the Problem The angular momentum of the cylinder changes because a 
net torque acts on it. We can find the angular momentum at t = 25 s from its 
definition and the magnitude of the net torque acting on the cylinder from the rate 
at which the angular momentum is changing. The magnitude of the frictional 
force acting on the rim can be found using the definition of torque. 
 
(a) The angular momentum of the 
cylinder is given by: 
 

ωω 2
2
1 mrIL ==  

Substitute numerical values and evaluate L: 
 

( )( )

/smkg103.8

/smkg377
s60

min1
rev

rad2
min
rev500m0.40kg90

22

22
2
1

⋅×=

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=

πL
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(b) The rate at which the angular 
momentum of the cylinder is 
increasing is given by: 

( )

22

22
2

/smkg15

/smkg15
s25

/smkg377

⋅=

⋅=
⋅

=
dt
dL

 

 
(c) Because the torque acting on the 
uniform cylinder is constant, the rate 
of change of the angular momentum 
is constant and hence the 
instantaneous rate of change of the 
angular momentum at any instant is 
equal to the average rate of change 
over the time during which the 
torque acts: 
 

22/smkg15 ⋅==
dt
dLτ  

(d) The magnitude of the frictional 
force f acting on the rim is: N38

m0.40
/smkg15.1 22

=
⋅

==
τf  

 
45 •• [SSM] In Figure 10-46, the incline is frictionless and the string 
passes through the center of mass of each block. The pulley has a moment of 
inertia I and radius R.  (a) Find the net torque acting on the system (the two 
masses, string, and pulley) about the center of the pulley. (b)Write an expression 
for the total angular momentum of the system about the center of the pulley. 
Assume the masses are moving with a speed v. (c) Find the acceleration of the 
masses by using your results for Parts (a) and (b) and by setting the net torque 
equal to the rate of change of the system’s angular momentum. 
 
Picture the Problem Let the system include the pulley, string, and the blocks and 
assume that the mass of the string is negligible. The angular momentum of this 
system changes because a net torque acts on it.  

 
(a) Express the net torque about 
the center of mass of the pulley: ( )12

12net

sin

sin

mmRg

gRmgRm

−=

−=

θ

θτ
 

where we have taken clockwise to be 
positive to be consistent with a positive 
upward velocity of the block whose 
mass is m1 as indicated in the figure. 
 

(b) Express the total angular 
momentum of the system about an 
axis through the center of the pulley: ⎟

⎠
⎞

⎜
⎝
⎛ ++=

++=

212

21

mm
R
IvR

vRmvRmIL ω
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(c) Express τ as the time derivative 
of the angular momentum: 

⎟
⎠
⎞

⎜
⎝
⎛ ++=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++==

212

212

mm
R
IaR

mm
R
IvR

dt
d

dt
dLτ

 

 
Equate this result to that of Part (a) 
and solve for a to obtain: 

( )

212

12 sin

mm
R
I

mmga
++

−
=

θ  

 
46 •• Figure 10-47 shows the rear view of a space capsule that was left 
rotating rapidly about its longitudinal axis at 30 rev/min after a collision with 
another capsule. You are the flight controller and have just moments to tell the 
crew how to stop this rotation before they become ill from the rotation and the 
situation becomes dangerous. You know that they have access to two small jets 
mounted tangentially at a distance of 3.0 m from the axis, as indicated in the 
figure. These jets can each eject 10 g/s of gas with a nozzle speed of 800 m/s. 
Determine the length of time these jets must run to stop the rotation. In flight, the 
moment of inertia of the ship about its axis (assumed constant) is known to be 
4000 kg⋅m2. 
  
Picture the Problem The forces resulting from the release of gas from the jets 
will exert a torque on the spaceship that will slow and eventually stop its rotation. 
We can relate this net torque to the angular momentum of the spaceship and to the 
time the jets must fire. 

 
Relate the firing time of the jets to 
the desired change in angular  
momentum: 
 

netnet τ
ω

τ
Δ

=
Δ

=Δ
ILt                        (1) 

Express the magnitude of the net 
torque exerted by the jets: 
 

FR2net =τ  

Letting Δm/Δt′ represent the mass of 
gas per unit time exhausted from the 
jets, relate the force exerted by the 
gas on the spaceship to the rate at 
which the gas escapes: 
 

v
t
mF
'Δ

Δ
=  

Substituting for F yields: 
'

2net t
mvR

Δ
Δ

=τ  
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Substitute for netτ in equation (1) to 
obtain:  

'
2

t
mvR

It

Δ
Δ

Δ
=Δ

ω  

 
Substitute numerical values and evaluate Δt: 
 

( )
( )( )( ) s106.2

m3.0m/s800kg/s102
s60

min1
rev

rad2
min
rev03mkg4000

Δ 2
2

2

×=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××⋅

= −

π

t  

 
47 •• A projectile (mass M) is launched at an angle θ with an initial speed v0. 
Considering the torque and angular momentum about the launch point, explicitly 
show that dL/dt = τ. Ignore the effects of air resistance. (The equations for 
projectile motion are found in Chapter 3.) 
  
Picture the Problem We can use constant-acceleration equations to express the 
projectile’s position and velocity coordinates as functions of time. We can use 
these coordinates to express the particle’s position and velocity vectors r and .v  
Using its definition, we can express the projectile’s angular momentum L as a 
function of time and then differentiate this expression to obtain .dtdL  Finally, we 
can use the definition of the torque, relative to an origin located at the launch 
position, the gravitational force exerts on the projectile to express τ and complete 
the demonstration that .τ=dtdL  
 
Using its definition, express the 
angular momentum vector L  of the 
projectile: 
 

vrL m×=                                (1) 

Using constant-acceleration 
equations, express the position 
coordinates of the projectile as a 
function of time: 
 

( )tvtvx x θcos00 ==  
and 

( ) 2
2
1

0

2
2
1

00

sin gttv

tatvyy yy

−=

++=

θ
 

 
Express the projectile’s position 
vector :r  
 

( )[ ] ( )[ ]jir ˆsinˆcos 2
2
1

00 gttvtv −+= θθ  
 

Using constant-acceleration 
equations, express the velocity of the 
projectile as a function of time: 
 

θcos00 vvv xx ==  
and 

gtvtavv yyy −=+= θsin00  
 

Express the projectile’s velocity 
vector :v  

[ ] [ ] jiv ˆsinˆcos 00 gtvv −+= θθ  
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Substituting in equation (1) and simplifying yields: 
 

( )[ ] ( )[ ]{ } [ ] [ ]{ }
( )k

jijiL
ˆcos

ˆsinˆcosˆsinˆcos
2

2
1

2
2
1

θ

θθθθ

Vmgt

gtVVmgttVtV

−=

−+×−+=
 

 
Differentiate L with respect to t to 
obtain: ( )

( )k

kL

ˆcos

ˆcos2
2
1

θ

θ

mgtV

Vmgt
dt
d

dt
d

−=

−=
      (2) 

 
Using its definition, express the torque acting on the projectile: 
 

( ) ( )[ ] ( )[ ] ( )
( )k

jjijr
ˆcos

ˆˆsinˆcosˆ 2
2
1

00

θ

θθ

mgtV

mggttvtvmg

−=

−×−+=−×=τ
  (3) 

Comparing equations (2) and (3) we 
see that: τ=

dt
dL  

 
Conservation of Angular Momentum 

48 • A planet moves in an elliptical orbit about the sun with the sun at one 
focus of the ellipse as in Figure 10-48. (a) What is the torque about the center of 
the Sun due to the gravitational force of attraction of the Sun on the planet? (b) At 
position A, the planet has an orbital radius r1 and is moving with a speed v1 
perpendicular to the line from the sun to the planet. At position B, the planet has 
an orbital radius r2 and is moving with speed v2, again perpendicular to the line 
from the sun to the planet. What is the ratio of v1 to v2 in terms of r1 and r2? 
 
Picture the Problem Let m represent the mass of the planet and apply the 
definition of torque to find the torque produced by the gravitational force of 
attraction. We can use Newton’s 2nd law of motion in the form dtdL=τ to show 
that L is constant and apply conservation of angular momentum to the motion of 
the planet at points A and B. 
 
(a) Express the torque produced by 
the gravitational force of attraction of 
the sun for the planet: 
 

.ofdirection the

along acts  because  0

r

FFr =×=τ  

(b) Because 0=τ : 
constant0 =×=⇒= vrLL m

dt
d  
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Noting that at points A and B 
rv=× vr , express the relationship 

between the distances from the sun 
and the speeds of the planets: 

2211 vrvr = ⇒
1

2

2

1

r
r

v
v

=  

 
49 •• [SSM] You stand on a frictionless platform that is rotating at an 
angular speed of 1.5 rev/s. Your arms are outstretched, and you hold a heavy 
weight in each hand. The moment of inertia of you, the extended weights, and the 
platform is 6.0 kg⋅m2. When you pull the weights in toward your body, the 
moment of inertia decreases to 1.8 kg⋅m2. (a) What is the resulting angular speed 
of the platform? (b) What is the change in kinetic energy of the system?  
(c) Where did this increase in energy come from? 
  
Picture the Problem Let the system consist of you, the extended weights, and the 
platform. Because the net external torque acting on this system is zero, its angular 
momentum remains constant during the pulling in of the weights. 
 
(a) Using conservation of angular 
momentum, relate the initial and 
final angular speeds of the system to 
its initial and final moments of 
inertia: 
 

0ffii =− ωω II ⇒ i
f

i
f ωω

I
I

=  

Substitute numerical values and 
evaluate fω : ( ) rev/s5.0rev/s1.5

mkg1.8
mkg6.0

2

2

f =
⋅
⋅

=ω  

 
(b) Express the change in the kinetic 
energy of the system: 
 

2
ii2

12
ff2

1
if ωω IIKKK −=−=Δ  

 

Substitute numerical values and evaluate ΔK: 
 

( ) ( )

kJ62.0

rev
rad2

s
rev1.5mkg6.0

rev
rad2

s
rev5.0mkg1.8Δ

2
2

2
1

2
2

2
1

=

⎟
⎠
⎞

⎜
⎝
⎛ ×⋅−⎟

⎠
⎞

⎜
⎝
⎛ ×⋅=

ππK
 

 
(c) Because no external agent does work on the system, the energy comes from 
your internal energy. 
 
50 •• A small blob of putty of mass m falls from the ceiling and lands on the 
outer rim of a turntable of radius R and moment of inertia I0 that is rotating freely 
with angular speed ω0 about its vertical fixed-symmetry axis. (a) What is the post-
collision angular speed of the turntable-putty system? (b) After several turns, the 
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blob flies off the edge of the turntable. What is the angular speed of the turntable 
after the blob’s departure? 
 
Picture the Problem Let the system consist of the blob of putty and the turntable. 
Because the net external torque acting on this system is zero, its angular 
momentum remains constant when the blob of putty falls onto the turntable. 
 
(a) Using conservation of angular 
momentum, relate the initial and 
final angular speeds of the turntable 
to its initial and final moments of 
inertia and solve for ωf: 
 

0ff00 =− ωω II ⇒ 0
f

0
f ωω

I
I

=  (1) 

Express the final rotational inertia of 
the turntable-plus-blob: 
 

2
0blob0f mRIIII +=+=  

 

Substitute for If in equation (1) and 
simplify to obtain: 0

0

202
0

0
f

1

1 ωωω

I
mRmRI

I

+
=

+
=  

 
(b) If the blob flies off tangentially to the turntable, its angular momentum doesn’t 
change (with respect to an axis through the center of turntable). Because there is 
no external torque acting on the blob-turntable system, the total angular 
momentum of the system will remain constant and the angular momentum of the 
turntable will not change. The turntable will continue to spin at f ωω =' . 
 
51 •• [SSM] A Lazy Susan consists of a heavy plastic cylinder mounted 
on a frictionless bearing resting on a vertical shaft. The cylinder has a radius  
R = 15 cm and mass M = 0.25 kg. A cockroach (mass m = 0.015 kg) is on the 
Lazy Susan, at a distance of 8.0 cm from the center. Both the cockroach and the 
Lazy Susan are initially at rest. The cockroach then walks along a circular path 
concentric with the center of the Lazy Susan at a constant distance of 8.0 cm from 
the axis of the shaft. If the speed of the cockroach with respect to the Lazy Susan 
is 0.010 m/s, what is the speed of the cockroach with respect to the room? 
 
Picture the Problem Because the net external torque acting on the Lazy Susan-
cockroach system is zero, the net angular momentum of the system is constant 
(equal to zero because the Lazy Susan is initially at rest) and we can use 
conservation of angular momentum to find the angular velocity ω of the Lazy 
Susan. The speed of the cockroach relative to the floor vf is the difference 
between its speed with respect to the Lazy Susan and the speed of the Lazy Susan 
at the location of the cockroach with respect to the floor. 
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Relate the speed of the cockroach 
with respect to the floor vf to the 
speed of the Lazy Susan at the 
location of the cockroach: 
 

rvv ω−=f                                (1) 

Use conservation of angular 
momentum to obtain: 
 

0CLS =− LL                              (2) 

Express the angular momentum of 
the Lazy Susan: 
 

ωω 2
2
1

LSLS MRIL ==  

Express the angular momentum of 
the cockroach: ⎟

⎠
⎞

⎜
⎝
⎛ −== ωω

r
vmrIL 2

CCC  

 
Substitute for LLS and LC in equation 
(2) to obtain: 
 

022
2
1 =⎟

⎠
⎞

⎜
⎝
⎛ −− ωω

r
vmrMR  

 
Solving for ω yields: 
 22 2

2
mrMR

mrv
+

=ω  

 
Substitute for ω in equation (1) to 
obtain: 22

2

f 2
2

mrMR
vmrvv

+
−=

 

 
Substitute numerical values and  evaluate vf: 
 

( )( ) ( )
( )( ) ( )( )

mm/s 01
m080.0kg015.02m15.0m25.0

m/s010.0m080.0kg0.0152m/s010.0 22

2

f =
+

−=v  

 
52 •• Two disks of identical mass but different radii (r and 2r) are spinning 
on frictionless bearings at the same angular speed ω0 but in opposite directions 
(Figure 10-49). The two disks are brought slowly together. The resulting frictional 
force between the surfaces eventually brings them to a common angular velocity. 
(a) What is the magnitude of that final angular velocity in terms of ω0? (b) What 
is the change in rotational kinetic energy of the system? Explain. 
 
Picture the Problem The net external torque acting on this system is zero and so 
we know that angular momentum is conserved as these disks are brought together. 
Let the numeral 1 refer to the disk to the left and the numeral 2 to the disk to the 
right. Let the angular momentum of the disk with the larger radius be positive. 
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(a) Using conservation of angular 
momentum, relate the initial angular 
speeds of the disks to their common 
final speed and to their  moments of 
inertia: 
 

ffii ωω II =  
or 

( ) f210201 ωωω IIII +=−  

Solving for ωf yields: 
0

21

21
f ωω

II
II

+
−

=                         (1) 

 
Express I1 and I2: ( ) 22

2
1

1 22 mrrmI ==  
and 

2
2
1

2 mrI =  
 

Substitute for I1 and I2 in equation (1)  
and simplify to obtain: 
 

05
3

02
2
12

2
2
12

f 2
2 ωωω =

+
−

=
mrmr
mrmr  

 
(b) The change in kinetic energy of 
the system is given by: 
 

ifΔ KKK −=                           (2) 

The initial kinetic energy of the 
system is the sum of the kinetic 
energies of the two disks: 
 

( ) 2
0212

1

2
022

12
012

1

21i

ω

ωω

II

II

KKK

+=

+=

+=

 

 
Substituting for Kf and Ki in equation 
(2) yields: 
 

( ) ( ) 2
0212

12
f212

1Δ ωω IIIIK +−+=  

Substitute for ωf from part (a) and 
simplify to obtain: 
 

( )( ) ( )
( )[ ]2

0212
1

25
16

2
0212

12
05

3
212

1Δ

ω

ωω

II

IIIIK

+−=

+−+=
 

 
Noting that the quantity in brackets is 
Ki, substitute to obtain: 
 

i25
16Δ KK −=  

The frictional force between the surfaces is responsible for some of the initial 
kinetic energy being converted to thermal energy as the two disks come together. 
 
53 •• A block of mass m sliding on a frictionless table is attached to a string 
that passes through a narrow hole through the center of the table. The block is 
sliding with speed v0 in a circle of radius r0. Find (a) the angular momentum of 
the block, (b) the kinetic energy of the block, and (c) the tension in the string.  
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(d) A student under the table now slowly pulls the string downward. How much 
work is required to reduce the radius of the circle from r0 to r0/2? 
 
Picture the Problem (a) and (b) We can express the angular momentum and 
kinetic energy of the block directly from their definitions. (c) The tension in the 
string provides the centripetal force required for the uniform circular motion and 
can be expressed using Newton’s 2nd law. (d) Finally, we can use the work-kinetic 
energy theorem to express the work required to reduce the radius of the circle by a 
factor of two. 
 
(a) Express the initial angular 
momentum of the block: 
 

000 mvrL =  

(b) Express the initial kinetic energy 
of the block: 
 

2
02

1
0 mvK =  

(c) Using Newton’s 2nd law, relate 
the tension in the string to the 
centripetal force required for the 
circular motion: 
 

0

2
0

c r
vmFT ==  

(d) Use the work-kinetic energy 
theorem to relate the required work 
to the change in the kinetic energy of 
the block: 

( ) 2
0

2
0

2
0

2
02

1

2
0

0f

2
0

0

2
0

f

2
0

0

2
0

f

2
f

0f

3
21

2

1
222

22

mr
L

mrrm
L

II
L

I
L

I
L

I
L

I
LKKKW

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−=

−=−=Δ=

 

 
Substitute the result from Part (a) 
and simplify to obtain: 

2
03

2 mvW −=  

 
54 ••• A 0.20-kg point mass moving on a frictionless horizontal surface is 
attached to a rubber band whose other end is fixed at point P.  The rubber band 
exerts a force whose magnitude is F = bx, where x is the length of the rubber band 
and b is an unknown constant. The rubber band force points inward towards P. 
The mass moves along the dotted line in Figure 10-50. When it passes point A, its 
velocity is 4.0 m/s, directed as shown. The distance AP is 0.60 m and BP is 1.0 m. 
(a) Find the speed of the mass at points B and C. (b) Find b. 
  
Picture the Problem Because the force exerted by the rubber band is parallel to 
the position vector of the point mass, the net external torque acting on it is zero 
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and we can use the conservation of angular momentum to determine the speeds of 
the ball at points B and C. We’ll use mechanical energy conservation to find b by 
relating the kinetic and elastic potential energies at A and B. 
 
(a) Use conservation of momentum 
to relate the angular momenta at 
points A, B and C: 

CBA LLL ==  
or 

CCBBAA rmvrmvrmv ==           (1) 
 

Solve for Bv  in terms of Av : 
B

A
AB r

rvv =  

 
Substitute numerical values and 
evaluate Bv : 
 

( ) m/s2.4
m1.0
m0.60m/s4.0 ==Bv  

 
Solve equation (1) for Cv  in terms of 

Av : C

A
AC r

rvv =  

 
Substitute numerical values and 
evaluate Cv : 

( ) m/s0.4
m60.0
m0.60m/s4.0 ==Cv  

 
(b) Use conservation of mechanical 
energy between points A and B to 
relate the kinetic energy of the point 
mass and the energy stored in the 
stretched rubber band: 
 

0Δ =−= BA EEE  
or 

02
2
12

2
12

2
12

2
1 =−−+ BBAA brmvbrmv  

Solving for b yields: ( )
22

22

BA

AB

rr
vvmb

−
−

=  

 
Substitute numerical values and 
evaluate b: 

( ) ( ) ( )[ ]
( ) ( )

N/m3

m1.0m0.60
m/s4.0m/s2.4kg20.0

22

22

=

−
−

=b
 

 
*Quantization of Angular Momentum 

55 •• [SSM] The z component of the spin of an electron is −    
1
2 , but the 

magnitude of the spin vector is     0.75 . What is the angle between the electron’s 
spin angular momentum vector and the positive z-axis? 
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Picture the Problem The electron’s 
spin angular momentum vector is 
related to its z component as shown 
in the diagram. The angle between 
s and the positive z-axis is φ. 

r2
1− s

r

θ

z

r
75.0

φ

 
 
Express φ in terms of θ to obtain: 
 

θφ −°= 180  

Using trigonometry, relate the 
magnitude of s to its −z component: ⎟

⎠

⎞
⎜
⎝

⎛= −

75.0
cos 2

1
1θ  

 
Substitute for θ in the expression for 
φ to obtain:  °=⎟

⎠

⎞
⎜
⎝

⎛−°= − 125
75.0

cos180 2
1

1θ  

 
56 •• Show that the energy difference between one rotational state of a 
molecule and the next higher state is proportional to  + 1. 

 
Picture the Problem Equation 10-29a describes the quantization of rotational 
energy. We can show that the energy difference between a given state and the 
next higher state is proportional to 1+ by using Equation 10-27a to express the 
energy difference. 
 
From Equation 10-29a we have: ( ) r01 EK +=  

 
Using this equation, express the 
difference between one rotational 
state and the next higher state: 

( )( ) ( )
( ) r0

r0r0

12

121

E

EEE

+=

+−++=Δ
 

  
57 •• [SSM] You work in a bio-chemical research lab, where you are 
investigating the rotational energy levels of the HBr molecule. After consulting 
the periodic chart, you know that the mass of the bromine atom is 80 times that of 
the hydrogen atom. Consequently, in calculating the rotational motion of the 
molecule, you assume, to a good approximation, that the Br nucleus remains 
stationary as the H atom (mass 1.67 × 10–27 kg) revolves around it. You also know 
that the separation between the H atom and bromine nucleus is 0.144 nm. 
Calculate (a) the moment of inertia of the HBr molecule about the bromine 
nucleus, and (b) the rotational energies for the bromine nucleus’s ground state 
(lowest energy)  = 0, and the next two states of higher energy (called the first and 

second excited states) described by  = 1, and  = 2. 
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Picture the Problem The rotational energies of HBr molecule are related to  
and r0E according to ( ) r01 EK +=  where .22

r0 IE =  
 
(a) Neglecting the motion of the 
bromine molecule: 
 

2
H

2
pHBr rmrmI =≈  

 

Substitute numerical values and 
evaluate IHBr: 

( )( )

247

247

2927
HBr

mkg103.46

mkg103.463

m100.144kg101.67

⋅×=

⋅×=

××≈

−

−

−−I

 

 
(b) Relate the rotational energies to 

and r0E : 
 

( ) r01 EK += where 
HBr

2

r0 2I
E =  

 
Substitute numerical values and 
evaluate r0E : 

( )
( )

meV003.1
J101.602

eV1J101.607

mkg103.4632
sJ101.055

2

19
22

247

2342

r0

=
×

××=

⋅×
⋅×

==

−
−

−

−

I
E

 

 
Evaluate E0 to obtain: meV00.100 == KE  

 
Evaluate E1 to obtain: ( )( )

meV01.2

meV003.11111

=

+== KE
 

 
Evaluate E2 to obtain: ( )( )

meV02.6

meV003.112222

=

+== KE
 

 
58 ••• The equilibrium separation between the nuclei of the nitrogen 
molecule (N2, consisting of two nitrogen atoms) is 0.110 nm and the mass of each 
nitrogen nucleus is 14.0 u, where u = 1.66 × 10–27 kg. For rotational energies, the 
total energy is due to rotational kinetic energy. (a) Approximate the nitrogen 
molecule as a rigid dumbbell of two equal point masses and calculate the moment 
of inertia about its center of mass. (b) Find the energy  E  of the lowest three 
energy levels using  E = K = +1( ) 2 / 2I( ). (c) Molecules emit a particle (or 
quantum) of light called a photon when they make a transition from a higher 
energy state to a lower one. Determine the energy of a photon emitted when a 
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nitrogen molecule drops from the  = 2 to the  = 1 state. Visible light photons 
each have between about 2 and 3 eV of energy. Are these photons in the visible 
region? 
 
Picture the Problem We can use the definition of the moment of inertia of point 
particles to calculate the rotational inertia of the nitrogen molecule. The rotational 
energies of nitrogen molecule are related to  and r0E according to 

( ) r01 EKE +==  where .22
r0 IE =  

 
(a) Using a rigid dumbbell model, 
express and evaluate the moment of 
inertia of the nitrogen molecule 
about its center of mass: 
 

2
N

2
N

2
N

i

2
iiN

2

2

rm

rmrmrmI

=

+== ∑
 

 

Substitute numerical values and 
evaluate I: ( )( )

246

246

2
27

N

mkg101.41

mkg101.406
2

nm 110.0kg101.66142
2

⋅×=

⋅×=

⎟
⎠
⎞

⎜
⎝
⎛×=

−

−

−I

 
(b) Relate the rotational energies 
to and r0E : 
 

( ) r01 EKE +==  
where 

2N

2

r0 2I
E =  

 
Substitute numerical values and 
evaluate r0E : 

( )
( )

meV0.2474
J101.60

eV1J10958.3

mkg10406.12
sJ101.055

19
23

246

234

r0

=
×

××=

⋅×
⋅×

=

−
−

−

−

E

 

 
Evaluate E0 to obtain: meV 247.00 =E  

 
Evaluate E1 to obtain: ( )( )

meV495.0

meV0.2474111

=

+=E
 

 
Evaluate E2 to obtain: ( )( )

meV48.1

meV0.24741222

=

+=E
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(c) The energy of a photon emitted 
when a nitrogen molecule drops 
from the  = 2 to the  = 1 state is: 

 
meV 99.0

meV 495.0meV 48.1
Δ 1212

=

−=
−==→= EEE

 

 
No. This energy is too low to produce radiation in the visible portion of the 
spectrum.  
 
59 ••• Consider a transition from a lower energy state to a higher one. That 
is, the absorption of a quantum of energy resulting in an increase in the rotational 
energy of an N2 molecule (see Problem 64). Suppose such a molecule, initially in 
its ground rotational state, was exposed to photons each with energy equal to the 
three times the energy of its first excited state. (a) Would the molecule be able to 
absorb this photon energy? Explain why or why not and if it can, determine the 
energy level to which it goes. (b) To make a transition from its ground state to its 
second excited state requires how many times the energy of the first excited state? 
 
Picture the Problem The rotational energies of a nitrogen molecule depend on 
the quantum number  according to ( ) .2/12/ 22 IILE +==  

 
(a) No. None of the allowed values of E  are equal to 0r3E .  
 
(b) The upward transition from the 
ground state to the second excited 
state requires energy given by: 
 

0220Δ EEE −==→=                                  

Set this energy difference equal to a 
constant n times the energy of the 1st 
excited state: 
 

102 nEEE =− ⇒
1

02

E
EEn −

=  

 

Substitute numerical values and 
evaluate n: 

( )
( ) 5.2

11
122

r0

r0r0 =
+

−+
=

E
EEn  

 
Collisions with Rotations 

60 •• A 16.0-kg, 2.40-m-long rod is supported on a knife edge at its 
midpoint. A 3.20-kg ball of clay is dropped from rest from a height of 1.20 m and 
makes a perfectly inelastic collision with the rod 0.90 m from the point of support 
(Figure 10-51). Find the angular momentum of the rod and clay system about the 
point of support immediately after the inelastic collision. 
 
Picture the Problem Let the zero of gravitational potential energy be at the 
elevation of the rod. Because the net external torque acting on this system is zero, 
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we know that angular momentum is conserved in the collision. We’ll use the 
definition of angular momentum to express the angular momentum just after the 
collision and conservation of mechanical energy to determine the speed of the ball 
just before it makes its perfectly inelastic collision with the rod.  
 
Use conservation of angular 
momentum to relate the angular 
momentum before the collision to 
the angular momentum just after the 
perfectly inelastic collision: 
 

mvrLL == if                           (1) 

Use conservation of mechanical 
energy to relate the kinetic energy of 
the ball just before impact to its 
initial potential energy: 
 

0ifif =−+− UUKK  
or, because Ki = Uf = 0, 

0if =−UK  

Letting h represent the distance the 
ball falls, substitute for if and UK  
to obtain: 
 

02
2
1 =− mghmv ⇒ ghv 2=  

Substituting for v in equation (1) 
yields: 
 

ghmrL 2f =  
 

Substitute numerical values and evaluate Lf: 
 

( )( ) ( )( ) sJ14m1.20m/s9.812m0.90kg3.20 2
f ⋅==L  

 
61 •• [SSM] Figure 10-52 shows a thin uniform bar of length L and mass 
M and a small blob of putty of mass m. The system is supported by a frictionless 
horizontal surface. The putty moves to the right with velocity   v , strikes the bar at 
a distance d from the center of the bar, and sticks to the bar at the point of contact. 
Obtain expressions for the velocity of the system’s center of mass and for the 
angular speed following the collision. 
  
Picture the Problem The velocity of the center of mass of the bar-blob system 
does not change during the collision and so we can calculate it before the collision 
using its definition. Because there are no external forces or torques acting on the 
bar-blob system, both linear and angular momentum are conserved in the collision. 
Let the direction the blob of putty is moving initially be the +x direction. Let 
lower-case letters refer to the blob of putty and upper-case letters refer to the bar. 
The diagram to the left shows the blob of putty approaching the bar and the 
diagram to the right shows the bar-blob system rotating about its center of mass 
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and translating after the perfectly inelastic collision. 

d

m
 vr

M

 

d

cm

cmy vcm

ω

M

 
 
The velocity of the center of mass 
before the collision is given by: 
 

( ) Vvv MmmM +=+ cm  

or, because 0=V , 

vv
mM

m
+

=cm  

 
Using its definition, express the 
location of the center of mass 
relative to the center of the bar: 
 

( )  cm mdymM =+ ⇒  cm mM
mdy

+
=  

below the center of the bar. 

Express the angular momentum, 
relative to the center of mass, of 
the bar-blob system: 
 

ωcmcm IL = ⇒
cm

cm

I
L

=ω             (1) 

Express the angular momentum 
about the center of mass: 

( )

mM
mMvd

mM
mddmv

ydmvL

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
−=

−= cmcm

 

 
Using the parallel axis theorem, 
express the moment of inertia of 
the system relative to its center of 
mass: 
 

( )2
cm

2
cm

2
12
1

cm ydmMyMLI −++=  
 

Substitute for ycm and simplify to obtain: 
 

mM
mMd

ML
mM

md
dm

mM
md

MMLI
+

+=
+

−+
+

+= ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 2

2
22

2
12
1

12
1

cm  
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Substitute for Icm and Lcm in equation 
(1) and simplify to obtain: ( ) 22

12
1 MmdmMML

mMvd
++

=ω  

 
Remarks: You can verify the expression for Icm by letting m → 0 to obtain 

2
cm MLI 12

1= and letting M → 0 to obtain Icm = 0. 
 
62 ••  Figure 10-52 shows a thin uniform bar whose length is L and 
mass is M and a compact hard sphere whose mass is m. The system is 
supported by a frictionless horizontal surface. The sphere moves to the right 
with velocity v , strikes the bar at a distance 1

4 L  from the center of the bar.  
The collision is elastic, and following the collision the sphere is at rest. Find 
the value of the ratio m/M. 
 
Picture the Problem Because there are no external forces or torques acting on 
the bar-sphere system, both linear and angular momentum are conserved in the 
collision. Kinetic energy is also conserved in the elastic collision of the hard 
sphere with the bar. Let the direction the sphere is moving initially be the +x 
direction Let lower-case letters refer to the compact hard sphere and upper-case 
characters refer to the bar. Let unprimed characters refer to before the collision 
and primed characters to after the collision. The diagram to the left shows the path 
of the sphere before its collision with the bar and the diagram to the right shows 
the sphere at rest after the collision and the bar rotating about its center of mass 
and translating to the right.  

d=   L 41

cm

 vr
m

M

 

ω

cm

m

 'V
r

M

 
 
Apply conservation of linear 
momentum to the collision to obtain: 

'0 MVmv += ⇒ v
M
mV ='         (1) 

  
 

Apply conservation of angular 
momentum to the collision to obtain: 
 

ωcm0 Imvd +=                         (2) 
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Apply conservation of mechanical 
energy to the elastic collision to 
obtain: 
 

2
cm2

12
2
12

2
1 '0 ωIMVmv ++=     (3) 

Use Table 9-1 to find the moment of 
inertia of a thin bar about an axis 
through its center: 
 

2
12
1

cm MLI =             

Substitute for cmI in equation (2) and 
simplify to obtain: 
 

ω2
12
1 MLmvd = ⇒

M
m

L
vd

⎟
⎠
⎞

⎜
⎝
⎛= 2

12ω  

Substitute for cmI  and 'V in equation 
(3) and simplify to obtain: 
 

22
12
12

2
2 ωMLv

M
mMmv +⎟

⎠
⎞

⎜
⎝
⎛=          

Substituting for ω yields: 
 

2

2
2

12
12

2
2 12

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

M
m

L
vdMLv

M
mMmv  

 

Solve this equation for 
M
m  to obtain: 2

121

1

⎟
⎠
⎞

⎜
⎝
⎛+

=

L
dM

m  

 
Because d = L/4: 

7
4

4
1121

1
2 =

⎟
⎠
⎞

⎜
⎝
⎛+

=
M
m  

 
63 •• Figure 10-53 shows a uniform rod whose length is L and whose mass 
is M pivoted at the top. The rod, which is initially at rest, is struck by a particle 
whose mass is m at a point x = 0.8L below the pivot. Assume that the particle 
sticks to the rod. What must be the speed v of the particle so that following the 
collision the maximum angle between the rod and the vertical is 90°? 
 
Picture the Problem Let the zero of gravitational potential energy be a distance x 
below the pivot and ignore friction between the rod and the pivot. Because the net 
external torque acting on the system is zero, angular momentum is conserved in 
this perfectly inelastic collision. We can also use conservation of mechanical 
energy to relate the initial kinetic energy of the system after the collision to its 
potential energy at the top of its swing. 
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Using conservation of mechanical 
energy, relate the rotational kinetic 
energy of the system just after the 
collision to its gravitational potential 
energy when it has swung through 
an angle θ : 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  
   

Substitute for Ki and Uf to obtain: 

( ) 0cos1
2

2
2
1

=−⎟
⎠
⎞

⎜
⎝
⎛ ++

−

θ

ω

mgxLMg

I
 (1)  

  
Apply conservation of momentum to 
the collision: 

0Δ if =−= LLL  
or 

( )[ ] 08.08.0 22
3
1 =−+ LmvmLML ω  

 
Solving for ω yields: 

22
3
1 64.0

8.0
mLML

Lmv
+

=ω                      (2) 

 
Express the moment of inertia of 
the system about the pivot: 

( )
2

3
12

2
3
12

64.0

8.0

MLmL

MLLmI

+=

+=
                      (3) 

 
Substitute equations (2) and (3) in equation (1) and simplify to obtain: 
 

( ) ( ) ( ) 0cos18.0
264.0

32.0
22

3
1

2

=−⎟
⎠
⎞

⎜
⎝
⎛ +−

+
θLmgLMg

mLML
Lmv  
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Solving for v yields: 
 

( ) ( ) ( )
2

22
3
1

32.0
cos164.08.05.0

Lm
gmLMLmM

v
θ−++

=  

 
Evaluate v for θ = 90° to obtain: 
 

( )( )
2

22
3
1

32.0
64.08.05.0

Lm
gmLMLmM

v
++

=  

 
64 •• If, for the system of Problem 69, L = 1.2 m, M = 0.80 kg, m = 0.30 kg, 
and the maximum angle between the rod and the vertical following the collision is 
60°, find the speed of the particle before impact. 
 
Picture the Problem Let the zero of 
gravitational potential energy be a 
distance x below the pivot and ignore 
friction between the rod and pivot. 
Because the net external torque acting 
on the system is zero, angular 
momentum is conserved in this 
perfectly inelastic collision. We can 
also use conservation of mechanical 
energy to relate the initial kinetic 
energy of the system after the collision 
to its potential energy at the top of its 
swing. 

 

 

 
Using conservation of mechanical 
energy, relate the rotational kinetic 
energy of the system just after the 
collision to its gravitational potential 
energy when it has swung through 
an angle θ : 
 

0ifif =−+− UUKK  
or, because Kf = Ui = 0, 

0fi =+− UK  
   

Substitute for Ki and Uf to obtain: 
 

( ) 0cos1
2

2
2
1 =−⎟

⎠
⎞

⎜
⎝
⎛ ++− θω mgxLMgI           (1) 
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Apply conservation of momentum 
to the collision: 

0Δ if =−= LLL  
or 

( )( ) 080.080.0 22
3
1 =−+ LmvmLML ω  

 
Solving for ω yields: 

22
2
1 64.0

80.0
mLML

Lmv
+

=ω                       (2) 

 
The moment of inertia of the system 
about the pivot is: 

( )
( ) 2

3
1

2
3
12

64.0

80.0

LMm

MLLmI

+=

+=
 

 
Substitute numerical values and 
evaluate I: 

( ) ( )[ ]( )
2

2
3
1

mkg0.660

m1.2kg0.80kg0.300.64

⋅=

+=I
 

 
Substitute equation (2) in equation (1) and simplify to obtain: 
 

( ) ( ) 0cos180.0
2

32.0 2

=−⎟
⎠
⎞

⎜
⎝
⎛ ++− θLmgLMg

I
Lmv  

 
Solving for v yields: ( )( )

232.0
cos180.050.0

Lm
ImMgv θ−+

=  

 
Substitute numerical values and evaluate v for θ = 60° to obtain: 
 

( ) ( ) ( )( )[ ]( )( )
( )( )

m/s7.7
kg0.30m1.20.32

mkg0.66050.0kg0.300.80kg0.800.50m/s9.81
2

22

=
⋅+

=v  

 
65 •• A uniform rod is resting on a frictionless table when it is suddenly 
struck at one end by a sharp horizontal blow in a direction perpendicular to the 
rod. The mass of the rod is M and the magnitude of the impulse applied by the 
blow is J.  Immediately after the rod is struck, (a) what is the velocity of the 
center of mass of the rod, (b) what is the velocity of the end that is struck, (c) and 
what is the velocity of the other end of the rod? (d) Is there a point on the rod that 
remains motionless? 
 
Picture the Problem Let the length of the uniform stick be . We can use the 
impulse-change in momentum theorem to express the velocity of the center of 
mass of the stick. By expressing the velocity V of the end of the stick in terms of 
the velocity of the center of mass and applying the angular impulse-change in 
angular momentum theorem we can find the angular velocity of the stick and, 
hence, the velocity of the end of the stick. 
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(a) Apply the impulse-change in 
momentum theorem to obtain: 

ppppJ =−=Δ= 0  
or, because p0 = 0 and p = Mvcm, 

cmMvJ = ⇒
M
Jv =cm  

 
(b) Relate the velocity V of the end 
of the stick to the velocity of the 
center of mass cmv : 
 

( )2
1

cmcm    torelcm ω+=+= vvvV     (1) 

Relate the angular impulse to the 
change in the angular momentum of 
the stick: 

( ) ωcm02
1 ILLLJ =−=Δ=  

or, because L0 = 0, 
( ) ωcm2

1 IJ =                                   (2) 
 

Refer to Table 9-1 to find the 
moment of inertia of the stick with 
respect to its center of mass: 
 

2
12
1

cm MI =  

Substitute for Icm in equation (2) to 
obtain: 
 

( ) ω2
12
1

2
1 MJ = ⇒

M
J6

=ω  

 
Substituting for ω in equation (1) 
yields: M

J
M

J
M
JV 4

2
6

=⎟
⎠
⎞

⎜
⎝
⎛+=  

 
(c) Relate the velocity V′ of the other 
end of the stick to the velocity of the 
center of mass cmv : 
 

( )

M
J

M
J

M
J

vvvV

2
2

6
2
1

cmcm    torelcm

−=⎟
⎠
⎞

⎜
⎝
⎛−=

−=−= ω
      

 
(d) Yes, one point remains motionless, but only for a very brief time. 
 
66 •• A projectile of mass mp is traveling at a constant velocity       v 0 toward a 
stationary disk of mass M and radius R that is free to rotate about its axis O 
(Figure 10-54). Before impact, the projectile is traveling along a line displaced a 
distance b below the axis. The projectile strikes the disk and sticks to point B. 
Model the projectile as a point mass. (a) Before impact, what is the total angular 
momentum L0 of the disk-projectile system about the axis? Answer the following 
questions in terms of the symbols given at the start of this problem. (b) What is 
the angular speed ω of the disk-projectile system just after the impact? (c) What is 
the kinetic energy of the disk-projectile system after impact? (d) How much 
mechanical energy is lost in this collision? 
 
Picture the Problem Because the net external torque acting on the system is zero, 
angular momentum is conserved in this perfectly inelastic collision. 
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(a) Use its definition to express the 
total angular momentum of the disk 
and projectile just before impact: 
 

bvmL 0p0 =  

(b) Use conservation of angular 
momentum to relate the angular 
momenta just before and just after 
the collision: 
 

ωILL ==0  ⇒
I

L0=ω  

 

The moment of inertia of the disk- 
projectile after the impact is: 
 

( ) 2
p2

12
p

2
2
1 2 RmMRmMRI +=+=  

Substitute for I in the expression for 
ω to obtain: ( ) 2

p

0p

2
2

RmM
bvm

+
=ω  

 
(c) Express the kinetic energy of the 
system after impact in terms of its 
angular momentum: 

( )
( )[ ]

( )
( ) 2

p

2
0p

2
p2

1

2
0p

2

f

2

222

RmM
bvm

RmM
bvm

I
LK

+
=

+
==

 

 
(d) Express the difference between 
the initial and final kinetic energies, 
substitute, and simplify to obtain: 

( )
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=

+
−=

−=

2
p

2
p2

0p2
1

2
p

2
0p2

0p2
1

fi

2
2

1

2

Δ

RmM
bm

vm

RmM
bvm

vm

KKE

 

 
67 •• [SSM] A uniform rod of length L1 and mass M equal to 0.75 kg is 
supported by a hinge of negligible mass at one end and is free to rotate in the 
vertical plane (Figure 10-55). The rod is released from rest in the position shown. 
A particle of mass m = 0.50 kg is supported by a thin string of length L2 from the 
hinge. The particle sticks to the rod on contact. What should be the ratio L2/L1 so 
that θmax = 60° after the collision? 
  
Picture the Problem Assume that there is no friction between the rod and the 
hinge. Because the net external torque acting on the system is zero, angular 
momentum is conserved in this perfectly inelastic collision. The rod, on its 
downward swing, acquires rotational kinetic energy. Angular momentum is 
conserved in the perfectly inelastic collision with the particle and the rotational 
kinetic of the after-collision system is then transformed into gravitational potential 
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energy as the rod-plus-particle swing upward. Let the zero of gravitational 
potential energy be at a distance L1 below the pivot and use both angular 
momentum and mechanical energy conservation to relate the distances L1 and L2 
and the masses M and m. 
 
Use conservation of energy to relate 
the initial and final potential energy 
of the rod to its rotational kinetic 
energy just before it collides with the 
particle: 
 

0ifif =−+− UUKK  
or, because Ki = 0, 

0iff =−+ UUK  
 

Substitute for Kf, Uf, and Ui to 
obtain: 

( ) 0
2 1

122
13

1
2
1 =−+ MgLLMgML ω  

 
Solving for ω yields: 

1

3
L
g

=ω  

 
Letting ω′ represent the angular 
speed of the rod-and-particle system 
just after impact, use conservation of 
angular momentum to relate the 
angular momenta before and after 
the collision: 
 

0Δ if =−= LLL  
or 
( ) ( ) 0' 2

13
12

2
2
13

1 =−+ ωω MLmLML  

Solve for ω′ to obtain: 
ωω 2

2
2
13

1

2
13

1

'
mLML

ML
+

=  

 
 
 
 
 
 
Use conservation of energy to relate 
the rotational kinetic energy of the 
rod-plus-particle just after their 
collision to their potential energy 
when they have swung through an 
angle θmax: 
 

0ifif =−+− UUKK  
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Because Kf = 0: 
   

( )( ) ( ) 0cos1cos1' max2max12
12

2
1 =−+−+− θθω mgLLMgI      (1) 

 
Express the moment of inertia of the 
system with respect to the pivot: 
 

2
2

2
13

1 mLMLI +=  

Substitute for θmax, I and ω′ in 
equation (1): 

( )
( ) 212

1
2
2

2
13

1

22
13

1

1

3
mgLLMg

mLML

ML
L
g

+=
+

     

 
Simplify to obtain: 3

21
2
22

2
1

3
1 632 L

M
mLLLL

M
mL ++=       

 
Let α = m/M and β = L2/L1 to obtain: 01236 232 =−++ αβββα  

 
Substitute for α and simplify to 
obtain the cubic equation in β: 
 

03498 23 =−++ βββ  

Use the solver function* of your 
calculator to find the only real value 
of β: 
 

36.0=β  

 

Remarks: Most graphing calculators have a ″solver″ feature. One can solve 
the cubic equation using either the ″graph″ and ″trace″ capabilities or the 
″solver″ feature. The root given above was found using SOLVER on a TI-85. 
 
68 •• A uniform rod that has a length L1 equal to 1.2 m and a mass M equal 
to 2.0 kg is supported by a hinge at one end and is free to rotate in the vertical 
plane (Figure 10-55). The rod is released from rest in the position shown. A 
particle whose mass is m is supported by a thin string that has a length L2 equal to 
0.80 m from the hinge. The particle sticks to the rod on contact, and after the 
collision the rod continues to rotate until θmax = 37°. (a) Find m. (b) How much 
energy is dissipated during the collision?  
 
Picture the Problem Because the net external torque acting on the system is zero, 
angular momentum is conserved in this perfectly inelastic collision. The rod, on 
its downward swing, acquires rotational kinetic energy. Angular momentum is 
conserved in the perfectly inelastic collision with the particle and the rotational 
kinetic energy of the after-collision system is then transformed into gravitational 
potential energy as the rod-plus-particle swing upward. Let the zero of 
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gravitational potential energy be at a distance L1 below the pivot and use both 
angular momentum and mechanical energy conservation to relate the distances L1 
and L2 and the mass M to m. 
 
(a) Use conservation of energy to 
relate the initial and final potential 
energy of the rod to its rotational 
kinetic energy just before it collides 
with the particle: 
 

0ifif =−+− UUKK  
or, because Ki = 0, 

0iff =−+ UUK  

Substitute for Kf, Uf, and Ui to 
obtain: 
 

( ) 0
2 1

122
13

1
2
1 =−+ MgLLMgML ω  

Solving for ω yields: 

1

3
L
g

=ω  

 
Letting ω′ represent the angular 
speed of the system after impact, use 
conservation of angular momentum 
to relate the angular momenta before 
and after the collision: 
 

0Δ if =−= LLL  
or 
( ) ( ) 0' 2

13
12

2
2
13

1 =−+ ωω MLmLML   (1) 

Solving for ω′ and simplifying 
yields: 

1
2
2

2
13

1

2
13

1

2
2

2
13

1

2
13

1

3

'

L
g

mLML
ML

mLML
ML

+
=

+
= ωω

 

 
Substitute numerical values and simplify to obtain: 
 

( )( )
( )( ) ( )

( )
mm 64.0kg0.960

s/kg75.4
m2.1
m/s81.93

m80.0m2.1kg0.2
m2.1kg0.2'

2

22
3
1

2
3
1

+
=

+
=ω  
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Use conservation of energy to relate 
the rotational kinetic energy of the 
rod-plus-particle just after their 
collision to their potential energy 
when they have swung through an 
angle θmax: 
 

0ifif =−+− UUKK  
or, because Kf = 0, 
 0ifi =−+− UUK         

Substitute for Ki, Uf, and Ui to 
obtain: 

( )( )
( ) 0cos1

cos1'

max2

max12
12

2
1

=−+
−+−

θ
θω

mgL
LMgI

 

 
Express the moment of inertia of the 
system with respect to the pivot: 
 

2
2

2
13

1 mLMLI +=  

Substitute for θmax, I and ω′ in 
equation (1) and simplify to obtain: 
 

( ) ( )21

2
2
1

2.0
64.0kg960.0

kg/s75.4 mLMLg
m

+=
+

   

             
Substitute for M, L1 and L2 and 
simplify to obtain: 
 

( )

( )( )mg
m

m 80.0mkg 4.22.0
64.0kg960.0

kg/s75.4 2
2
1

+⋅=
+  

 
Solve for m to obtain: 
 

kg2.1kg18.1 ==m  

(b) The energy dissipated in the 
inelastic collision is: 
 

fi UUE −=Δ                             (2) 

Express Ui: 
2

1
i

LMgU =  

 
Express Uf: ( ) ⎟

⎠
⎞

⎜
⎝
⎛ +−= 2

1
maxf 2

cos1 mLLMgU θ  

 
Substitute for Ui and Uf in equation (2) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +−−= 2

1
max

1

2
cos1

2
Δ mLLMgLMgE θ  
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Substitute numerical values and evaluate ΔE: 
 

( )( )( )

( )( ) ( )( ) ( )( )

J5.7

m0.80kg1.18
2

m1.2kg2.0m/s9.81cos371

2
m1.2m/s9.81kg2.0Δ

2

2

=

⎟
⎠
⎞

⎜
⎝
⎛ +°−−

=E

 

 
Precession 

69 •• [SSM] A bicycle wheel that has a radius equal to 28 cm is mounted 
at the middle of an axle 50 cm long. The tire and rim weigh 30 N. The wheel is 
spun at 12 rev/s, and the axle is then placed in a horizontal position with one end 
resting on a pivot. (a) What is the angular momentum due to the spinning of the 
wheel? (Treat the wheel as a hoop.) (b) What is the angular velocity of 
precession? (c) How long does it take for the axle to swing through 360° around 
the pivot? (d) What is the angular momentum associated with the motion of the 
center of mass, that is, due to the precession? In what direction is this angular 
momentum? 
  
Picture the Problem We can determine the angular momentum of the wheel and 
the angular velocity of its precession from their definitions. The period of the 
precessional motion can be found from its angular velocity and the angular 
momentum associated with the motion of the center of mass from its definition. 
 
(a) Using the definition of angular 
momentum, express the angular 
momentum of the spinning wheel: 
 

ωωω 22 R
g
wMRIL ===  

 

Substitute numerical values and 
evaluate L: ( )

sJ18sJ1.18

rev
rad2

s
rev12

m0.28
m/s9.81
N30 2

2

⋅=⋅=

⎟
⎠
⎞

⎜
⎝
⎛ ××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

π

L

 

 
(b) Using its definition, express the 
angular velocity of precession: 
 

L
MgD

dt
d

==
φωp  
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Substitute numerical values and 
evaluate ωp: 
 

( )( )

rad/s0.41

rad/s0.414
sJ18.1

m0.25N30
p

=

=
⋅

=ω
 

 
(c) Express the period of the 
precessional motion as a function 
of the angular velocity of 
precession: 
 

s15
rad/s414.0

22

p

===
π

ω
πT  

 

(d) Express the angular 
momentum of the center of mass 
due to the precession: 
 

p
2

pcmp ωω MDIL ==  

 

Substitute numerical values and 
evaluate pL : ( ) ( )

sJ079.0

rad/s414.0m0.25
m/s9.81
N30 2

2p

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=L

 

The direction of pL is either up or down, 

depending on the direction of L. 
 
70 •• A uniform disk of mass 2.50 kg and radius 6.40 cm is mounted at the 
center of a 10.0-cm-long axle and spun at 700 rev/min. The axle is then placed in 
a horizontal position with one end resting on a pivot. The other end is given an 
initial horizontal speed such that the precession is smooth with no nutation.  
(a) What is the angular speed of precession? (b) What is the speed of the center of 
mass during the precession? (c) What is the acceleration (magnitude and 
direction) of the center of mass? (d) What are the vertical and horizontal 
components of the force exerted by the pivot on the axle? 
  
Picture the Problem The angular speed of precession can be found from its 
definition. Both the speed and the magnitude of the acceleration of the center of 
mass during precession are related to the angular speed of precession. We can use 
Newton’s 2nd law to find the vertical and horizontal components of the force 
exerted by the pivot on the axle. 
 
(a) The angular speed of precession is 
given by: 
 

ss
p ω

φω
I
MgD

dt
d

==  

Substituting for Is and simplifying 
yields: s

2
s

2
2
1p

2
ωω

ω
R

gD
MR
MgD

==  
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Substitute numerical values and evaluate ωp: 
 

( ) ( )

( )
rad/s3.3rad/s27.3

s60
min1

rev
rad2π

min
rev700m0.064

m0.050m/s9.812
2

2

p ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

=ω  

 
(b) Express the speed of the center 
of mass in terms of its angular speed 
of precession: 
 

( )( )
cm/s16

rad/s3.27m0.050pcm

=

== ωDv
 

(c) Relate the acceleration of the 
center of mass to its angular speed of 
precession: 
 

( )( )

2

2

22
pcm

cm/s54

m/s0.535

rad/s3.27m0.050

=

=

== ωDa

 

 
(d) Use Newton’s 2nd law to relate 
the  vertical component of the force 
exerted by the pivot to the weight of 
the disk: 
 

( )( )
N25

m/s9.81kg2.5 2
v

=

== MgF
 

Relate the horizontal component of 
the force exerted by the pivot on the 
axle to the acceleration of the center 
of mass: 

( )( )
N3.1

m/s535.0kg2.5 2
cmH

=

== MaF
 

 
General Problems 
 
71 • [SSM] A particle whose mass is 3.0 kg moves in the xy plane with 
velocity   v = 3.0 m / s( )ˆ i  along the line y = 5.3 m. (a) Find the angular momentum 
    L  about the origin when the particle is at (12 m, 5.3 m). (b) A force  
    F  = (–3.9 N)    ̂ i  is applied to the particle. Find the torque about the origin due to 
this force as the particle passes through the point (12 m, 5.3 m). 
 
Picture the Problem While the 3-kg particle is moving in a straight line, it has 
angular momentum given by prL ×= where r is its position vector and p is its 
linear momentum. The torque due to the applied force is given by .Frτ ×=  
 
(a) The angular momentum of the 
particle is given by: 
 

prL ×=  
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Express the vectors r and p : ( ) ( ) jir ˆm3.5ˆm12 +=  
and 

( )( )
( )i

iimvp
ˆm/skg0.9

ˆm/s3.0kg3.0ˆ

⋅=

==
 

 
Substitute for r and p :and simplify 
to find L : 

( ) ( )[ ] ( )
( )( )

( )k
ij

ijiL

ˆ/smkg48

ˆˆ/smkg7.47

ˆm/skg0.9ˆm3.5ˆm12

2

2

⋅−=

×⋅=

⋅×+=

 

 
(b) Using its definition, express the 
torque due to the force: 
 

Frτ ×=  

Substitute for r and F and simplify to 
find τ : 

( ) ( )[ ] ( )
( )( )
( )k

ij

ijiτ

ˆmN16

ˆˆmN9.15

ˆN0.3ˆm3.5ˆm12

⋅=

×⋅−=

−×+=

 

 
72 • The position vector of a particle whose mass is 3.0 kg is given by  
    r  = 4.0 î  + 3.0t2

    
ˆ j , where     r  is in meters and t is in seconds. Determine the 

angular momentum and net torque, about the origin, acting on the particle. 
 
Picture the Problem The angular momentum of the particle is given by 

prL ×= where r is its position vector and p is its linear momentum. The torque 
acting on the particle is given by .dtdLτ =  
 
The angular momentum of the 
particle is given by: 

dt
dm

mm
rr

vrvrprL

×=

×=×=×=
 

 

Evaluating 
dt
dr yields: [ ] ( ) jtjti

dt
d

dt
rd ˆ0.6ˆ0.3ˆ0.4 2 =+=  

 

Substitute for rm and
dt
dr and simplify to find L : 

 

( ) ( ) ( ){ }[ ] ( ) ( )ktjtjtiL ˆsJ72ˆm/s0.6ˆm/s0.3ˆm0.4kg0.3 22 ⋅=×+=  
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Find the net torque due to the force: ( )[ ]
( )k

kLτ

ˆmN72

ˆsJ72net

⋅=

⋅== t
dt
d

dt
d

 

 
73 •• Two ice skaters, whose masses are 55 kg and 85 kg,  hold hands and 
rotate about a vertical axes that passes between them, making one revolution in 
2.5 s. Their centers of mass are separated by 1.7 m and their center of mass is 
stationary. Model each skater as a point particle and find (a) the angular 
momentum of the system about their center of mass and (b) the total kinetic 
energy of the system. 
 
Picture the Problem The ice skaters rotate about their center of mass; a point we 
can locate using its definition. Knowing the location of the center of mass we can 
determine their moment of inertia with respect to an axis through this point. The 
angular momentum of the system is then given by ωcmIL =  and its kinetic energy 
can be found  from ( ).2 cm

2 ILK =  
 
(a) Express the angular momentum 
of the system about the center of 
mass of the skaters: 
 

ωcmIL =  

Using its definition, locate the center 
of mass, relative to the 85-kg skater, 
of the system: 
 

( )( ) ( )( )

m0.668
kg85kg55

0kg85m1.7kg55
cm

=
+

+
=x

 

Calculate cmI : ( )( )
( )( )

2

2

2
cm

mkg5.96
m0.668kg85

m0.668m1.7kg55

⋅=

+

−=I

 

 
Substitute to determine L: ( )

skJ24.0sJ243

rev
rad2π

s2.5
rev1mkg96.5 2

⋅=⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⋅=L

 

 
(b) Relate the total kinetic energy of 
the system to its angular momentum 
and evaluate K: 
 

cm

2

2I
LK =  

Substitute numerical values and 
evaluate K: 

( )
( ) kJ31.0

mkg96.52
sJ243

2

2

=
⋅

⋅
=K  
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74 •• A 2.0-kg ball attached to a string whose length is 1.5 m moves 
counterclockwise (as viewed from above) in a horizontal circle (Figure 10-56). 
The string makes an angle θ = 30° with the vertical. (a) Determine both the 
horizontal and vertical components of the angular momentum L of the ball about 
the point of support P. (b) Find the magnitude of dtLd and verify that it equals 
the magnitude of the torque exerted by gravity about the point of support. 
 
Picture the Problem Let the origin of 
the coordinate system be at the pivot. 
The diagram shows the forces acting on 
the ball. We’ll apply Newton’s 2nd law 
to the ball to determine its speed. We’ll 
then use the derivative of its position 
vector to express its velocity and the 
definition of angular momentum to 
show that L has both horizontal and 
vertical components. We can use the 
derivative of L with respect to time to 
show that the rate at which the angular 
momentum of the ball changes is equal 
to the torque, relative to the pivot point, 
acting on it. 

 

 
(a) Express the angular momentum 
of the ball about the point of support: 
 

vrprL ×=×= m                    (1) 

Apply Newton’s 2nd law to the ball: ∑ ==
θ

θ
sin

sin
2

r
vmTFx  

and 
∑ =−= 0cos mgTFz θ  

 
Eliminate T between these equations 
and solve for v to obtain: 
 

θθ tansinrgv =  
 

Substitute numerical values and 
evaluate v: 
 

( )( )
m/s2.06

tan30sin30m/s9.81m1.5 2

=

°°=v  

Express the position vector of the 
ball: 

( ) ( )
( ) k

jtitr
ˆ30cosm5.1

ˆsinˆcos30sinm5.1

°−

+°= ωω
 

where .k̂ωω =  
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The velocity of the ball is: 

( )( )ji

rv

ˆcosˆsinm/s75.0 tt
dt
d

ωωω +−=

=
 

 
Evaluating ω yields: 

( ) rad/s75.2
30sinm5.1

m/s06.2
=

°
=ω  

 
Substitute for ω to obtain: 
 

( )( )jiv ˆcosˆsinm/s06.2 tt ωω +−=  

Substitute in equation (1) and evaluate L : 
 

( ) ( ) ( ) ( )[ ]
( )[ ( )]

( ) ( ) ( )kjtit

jtit

kjtitL

ˆsJ09.3ˆsinsJ35.5ˆcossJ35.5

ˆcosˆsinm/s06.2

ˆ30cosm5.1ˆsinˆcos30sinm5.1kg0.2

⋅+⋅+⋅=

+−×

°−+°=

ωω

ωω

ωω

 

 
The horizontal component of L is the component in the xy plane: 

 
( ) ( ) jtitL ˆsinsJ4.5ˆcossJ4.5hor ωω ⋅+⋅=  

 
The vertical component of L is its z 
component: 
 

( )kL ˆsJ1.3vertical ⋅=  

(b) Evaluate 
dt
dL : ( )[ ] Jˆcosˆsin36.5 jiL tt

dt
d ωωω +−=  

 

Evaluate the magnitude of 
dt
dL : ( )( )

mN15

rad/s75.2smN36.5

⋅=

⋅⋅=
dt
Ld

 

 
Express the magnitude of the torque 
exerted by gravity about the point of 
support: 
 

θτ sinmgr=  

Substitute numerical values and 
evaluate τ : 

( )( )( )
mN15

30sinm1.5m/s9.81kg2.0 2

⋅=

°=τ
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75 •• A compact object whose mass is m resting on a horizontal, frictionless 
surface is attached to a string that wraps around a vertical cylindrical post 
attached to the surface so that when the object is set into motion, it follows a path 
that spirals inward. (a) Is the angular momentum of the object about the axis of 
the post conserved? Explain your answer. (b) Is the energy of the object 
conserved? Explain your answer. (c) If the speed of the object is v0 when the 
unwrapped length of the string is r, what is its speed when the unwrapped length 
has shortened to r/2? 
 
Picture the Problem The pictorial 
representation depicts the object 
rotating counterclockwise around the 
cylindrical post. Let the system be the 
object. In Part (a) we need to decide 
whether a net torque acts on the object 
and in Part (b) the issue is whether any 
external forces act on the object. In 
Part (c) we can apply the definition of 
kinetic energy to find the speed of the 
object when the unwrapped length has 
shortened to r/2. 

 

R

m

r
T
r

 

 
(a) The net torque acting on the 
object is given by: 
 

RT
dt
dL

==netτ  

 
Because τnet ≠ 0, angular momentum is not conserved.  
 
(b) Because, in this frictionless environment, the net external force acting on the 
object is the tension force and it acts at right angles to the object’s velocity, the 
energy of the object is conserved.  
 
(c) Apply conservation of mechanical 
energy to the object to obtain: 

0ΔΔΔ =+= UKE  
or, because ΔU = 0, 

0Δ rot =K  
Substituting for the kinetic energies 
yields: 
 

02
02

12
2
1 =− ωω I'I'  

or 
02

0
2 =− ωω I'I'  

 
Substitute for I, I′, ω′, and ω0 to 
obtain: 
 0

2
2

2
02

2
1

2

2

2
1 =⎟

⎠
⎞

⎜
⎝
⎛−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

r
vmrr

v'rm  
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Solving for v′ yields: 
0vv' =  

 
76 •• Figure 10-57 shows a hollow cylindrical tube that has a mass M, a 
length L, and a moment of inertia ML2/10. Inside the cylinder are two disks each 
of mass m and radius r, separated by a distance  and tied to a central post by a 
thin string. The system can rotate about a vertical axis through the center of the 
cylinder. You are designing this cylinder-disk apparatus to shut down the rotations 
when the strings break by triggering an electronic ″shutoff″ signal (sent to the 
rotating motor) when the disks hit the ends of the cylinder. During development, 
you notice that with the system rotating at some critical angular speed ω, the 
string suddenly breaks. When the disks reach the ends of the cylinder, they stick. 
Obtain expressions for the final angular speed and the initial and final kinetic 
energies of the system. Assume that the inside walls of the cylinder are 
frictionless. 
 
Picture the Problem Because the net torque acting on the system is zero; we can 
use conservation of angular momentum to relate the initial and final angular 
velocities of the system. See Table 9-1 for the moment of inertia of a disk. 
 
Using conservation of angular 
momentum, relate the initial and 
final angular speeds to the initial and 
final moments of inertia: 
 

0Δ if =−= LLL  
or 

0iiff =− ωω II  

Solving for fω yields: ωωω
f

i
i

f

i
f I

I
I
I

==                     (1) 

 
Use the parallel-axis theorem to 
express the moment of inertia of 
each of the disks with respect to the 
axis of rotation: 
 

( )

( )22
4
1

2
4
12

4
1

2
2
1

cmdiskeach  i,

+=

+=

+=

rm

mmr

mII

 

Express the initial moment of inertia 
Ii of the cylindrical tube plus disks 
system: 
 

( )[ ]
( )22

2
12

10
1

22
4
12

10
1

diskeach  i,
tube

lcylindricai

2

2

++=

++=

+=

rmML

rmML

III

 

 
When the disks have moved out to 
the end of the cylindrical tube: 
 

( )22
2
12

10
1

f LrmMLI ++=  
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Substitute for Ii and If in equation (1) 
and simplify to obtain: 

( )
( )

( )
( )ω

ωω

222

222

22
2
12

10
1

22
2
12

10
1

f

5
5

LrmML
rmML

LrmML
rmML

++
++

=

++
++

=

 

 
The initial kinetic energy of the 
system is: 
 

2
i2

1
i ωIK =  

 

Substituting for Ii and simplifying 
yields: 

( )[ ]
( )[ ] 222

4
12

20
1

222
2
12

10
1

2
1

i

ω

ω

++=

++=

rmML

rmMLK
 

 
The final kinetic energy of the 
system is: 
 

2
ff2

1
f ωIK =  

Substitute for If and ωf and simplify to obtain: 
 

( )[ ] ( )
( )

( )[ ]
( )

2
222

2222

20
1

2

222

222
22

2
12

10
1

2
1

f

5
5

5
5

ω

ω

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
++

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

++=

LrmML
rmML

LrmML
rmMLLrmMLK

 

 
77 •• [SSM] Repeat Problem 76, this time friction between the disks and 
the walls of the cylinder is not negligible. However, the coefficient of friction is 
not great enough to prevent the disks from reaching the ends of the cylinder. Can 
the final kinetic energy of the system be determined without knowing the 
coefficient of kinetic friction? 
 
Determine the Concept Yes. The solution depends only upon conservation of 
angular momentum of the system, so it depends only upon the initial and final 
moments of inertia. 
 
78 •• Suppose that in Figure 10-57  = 0.60 m, L = 2.0 m, M = 0.80 kg, and 
m = 0.40 kg. The string breaks when the system’s angular speed approaches the 
critical angular speed ωi, at which time the tension in the string is 108 N. The 
masses then move radially outward until they undergo perfectly inelastic 
collisions with the ends of the cylinder. Determine the critical angular speed and 
the angular speed of the system after the inelastic collisions. Find the total kinetic 
energy of the system at the critical angular speed, and again after the inelastic 
collisions. Assume that the inside walls of the cylinder are frictionless. 
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Picture the Problem Because the net torque acting on the system is zero; we can 
use conservation of angular momentum to relate the initial and final angular 
speeds of the system. 
 
Using conservation of angular 
momentum, relate the initial and 
final angular speeds to the initial and 
final moments of inertia: 
 

0Δ if =−= LLL  
or 

0iiff =− ωω II ⇒ i
f

i
f ωω

I
I

=    (1) 

Express the tension in the string 
as a function of the critical 
angular speed of the system:  

2
i

2
i 2

ωω mmrT == ⇒
m
T2

i =ω  

 
 

Substitute numerical values and 
evaluate iω : 

( )
( )( )

rad/s30

rad/s30.0
m0.60kg0.40

N1082
i

=

==ω
 

 
Express Ii: ( )2

4
12

10
1

i 2 mMLI +=  
 

Substitute numerical values and 
evaluate Ii: 

( )( )
( )( )

2

2
2
1

2
10
1

i

mkg0.392

m0.60kg0.40

m2.0kg0.80

⋅=

+

=I

 

 
Express If: ( )2

4
12

10
1

f 2 mLMLI +=  
 

Substitute numerical values and 
evaluate If: 

( )( )
( )( )

2

2
2
1

2
10
1

f

mkg12.1

m2.0kg0.40

m2.0kg0.80

⋅=

+

=I

 

 
Substitute numerical values in 
equation (1) and evaluate ωf: 
 

( )

rad/s11

rad/s5.10

rad/s0.30
mkg1.12
mkg392.0

2

2

f

=

=
⋅
⋅

=ω

 

 
The total kinetic energy of the 
system at the critical angular 
speed is: 

2
ii2

1
i ωIK =  
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Substitute numerical values and 
evaluate iK : 

( )( )
kJ18.0J176

rad/s0.30mkg392.0 22
2
1

i

==

⋅=K
 

 
The total kinetic energy of the 
system after the inelastic 
collisions is: 
 

2
ff2

1
f ωIK =  

Substitute numerical values and 
evaluate fK : 

( )( )
J62

rad/s10.5mkg1.12 22
2
1

f

=

⋅=K
 

 
79 •• [SSM] Kepler’s second law states: The line from the center of the 
Sun to the center of a planet sweeps out equal areas in equal times. Show that this 
law follows directly from the law of conservation of angular momentum and the 
fact that the force of gravitational attraction between a planet and the Sun acts 
along the line joining the centers of the two celestial objects. 
 
Picture the Problem The pictorial representation shows an elliptical orbit. The 
triangular element of the area is ( ) .2

2
1

2
1 θθ drrdrdA ==  

dA
θθd

r

 
 
Differentiate dA with respect to t to 
obtain: 
 

ωθ 2
2
12

2
1 r

dt
dr

dt
dA

==      (1)     

Because the gravitational force acts 
along the line joining the two 
objects, τ  = 0. Hence: 
 

constant2 == ωmrL       (2) 

Eliminate r2ω between equations (1) 
and (2) to obtain: constant

2
==

m
L

dt
dA  

 
80 •• Consider a cylindrical turntable whose mass is M and radius is R, 
turning with an initial angular speedω1. (a) A parakeet of mass m, hovering in 
flight above the outer edge of the turntable, gently lands on it and stays in one 
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place on it as shown in Figure 10-58.  What is the angular speed of the turntable 
after the parakeet lands? (b) Becoming dizzy, the parakeet jumps off (not flies off) 
with a velocity   v  relative to the turntable. The direction of   v  is tangent to the 
edge of the turntable, and in the direction of its rotation. What will be the angular 
speed of the turntable afterwards?  Express your answer in terms of the two 
masses m and M, the radius R, the parakeet speed v and the initial angular speed 
ω1.  
 
Picture the Problem The angular momentum of the turntable-parakeet is 
conserved in both parts of this problem. 
 
(a) Apply conservation of angular 
momentum to the turntable-parakeet 
system as the parakeet lands to 
obtain: 
 

0Δ if =−= LLL                        (1) 
 
 
 

The final angular momentum of the 
system is given by: 
 parakeetfturntable

parakeetturntablef

prI

LLL

×+=

+=

ω
 

 
Because 2

2
1

turntable MRI = and 

parakeetparakeet Rmvpr =× : 

 

( )
f

2
f

2
2
1

ff
2

2
1

parakeetf
2

2
1

f

ωω

ωω

ω

mRMR

RRmMR

RmvMRL

+=

+=

+=

 

 
The initial angular momentum of the 
system is given by: 
 

i
2

2
1

iturntablei ωω MRIL ==  

Substituting for Lf and Li in equation 
(1) yields: 
 

0i
2

2
1

f
2

f
2

2
1 =−+ ωωω MRmRMR  
 

Solve for ωf to obtain: 
 if 2

ωω
mM

M
+

=  

 
(b) Apply conservation of angular 
momentum to the turntable-parakeet 
system as the parakeet jumps off to 
obtain: 
 

0Δ if =−= LLL                        (2) 
 
 
 

The final angular momentum of the 
system is given by: 
 parakeetfturntable

parakeetturntablef

prI

LLL

×+=

+=

ω
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Because 2
2
1

turntable MRI = and 

parakeetparakeet Rmvpr =× : 

 

parakeetf
2

2
1

f RmvMRL += ω       (3) 

 

Express the speed of the parakeet 
relative to the turntable: 
 

vRvvv +=+= fturntableparakeet ω  

Using the expression derived in (a), 
substitute for ωf to obtain: 
 

vR
mM

Mv +
+

= iparakeet 2
ω  

Substituting for vparakeet in equation 
(3) and simplifying yields: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+= vR

mM
MmRMRL if

2
2
1

f 2
ωω  

 
The initial angular momentum of the 
system is the same as the final 
angular momentum in (a): 
 

i
2

2
1

i ωMRL =  

Substituting for Lf and Li in equation (2) yields: 
 

0
2 i

2
2
1

if
2

2
1 =−⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

+
+ ωωω MRvR

mM
MmRMR  

 
Solving for ωf yields: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
R
v

mMm
M

M
m

i

2

f 22
2 ωω  

 
81 •• You are given a heavy but thin metal disk (like a coin, but larger; 
Figure 10-59). (Objects like this are called Euler disks.) Placing the disk on a 
turntable, you spin the disk, on edge, about a vertical axis through a diameter of 
the disk and the center of the turntable. As you do this, you hold the turntable still 
with your other hand, letting it go immediately after you spin the disk. The 
turntable is a uniform solid cylinder with a radius equal to 0.250 m and a mass 
equal to 0.735 kg and rotates on a frictionless bearing. The disk has an initial 
angular speed of 30.0 rev/min. (a) The disk spins down and falls over, finally 
coming to rest on the turntable with its symmetry axis coinciding with the 
turntable’s. What is the final angular speed of the turntable? (b) What will be the 
final angular speed if the disk’s symmetry axis ends up 0.100 m from the axis of 
the turntable? 
 
Picture the Problem Let the letters d, m, and r denote the disk and the letters t, 
M, and R the turntable. We can use conservation of angular momentum to relate 
the final angular speed of the turntable to the initial angular speed of the Euler 
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disk and the moments of inertia of the turntable and the disk. In part (b) we’ll 
need to use the parallel-axis theorem to express the moment of inertia of the disk 
with respect to the rotational axis of the turntable. You can find the moments of 
inertia of the disk in its two orientations and that of the turntable in Table 9-1. 
 
(a) Use conservation of angular 
momentum to relate the initial and 
final angular momenta of the 
system: 
 

0diditftfdfdf =−+ ωωω III  

Because ωtf = ωdf: 
 

0diditftftfdf =−+ ωωω III  

Solving for ωtf yields: 
di

tfdf

di
tf ωω

II
I
+

=                        (1) 

 
Ignoring the negligible thickness of 
the disk, express its initial moment 
of inertia: 
 

2
4
1

di mrI =  

Express the final moment of inertia 
of the disk: 
 

2
2
1

df mrI =  

Express the final moment of inertia 
of the turntable: 
 

2
2
1

tf MRI =  

Substitute in equation (1) and 
simplify to obtain: 

di

2

2

di2
2
12

2
1

2
4
1

tf

22

1 ω

ωω

mr
MR

MRmr
mr

+
=

+
=

          (2) 

 
Express ωdi in rad/s: 

rad/s
s60

min1
rev

rad2
min
rev0.30di

π

πω

=

××=
 

 
Substitute numerical values in 
equation (2) and evaluate ωtf: ( )( )

( )( )
rad/s228.0

m0.125kg0.500
m0.250kg0.73522

rad/s

2

2tf

=

+
=

πω
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(b) Use the parallel-axis theorem to 
express the final moment of inertia 
of the disk when it is a distance L 
from the center of the turntable: 
 

( )22
2
122

2
1

df LrmmLmrI +=+=  

Substitute in equation (1) to 
obtain: ( )

di

2

2

2

2

di2
2
122

2
1

2
4
1

tf

242

1 ω

ωω

mr
MR

r
L

MRLrm
mr

++
=

++
=

 

 
Substitute numerical values and evaluate ωtf: 
 

( )
( )

( )( )
( )( )

rad/s192.0

m0.125kg0.500
m0.250kg0.7352

m0.125
m0.10042

rad/s

2

2

2

2tf =
++

=
πω  

 
82 •• (a) Assuming Earth to be a homogeneous sphere that has a radius r 
and a mass m, show that the period T (time for one daily rotation) of Earth’s 
rotation about its axis is related to its radius by T = br2, where b = (4/5)π m/L. 
Here L is the magnitude of the spin angular momentum of Earth. (b) Suppose that 
the radius r changes by a very small amount Δr due to some internal cause such as 
thermal expansion. Show that the fractional change in the period ΔT is given 
approximately by ΔT/T = 2Δr/r. (c) By how many kilometers would r need to 
increase for the period to change by 0.25 d/y (so that leap years would no longer 
be necessary)? 
 
Picture the Problem We can express the period of the earth’s rotation in terms of 
its angular velocity of rotation and relate its angular velocity to its angular 
momentum and moment of inertia with respect to an axis through its center. We 
can differentiate this expression with respect to T and then use differentials to 
approximate the changes in r and T. 
 
(a) Express the period of the earth’s 
rotation in terms of its angular 
velocity of rotation: 
 

ω
π2

=T  

Relate the earth’s angular velocity of 
rotation to its angular momentum 
and moment of inertia: 
 

2
5
2 mr

L
I
L

==ω  
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Substitute for ω and simplify to 
obtain: 

( ) 2
2

5
2

5
42

r
L
m

L
mr

T ππ
==  

 
(b) Find dT/dr: 

r
Tr

r
T

r
L
mr

L
m

dr
d

dr
dT

22

5
42

5
4

2

2

=⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

ππ

 

 
Solving for dT/T yields: 

r
dr

T
dT 2= ⇒

r
r

T
T Δ2Δ

≈  

 
(c) Using the equation we just 
derived, substitute for the change in 
the period of the earth: 
 

r
r

T
T Δ

==×=
Δ 2

1460
1

d365.24
y1

y
d4

1
 

Solving for Δr yields: 
( )14602

Δ rr =  

 
Substitute numerical values and 
evaluate Δr: ( ) km18.2

14602
km1037.6Δ

3

=
×

=r  

 
83 •• [SSM] The term precession of the equinoxes refers to the fact that 
the Earth’s spin axis does not stay fixed but moves with a period of about 26,000 
y. (This explains why our pole star, Polaris, will not remain the pole star forever.) 
The reason for this instability is that Earth is a giant gyroscope. The spin axis of 
Earth precesses because of the torques exerted on it by the gravitational forces of 
the Sun and Moon. The angle between the direction of Earth’s spin axis and the 
normal to the ecliptic plane (the plane of Earth’s orbit) is 22.5 degrees. Calculate 
an approximate value for this torque, given that the period of rotation of the earth 
is 1.00 d and its moment of inertia is 8.03 × 1037 kg⋅m2. 
 
Picture the Problem Let ωP be the angular velocity of precession of the earth-as-
gyroscope, ωs its angular velocity about its spin axis, and I its moment of inertia 
with respect to an axis through its poles, and relate ωP to ωs and I using its 
definition. 
 
Use its definition to express the 
precession rate of the earth as a giant 
gyroscope: 
 

L
τω =P  

Substitute for I and solve for τ to 
obtain: 
 

PP ωωωτ IL ==  
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The angular velocity ωs of the earth 
about its spin axis is given by: T

πω 2
= where T is the period of 

rotation of the earth. 
 

Substitute for ω to obtain: 
 T

I P2 ωπτ =  

 
Substitute numerical values and evaluateτ: 
 

( ) ( ) mN1047.4

h
s3600

d
h24d1

s1066.7mkg1003.82 22
112237

⋅×=
××

×⋅×
=

−−πτ  

 
84 •• As indicated in the text, according to the Standard Model of Particle 
Physics,  electrons are point-like particles having no spatial extent.  (This 
assumption has been confirmed experimentally, and the radius of the electron has 
been shown to be less than 10−18 m.)  The intrinsic spin of an electron could in 
principle be due to its rotation. Let’s check to see if this conclusion is feasible.   
(a) Assuming that the electron is a uniform sphere whose radius is 1.00 × 10−18 m, 
what angular speed would be necessary to produce the observed intrinsic angular 
momentum of /2?  (b) Using this value of angular speed, show that the speed of 
a point on the ″equator″ of a ″spinning″ electron would be moving faster than the 
speed of light.  What is your conclusion about the spin angular momentum being 
analogous to a spinning sphere with spatial extent? 
 
Picture the Problem We can use the definition of the angular momentum of a 
spinning sphere, together with the expression for its moment of inertia, to find the 
angular speed of a point on the surface of a spinning electron. The speed of such a 
point is directly proportional to the angular speed of the sphere. 
 
(a) Express the angular momentum 
of the spinning electron: 
 

2
1== ωIL  

Assuming a spherical electron of 
radius R, its moment of inertia, 
relative to its spin axis, is: 
 

2
5
2 MRI =  

Substituting for I yields: 
 2

12
5
2 =ωMR ⇒ 24

5
MR

=ω  
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Substitute numerical values and 
evaluate ω: 
 

( )
( )( )

rad/s 1044.1

m 10kg 1011.94
sJ 1005.15

32

21831

34

×=

×

⋅×
=

−−

−

ω
 

 
(b) The speed of a point on the 
″equator″ of a spinning electron of 
radius R is given by: 
 

ωRv =  

Substitute numerical values and 
evaluate v: 
 

( )( )
c

v

>×=

×= −

m/s 1044.1

rad/s 1044.1m 10
14

3218

 

 
Given that our model predicts a value for the speed of a point on the ″equator″ of 
a spinning electron that is greater than the speed of light, the idea that the spin 
angular momentum of an electron is analogous to that of a spinning sphere with 
spatial extent lacks credibility. 
 
85 •• An interesting phenomenon occurring in certain pulsars (see Problem 
26) is an event known as a ″spin glitch,″ that is, a quick change in the spin rate of 
the pulsar due to a shift in mass location and a resulting rotational inertia change.  
Imagine a pulsar whose radius is 10.0 km and whose period of rotation is 25.032 
ms.  The rotation period is observed to suddenly decrease from 25.032 ms to 
25.028 ms.  If that decrease was related to a contraction of the star, by what 
amount would the pulsar radius have had to change? 
  
Picture the Problem We can apply the conservation of angular momentum to the 
shrinking pulsar to relate its radii to the observed periods. 
 
The change in the radius of the 
pulsar is: 
 

ifΔ RRR −=                             (1) 

Apply conservation of angular 
momentum to the shrinking pulsar to 
obtain: 

0Δ if =−= LLL  
or 

0iiff =− ωω II  
 

Substituting for If and Ii yields: 
 

0i
2

15
2

f
2
f5

2 =− ωω MRMR  

Solve for ωf to obtain: 
 i2

f

2
i

f ωω
R
R

=  
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Because Tπω 2= , where T is the 
rotation period: i

2
f

2
i

f

22
TR

R
T

ππ
= ⇒ i

i

f
f R

T
TR =  

 
Substitute for Rf  in equation (1) and 
simplify to obtain: 
 

i
i

f
ii

i

f 1Δ R
T
TRR

T
TR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=  

 
Substitute numerical values and 
evaluate ΔR: ( )

cm 9.97

km 0.101
ms 032.25
ms 028.25Δ

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=R

 

 
86 ••• Figure 10.60 shows a pulley in the form of a uniform disk with a rope 
hanging over it. The circumference of the pulley is 1.2 m and its mass is 2.2 kg. 
The rope is 8.0 m long and its mass is 4.8 kg. At the instant shown in the figure, 
the system is at rest and the difference in height of the two ends of the rope is 0.60 
m.  (a) What is the angular speed of the pulley when the difference in height 
between the two ends of the rope is 7.2 m? (b) Obtain an expression for the 
angular momentum of the system as a function of time while neither end of the 
rope is above the center of the pulley. There is no slippage between rope and 
pulley wheel. 
 
Picture the Problem Let the origin of the coordinate system be at the center of 
the pulley with the upward direction positive. Let λ be the linear density (mass 
per unit length) of the rope and L1 and L2 the lengths of the hanging parts of the 
rope. We can use conservation of mechanical energy to find the angular velocity 
of the pulley when the difference in height between the two ends of the rope is  
7.2 m.  
 
(a) Apply conservation of energy to 
relate the final kinetic energy of the 
system to the change in potential 
energy: 
 

0=Δ+Δ UK  
or, because Ki = 0, 

0=Δ+ UK                              (1) 

Express the change in potential energy of the system: 
 

( ) ( ) ( ) ( )[ ]
( ) ( )

( ) ( )[ ]2
2i

2
1i

2
2f

2
1f2

1

2
2i

2
1i2

12
2f

2
1f2

1

2i2i2
1

1i1i2
1

2f2f2
1

1f1f2
1

ifΔ

LLLLg

gLLgLL

gLLgLLgLLgLLUUU

+−+−=

+++−=

−−−−−=−=

λ

λλ

λλλλ
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Because L1 + L2 = 7.4 m,  
L2i – L1i = 0.6 m, and  
L2f – L1f = 7.2 m, we obtain: 
 

L1i = 3.4 m, L2i = 4.0 m,  
L1f = 0.1 m, and L2f = 7.3 m. 
 

Substitute numerical values and evaluate ΔU: 
 

( )( ) ( ) ( )[ ( ) ( ) ]
J75.75

m4.0m3.4m7.3m0.10m/s9.81kg/m0.60Δ 22222
2
1

−=

−−+−=U  

 
Express the kinetic energy of the 
system when the difference in height 
between the two ends of the rope is 
7.2 m: 
 

( )
( ) 22

p2
1

2
1

22
2
122

p2
1

2
1

2
2
12

p2
1

ω

ωω

ω

RMM

MRRM

MvIK

+=

+=

+=

 

Substitute numerical values and 
simplify: ( )[ ]

( ) 22

2
2

2
1

2
1

mkg1076.0
2

m2.1kg8.4kg2.2

ω

ω
π

⋅=

⎟
⎠
⎞

⎜
⎝
⎛+=K

 

 
Substitute in equation (1) and solve 
for ω: 

( ) 0J75.75mkg1076.0 22 =−⋅ ω  
and 

rad/s27
mkg1076.0

J75.75
2 =

⋅
=ω  

 
(b) Noting that the moment arm of 
each portion of the rope is the same, 
express the total angular momentum 
of the system: 
 

( )
( ) ω

ω

ωω

2
rp2

1

2
r

2
p2

1

2
rprp

RMM

RMRM

RMILLL

+=

+=

+=+=

    (2) 

Letting θ be the angle through which 
the pulley has turned, express U(θ): 
 

( ) ( ) ( )[ ] gRLRLU λθθθ 2
2i

2
1i2

1 ++−−=  

Express ΔU and simplify to obtain: ( ) ( )
( ) ( )[ ]

( )
( ) gRLLgR

gLL

gRLRL

UUUUU

θλλθ

λ

λθθ

θ

2ii1
22

2
i2

2
1i2

1

2
2i

2
1i2

1

if 0

−+−=

++

++−−=

−=−=Δ

 

 
Assuming that, at t = 0, L1i ≈ L2i:  gRU λθ 22−≈Δ  
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Substitute for K and ΔU in equation 
(1) to obtain: 
 

( ) 0mkg1076.0 2222 =−⋅ gR λθω  

Solving for ω yields: 
2

22

mkg1076.0 ⋅
=

gR λθω  

 
Substitute numerical values to 
obtain: 
 

( )( )

( )θ

θπω

1-

2

2
2

s41.1

mkg1076.0

m/s9.81kg/m0.6
2

m2.1

=

⋅

⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Express ω as the rate of change 
of θ : 

( )θθ 1s41.1 −=
dt
d

⇒ ( )dtd 1s41.1 −=
θ
θ  

 
Integrate θ  from 0 to θ to obtain: ( )t1s41.1ln −=θ  

 
Transform from logarithmic to 
exponential form to obtain: 
 

( ) ( )tet
1s41.1 −

=θ  

Differentiate to express ω as a 
function of time: 

( ) ( ) ( )te
dt
dt

1s41.11s41.1
−−==

θω  

 
Substitute for ω in equation (2) 
to obtain: 
 

( ) ( ) ( )teRMML
1s41.112

rp2
1 s41.1

−−+=  

Substitute numerical values and evaluate L: 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )tt eeL
11 s41.12s41.11

2

2
1 s/mkg30.0s41.1

2
m2.1kg4.8kg2.2

−−

⋅=⎟
⎠
⎞

⎜
⎝
⎛+= −

π
 

 
 
 
 


