Chapter 10
Angular Momentum

Conceptual Problems

1 - True or false:
(a) If two vectors are exactly opposite in direction, their cross product must be
Zero.
(b) The magnitude of the cross product of 2 vectors is at a minimum when the two
vectors are perpendicular.
(c¢) Knowing the magnitude of the cross product of two nonzero vectors and their
individual magnitudes uniquely determines the angle between them.

Determine the Concept The cross product of vectors A and B is defined to be
Ax B = ABsin ¢ nwhere nis a unit vector normal to the plane defined by Aand

B.
(a) True. If Aand B are in opposite direction, then sing = sin(180°) = 0.

() False. If Aand B are perpendicular, then sing = sin(90°) = 1 and the cross
product of Aand B is a maximum.

i -
(c) False. ¢ =sin'| '—— |, because of the magnitude of Ax B, gives the

reference angle associated with AxB.

2 . Consider two nonzero vectors A4 and B. Their cross product has the

greatest magnitude if A and B are (a) parallel, (b) perpendicular, (c) antiparallel,
(d) at an angle of 45° to each other.

Determine the Concept The cross product of the vectors Aand B is defined to
be AxB=AB singnwhere nis a unit vector normal to the plane defined by

Aand B . Hence, the cross product is a maximum when sing = 1. This condition

is satisfied provided Aand B are perpendicular. | (b) |is correct.

3 «  What is the angle between a force F and a torque vector 7 produced
by F ?

Determine the Concept Because 7 =F x F = rFsing i, where # is a unit vector

normal to the plane defined by 7 and F, the angle between F and 7 is| 90°.
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4 . A particle of mass m is moving with a constant speed v along a straight
line that passes through point P. What can you say about the angular momentum
of the particle relative to point P? (a) Its magnitude is mv. (b) Its magnitude is
zero. (¢) Its magnitude changes sign as the particle passes through point P. (d) It
varies in magnitude as the particle approaches point P.

Determine the Concept Land p are related according to L = F x p. Because the

motion is along a line that passes through point P, » = 0 and so is L. | (b) |is

correct.

5 . [SSM] A particle travels in a circular path and point P is at the
center of the circle. (a) If the particle’s linear momentum p is doubled without

changing the radius of the circle, how is the magnitude of its angular momentum
about P affected? (b) If the radius of the circle is doubled but the speed of the
particle is unchanged, how is the magnitude of its angular momentum about P
affected?

Determine the Concept Land p are related according to L = F x p.
(a) Because L is directly proportional to p, L is doubled.

(b) Because L is directly proportional to7 , L is doubled.

6 - A particle moves along a straight line at constant speed. How does its
angular momentum about any fixed point vary with time?

Determine the Concept We can determine how the angular momentum of the
particle about any fixed point varies with time by examining the derivative of the
cross product of 7 and p .

The angular momentum of the L=rxp
particle is given by:

Differentiate L with respect to time dL (. dp dr .
. —=|Fx— |+| —xp (1)
to obtain: dt dt dt
Because fa:mﬁ,@:Fm,and d_Z=(;7’><F )+(\7><]3)
dt dt net
dr

— =V

dt
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Because the particle moves along a F. . =0=rx ﬁnet =0
straight line at constant speed:

Because v and p(= mv) are parallel: vxp=0

Substitute i tion (1) to obtain: L -
ubstitute in equation (1) to obtain %=O:>L does not change in time.

7 e True or false: If the net torque on a rotating system is zero, the angular
velocity of the system cannot change. If your answer is false, give an example of
such a situation.

False. The net torque acting on a rotating system equals the change in the
system’s angular momentum; that is, 7, = dL/dt where L = Iw. Hence, if 7, is

zero, all we can say for sure is that the angular momentum (the product of 7 and
o) is constant. If 7 changes, so must @. An example is a high diver going from a
tucked to a layout position.

net

8 oe You are standing on the edge of a frictionless turntable that is
initially rotating When you catch a ball that was thrown in the same direction that
you are moving, and on a line tangent to the edge of the turntable. Assume you do
not move relative to the turntable. (a) Does the angular speed of the turntable
increase, decrease, or remain the same during the catch? (b) Does the magnitude
of your angular momentum (about the rotation axis of the table) increase,
decrease, or remain the same after the catch? (c) How does the ball’s angular
momentum (relative to the center of the table) change after the catch? (d) How
does the total angular momentum of the system you-table-ball (about the rotation
axis of the table) change after the catch?

Determine the Concept You can apply conservation of angular momentum to the
you-table-ball system to answer each of these questions.

(a) Because the ball is moving in the same direction that you are moving, your

angular speed will| increase | when you catch it.

(b) The ball has angular momentum relative to the rotation axis of the table before

you catch it and so catching it| increases |your angular momentum relative to the

rotation axis of the table.

(c) The ball will slow down as a result of your catch and so its angular momentum

relative to the center of the table will| decrease.
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(d) Because there is zero net torque on the you-table-ball system, its angular

momentum| remains the same.

9 e« [f the angular momentum of a system about a fixed point P is constant,
which one of the following statements must be true?

(a) No torque about P acts on any part of the system.

(b) A constant torque about P acts on each part of the system.

(c) Zero net torque about P acts on each part of the system.

(d) A constant external torque about P acts on the system.

(e) Zero net external torque about P acts on the system.

Determine the Concept If L is constant, we know that the net torque acting on
the system is zero. There may be multiple constant or time-dependent torques

acting on the system as long as the net torque is zero. | (e) |is correct.

10 <= A block sliding on a frictionless table is attached to a string that passes
through a narrow hole through the tabletop. Initially, the block is sliding with
speed v in a circle of radius 7. A student under the table pulls slowly on the
string. What happens as the block spirals inward? Give supporting arguments for
your choice. (The term angular momentum refers to the angular momentum about
a vertical axis through the hole.) (a) Its energy and angular momentum are
conserved. (b) Its angular momentum is conserved and its energy increases. (¢) Its
angular momentum is conserved and its energy decreases. (d) Its energy is
conserved and its angular momentum increases. (e) Its energy is conserved and its
angular momentum decreases.

Determine the Concept The pull that the student exerts on the block is at right
angles to its motion and exerts no torque (recall that 7 = F x F and 7 = rF'sin¢).

Therefore, we can conclude that the angular momentum of the block is conserved.
The student does, however, do work in displacing the block in the direction of the

radial force and so the block’s energy increases. | (b) |is correct.

11 = [SSM] One way to tell if an egg is hardboiled or uncooked without
breaking the egg is to lay the egg flat on a hard surface and try to spin it. A
hardboiled egg will spin easily, while an uncooked egg will not. However, once
spinning, the uncooked egg will do something unusual; if you stop it with your
finger, it may start spinning again. Explain the difference in the behavior of the
two types of eggs.
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Determine the Concept The hardboiled egg is solid inside, so everything rotates
with a uniform angular speed. By contrast, when you start an uncooked egg
spinning, the yolk will not immediately spin with the shell, and when you stop it
from spinning the yolk will initially continue to spin.

12 = Explain why a helicopter with just one main rotor has a second smaller
rotor mounted on a horizontal axis at the rear as in Figure 10-40. Describe the
resultant motion of the helicopter if this rear rotor fails during flight.

Determine the Concept The purpose of the second smaller rotor is to prevent the
body of the helicopter from rotating. If the rear rotor fails, the body of the
helicopter will tend to rotate on the main axis due to angular momentum being
conserved.

13 e« The spin angular momentum vector for a spinning wheel is parallel
with its axle and is pointed east. To cause this vector to rotate toward the south, it
is necessary to exert a force on the east end of the axle in which direction? (a) up,
(b) down, (c) north, (d) south, (e) east.

Determine the Concept The vector Al:zif—l:i(and the torque that is

responsible for this change in the direction of the angular momentum vector) is
initially points to the south and eventually points south-west. One can use a right-
hand rule to determine the direction of this torque, and hence the force exerted on
the east end of the axle, required to turn the angular momentum vector from east
to south. Letting the fingers of your right hand point east, rotate your wrist until
your thumb points south. Note that fingers, which point in the direction of the

force that must be exerted on the east end of the axle, points upward. | (a) |is

correct.

14 = You are walking toward the north and with your left hand you are
carrying a suitcase that contains a massive spinning wheel mounted on an axle
attached to the front and back of the case. The angular velocity of the gyroscope
points north. You now begin to turn to walk toward the south. As a result, the
front end of the suitcase will (a) resist your attempt to turn it and will try to
maintain its original orientation, () resist your attempt to turn and will pull to the
west, (c) rise upward, (d) dip downward, (e) show no effect whatsoever.

Determine the Concept In turning toward the south, you redirect the angular
momentum vector from north to south by exerting a torque on the spinning wheel.
The force that you must exert to produce this torque (use a right-hand rule with
your thumb pointing either east of north or west of north and note that your
fingers point upward) is upward. That is, the force you exert on the front end of
the suitcase is upward and the force the suitcase exerts on you is downward.



966 Chapter 10

Consequently, the front end of the suitcase will dip downward. | (d) |is correct.

15 e [SSM] The angular momentum of the propeller of a small single-
engine airplane points forward. The propeller rotates clockwise if viewed from
behind. (a) Just after liftoff, as the nose lifts and the airplane tends to veer to one
side. To which side does it veer and why? (b) If the plane is flying horizontally
and suddenly turns to the right, does the nose of the plane tend to move up or
down? Why?

(a) The plane tends to veer to the right. The change in angular momentum AI:pmp

for the propeller is up, so the net torque 7 on the propeller is up as well. The
propeller must exert an equal but opposite torque on the plane. This downward
torque exerted on the plane by the propeller tends to cause a downward change in
the angular momentum of the plane. This means the plane tends to rotate
clockwise as viewed from above.

(b) The plane tends to veer downward. The change in angular momentum Aipmp

for the propeller is to the right, so the net torque 7 on the propeller is toward the
right as well. The propeller must exert an equal but opposite torque on the plane.
This leftward directed torque exerted by the propeller on the plane tends to cause
a leftward-directed change in angular momentum for the plane. This means the
plane tends to rotate clockwise as viewed from the right.

16 oo You have designed a car that is powered by the energy stored in a
single flywheel with a spin angular momentum L . In the morning, you plug the
car into an electrical outlet and a motor spins the flywheel up to speed, adding a
huge amount of rotational kinetic energy to it—energy that will be changed into
translational kinetic energy of the car during the day. Having taken a physics
course involving angular momentum and torques, you realize that problems
would arise during various maneuvers of the car. Discuss some of these problems.
For example, suppose the flywheel is mounted so L points vertically upward
when the car is on a horizontal road. What would happen as the car travels over a
hilltop? Through a valley? Suppose the flywheel is mounted so L points forward,
or to one side, when the car is on a horizontal road. Then what would happen as
the car attempts to turn to the left or right? In each case that you examine,
consider the direction of the torque exerted on the car by the road.

Determine the Concept If L points up and the car travels over a hill or through a
valley, the force the road exerts on the wheels on one side (or the other) will
increase and car will tend to tip. If L points forward and the car turns left or right,
the front (or rear) of the car will tend to lift. These problems can be averted by
having two identical flywheels that rotate on the same shaft in opposite directions.
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17 e [SSM] You are sitting on a spinning piano stool with your arms
folded. (a) When you extend your arms out to the side, what happens to your
kinetic energy? What is the cause of this change? (b) Explain what happens to
your moment of inertia, angular speed and angular momentum as you extend your
arms.

Determine the Concept The rotational kinetic energy of the you-stool system is
2

: L :
given by K, =1lo’ =37 Because the net torque acting on the you-stool

system is zero, its angular momentum L is conserved.

(a) Your kinetic energy decreases. Increasing your moment of inertia / while
conserving your angular momentum /L decreases your Kkinetic energy
K =1%/(21).

(b) Extending your arms out to the side increases your moment of inertia / s and
decreases your angular speed. The angular momentum of the system is
unchanged.

18 = A uniform rod of mass M and length L rests on a horizontal
frictionless table. A blob of putty of mass m = M/4 moves along a line
perpendicular to the rod, strikes the rod near its end, and sticks to the rod.
Describe qualitatively the subsequent motion of the rod and putty.

Determine the Concept The center of mass of the rod-and-putty system moves in
a straight line, and the system rotates about its center of mass.

Estimation and Approximation

19 e« [SSM] An ice skater starts her pirouette with arms outstretched,
rotating at 1.5 rev/s. Estimate her rotational speed (in revolutions per second)
when she brings her arms tight against her body.

Picture the Problem Because we have no information regarding the mass of the
skater, we’ll assume that her body mass (not including her arms) is 50 kg and that
each arm has a mass of 4.0 kg. Let’s also assume that her arms are 1.0 m long and
that her body is cylindrical with a radius of 20 cm. Because the net external torque
acting on her is zero, her angular momentum will remain constant during her
pirouette.

Because the net external torque AL=L.—-L =0
acting on her is zero: or
Iannsinwarmsin - Iarmsouta)armsout = 0 (1)
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Express her total moment of inertia L imsout = Loody + Lams
with her arms out:

2 2
Treating her body as though it is L 1(50kg)(0.20m)
cylindrical, calculate the moment of =1.00kg-m
inertia of her body, minus her arms:
Modeling her arms as though they I, = 2[% (4kg)(1.0 m)z]
are rf)ds, calculate their moment of = 2.67kg-m?
inertia when she has them out:
Substitute to determine her total I .. =1.00kg-m*+2.67kg-m?
moment of inertia with her arms out: ~3.67kg-m’
Express her total moment of inertia I nsin = Loody + Loms
with her arms in: ~1.00kg-m* +2|(4.0kg)(0.20m)"
=1.32kg-m’
Solve equation (1) for @, . to M msou
Obtain: armsin i arms out
Substitute numerical values and 3.67kg-m’
_ o, =———=—(1.5rev/s)
evaluate o, : amin ] 32kg - m?
~| 4rev/s

20 =  Estimate the ratio of angular velocities for the rotation of a diver
between the full tuck position and the full-layout position.

Picture the Problem Because the net external torque acting on the diver is zero,
the diver’s angular momentum will remain constant as she rotates from the full
tuck to the full layout position. Assume that, in layout position, the diver is a thin
rod of length 2.5 m and that, in the full tuck position, the diver is a sphere of
radius 0.50 m.

Because the net external torque AL=L, ,,~L, =0
acting on the diver is zero: or
1 layouta)layout -1 tuckwtuck = O
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Solving for the ratio of the angular @ 1

Lo Puck  _ ~ layout
velocities yields: B
wlayout tuck

Substituting for the moment of By M 72 502
inertia of a thin rod relative to an =, 242

: : a)layout 5 mr r
axis through its center of mass and
the moment of inertia of a sphere
relative to its center of mass and
simplifying yields:

. . 5

Sublstlt;ute numerical .Values and D _ 5(2' 5 m) N
evaluate @, /@y : Dy 24(0.50m)

21 +»  Mars and Earth have nearly identical lengths of days. Earth’s mass is
9.35 times Mars’ mass, its radius is 1.88 times Mars’ radius, and Mars’ orbital
radius is, on average, 1.52 times greater than Earth’s orbital radius. The Martian
year is 1.88 times longer than Earth’s year. Assume they are both uniform spheres
and their orbits about the Sun are circles. Estimate the ratio (Earth to Mars) of

(a) their spin angular momenta, (b) their spin kinetic energies, (c) their orbital
angular momenta, and (d) their orbital kinetic energies.

Picture the Problem We can use the definitions of spin angular momentum, spin
kinetic energy, orbital angular momentum, and orbital kinetic energy to evaluate
these ratios.

(a) The ratio of the spin angular L, I o,
momenta of Earth and Mars is: L_ = o
M / spin MM
Because Mars and Earth have nearly L Ji
. . E ~ E
identical lengths of days, o = om: - 0
LM spin IM
Substituting for the moments of I 2MRE M. (R Y
inertia and simplifying yields: L_E ~2 W ERE = ME [R—EJ
M Jspin ST MM M M
Substitute numerical values for the L. ( )2
— ~9.35(1.88) ~| 33
) L
ratios and evaluate (—Ej Ly spin
M/ spin

energies of Earth and Mars is: 2

(b) The ratio of the spin kinetic ( K, j Lo Lo
Kyt ) gpin oy 1yoy
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Because Mars and Earth have nearly
identical lengths of days, o = om:

Substituting for the moments of
inertia and simplifying yields:

Substitute numerical values for the

) K
ratios and evaluate [ £ ] :
M/ spin

(c) Treating Earth and Mars as point
objects, the ratio of their orbital
angular momenta is:

Substituting for the moments of
inertia and angular speeds yields:

Simplify to obtain:

Substitute numerical values for the

) L
three ratios and evaluate [—Ej :
M Jorb

(d) The ratio of the orbital kinetic
energies of Earth and Mars is:

KM spin ]M

ﬁ ~ %MERE = My [&]2
KM spin %MMRE/I MM RM
Ky ~9.35(1.88)° =| 33

K

M/ spin

orb

L, 27
MMrI\i {J
TM

where rg and ry are the radii of the
orbits of Earth and Mars, respectively.

LM orb MM " TE

f—E = (9.35)(%)2(1.88%

M Jorb

Ly

(KEJ :%IEa)é
KM orb %IMCOI\Z/I

Substituting for the moments of inertia and angular speeds and simplifying

yields:

VR

M| %

(KEJ _
KM orb

2
M\ g

VR
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Substitute numerical values for the (

ﬁj =(9 35)(LJ2(1 88) ~| 14
. 1.52

) K
ratios and evaluate (—E] : M
orb

M

22 e The polar ice caps contain about 2.3 x 10" kg of ice. This mass
contributes negligibly to the moment of inertia of Earth because it is located at the
poles, close to the axis of rotation. Estimate the change in the length of the day
that would be expected if the polar ice caps were to melt and the water were
distributed uniformly over the surface of Earth.

Picture the Problem The change in the length of the day is the difference
between its length when the ice caps have melted and the water has been
distributed over the surface of the Earth and the length of the day before the ice
caps melt. Because the net torque acting on the Earth during this process is zero,
angular momentum is conserved and we can relate the angular speed (which are
related to the length of the day) of the Earth before and after the ice caps melt to
the moments of inertia of the Earth-plus-spherical shell the ice caps melt.

Express the change in the length of a AT =T, —T, . (1)
day as:
Because the net torque acting on the AL=L, —L,. =0

Earth during this process is zero,
angular momentum is conserved:

SubStitUting fOI' Lafter and Lbefore (I sphere +1 shell after 1 spherewbefore = 0
yields:
Because @ =27/T : 2z 2z
(Isphere + Ishell) - Isphere T = 0
after before
or, simplifying,
Isphere + Ishell _ Isphere _ 0

T

after before

T

after — before

Solve for T, to obtain: [ I J
=1+ shell T

sphere
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Substituting for 7, in equation (1) -
and simplifying yields: AT = 1+ Isphere Tbefore - TbefOl'C
_ I shell
- before
sphere
Substitute for Ipen and Iphere and - 2mr? _ 5m T
simplify to obtain: C2MR2 DT 3 R
Substitute numerical values and evaluate AT:
19
_ 5(23x10 24kg) (ldx 24h 36005) o5
3(5.98x10* kg) d  h

23 e=  [SSM] A 2.0-g particle moves at a constant speed of 3.0 mm/s
around a circle of radius 4.0 mm. (@) Find the magnitude of the angular

momentum of the particle. (b) If L= \/ﬁ(é + l)h , where £ is an integer, find the
value of E(E + 1) and the approximate value of /. (¢) By how much does / change

if the particle’s speed increases by one-millionth of a percent, nothing else
changing? Use your result to explain why the quantization of angular momentum
is not noticed in macroscopic physics.

Picture the Problem We can use L = mvr to find the angular momentum of the
particle. In (b) we can solve the equation L =./¢(/+1)ifor ¢(¢+1)and the

approximate value of 7.

(a) Use the definition of angular momentum to obtain:

L=mvr=(2.0x10"kg)(3.0x107 m/s)(4.0x 107 m)=2.40x10* kg -m?/s
=|2.4x10"kg-m°/s

(b) Solve the equation

L2
W+1)=— 1
L=0(¢+1)nfor ¢(0+1): (1) n )
Substitute numerical values and , (£+1)_ 2.40x10 kg - m?/s 2
evaluate /(¢ +1): 1.05%01 4T -5

=|5.2x10%




Because />>1, approximate its

value with the square root of
o(0+1):

(c) The change in / is:

If the particle’s speed increases by
one-millionth of a percent while
nothing else changes:

Equation (1) becomes:

Substituting in equation (2) yields:

Substitute numerical values and
evaluate A/ :
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(~|23x10%

AN="0__—/ 2)
v —>v+107%y :(1+10"8)v

and
L—>L+10°L=(1+10")L

-8 2
Knew(gnew + 1) = M

hz
and
-8
’ z!1+10 !L
new h
-8
Ag:gncw_gzw_£:10-8£
h h h
AL =10 2.40x107° kg-m°/s
1.05x017*7J-s
=[23x10"
and
Al 23x10" _
7 2107 0%

The quantization of angular momentum is not noticed in macroscopic physics

because no experiment can detect a fractional change in / of 10™°%.

24 eee  Astrophysicists in the 1960s tried to explain the existence and structure
of pulsars—extremely regular astronomical sources of radio pulses whose periods
ranged from seconds to milliseconds. At one point, these radio sources were given
the acronym LGM, standing for "Little Green Men,"” a reference to the idea that
they might be signals of extraterrestrial civilizations. The explanation given today
is no less interesting. Consider the following. Our Sun, which is a fairly typical
star, has a mass of 1.99 x 10°° kg and a radius of 6.96 x 10° m. Although it does
not rotate uniformly, because it isn’t a solid body, its average rate of rotation is
about 1 rev/25 d. Stars larger than the Sun can end their life in spectacular
explosions called supernovae, leaving behind a collapsed remnant of the star
called a neutron star. Neutron stars have masses comparable to the original
masses of the stars, but radii of only a few kilometers! The high rotation rates are
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due to the conservation of angular momentum during the collapse. These stars
emit beams of radio waves. Because of the rapid angular speed of the stars, the
beam sweeps past Earth at regular, very short, intervals. To produce the observed
radio-wave pulses, the star has to rotate at rates from about 1 rev/s to 1000 rev/s.
(a) Using data from the textbook, estimate the rotation rate of the Sun if it were to
collapse into a neutron star of radius 10 km. The Sun is not a uniform sphere of
gas and its moment of inertia is given by /= 0.059MR>. Assume that the neutron
star is spherical and has a uniform mass distribution. () Is the rotational kinetic
energy of our Sun greater or smaller after the collapse? By what factor does it
change, and where does the energy go to or come from?

Picture the Problem We can use conservation of angular momentum in Part (a)
to relate the before-and-after collapse rotation rates of the sun. In Part (), we can
express the fractional change in the rotational kinetic energy of the Sun as it
collapses into a neutron star to decide whether its rotational kinetic energy is
greater initially or after the collapse.

(a) Use conservation of angular
momentum to relate the angular
momenta of the Sun before and after
its collapse:

1
Lo, =10, = o, ="0n, (1)

a

Using the given formula, approximate the moment of inertia /;, of the Sun before
collapse:

1, =0.059MR?, =0.059(1.99x10% kg)(6.96x10° km | =5.69x10* kg-m’

sun

Find the moment of inertia /, of the I, =2 MR’

Sun when it has collapsed into a , 2 5

spherical neutron star of radius =3 (1 99x10 kg)(l Okm)

10 km and uniform mass =7.96x10" kg-m®

distribution:

Substitute numerical values in 5.69x10% kg-m?

equation (1) and simplify to obtain: @, = 7.96x10" kg-m> @
=7.15x10% o,

Given that o, = 1 rev/25 d, evaluate
%

o, =7.15x10°| IV | _ 2 86 revid
25d

=1 2.9%x10" rev/d
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Note that the rotational period decreases by the same factor of /,/I, and becomes:

2z 2r

T =""= =3.0x107s
D, 5 26x10" ' rev. 27zrad 1d y 1h
rev 24 h 3600s
(b) Express the fractional change in AK _K,-K, K,
the Sun’s rotational kinetic energy as K, K, K,

a consequence of its collapse:

Substituting for the kinetic energies AK 11,0} ) 10! !
d simplifying yields: - = B
and simplifying yields K, ‘I, .o}

Substitute numerical values and evaluate AK/Ky:

7 2
AKz[ 1 j(2.86><10 rev/d] e

K, \7.15x10° lrev/25d

That is, the rotational kinetic energy increases by a factor of approximately
7x10®. The additional rotational kinetic energy comes at the expense of
gravitational potential energy, which decreases as the Sun gets smaller.

25 = The moment of inertia of Earth about its spin axis is approximately
8.03 x 10°” kg-m”. (a) Because Earth is nearly spherical, assume that the moment
of inertia can be written as [ = CMRZ, where C is a dimensionless constant,

M =5.98 x 10** kg is the mass of Earth, and R = 6370 km is its radius. Determine
C. (b) If the earth’s mass were distributed uniformly, C would equal 2/5. From the
value of C calculated in Part (a), is Earth’s density greater near its center or near
its surface? Explain your reasoning.

Picture the Problem We can solve I =CMR’for C and substitute numerical
values in order to determine an experimental value of C for the earth. We can then
compare this value to those for a spherical shell and a sphere in which the mass is
uniformly distributed to decide whether the earth’s mass density is greatest near
its core or near its crust.

(a) Express the moment of inertia of 3 ) 1

Earth in terms of the constant C: I=CMR"=C= MR>
Substitute numerical values and B 8.03x10" kg-m*
evaluate C: (5.98x10" kg (6370 km

=|0.331
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(b) If all of the mass were in the
crust, the moment of inertia of Earth
would be that of a thin spherical
shell:

2 MR?

I spherical shell = 3

If the mass of Earth were uniformly 1 sphere
distributed throughout its volume, its
moment of inertia would be:

2
Z%MR

Because experimentally C < 0.4, the mass density must be greater near the center
of Earth..

26 e« Estimate Timothy Goebel’s initial takeoff speed, rotational velocity,
and angular momentum when he performs a quadruple Lutz (Figure 10-41). Make
any assumptions you think reasonable, but justify them. Goebel’s mass is about
60 kg and the height of the jump is about 0.60 m. Note that his angular speed will
change quite a bit during the jump, as he begins with arms outstretched and pulls
them in. Your answer should be accurate to within a factor of 2, if you’re careful.

Picture the Problem We’ll assume that he launches himself at an angle of 45°
with the horizontal with his arms spread wide, and then pulls them in to increase
his rotational speed during the jump. We’ll also assume that we can model him as
a 2.0-m long cylinder with an average radius of 0.15 m and a mass of 60 kg. We
can then find his take-off speed and "air time” using constant-acceleration
equations, and use the latter, together with the definition of rotational velocity, to
find his initial rotational velocity. Finally, we can apply conservation of angular
momentum to find his initial angular momentum.

Using a constant-acceleration V= ng +2a Ay
equation, relate his takeoff speed vy )

. ) ) or, because vy = vpsin(45°), v=0, and
to his maximum elevation Ay:

a,=-g,
0=, sin® 45°—2gAy

Solving for vy and simplifying \/ 2gAy \/ 2gAy
yields: * \sin’45° sin45°
Substitute numerical values and \/2(9. 81m /sz)(O. 60 m)
evaluate vo: v, = 450
sin
=|4.9m/s
Use its definition to express e AO

Goebel’s angular velocity: T Af



Use a constant-acceleration equation

o ”

to express Goebel’s "air time” At:

Substitute numerical values and
evaluate Ar:

Substitute numerical values and
evaluate w:

Use conservation of angular
momentum to relate his take-off
angular velocity ay to his average
angular velocity @ as he performs a
quadruple Lutz:

Assuming that he can change his
moment of inertia by a factor of 2 by
pulling his arms in, solve for and
evaluate ay:

Express his take-off angular
momentum:

Assuming that we can model him as
a solid cylinder of length ¢ with an
average radius » and mass m,
express his moment of inertia with
arms drawn in (his take-off
configuration):

Substitute for /y to obtain:

Substitute numerical values and
evaluate Ly:

Angular Momentum 977

At = 2AtriseO.6m = 2ﬂ
\ g
At=2 M =0.699s
9.81m/s

4rev  2mrad
= X =
0.699s rev

36rad/s

lyo,=1w

[0 =Lw=l(36rad/s)= 18rad/s
B )

0

L, =10,

I, = 2(%mr2)= mr’

where the factor of 2 represents our
assumption that he can double his
moment of inertia by extending his
arms.

_ 2
Ly=mr-w,

L, =(60kg)(0.15m)’(18rad/s)
=| 24kg-m’/s

The Cross Product and the Vector Nature of Torque and Rotation

27 o

[SSM] A force of magnitude F is applied horizontally in the negative

x direction to the rim of a disk of radius R as shown in Figure 10-42. Write F and

r in terms of the unit vectors ;, f , and IAc, and compute the torque produced by

this force about the origin at the center of the disk.
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Picture the Problem We can express F and 7 in terms of the unit vectors i and
} and then use the definition of the cross product to find 7 .

Express F in terms of F and the unit F=-Fi
vector i :

A

Express r in terms of R and the unit ¥ =Rj
vector j:

Calculate the cross product of 7 and T=FxF=FR (}x —1) FR( X ])

—

F:

—| FRk

28 Compute the torque about the origin of the grav1tat10na1 force
F= —mg] acting on a particle of mass m located at r = xi +yj and show that this
torque is independent of the y coordinate.

Picture the Problem We can find the torque from the cross product of 7 and F.

Compli‘[e the cross product of T=FxF = (xf + y}')(— mg})
rand F : = —mgx(ix})— mgy(}x})

= —mgxlg

29 - Find A x B for the following choices: (a) A=4i andB=6i + 6f ,
(b) A=4i and B=6i +6k,and (c) A=2i+3j and B=3i +2j.

Picture the Problem We can use the definitions of the cross products of the unit
vectors i , j,and k to evaluate 4 x B in each case.

(a) Evaluate AxB for A =4i and AxB=4i x(6z +6])
B=6i +6j: (Xl)+24(lXj)
24(0)+ 24k

24k
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(b) Evaluate AxB forA =4i and AxB
B=6i+6k:

4 x (67 + 6k

({x2)+24( )
= 24(0)+ 24[- )

—24]

—

(c) Evaluate AxB for AxB = (2; +3})x (3; + 2})
A=2i +3j and B=3i+2j: = 6{F x £ )+-4(Fx j)+oljxi)
+ 6(}'>< })

6(0)+ 4(1€)+ 9(—12)+ 6(0)
=| -5k

30 <= For each case in Problem 31, compute‘gl X E‘ . Compare it to ‘;IHE‘ to

estimate which of the pairs of vectors are closest to being perpendicular. Verify
your answers by calculating the angle using the dot product.

Picture the Problem Because ‘;1 X E‘ = ‘EHE‘ sing, if vectors 4 and B are

ix5
——— =1. The dot product of vectors
4

perpendicular, then‘?l X E‘ = PIHE‘ or

AandBisA-B = ‘EHB‘cosgﬁ . We can verify our estimations using this definition

to calculate ¢ for each pair of vectors.

(a) For A =4i and B =6i + 6 : ‘,Zxé‘ _‘4§x(6§+6}] ) ‘2412‘ )
g @vz) 242 2
~0.707
and the vectors A4 and B are not
perpendicular.

The angle between A4 and B is: $=cos™  A-B _ cos"l(4i . ‘6; + 6}' )]

242

a result confirming that obtained above.
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(b)ForA =4i and B=6i + 6k : ‘Zxé‘ ‘4fx(6f+6l€] 247
AE @e2) 22 V2
~(0.707
and the vectors A and B are not
perpendicular.
The angle between 4 and B is: 4= cos™ Iflf ~ cos™ 4i ~!6i + 6k )
wilzi 2442
o 24
= =45°,
cos )

a result confirming that obtained above.

(€) For 4=2i + 3} and xB| [i+3jxiv2j] |-k
B=3i+2j: A5 T J3Yis 13
=3 ~0.385
13
and the vectors A and B are not
perpendicular.
The angle between Aand B is: 4=cos” A-B
45

_ COSI[(zi +37)(3i + 2}')}
V13413

=cos” (Ej =23°,
13

a result confirming that obtained above.

While none of these sets of vectors are perpendicular, those in (a) and (b) are the
closest, with ¢ =45°, to being perpendicular.

31 e+ A particle moves in a circle that is centered at the origin. The particle has
position r and angular velocity @. (a) Show that its velocity is given by v =@ x r.
(b) Show that its centripetal acceleration is given by a, = @ x v = @ x (Ee) X 17).
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Picture the Problem Let 7 be in the z
xy plane and point in the +x Y
direction. Then @ points in the +z
direction. We can establish the <
results called for in this problem by
forming the appropriate cross Y

: C X
products and by differentiating v.

(a) Express @ using unit vector o=k

notation:

Express r using unit vector notation: =7

Form the cross product of @and 7 : OXF =wkxri= m(;; xf): ro j
= Vj

and v =| oxr

(b) Differentiate v with respect to ¢ to express a :

. dv d,. _\ do _ _ dr ® . - . o~ . . .
a=— —( r)=—>< +OX—=— wxv=at+w><(w><r)
dt dt dt dt dt
a +a

where @, =| @x(@xF) |and @, and a_ are the tangential and centripetal

accelerations, respectively.

32 e«  Youare glven three vectors and their components in the form:
A—al+aj +ak B= bl+bj +bk and C = Cl+C] +ck Show that the

following equalities hold: A (B X C): C- (A X B): B- (C X A)

Picture the Problem We can establish these equalities by carrying out the details
of the cross- and dot-products and comparing the results of these operations.

Evaluate the cross product of B and C to obtain:
BxC = (bycz —bec, ); + (bzcx —-b.c, )} + (bxcy —bc, )12
Form the dot product of A with B xC to obtain:

A- (E X 6)2 abec -abc +abce —abc +abce,—abe, (1)
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Evaluate the cross product of Aand B to obtain:
AxB= (aybz —ab, ); + (asz —a.b, )} + (axby —ab, )12
Form the dot product of C with A x B to obtain:
(of (A X B): cab -cab +cab —cab +cab —cab (2
Evaluate the cross product of € and A to obtain:
CxA= (cyaz —aa, ); + (czax -a.a, )} + (cxay —aa, )12
Form the dot product of B with C x A to obtain:
B- (6’ X ;l)z bea -bca, +bca —bca +bca -bca, (3)
The equality of equations (1), (2), and (3) establishes the equalities.

33 e IfA=3j, AxB=9i,and A-B =12, find B.

Picture the Problem We can write B in the form B = th:+By]A'+BZI€ and use

the dot product of A and B to find By, and their cross product to find B, and B..

Express B in terms of its B= Bxf + Byj'+ BZI€ (1)
components:
Evaluate 4-B: A-B=3B =12=B,=4
Evaluate Ax B ,:lxl§‘:3}'x(Bxf+4}+BZI€)

— 3B k+3B.i
Because AxB =9i : B, =0and B.=3.
Substitute for B, and B. in equation B=|4j+3k

(1) to obtain:

34 e If;1:42,BZ=O, |B|=5,and A ><l§=12l€,determine B.

Picture the Problem Because B. = 0, we can express BasB = Bxf+By} and

form its cross product with A to determine B, and B,.



Express B in terms of its
components:

Express AxB:
Solving for B, yields:

Relate B to B, and By

Solve for and evaluate B,:

Substitute for B, and B, in equation
(1) to obtain:
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B=Bi+B. j (1)

AxB=4ix(Bi+B,j)=4Bk =12k
B, =3

B® =B +B;

B, =B - B} =5 -3 =4

B=|4i+3j

35 eee  Given three noncoplanar vectors A , B ,and C , show that A- (B X E‘)

is the volume of the parallelepiped formed by the three vectors.

Picture the Problem Let, without loss of generality, the vector C lie along the x

axis and the vector B lie in the xy plane as shown below to the left. The diagram to
the right shows the parallelepiped spanned by the three vectors. We can apply the

definitions of the cross- and dot-products to show that 4 - (E xC ) is the volume of

the parallelepiped.

Express the cross-product of B and
C:

T =
—~ —
= -
{,, BxC A //H]A
-H-h — e I

O _
¢ i

BxC =(BCsin0)-k)
and
‘l}xé‘ =(Bsin@)C

= area of the parallelogram
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Form the dot-product of A with the
cross-product of B and C to obtain:

36 o000

A-(BxC)= A(Bsin6)Ccos¢
=(BCsin6)(Acosg)
= (area of base)(height)

=V

parallelepiped

Using the cross product, prove the law of sines for the triangle shown

in Figure 10-43. That is, if 4, B, and C are the lengths of each side of the triangle,

show that 4/sin a = B/sin b = C/sin c.

Picture the Problem Draw the
triangle using the three vectors as
shown below. Note that A+B=C.
We can find the magnitude of the cross

product of A and B and of A and
C and then use the cross product of A
and C, using A+ B =C, to show that

ACsinb:ABsincor,i: ,C )
sinb sinc

Proceeding similarly, we can extend
the law of sines to the third side of the
triangle and the angle opposite it.

Express the magnitude of the cross
product of Aand B:

Express the magnitude of the cross
product of Aand C:

Form the cross product of A with
C to obtain:

Because ;1><6=?1><l§:

Simplify and rewrite this expression
to obtain:

‘;1 X B‘ = ABsin(180°—c) = ABsinc

‘;lxd = ACsinb

—AxA+AxB
= AxB
because AxA=0.
4| =|ax B
and

ACsinb = ABsinc

B C

sinb sinc
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Proceed similarly to extend this A B C
result to the law of sines:

sina sinb sinc

Torque and Angular Momentum

37 e [SSM] A 2.0-kg particle moves directly eastward at a constant speed
of 4.5 m/s along an east-west line. (@) What is its angular momentum (including
direction) about a point that lies 6.0 m north of the line? (b) What is its angular
momentum (including direction) about a point that lies 6.0 m south of the line?
(c) What is its angular momentum (including direction) about a point that lies 6.0
m directly east of the particle?

Picture the Problem The angular momentum of the particle is L=7#x p where
F is the vector locating the particle relative to the reference point and p is the

particle’s linear momentum.

(a) The magnitude of the particle’s L=rpsing =rmvsing = mv(r sin ¢)
angular momentum is given by:

Substitute numerical values and L =(2.0kg)(4.5m/s)(6.0m)
evaluate L: =54kg-m’/s
Use a right-hand rule to establish L =|54kg-m’/s, upward

the direction of L :

(b) Because the distance to the line L =| 54kg-m?*/s, downward
along which the particle is moving is
the same, only the direction of

L differs:

(c) Because 7 x p =0 for a point on I= @
the line along which the particle is

moving:

38 o You observe a 2.0-kg particle moving at a constant speed of

3.5 m/s in a clockwise direction around a circle of radius 4.0 m. (a) What is its
angular momentum (including direction) about the center of the circle? (b) What
is its moment of inertia about an axis through the center of the circle and
perpendicular to the plane of the motion? (¢) What is the angular velocity of the
particle?
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Picture the Problem The angular momentum of the particle is L =r x p where
¥ is the vector locating the particle relative to the reference point and p is the

particle’s linear momentum.

(a) The magnitude of the particle’s L=rpsing =rmvsing = mv(r sin ¢)
angular momentum is given by:

Substitute numerical values and L=(2.0kg)(3.5m/s)(4.0m)
evaluate the magnitude of L: =28kg-m?*/s

Use a right-hand rule to establish L =| 28kg-m?/s, away from you
the direction of L :

(b) Treat the 2.0-kg particle as a I =mr’

point particle to obtain:

Substitute numerical values and I=(2.0kg)(4.0m) =| 32kg-m’
evaluate I:

(¢) Because L = I, the angular o= L

speed of the particle is the ratio of'its 1

angular momentum and its moment

of inertia:

Substitute numerical values and _ 28kg-m’/s _0.88rad/s>
evaluate w: 32kg-m’

39 e (a) A particle moving at constant velocity has zero angular momentum
about a particular point. Use the definition of angular momentum to show that
under this condition the particle is moving either directly toward or directly away
from the point. (b) You are a right-handed batter and let a waist-high fastball go
past you without swinging. What is the direction of its angular momentum
relative to your navel? (Assume the ball travels in a straight horizontal line as it
passes you.)

Picture the Problem Land p are related according to L = 7 x p. If L= 0, then
examination of the magnitude of 7 x p will allow us to conclude thatsing =0 and

that the particle is moving either directly toward the point, directly away from the
point, or through the point.
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(a) Because L=0: FXp=rxmy=mrxv=0
or
Frxv=0
Express the magnitude of ¥ xV : |Fx¥|=rvsing =0
Because neither 7 nor v is zero: sing =0

where ¢ is the angle between r and v.

Solving for ¢ yields: ¢ =sin"'(0)=| 0° or 180°

(b) Use the right-hand rule to establish that the ball’s angular momentum is
downward.

40 e A particle that has a mass m is traveling with a constant velocity v
along a straight line that is a distance b from the origin O (Figure 10-44). Let d4
be the area swept out by the position vector from O to the particle during a time
interval dt. Show that dA/dt is constant and is equal to L/ 2m , where L is the
magnitude of the angular momentum of the particle about the origin.

Picture the Problem We can use the formula for the area of a triangle to find the
area swept out at ¢ = ¢, add this area to the area swept out in time df, and then
differentiate this expression with respect to time to obtain the given expression for
dA/dt.

Express the area swept out at 7 = #;: A =1brcos6 =1bx,
where 4 is the angle between r,and
v and x; is the component of r, in the

direction of v .

The area swept out at ¢ = ¢, + dt is: A=A +dA

Substitute for 4; to obtain: A=A +dA="1b(x, +dx)
Because dx = vdt: A=1b(x, +vdt)
Differentiate 4 with respect to 7 to dA 1h dx _ L by = constant

obtain: E - dt
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Because rsin@= b: Lby= %(,, sin g)v - 2L(rp sin 9)
m

L

2m

41 e A 15-g coin that has a diameter of 1.5 cm is spinning at 10 rev/s about
a fixed vertical axis. The coin is spinning on edge with its center directly above
the point of contact with the tabletop. As you look down on the tabletop, the coin
spins clockwise. (a) What is the angular momentum (including direction) of the
coin about its center of mass? Model the coin as a thin disk with a radius R. (To
find the moment of inertia about the axis, see Table 9-1.) () What is its angular
momentum (including direction) about a point on the tabletop 10 cm from the
axis? (c) Now the coin’s center of mass travels in a straight line east across the
tabletop at 5.0 cm/s, in addition to spinning the same way as in part (a). What is
the angular momentum (including direction) of the coin about a point on the line
of motion of the center of mass? (d) When it is both spinning and sliding, what is
the angular momentum of the coin (including direction) about a point 10 cm north
of the line of motion of the center of mass?

Picture the Problem We can find the total angular momentum of the coin from
the sum of its spin and orbital angular momenta.

(a) The spin angular momentum of L, =lo,,
the coin is:
From Table 9-1, for L negligible I=1MR’

compared to R:

Substitute for / to obtain: L, =i1MRo

Substitute numerical values and evaluate Lgpyi,:

L, =4(0.015kg)(0.0075 m)z(loﬂ Ve rad} =1.33x10° kg-m*/s
S rev
Use a right-handarule to establish i - 1.3x107° kg -m?/s, away
the direction of L : P from you
(b)The total angular momentum of L., =Ly + Loin

the coin is the sum of its orbital and
spin angular momenta:



Angular Momentum 989

Substitute numerical values and L., =0+L, =13x10"kg-m"/s

evaluate Lo

Use a right-hand rule to establish ~ 1.3x107° kg - m?/s, away

1 1 T . Ltotal =

the direction of L, : from you

(c) Because L, =0: i - 1.3x107° kg-m?/s, away
“ 1 from you

(d) When it is both spinning and L., =L, .+ L,

sliding, the total angular momentum

of the coin is:

The orbital angular momentum of L i = MVR

the coin is:

. 2

The spin angular momentum of the Ly, =140 =5 MR 0,

coin is:

Substituting for L, and L, yields: Ly = MVR+IMR’ 0,

Substitute numerical values and evaluate L

total *

L. =(0.015kg)(0.050m/s)(0.10m)

rev 2rxrad
rev

+4(0.015kg)(0.0075 m){lo—x
S

=| 8.8x107> kg-m?/s, pointing toward you

42 = (a) Two stars of masses m; and m, are located at | and r, relative to
some origin O, as shown in Figure 10-45. They exert equal and opposite
attractive gravitational forces on each other. For this two-star system, calculate
the net torque exerted by these internal forces about the origin O and show that it
is zero only if both forces lie along the line joining the particles. (b)The fact that
the Newton’s third-law pair of forces are not only equal and oppositely directed
but also lie along the line connecting the two objects is sometimes called the
strong form of Newton’s third law. Why is it important to add that last phrase?
Hint: Consider what would happen to these two objects if the forces were offset
from each other.
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Picture the Problem Both the forces acting on the particles exert torques with
respect to an axis perpendicular to the page and through point O and the net
torque about this axis is their vector sum.

s
s

(a) The net torque about an axis T = Zfi =F xF, +F, x 17“2
perpendicular to the page and i - -
through point O is given by: or, because F, =—F,

fnet = (’71 _;'Z)XF'I
Because 7, — 7, points along — F, : 7. =0 —F)xF = @

(b) If the forces are not along the same line, there will be a net torque (but still no
net force) acting on the system. This net torque would cause the system to
accelerate angularly, contrary to observation, and hence makes no sense
physically.

43 = A 1.8-kg particle moves in a circle of radius 3.4 m. As you look down
on the plane of its orbit, it is initially moving clockwise. If we call the clockwise
direction positive, its angular momentum relative to the center of the circle varies
with time according to L(t) =10N-m-s— (4.0 N- m)t . (a) Find the magnitude and
direction of the torque acting on the particle. (») Find the angular velocity of the
particle as a function of time.

Picture the Problem The angular momentum of the particle changes because a
net torque acts on it. Because we know how the angular momentum depends on
time, we can find the net torque acting on the particle by differentiating its
angular momentum. We can use a constant-acceleration equation and Newton’s
2" law to relate the angular speed of the particle to its angular acceleration.

(a) The magnitude of the torque _ dL

acting on the particle is the rate at S dt

which its angular momentum

changes:

Evaluate dL/dt to obtain: = %[10 N-m-s—(40N. m)t]

=[-4.0N-m

Note that, because L decreases as the
particle rotates clockwise, the angular
acceleration and the net torque are both
upward.
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(b) The angular speed of the particle o . = Lpia
iS given by ool ] orbital
Treating the 1.8-kg particle as a I i = MR?

point particle, express its moment of
inertia relative to an axis through the
center of the circle and normal to it:

Substitute for/ ., and L ., to o . = 10N-m-s—(4.0N-m)¢
obtain: o MR’

Substitute numerical values and evaluate @orbitar:

il = 10N-m~s—(4.0N;m)t =10.48 rad/s—(0.19rad/sz)t
(1.8kg)(3.4m)

Note that the direction of the angular velocity is downward.

44 +»  You are designing a lathe motor and part of it consists of a uniform
cylinder whose mass is 90 kg and radius is 0.40 m that is mounted so that it turns
without friction on its axis, which is fixed. The cylinder is driven by a belt that
wraps around its perimeter and exerts a constant torque. At ¢ = 0, the cylinder’s
angular velocity is zero. At ¢t = 25 s, its angular speed is 500 rev/min. (¢) What is
the magnitude of its angular momentum at # = 25 s? (b) At what rate is the angular
momentum increasing? (c¢) What is the magnitude of the torque acting on the
cylinder? (d) What is the magnitude of the frictional force acting on the rim of the
cylinder?

Picture the Problem The angular momentum of the cylinder changes because a
net torque acts on it. We can find the angular momentum at ¢ = 25 s from its
definition and the magnitude of the nef torque acting on the cylinder from the rate
at which the angular momentum is changing. The magnitude of the frictional
force acting on the rim can be found using the definition of torque.

(a) The angular momentum of the L=Ilo=‘mrw
cylinder is given by:

Substitute numerical values and evaluate L:

rev 2arad Imin
X X

L =1(90kg)(0.40 m){SOO j =377kg-m?/s

min rev 60s

=|3.8x10*kg-m?*/s
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(b) The rate at which the angular dL (3 77kg-m’/ s)
momentum of the cylinder is dr 255
increasing is given by:

=15kg-m°/s’

=|15kg-m’/s®

(c) Because the torque acting on the - dL _
uniform cylinder is constant, the rate dt
of change of the angular momentum

is constant and hence the

instantaneous rate of change of the

angular momentum at any instant is

equal to the average rate of change

over the time during which the

torque acts:

15kg-m®/s®

(d) The magnitude of the frictional fe T_ 15.1kg-m?/s’ _[38N

force f'acting on the rim is: Y 0.40m

45 e [SSM] In Figure 10-46, the incline is frictionless and the string
passes through the center of mass of each block. The pulley has a moment of
inertia / and radius R. (@) Find the net torque acting on the system (the two
masses, string, and pulley) about the center of the pulley. (b)Write an expression
for the total angular momentum of the system about the center of the pulley.
Assume the masses are moving with a speed v. (¢) Find the acceleration of the
masses by using your results for Parts (a) and (b) and by setting the net torque
equal to the rate of change of the system’s angular momentum.

Picture the Problem Let the system include the pulley, string, and the blocks and
assume that the mass of the string is negligible. The angular momentum of this
system changes because a net torque acts on it.

(a) Express the net torque about T, =Rm,gsin@—Rmg
the center of mass of the pulley:

=| Rg(m,sin@—m,)

where we have taken clockwise to be
positive to be consistent with a positive
upward velocity of the block whose
mass is m; as indicated in the figure.

(b) Express the total angular L=1Iw+mvVvR+m,vR

momentum of the system about an Ji
axis through the center of the pulley: = VR[F +m + mzj
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(c) Express ras the time derivative dL d I
. T=—=—|VR| —+m +m,
of the angular momentum: dt  dt R2
1
= aR[F+ m, + mzj
Equate this result to that of Part (a) B g(m,sin@—m,)
and solve for a to obtain: 4=
— + m, + m,

46 =  Figure 10-47 shows the rear view of a space capsule that was left
rotating rapidly about its longitudinal axis at 30 rev/min after a collision with
another capsule. You are the flight controller and have just moments to tell the
crew how to stop this rotation before they become ill from the rotation and the
situation becomes dangerous. You know that they have access to two small jets
mounted tangentially at a distance of 3.0 m from the axis, as indicated in the
figure. These jets can each eject 10 g/s of gas with a nozzle speed of 800 m/s.
Determine the length of time these jets must run to stop the rotation. In flight, the
moment of inertia of the ship about its axis (assumed constant) is known to be
4000 kg-m®.

Picture the Problem The forces resulting from the release of gas from the jets
will exert a torque on the spaceship that will slow and eventually stop its rotation.
We can relate this net torque to the angular momentum of the spaceship and to the
time the jets must fire.

Relate the firing time of the jets to AL IAw
. , At=—=—— (1)
the desired change in angular Toot oot
momentum:
Express the magnitude of the net T, =2FR

torque exerted by the jets:

Letting Am/At' represent the mass of Am
gas per unit time exhausted from the At'
jets, relate the force exerted by the

gas on the spaceship to the rate at

which the gas escapes:

Substituting for F yields: Am
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Substitute for 7, in equation (1) to Af = IAw
obtain: VR Am
At

Substitute numerical values and evaluate Az:

(4000kg-m?) 30"
min rev 60s

rev 2arad Imin J
X X

At =
! 2(10 kg/s)(800m/s)(3.0m)

2.6x10%s

47 = A projectile (mass M) is launched at an angle #with an initial speed vy.
Considering the torque and angular momentum about the launch point, explicitly
show that dL/dt = 7. Ignore the effects of air resistance. (The equations for

projectile motion are found in Chapter 3.)

Picture the Problem We can use constant-acceleration equations to express the
projectile’s position and velocity coordinates as functions of time. We can use
these coordinates to express the particle’s position and velocity vectors r and v.

Using its definition, we can express the projectile’s angular momentum Las a

function of time and then differentiate this expression to obtain dl:/ dt. Finally, we

can use the definition of the torque, relative to an origin located at the launch
position, the gravitational force exerts on the projectile to express 7 and complete

the demonstration that di/ dt=t.

Using its definition, express the L=Fxmv
angular momentum vector L of the
projectile:

Using constant-acceleration
equations, express the position
coordinates of the projectile as a
function of time:

and

x=v,,t=(v,cosf)t

_ 1 2
Y=Y, +v0yt+3ayt

=(v,sin @)t —1 gt

Express the projectile’s position
vector r :

Using constant-acceleration V. =V, =V,c0s0

X

equations, express the velocity of the
projectile as a function of time:

and

Express the projectile’s velocity
vector v :

v, =V, tat=v,sinf— gt

¥ =[v, cos8i +[v, sin0— gt]

~
.

J

(1

7 =|(v, cos Q)i + [(vo sin@) — 1 gt’ 1;
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Substituting in equation (1) and simplifying yields:

L= {[(V cos H)t]f + [(V sin H)t —1gt’ ]}}x m {[V cos 9]; + [V sin@ — gt]}}
= (—%mgtchos 9)12

lefe.:re.:ntlate L with respect to # to dL _ d (_ Lmgt™V cos 9) i
obtain: dt  dt )
= (— mgtV cos (9)12
Using its definition, express the torque acting on the projectile:
7 =7 x (- mg)j =[(v,cosO)eli + [(v, sin0)r 1 gr* |jx (- mg)j G
= (~mgtV cos H)k
Comparing equations (2) and (3) we dL ~
see that: ar =7

Conservation of Angular Momentum

48 o A planet moves in an elliptical orbit about the sun with the sun at one
focus of the ellipse as in Figure 10-48. (a) What is the torque about the center of
the Sun due to the gravitational force of attraction of the Sun on the planet? (b) At
position A, the planet has an orbital radius 7, and is moving with a speed v,
perpendicular to the line from the sun to the planet. At position B, the planet has
an orbital radius 7, and is moving with speed v,, again perpendicular to the line
from the sun to the planet. What is the ratio of v; to v, in terms of | and »,?

Picture the Problem Let m represent the mass of the planet and apply the
definition of torque to find the torque produced by the gravitational force of
attraction. We can use Newton’s 2" law of motion in the form 7 = di/ dt to show

that L is constant and apply conservation of angular momentum to the motion of
the planet at points 4 and B.

(a) Express the torque produced by 7=FxF =| 0 |because F acts along
the gravitational force of attraction of

the sun for the planet:

the direction of 7.

b)B 7 =0: L [
(b) Becauser ‘;_Lz(): L =7 xmvy = constant
t
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Noting that at points 4 and B Vi | n
|F X 17| = rv, express the relationship

between the distances from the sun
and the speeds of the planets:

49 e [SSM] You stand on a frictionless platform that is rotating at an
angular speed of 1.5 rev/s. Your arms are outstretched, and you hold a heavy
weight in each hand. The moment of inertia of you, the extended weights, and the
platform is 6.0 kg-m*. When you pull the weights in toward your body, the
moment of inertia decreases to 1.8 kg-m”. (¢) What is the resulting angular speed
of the platform? (b) What is the change in kinetic energy of the system?

(c) Where did this increase in energy come from?

Picture the Problem Let the system consist of you, the extended weights, and the
platform. Because the net external torque acting on this system is zero, its angular
momentum remains constant during the pulling in of the weights.

. . I
(a) Using conservatlon' o'f 'angular 1o 1o =0=>0 =iao
momentum, relate the initial and I,
final angular speeds of the system to
its initial and final moments of

inertia:
Substitute nl'lmerical values and o, = 6.0kg-m’ (1.5revis)=[ 5.0revis
evaluate w;: 1.8kg-m®

(b) Express the change in the kinetic AK =K, -K, =110} -1 Lo}
energy of the system:

Substitute numerical values and evaluate AK:

. ) rev 2xrad Y 1 ) rev 2xrad )
AK =1(1.8kg-m?) 5.0 x —1(6.0kg-m?) 1.52x
] rev S rev

=( 0.62kJ

(c) Because no external agent does work on the system, the energy comes from
your internal energy.

50 e A small blob of putty of mass m falls from the ceiling and lands on the
outer rim of a turntable of radius R and moment of inertia /, that is rotating freely
with angular speed ay about its vertical fixed-symmetry axis. (a) What is the post-
collision angular speed of the turntable-putty system? (b) After several turns, the
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blob flies off the edge of the turntable. What is the angular speed of the turntable
after the blob’s departure?

Picture the Problem Let the system consist of the blob of putty and the turntable.
Because the net external torque acting on this system is zero, its angular
momentum remains constant when the blob of putty falls onto the turntable.

(a) Using conservationh O.f .angular Loy, —1,0, 0= a0, = 1y , (1)
momentum, relate the initial and I,

final angular speeds of the turntable

to its initial and final moments of

inertia and solve for @r:

Express the final rotational inertia of I, =1,+1,,=1,+mR’
the turntable-plus-blob:

Substitute for /r in equation (1) and I, 1
. . W =———— 0y =| ——
simplify to obtain: I, +m R?

(b) If the blob flies off tangentially to the turntable, its angular momentum doesn’t
change (with respect to an axis through the center of turntable). Because there is
no external torque acting on the blob-turntable system, the total angular
momentum of the system will remain constant and the angular momentum of the

turntable will not change. The turntable will continue to spin at| @' = @,

51 e [SSM] A Lazy Susan consists of a heavy plastic cylinder mounted
on a frictionless bearing resting on a vertical shaft. The cylinder has a radius

R =15 cm and mass M = 0.25 kg. A cockroach (mass m = 0.015 kg) is on the
Lazy Susan, at a distance of 8.0 cm from the center. Both the cockroach and the
Lazy Susan are initially at rest. The cockroach then walks along a circular path
concentric with the center of the Lazy Susan at a constant distance of 8.0 cm from
the axis of the shaft. If the speed of the cockroach with respect to the Lazy Susan
is 0.010 m/s, what is the speed of the cockroach with respect to the room?

Picture the Problem Because the net external torque acting on the Lazy Susan-
cockroach system is zero, the net angular momentum of the system is constant
(equal to zero because the Lazy Susan is initially at rest) and we can use
conservation of angular momentum to find the angular velocity @ of the Lazy
Susan. The speed of the cockroach relative to the floor v¢ is the difference
between its speed with respect to the Lazy Susan and the speed of the Lazy Susan
at the location of the cockroach with respect to the floor.
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Relate the speed of the cockroach Ve =v—or (1)
with respect to the floor vy to the

speed of the Lazy Susan at the

location of the cockroach:

Use conservation of angular L—L.=0 (2)
momentum to obtain:

Express the angular momentum of L=l w=tMRw
the Lazy Susan:

Express the angular momentum of (v
the cockroach: Le=1coc =mr PR
Substitute for L1 s and L¢ in equation v
(2) to obtain: MR 0 —mr’ PR 0
Solving for w yields: _ 2mrv

MR® +2mr?
Substitute for @ in equation (1) to B 2mry
obtain: Vi =V MR + 2mr”

Substitute numerical values and evaluate vy

2
b, =0.010m/s - 2(0.015kg)(0.080m)*(0.010m/s) T e

(0.25m)(0.15m)* +2(0.015kg)(0.080m)’

52 e« Two disks of identical mass but different radii (» and 2r) are spinning
on frictionless bearings at the same angular speed ay but in opposite directions
(Figure 10-49). The two disks are brought slowly together. The resulting frictional
force between the surfaces eventually brings them to a common angular velocity.
(a) What is the magnitude of that final angular velocity in terms of ay? (b) What
is the change in rotational kinetic energy of the system? Explain.

Picture the Problem The net external torque acting on this system is zero and so
we know that angular momentum is conserved as these disks are brought together.
Let the numeral 1 refer to the disk to the left and the numeral 2 to the disk to the
right. Let the angular momentum of the disk with the larger radius be positive.



(a) Using conservation of angular
momentum, relate the initial angular
speeds of the disks to their common
final speed and to their moments of
inertia:

Solving for r yields:

Express /) and /»:

Substitute for 7, and 7, in equation (1)
and simplify to obtain:

(b) The change in kinetic energy of
the system is given by:

The initial kinetic energy of the
system is the sum of the kinetic
energies of the two disks:

Substituting for Ky and Kj in equation
(2) yields:

Substitute for @ from part (a) and
simplify to obtain:

Noting that the quantity in brackets is
K;, substitute to obtain:
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Lo, =10,
or
Lo, 1,0, :(11 +12)a’f

=, (1

wnlw
RS

AK =K, - K )

K =K +K,
_1 2 1 2
=51, +5 1,0,

:%(Il +Iz)w§

AK:%(II +Iz)wf2 _%(11 "'Iz)a)o2

AK =31+ 1, \¢ o, | =3 (1 + 1, )

:_5_2[%([1 +12)w§]

AK =| -1 K

The frictional force between the surfaces is responsible for some of the initial
kinetic energy being converted to thermal energy as the two disks come together.

53 oo

A block of mass m sliding on a frictionless table is attached to a string

that passes through a narrow hole through the center of the table. The block is
sliding with speed vy in a circle of radius 7y. Find (@) the angular momentum of
the block, (b) the kinetic energy of the block, and (c) the tension in the string.
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(d) A student under the table now slowly pulls the string downward. How much
work is required to reduce the radius of the circle from ry to 7¢/2?

Picture the Problem (a) and (b) We can express the angular momentum and
kinetic energy of the block directly from their definitions. (¢) The tension in the
string provides the centripetal force required for the uniform circular motion and
can be expressed using Newton’s 2" law. (d) Finally, we can use the work-kinetic
energy theorem to express the work required to reduce the radius of the circle by a
factor of two.

(a) Express the initial angular L, =| rymv,
momentum of the block:

(b) Express the initial kinetic energy K,=|4 mv,

of the block:

(¢) Using Newton’s 2™ law, relate N
e : T=F =| m2X

the tension in the string to the T e ,,0

centripetal force required for the
circular motion:

. . 2 2
(d) Use the work-kinetic e.nergy W=AK =K, —K, = L L
theorem to relate the required work 21, 21,
to the change in the kinetic energy of 2 2 P
the block: =£—£=ﬂ( 1 J
21, 21, 2\1,-1I,
_Lf U ) 24
2 \m(Lr, )} —mr 3 mry
Substitute the result from Part (a) W=|-2mv,

and simplify to obtain:

54  eee A (.20-kg point mass moving on a frictionless horizontal surface is
attached to a rubber band whose other end is fixed at point P. The rubber band
exerts a force whose magnitude is F' = bx, where x is the length of the rubber band
and b is an unknown constant. The rubber band force points inward towards P.
The mass moves along the dotted line in Figure 10-50. When it passes point 4, its
velocity is 4.0 m/s, directed as shown. The distance AP is 0.60 m and BP is 1.0 m.
(a) Find the speed of the mass at points B and C. (b) Find b.

Picture the Problem Because the force exerted by the rubber band is parallel to
the position vector of the point mass, the net external torque acting on it is zero
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and we can use the conservation of angular momentum to determine the speeds of
the ball at points B and C. We’ll use mechanical energy conservation to find b by
relating the kinetic and elastic potential energies at 4 and B.

(a) Use conservation of momentum L,=L,=L_
to relate the angular momenta at or
points 4, B and C: My ;F, =MVyly =MVr, (1)
Solve for v, interms of v, : r,
V=V,
Iy
Substitute numerical values and v, = ( 40 rn/S)O.6Om 2 ams
evaluate v, : 1.0m
Solve equation (1) for v, in terms of r,
Ve =V,
v, 7.
Substitute numerical values and v, = ( 40m /S)O.6Om _[a.0m/s
evaluate v.: 0.60m
(b) Use conservation of mechanical AE=E,-E; =0
energy between points 4 and B to or
relate the kinetic energy of the point Ly’ +1br? —Lmv, —L1br; =0
mass and the energy stored in the
stretched rubber band:
Solving for b yields: b= m(vﬁ - vf,)
-
Substitute numerical values and b (0.20 kg)[(2.4 m/s)’ — (4.0 m/s)zl
evaluate b: (0.60 m)2 _ (l.Om)z
=| 3N/m

*Quantization of Angular Momentum

55 = [SSM] The z component of the spin of an electron is —2 7, but the

magnitude of the spin vector is ¥0.75% . What is the angle between the electron’s
spin angular momentum vector and the positive z-axis?
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Picture the Problem The electron’s <
spin angular momentum vector is '
related to its z component as shown
in the diagram. The angle between
s and the positive z-axis is ¢@.

0 |—

Express ¢ in terms of @to obtain: ¢=180°-6
Using trigonometry, relate the o Lh

. v 6 = cos
magnitude of s to its —z component: J0.75h

Substitute for in the expression for
¢ to obtain:

1
0=180°—cosl( 77 j: 125°

V0.75h

56 e« Show that the energy difference between one rotational state of a
molecule and the next higher state is proportional to ¢ + 1.

Picture the Problem Equation 10-29a describes the quantization of rotational
energy. We can show that the energy difference between a given state and the
next higher state is proportional to ¢+ 1by using Equation 10-27a to express the
energy difference.

From Equation 10-29a we have: K, =t +1)E,,
Using this equation, express the AE = (¢ +1)(¢+2)E, — (¢ +1)E,,
difference between one rotational =[20+1)E

Or

state and the next higher state:

57 e [SSM] You work in a bio-chemical research lab, where you are
investigating the rotational energy levels of the HBr molecule. After consulting
the periodic chart, you know that the mass of the bromine atom is 80 times that of
the hydrogen atom. Consequently, in calculating the rotational motion of the
molecule, you assume, to a good approximation, that the Br nucleus remains
stationary as the H atom (mass 1.67 x 10*’ kg) revolves around it. You also know
that the separation between the H atom and bromine nucleus is 0.144 nm.
Calculate (a) the moment of inertia of the HBr molecule about the bromine
nucleus, and (b) the rotational energies for the bromine nucleus’s ground state

(lowest energy) ¢ = 0, and the next two states of higher energy (called the first and
second excited states) described by /=1, and / = 2.
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Picture the Problem The rotational energies of HBr molecule are related to /¢
and E, according to K, = /(¢ +1)E,, where E,, =h*/21.

(a) Neglecting the motion of the I = mpr2 =m,r’
bromine molecule:

Substitute numerical values and Iy, ~ (1 67x107% kg)(0.144>< 10”° m)2
evaluate Iyp,: =3.463x10™ kg-m>

=|3.46x10" kg-m’

(b) Relaté the rotational energies to K, =¢ ( ;. 1) E, where E, = n’
land E,, r )
Substitute numerical values and £ K2 (1 055%1077- S)Z
evaluate £, : " 21 2(3.463x10 " kg-m’)
S 1.607x102Tx— 1V
1.602x107"J
=1.003meV
Evaluate £ to obtain: E,=K,=|1.00meV
Evaluate £ to obtain: E, =K, =(1+1)(1.003meV)
=| 2.0lmeV
Evaluate £, to obtain: E, =K, = 2(2 + 1)(1.003 meV)
=| 6.02meV

58 eee  The equilibrium separation between the nuclei of the nitrogen
molecule (N, consisting of two nitrogen atoms) is 0.110 nm and the mass of each
nitrogen nucleus is 14.0 u, where u = 1.66 x 10’ kg. For rotational energies, the
total energy is due to rotational kinetic energy. (a) Approximate the nitrogen
molecule as a rigid dumbbell of two equal point masses and calculate the moment
of inertia about its center of mass. (b) Find the energy £, of the lowest three

energy levels using E, = K, = ((/+ 1))‘12 /(21). (c) Molecules emit a particle (or

quantum) of light called a photon when they make a transition from a higher
energy state to a lower one. Determine the energy of a photon emitted when a
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nitrogen molecule drops from the ¢ =2 to the ¢ = 1 state. Visible light photons

each have between about 2 and 3 eV of energy. Are these photons in the visible
region?

Picture the Problem We can use the definition of the moment of inertia of point
particles to calculate the rotational inertia of the nitrogen molecule. The rotational
energies of nitrogen molecule are related to ¢ and E  according to

E,=K,=(({+1)E, whereE, =h>/2I.

(a) Using a rigid dumbbell model, I, = Z:miri2 =mr’ +myr’
express and evaluate the moment of i ,
inertia of the nitrogen molecule =2myr

about its center of mass:

Substitute numerical values and 0.110nm )\’
_ 27 .
evaluate [: Iy, = 2(14)(1 .66x10 kg)( ‘j
=1.406x10"* kg-m’
=|1.41x10"* kg -m’
(b) Relate the rotational energies E =K, 6 = E(K + I)EOr
to fand E, : where
2
P
21,
Substitute numerical values and (1 055%x107347. S)Z
evaluate £, : or = 2(1 406x10 kg - mz)
=3.958x10 2 Tx— 1Y
1.60x107"J
=0.2474meV
Evaluate E to obtain: E, =|0.247 meV
Evaluate £, to obtain: E = (1 + 1)(0.2474 meV)
=1 0.495meV
Evaluate £, to obtain: E, =2(2+1)(0.2474meV)

=|1.48meV
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(c) The energy of a photon emitted AE,,, =E,-E
when a nitrogen molecule drops =1.48 meV —0.495 meV
from the / =2 to the / = 1 state is: _

=| 0.99 meV

No. This energy is too low to produce radiation in the visible portion of the
spectrum.

59 eee  Consider a transition from a lower energy state to a higher one. That
is, the absorption of a quantum of energy resulting in an increase in the rotational
energy of an N, molecule (see Problem 64). Suppose such a molecule, initially in
its ground rotational state, was exposed to photons each with energy equal to the
three times the energy of its first excited state. () Would the molecule be able to
absorb this photon energy? Explain why or why not and if it can, determine the
energy level to which it goes. (b) To make a transition from its ground state to its
second excited state requires how many times the energy of the first excited state?

Picture the Problem The rotational energies of a nitrogen molecule depend on
the quantum number / according to E, = L* /21 = ((¢ +1)h*/ 21.

(a) No. None of the allowed values of E, are equal to3E, .

(b) The upward transition from the AE, ., ,=E,-E,
ground state to the second excited
state requires energy given by:

. . E _E
Set this ene.rgy difference equal to aSt E,—E,=nE,—=n="2"%o
constant n times the energy of the 1 E,
excited state:

Substitute numerical values and . 22+1)E,, —E,, _s

evaluate n: (1+1)E,,

Collisions with Rotations

60 e A 16.0-kg, 2.40-m-long rod is supported on a knife edge at its
midpoint. A 3.20-kg ball of clay is dropped from rest from a height of 1.20 m and
makes a perfectly inelastic collision with the rod 0.90 m from the point of support
(Figure 10-51). Find the angular momentum of the rod and clay system about the
point of support immediately after the inelastic collision.

Picture the Problem Let the zero of gravitational potential energy be at the
elevation of the rod. Because the net external torque acting on this system is zero,
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we know that angular momentum is conserved in the collision. We’ll use the
definition of angular momentum to express the angular momentum just after the
collision and conservation of mechanical energy to determine the speed of the ball
just before it makes its perfectly inelastic collision with the rod.

Use conservation of angular L. =L =mvr (1)
momentum to relate the angular

momentum before the collision to

the angular momentum just after the

perfectly inelastic collision:

Use conservation of mechanical K.-K+U,-U =0
energy to relate the kinetic energy of or, because K; = U; =0,
the ball just before impact to its K, -U, =0

initial potential energy:

Letting / represent the distance the Iy’ —mgh=0=v=,2gh
ball falls, substitute for K, and U,

to obtain:

Substituting for v in equation (1) L. =mry2gh

yields:

Substitute numerical values and evaluate Ly

L, =(3.20kg)(0.90m1/2(9.81m/s? )(1.20m) =[ 147 -5

61 e+ [SSM] Figure 10-52 shows a thin uniform bar of length L and mass
M and a small blob of putty of mass m. The system is supported by a frictionless
horizontal surface. The putty moves to the right with velocity v, strikes the bar at
a distance d from the center of the bar, and sticks to the bar at the point of contact.
Obtain expressions for the velocity of the system’s center of mass and for the
angular speed following the collision.

Picture the Problem The velocity of the center of mass of the bar-blob system
does not change during the collision and so we can calculate it before the collision
using its definition. Because there are no external forces or torques acting on the
bar-blob system, both linear and angular momentum are conserved in the collision.
Let the direction the blob of putty is moving initially be the +x direction. Let
lower-case letters refer to the blob of putty and upper-case letters refer to the bar.
The diagram to the left shows the blob of putty approaching the bar and the
diagram to the right shows the bar-blob system rotating about its center of mass
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and translating after the perfectly inelastic collision.
M)

@t

v

The velocity of the center of mass

before the collision is given by:

Using its definition, express the
location of the center of mass
relative to the center of the bar:

Express the angular momentum,
relative to the center of mass, of
the bar-blob system:

Express the angular momentum
about the center of mass:

Using the parallel axis theorem,
express the moment of inertia of

the system relative to its center of

mass:

Substitute for y.m and simplify to obtain:

md

cm — 12

I, = '2ML2+M(

M+m

or, because V' =0,

- m

<)

v
A M+m

md

M — md _
(M +m)y,, =md =y, o

below the center of the bar.

Lcm = mv(d - yC]Tl)
md j_ mMvd

=mv| d— =
( M+m) M+m

I, =5ME + Myl +m(d -y, )
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Substitute for /., and L.y, in equation mMvd
(1) and simplify to obtain: LML (M + m)+ Mmd’®

Remarks: You can verify the expression for I by letting m — 0 to obtain
1,, =+ ML’ and letting M — 0 to obtain Iey, = 0.

62 ¢+ Figure 10-52 shows a thin uniform bar whose length is L and
mass is M and a compact hard sphere whose mass is m. The system is
supported by a frictionless horizontal surface. The sphere moves to the right
with velocity v , strikes the bar at a distance 4 L from the center of the bar.

The collision is elastic, and following the collision the sphere is at rest. Find
the value of the ratio m/M.

Picture the Problem Because there are no external forces or torques acting on
the bar-sphere system, both linear and angular momentum are conserved in the
collision. Kinetic energy is also conserved in the elastic collision of the hard
sphere with the bar. Let the direction the sphere is moving initially be the +x
direction Let lower-case letters refer to the compact hard sphere and upper-case
characters refer to the bar. Let unprimed characters refer to before the collision
and primed characters to after the collision. The diagram to the left shows the path
of the sphere before its collision with the bar and the diagram to the right shows
the sphere at rest after the collision and the bar rotating about its center of mass

and translating to the right.
o

M

Apply conservation of l¥near . =04 MV ==L, (1)
momentum to the collision to obtain:

Apply conservation of angular mvd =0+1_ @ (2)
momentum to the collision to obtain:
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Apply conservation of mechanical Imy? =0+1MV72+Li1 0° (3)
energy to the elastic collision to
obtain:

Use Table 9-1 to find the moment of I, =5ML

inertia of a thin bar about an axis
through its center:

Substitute for /__ in equation (2) and

12
mvd zﬁMLza):a)=( Vdj 7

simplify to obtain: L )M

Substitute for /. and V'in equation m )
Y . mv’ =M|— | v + L ML o’
(3) and simplify to obtain: M

Substituting for o yields:

2 2
mv* = M| = | v+ LM 12301 n
M r )M

Solve this equation for {0 obtain: m_ ! 5
M d
1+ 12(]
L
Because d = L/4: m 1

|
SN

=—— =
1+12(1j
4

63 e Figure 10-53 shows a uniform rod whose length is L and whose mass
is M pivoted at the top. The rod, which is initially at rest, is struck by a particle
whose mass is m at a point x = 0.8L below the pivot. Assume that the particle
sticks to the rod. What must be the speed v of the particle so that following the
collision the maximum angle between the rod and the vertical is 90°?

Picture the Problem Let the zero of gravitational potential energy be a distance x
below the pivot and ignore friction between the rod and the pivot. Because the net
external torque acting on the system is zero, angular momentum is conserved in
this perfectly inelastic collision. We can also use conservation of mechanical
energy to relate the initial kinetic energy of the system after the collision to its
potential energy at the top of its swing.
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Using conservation of mechanical
energy, relate the rotational kinetic
energy of the system just after the
collision to its gravitational potential
energy when it has swung through
an angle 6:

Substitute for K; and Ur to obtain:

Apply conservation of momentum to
the collision:

Solving for w yields:

Express the moment of inertia of
the system about the pivot:

AK+AU =0
or, because K= U;= 0,
-K,+U; =0

1 2
—3]0)

+(Mg%+mng(l—cos€)= 0 W

AL=L,—L =0
or
| ML +(0.8LY m)w—0.8Lmv =0

0.8Lmv
0= SViE 5 2)
3 +0.64mL

I=m(0.8L) +1 M1’

~ s 3)
= 0.64mL> +1 ML

Substitute equations (2) and (3) in equation (1) and simplify to obtain:

0.32(Lmv)’
LML +0.64ml’

- (Mg§+ mg(O.SL))(l —c0s6)=0



Solving for v yields:
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o \/ (0.5M +0.8m) (1 MI? +0.64mI? Jg(1-cos 6)
- 0.32Lm>

Evaluate v for 8= 90° to obtain:

0.5M +0.8m )L ML? +0.64mL’ |g
Vv = 3
0.32Lm*

64 oo

If, for the system of Problem 69, L = 1.2 m, M = 0.80 kg, m = 0.30 kg,

and the maximum angle between the rod and the vertical following the collision is
60°, find the speed of the particle before impact.

Picture the Problem Let the zero of
gravitational potential energy be a
distance x below the pivot and ignore
friction between the rod and pivot.
Because the net external torque acting
on the angular
momentum  is this
perfectly inelastic collision. We can
also use conservation of mechanical
energy to relate the initial kinetic
energy of the system after the collision
to its potential energy at the top of its
swing.

system is  zero,

conserved in

Using conservation of mechanical
energy, relate the rotational kinetic
energy of the system just after the
collision to its gravitational potential
energy when it has swung through
an angle 6:

Substitute for K; and Ut to obtain:

o +(Mg§+ mng(l —c0s0)=0

K,-K.+U,-U, =0
or, because K= U;= 0,
-K. +U,; =0

)
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Apply conservation of momentum AL=L.,-L =0
to the collision: or

(tML2 +(0.80L ) m)r—0.80Limy =0

Solving for w yields: = 0.80Lmv @)
IML +0.64mL’
The moment of inertia of the system 1= m(O.80L)2 + %ML2
about the pivot is: _ (0 64m + L M) 2
= (0. 1

. . 2
Substitute numerical values and 1 =[0.64(0.30kg)+1(0.80kg)](1.2m)
evaluate /: —0.660kg - m’

Substitute equation (2) in equation (1) and simplify to obtain:

2
_0.32(Lmv) .\

; (Mg§+ 0.80ngj(l —c0s6)=0

Solving for v yields: e \/g(O.SOM +0.80m )(1—cos0)I
0.32Lm’

Substitute numerical values and evaluate v for 8= 60° to obtain:

=|7.7m/s

. \/ (9.81m/5%)[0.50(0.80kg)+(0.80)(0.30kg)](0.50)(0.660kg - m?)
- 0.32(1.2m)(0.30kg)’

65 e» A uniform rod is resting on a frictionless table when it is suddenly
struck at one end by a sharp horizontal blow in a direction perpendicular to the
rod. The mass of the rod is M and the magnitude of the impulse applied by the
blow is J. Immediately after the rod is struck, (a) what is the velocity of the
center of mass of the rod, (b) what is the velocity of the end that is struck, (¢) and
what is the velocity of the other end of the rod? (d) Is there a point on the rod that
remains motionless?

Picture the Problem Let the length of the uniform stick be /. We can use the

impulse-change in momentum theorem to express the velocity of the center of
mass of the stick. By expressing the velocity V of the end of the stick in terms of
the velocity of the center of mass and applying the angular impulse-change in
angular momentum theorem we can find the angular velocity of the stick and,
hence, the velocity of the end of the stick.
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(a) Apply the impulse-change in J=Ap=p—-p,=p
momentum theorem to obtain: or, because po = 0 and p = Mven,
J=Mv, =v, = =a
M
(b) Relate the velocity V of the end V=Y, V0 =Vem T a)(%ﬁ) (1)
of the stick to the velocity of the
center of mass v, :
Relate the angular impulse to the JA)=AL=L-L,=1_ o
change in the angular momentum of or, because Lo = 0
the stick: J( 1 €)= I )
Refer to Table 9-1 to find the I =L1MmP?

moment of inertia of the stick with
respect to its center of mass:

Subs‘tiFute for /.., in equation (2) to J( | g): M= g — 6_J
obtain: 12 M/
Substituting for @ in equation (1) y_ J 6J \( | 4J
yleldS: o M Ml )2 - M
(c) Relate the velocity V' of the other V=V, Vg o em = Ve — O(L0)
end of the stick to the velocity of the J 6J )/ 57
center of mass v, : =——|—|z=| -

M \Ml)2 M

(d) Yes, one point remains motionless, but only for a very brief time.

66 e A projectile of mass my is traveling at a constant velocity v, toward a
stationary disk of mass M and radius R that is free to rotate about its axis O
(Figure 10-54). Before impact, the projectile is traveling along a line displaced a
distance b below the axis. The projectile strikes the disk and sticks to point B.
Model the projectile as a point mass. (@) Before impact, what is the total angular
momentum L, of the disk-projectile system about the axis? Answer the following
questions in terms of the symbols given at the start of this problem. (b) What is
the angular speed @ of the disk-projectile system just after the impact? (c) What is
the kinetic energy of the disk-projectile system after impact? (d) How much
mechanical energy is lost in this collision?

Picture the Problem Because the net external torque acting on the system is zero,
angular momentum is conserved in this perfectly inelastic collision.
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(a) Use its definition to express the Ly =|myb
total angular momentum of the disk
and projectile just before impact:

(b) Use conservation of angular B L

L=L=Ilo >0=-"
momentum to relate the angular 1
momenta just before and just after
the collision:
The moment of inertia of the disk- I=4iMR*+mR* = %(M +2m_ )R’
projectile after the impact is:
Substitute for / in the expression for 2m b
@ to obtain: @= (M +2m iRz

p
(c) Express the kinetic energy of the 2 (mp"ob)2
system after impact in terms of its K, = LY ZB (M +2m )RZJ
angular momentum: ’
— (mPVOb)2
(M +2m )R?
(d) Express the difference between AE =K, - K;
o e . )

the 1n‘1t1a1 and ﬁr‘lal k‘me‘uc ener‘gles, B ) (mpvo b)
substitute, and simplify to obtain: =my, -

(M +2m, )R?
2m_b*
%mpvg 1- P 5
iM+2mp iR

67 e [SSM] A uniform rod of length L; and mass M equal to 0.75 kg is
supported by a hinge of negligible mass at one end and is free to rotate in the
vertical plane (Figure 10-55). The rod is released from rest in the position shown.
A particle of mass m = 0.50 kg is supported by a thin string of length L, from the
hinge. The particle sticks to the rod on contact. What should be the ratio L/L; so
that G, = 60° after the collision?

Picture the Problem Assume that there is no friction between the rod and the
hinge. Because the net external torque acting on the system is zero, angular
momentum is conserved in this perfectly inelastic collision. The rod, on its
downward swing, acquires rotational kinetic energy. Angular momentum is
conserved in the perfectly inelastic collision with the particle and the rotational
kinetic of the after-collision system is then transformed into gravitational potential
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energy as the rod-plus-particle swing upward. Let the zero of gravitational
potential energy be at a distance L; below the pivot and use both angular
momentum and mechanical energy conservation to relate the distances L; and L,

and the masses M and m.

Use conservation of energy to relate
the initial and final potential energy
of the rod to its rotational kinetic
energy just before it collides with the
particle:

Substitute for Ky, Uy, and U to
obtain:

Solving for w yields:

Letting @’represent the angular
speed of the rod-and-particle system
just after impact, use conservation of
angular momentum to relate the
angular momenta before and after
the collision:

Solve for w’to obtain:

Use conservation of energy to relate
the rotational kinetic energy of the
rod-plus-particle just after their
collision to their potential energy
when they have swung through an
angle Gnax:

K,—K +U,~U, =0
or, because K; =0,
K. +U,-U; =0

oo 2
Ll
AL=L ~L =0

or

(LML + mL )t ML ) = 0

T ML
——
LML + mL,

K. —K +U,-U =0
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Because K= 0:

11w +Mg(L L, N1 -cosb,, )+ mgL,(1-cosb,, )=0 (1)

max

Express the moment of inertia of the I=1ML +mlL;
system with respect to the pivot:

Substitute for Gnax,  and @’in g )
equation (1): 3 L (% M, )z
) — = Mg({ L, )+ mgL
%ML?+mL22 g(z 1) g 2
Simplify to obtain: =2 m L, +32L +6 m I

Let = m/M and = L,/L, to obtain: 6a’B +38° +2af-1=0

Substitute for & and simplify to 8B’ +9B° +48-3=0
obtain the cubic equation in £

Use the solver function* of your B =036
calculator to find the only real value

of .

Remarks: Most graphing calculators have a "solver” feature. One can solve
the cubic equation using either the "graph” and "trace” capabilities or the
"solver” feature. The root given above was found using SOLVER on a TI-85.

68 e« A uniform rod that has a length L, equal to 1.2 m and a mass M equal
to 2.0 kg is supported by a hinge at one end and is free to rotate in the vertical
plane (Figure 10-55). The rod is released from rest in the position shown. A
particle whose mass is m is supported by a thin string that has a length L, equal to
0.80 m from the hinge. The particle sticks to the rod on contact, and after the
collision the rod continues to rotate until Gy.x = 37°. (a) Find m. (b) How much
energy is dissipated during the collision?

Picture the Problem Because the net external torque acting on the system is zero,
angular momentum is conserved in this perfectly inelastic collision. The rod, on
its downward swing, acquires rotational kinetic energy. Angular momentum is
conserved in the perfectly inelastic collision with the particle and the rotational
kinetic energy of the after-collision system is then transformed into gravitational
potential energy as the rod-plus-particle swing upward. Let the zero of



Angular Momentum 1017

gravitational potential energy be at a distance L; below the pivot and use both
angular momentum and mechanical energy conservation to relate the distances L;

and L, and the mass M to m.

(a) Use conservation of energy to
relate the initial and final potential
energy of the rod to its rotational
kinetic energy just before it collides
with the particle:

Substitute for Ky, Uy, and Ui to
obtain:

Solving for @ yields:

Letting @’represent the angular
speed of the system after impact, use
conservation of angular momentum
to relate the angular momenta before
and after the collision:

Solving for @' and simplifying
yields:

K,-K,+U,-U;=0
or, because K; =0,
K. +U,-U, =0

3
w= |2

Ll
AL=L,~L =0
or

(ML +mL2 )0t ML ) =0 (1)

ML
=
LML} +mL
ML 3¢

ML +mL\ L,

Substitute numerical values and simplify to obtain:

, 1(2.0kg)(1.2m)
2

1(2.0kg)(1.2m) +m(0.80m

3(9.81m/s*)  4.75kg/s
Y\ 12m 0.960kg +0.64m
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Use conservation of energy to relate
the rotational kinetic energy of the
rod-plus-particle just after their
collision to their potential energy
when they have swung through an
angle Gnax:

Substitute for K;, U, and U; to
obtain:

Express the moment of inertia of the
system with respect to the pivot:

Substitute for Gax, I and »’in
equation (1) and simplify to obtain:

Substitute for M, L; and L, and
simplify to obtain:

Solve for m to obtain:

(b) The energy dissipated in the
inelastic collision is:

Express Ui:

Express Us:

K, -K +U,-U, =0
or, because Ky=0,
-K +U,-U, =0

110 +Mg(L L )(1—cosb,,.)

max

+mgL,(1-cosf, . )=0

max

I=1ML +mlL;

1(4.75kg/s)
0.960kg +0.64m

=0.2g(ML, +mL,)

1(4.75kg/s )
0.960kg +0.64m
=0.2g(2.4kg-m+(0.80 m)m )

m=1.18kg =| 1.2kg

AE =U,;-U; (2)

L
U =Mg—t
i 82

U, =(1-cosé )g[M%Hanj

max

Substitute for U; and Ur in equation (2) to obtain:

AE = Mg% —(1-cos@, . )g(M% + mLz)
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Substitute numerical values and evaluate AL

2.0kg)(9.81m/s>)(1.2m)
2

(1 —cos37°)(9.81m/52)(w+ (1.18kg)(0.80m)j

o

=17.5]

Precession

69 e [SSM] A bicycle wheel that has a radius equal to 28 cm is mounted
at the middle of an axle 50 cm long. The tire and rim weigh 30 N. The wheel is
spun at 12 rev/s, and the axle is then placed in a horizontal position with one end
resting on a pivot. (¢) What is the angular momentum due to the spinning of the
wheel? (Treat the wheel as a hoop.) (b) What is the angular velocity of
precession? (c¢) How long does it take for the axle to swing through 360° around
the pivot? (d) What is the angular momentum associated with the motion of the
center of mass, that is, due to the precession? In what direction is this angular
momentum?

Picture the Problem We can determine the angular momentum of the wheel and
the angular velocity of its precession from their definitions. The period of the
precessional motion can be found from its angular velocity and the angular
momentum associated with the motion of the center of mass from its definition.

(a) Using the definition of angular I =Iw=MRaw="Rwo
momentum, express the angular g
momentum of the spinning wheel:

Substitute Fumerlcal values and _ 30N (0.28m)2
evaluate L: 9.81m/s?
X(lzre_v>< 27rradj
S rev
=18.1J-s=| 18J-s
(b) Using its definition, express the o =99 _ MgD

angular velocity of precession: Podt L
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Substitute numerical values and o - (30 N)(0.25 m) _ 0414rad/s
evaluate @y ’ 18.17-s

=| 0.41rad/s
(c) Express the period of the T- 27 2w _ 155
precessional motion as a function o, 0.414rad/s
of the angular velocity of
precession:

2

(d) Express the angular L =1,0,=MD o,

momentum of the center of mass
due to the precession:

Substitute numerical values and 30N ,
evaluate Lp . Lp = W](GZS m) (04 14 rad/S)
=1 0.079])-s

The direction of L, is either up or down,

depending on the direction of L.

70 e A uniform disk of mass 2.50 kg and radius 6.40 cm is mounted at the
center of a 10.0-cm-long axle and spun at 700 rev/min. The axle is then placed in
a horizontal position with one end resting on a pivot. The other end is given an
initial horizontal speed such that the precession is smooth with no nutation.

(a) What is the angular speed of precession? (b) What is the speed of the center of
mass during the precession? (¢) What is the acceleration (magnitude and
direction) of the center of mass? (d) What are the vertical and horizontal
components of the force exerted by the pivot on the axle?

Picture the Problem The angular speed of precession can be found from its
definition. Both the speed and the magnitude of the acceleration of the center of
mass during precession are related to the angular speed of precession. We can use
Newton’s 2™ law to find the vertical and horizontal components of the force
exerted by the pivot on the axle.

(a) The angular speed of precession is o = d¢ _ MgD
given by: Podt 1o,

Substituting for /5 and simplifying o MgD 2gD

yields: " IMRew, R’o,
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Substitute numerical values and evaluate @:

2
o, = 2(9.81m/s )(0'20501:11)1 —=3.27rad/s =| 3.3rad/s
(0.064m)2(700 ALY ;ng
S

min  rev
(b) Express the speed of the center Vou = D@y, = (0.050 m)(3.27 rad/s)
of mass in terms of its angular speed —[16em/s
of precession:
(c) Relate the acceleration of the a, = Da)If =(0.050m)(3.27 rad/s)’
center qf mass to its angular speed of —0.535m/s>
precession:

=| 54cm/s’
(d) Use Newton’s 2™ law to relate F,=Mg=(2.5 kg)(9.81m/s2)
the vertical component of the force _[25N
exerted by the pivot to the weight of
the disk:
Relate the horizontal component of F,=Ma_, =(2.5 kg)(0.535 m/ sz)
the force exerted by the pivot on the _M3N

axle to the acceleration of the center
of mass:

General Problems

71 e [SSM] A particle whose mass is 3.0 kg moves in the xy plane with
velocity v = (3.0 m/s)i along the line y = 5.3 m. (a) Find the angular momentum
L about the origin when the particle is at (12 m, 5.3 m). (b) A force

F= (-3.9 N); is applied to the particle. Find the torque about the origin due to
this force as the particle passes through the point (12 m, 5.3 m).

Picture the Problem While the 3-kg particle is moving in a straight line, it has
angular momentum given by L =¥ x pwhere Fis its position vector and p is its

linear momentum. The torque due to the applied force is given by 7 = F x F.

(a) The angular momentum of the L=Fxp
particle is given by:
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Express the vectors r and p: F= (12m)f +(53 m)}
and
p=mvi =(3.0kg)(3.0m/s)i
=(9.0kg - m/s)i

Substitute for# and p :and simplify L=|(12m)7 +(5.3m)j]x(9.0kg - mys)i
to find L : = (47.7kg : mz/S)(fX :)
== (48kg . mz/s)l:f

-~

(b) Using its definition, express the T=FxF
torque due to the force:
Substitute for 7 and F and simplify to T= :(12m)1c +(5.3 m)}']x (-3.0N)i
find 7: ——(15.9N-m)(jxi)
=| (1I6N-m)k
72 e The position vector of a particle whose mass is 3.0 kg is given by

¥ =4.0i +3.04] , where 7 is in meters and ¢ is in seconds. Determine the
angular momentum and net torque, about the origin, acting on the particle.

Picture the Problem The angular momentum of the particle is given by
L =¥ x pwhere 7 is its position vector and p is its linear momentum. The torque

acting on the particle is given by 7 = di/ dt.

The angular momentum of the L=Fxp=Fxmy =mrxv
particle is given by: dr
=mrx—
dt
. dl_’: . dl_': d N 27% “
Evaluating — yields: —=—14.0i +3.0¢"j|=6.0¢)j
S’ dr dt[ il 600

Substitute for mr and% and simplify to find L:

L =|(3.0kg){4.0m)i + (3.0 m/s? )i |}x (6.0rmys) j =[ (7261 -5k
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Find the net torque due to the force: e d_i _ d (7 2] S) ];]
dt dt
=| (72N -m)k

73 e Two ice skaters, whose masses are 55 kg and 85 kg, hold hands and
rotate about a vertical axes that passes between them, making one revolution in
2.5 s. Their centers of mass are separated by 1.7 m and their center of mass is
stationary. Model each skater as a point particle and find (a) the angular
momentum of the system about their center of mass and (b) the total kinetic
energy of the system.

Picture the Problem The ice skaters rotate about their center of mass; a point we
can locate using its definition. Knowing the location of the center of mass we can
determine their moment of inertia with respect to an axis through this point. The
angular momentum of the system is then given by L =/_ @ and its kinetic energy

can be found from K =*/(21_,).

(a) Express the angular momentum L=1 o
of the system about the center of
mass of the skaters:

Using its definition, locate the center . (55 kg)(l 7 m) + (85 kg)(O)

of mass, relative to the 85-kg skater, o 55kg +85kg
of the system: =0.668m
Calculate 1, 1., =(55kg)(1.7m-0.668m)’
+(85kg)(0.668m)’
=96.5kg-m’

Substitute to determine L:

X
.5s rev

I (96.5kg~m2)(lrev 2nradj

=243)-s=| 0.24kJ-s

(b) Relate the total kinetic energy of r

the system to its angular momentum 21,
and evaluate K:

Substitut ical val d )
u s1ueT1umerlca values an _ (243] s) 0310
evaluate K: 2(06.5kg - m?)
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74 e« A 2.0-kg ball attached to a string whose length is 1.5 m moves
counterclockwise (as viewed from above) in a horizontal circle (Figure 10-56).
The string makes an angle &= 30° with the vertical. (a) Determine both the

horizontal and vertical components of the angular momentum L of the ball about
the point of support P. (b) Find the magnitude of di/ dt and verify that it equals
the magnitude of the torque exerted by gravity about the point of support.

Picture the Problem Let the origin of
the coordinate system be at the pivot.
The diagram shows the forces acting on
the ball. We’ll apply Newton’s 2™ law
to the ball to determine its speed. We’ll
then use the derivative of its position
vector to express its velocity and the
definition of angular momentum to
show that Lhas both horizontal and
vertical components. We can use the
derivative of L with respect to time to
show that the rate at which the angular
momentum of the ball changes is equal
to the torque, relative to the pivot point,
acting on it.

(a) Express the angular momentum
of the ball about the point of support:

Apply Newton’s 2™ law to the ball:

Eliminate 7 between these equations
and solve for v to obtain:

Substitute numerical values and
evaluate v:

Express the position vector of the
ball:

'y
|

77—

//l
s 7|

2,0
/&\

L=rxp=mrxv (1)

2
v

ZFX =Tsinf =m—
rsin@

and
ZFZ =Tcosf@-mg=0

v =,/rgsinftan

v=1/(1.5m)(9.81m/s’ ) sin30°tan30°
=2.06m/s

r= (1 .5 m)sin 30°(c0s @ti +sin wtj)
- (1 S m)cos 30°k

where @ = wk.



The velocity of the ball is:

Evaluating o yields:

Substitute for @ to obtain:

Substitute in equation (1) and evaluate L :
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. dr
V=—
dt
= (O.75a)m/s)(— sin @t i +cos cot})
= _206mfs 2.75rad/s

(1.5m)sin 30°

V= (2.06m/s)(— sin t i + cos a)t})

L= (2.0kg)[(1.5 m)sin 30°(cosatf+sinat})— (1.5m)cos 30°I€J
X [(2.06m/s)(— sin @t i + cosa)t}')]
= (5.35J-s)cosa)tf+(5.35]-s)sinwt}'+(3.09]-s)l€

The horizontal component of L is the component in the xy plane:

hor

= (5.4J~s)coscotf+(5.4J-s)sinwt}'

The vertical component of L is its z
component:

(b) Evaluate ar :
dt

Evaluate the magnitude of % :

Express the magnitude of the torque
exerted by gravity about the point of
support:

Substitute numerical values and
evaluate 7:

L= (3'1J 'S )];'
%l;‘ = [5.36&)(— sin cotf+c03wt}')] J
dL

=(5.36N-m-s)(2.75rad/s)

=| I5N-m

T =mgrsind

7 =(2.0kg)(9.81m/s? )(1.5m)sin 30°
=[15N"m
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75 e« A compact object whose mass is m resting on a horizontal, frictionless
surface is attached to a string that wraps around a vertical cylindrical post
attached to the surface so that when the object is set into motion, it follows a path
that spirals inward. (a) Is the angular momentum of the object about the axis of
the post conserved? Explain your answer. (b) Is the energy of the object
conserved? Explain your answer. (c) If the speed of the object is vy when the
unwrapped length of the string is 7, what is its speed when the unwrapped length
has shortened to 7/2?

Picture the Problem The pictorial
representation  depicts the object /
rotating counterclockwise around the
cylindrical post. Let the system be the
object. In Part (@) we need to decide
whether a net torque acts on the object
and in Part () the issue is whether any

external forces act on the object. In r

Part (¢) we can apply the definition of I
kinetic energy to find the speed of the /
object when the unwrapped length has ’/

shortened to /2.

(a) The net torque acting on the _dL

D To=—=RT
object is given by: dt

Because 7, # 0, angular momentum is not conserved.
(b) Because, in this frictionless environment, the net external force acting on the
object is the tension force and it acts at right angles to the object’s velocity, the

energy of the object is conserved.

(c) Apply conservation of mechanical AE=AK+AU =0

energy to the object to obtain: or, because AU =0,

AK =0
Substituting for the kinetic energies 1re? -Llo; =0
yields: or

I'o"” -1y =0

Substitute for 7, I', &', and ay to
obtain: ( r
m

N |
\_/N
Ny | =

I
=

3

S

(3]
T/
\|o<
~—

|

o
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Solving for v' yields: v'=| v,

76 e=  Figure 10-57 shows a hollow cylindrical tube that has a mass M, a
length L, and a moment of inertia ML?/10. Inside the cylinder are two disks each

of mass m and radius r, separated by a distance ¢ and tied to a central post by a

thin string. The system can rotate about a vertical axis through the center of the
cylinder. You are designing this cylinder-disk apparatus to shut down the rotations
when the strings break by triggering an electronic "shutoff” signal (sent to the
rotating motor) when the disks hit the ends of the cylinder. During development,
you notice that with the system rotating at some critical angular speed @, the
string suddenly breaks. When the disks reach the ends of the cylinder, they stick.
Obtain expressions for the final angular speed and the initial and final kinetic
energies of the system. Assume that the inside walls of the cylinder are
frictionless.

Picture the Problem Because the net torque acting on the system is zero; we can
use conservation of angular momentum to relate the initial and final angular
velocities of the system. See Table 9-1 for the moment of inertia of a disk.

Using conservation of angular AL=L;-L =0

momentum, relate the initial and or

final angular speeds to the initial and lo,-1w =0

final moments of inertia:

Solving for w; yields: o, = 1; o - 1 o (1)
1. I,

Use the parallel-axis theorem to
express the moment of inertia of
each of the disks with respect to the
axis of rotation:

Express the initial moment of inertia
I; of the cylindrical tube plus disks
system:

When the disks have moved out to
the end of the cylindrical tube:

=1 eylindrical T 21 i, each disk

b ke
= LML JrZ[%m(r2 +£2)]
= LML +%m(r2 +£2)

I =5 ML +im( + 1)
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Substitute for /; and Iy in equation (1) ML+ %m(r2 + Kz)
and simplify to obtain: @r = LML+ %m(’,z + 12 )a)
ML +5mlr? + %)
= 2 > 2\?
ML +5mlr® + 1)
The initial kinetic energy of the K =110’
system is:
Substituting for /; and simplifying K, =L1|LML’ +%m(r2 +0° )]af
yields: S Oy N
The final kinetic energy of the K. =1lo}
system is:

Substitute for /r and @r and simplify to obtain:

K, :%[%MLQ +%m(r2 +L2)](ML2 +5m(r2 +g2) ]2

M +5mlr? + 12)

L{[Mﬁ +5mlr? +£2)]2} 2

2 ML +5mlr? + 1)

77 e+ [SSM] Repeat Problem 76, this time friction between the disks and
the walls of the cylinder is not negligible. However, the coefficient of friction is
not great enough to prevent the disks from reaching the ends of the cylinder. Can
the final kinetic energy of the system be determined without knowing the
coefficient of kinetic friction?

Determine the Concept Yes. The solution depends only upon conservation of
angular momentum of the system, so it depends only upon the initial and final
moments of inertia.

78 e Suppose that in Figure 10-57 / = 0.60 m, L =2.0 m, M = 0.80 kg, and

m = 0.40 kg. The string breaks when the system’s angular speed approaches the
critical angular speed @, at which time the tension in the string is 108 N. The
masses then move radially outward until they undergo perfectly inelastic
collisions with the ends of the cylinder. Determine the critical angular speed and
the angular speed of the system after the inelastic collisions. Find the total kinetic
energy of the system at the critical angular speed, and again after the inelastic
collisions. Assume that the inside walls of the cylinder are frictionless.
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Picture the Problem Because the net torque acting on the system is zero; we can
use conservation of angular momentum to relate the initial and final angular
speeds of the system.

Using conservation of angular AL=L.—-L =0
momentum, relate the initial and or
final angular speeds to the initial and

I
I.o.—T.o =0 e |
final moments of inertia: £Or T = I @ ()

f

Express the tension in the string 5 ‘ 2T

. ”» T=mro =m—o" =>w. =,|—
as a function of the critical i P i ml
angular speed of the system:

Substitute numerical values and 2(108 N) 30.0rad/
. = =30.0rad/s
evaluate o, : ' 1(0.40kg)(0.60m)
=| 30rad/s
Express /i: I, =:ML + 2(% ml’ )
Substitute numerical values and I, =(0.80kg)(2.0m)’
evaluate /i +1(0.40kg)(0.60m )
=0.392kg-m’
Express Ir: I, =&ML + 2(%mL2)
Substitute numerical values and I = %(0.80 kg)(2.0 m)2
luate If:
evaluate It +1(0.40kg)(2.0m)’
=1.12kg-m’
Substitute numerical values in ~ 0.392kg-m’ (30.0rad’s)
equation (1) and evaluate wy: " 1.12kg-m? U
=10.5rad/s
=| 11lrad/s
The total kinetic energy of the K =1L}

system at the critical angular
speed is:
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Substitute numerical values and K, = %(0_392 kg-m> )(30_0 rad/s)’
luate K :

evatae =176J=[ 0.18kJ

The total kinetic energy of the K, =110}

system after the inelastic
collisions is:

Substitute numerical values and K, = %(1 12kg-m’ )(l 0.5rad/ 5)2
evaluate K, :

=| 62J

79 e« [SSM] Kepler’s second law states: The line from the center of the
Sun to the center of a planet sweeps out equal areas in equal times. Show that this
law follows directly from the law of conservation of angular momentum and the
fact that the force of gravitational attraction between a planet and the Sun acts
along the line joining the centers of the two celestial objects.

Picture the Problem The pictorial representation shows an elliptical orbit. The
triangular element of the area is d4 = 1r(rd6)=1rd6.

Differentiate d4 with respect to ¢ to d4 |, ,d0 | ,

) —=gr—=2r'o (1)
obtain: dt t
Because the gravitational force acts L=mr’w=constant  (2)

along the line joining the two
objects, 7 = 0. Hence:

Eliminate > between equations (1) dA L
) — =| — = constant
and (2) to obtain: dt 2m

80 ¢  Consider a cylindrical turntable whose mass is M and radius is R,
turning with an initial angular speed @, . (a) A parakeet of mass m, hovering in
flight above the outer edge of the turntable, gently lands on it and stays in one
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place on it as shown in Figure 10-58. What is the angular speed of the turntable
after the parakeet lands? (b) Becoming dizzy, the parakeet jumps off (not flies off)
with a velocity v relative to the turntable. The direction of v is tangent to the
edge of the turntable, and in the direction of its rotation. What will be the angular
speed of the turntable afterwards? Express your answer in terms of the two
masses m and M, the radius R, the parakeet speed v and the initial angular speed
.

Picture the Problem The angular momentum of the turntable-parakeet is
conserved in both parts of this problem.

(a) Apply conservation of angular AL=L.—-L =0 (1)
momentum to the turntable-parakeet
system as the parakeet lands to

obtain:
The final angular momentum of the L; =L e + Lyrareer
system is given by: ==
y g y = I tumtablewf +irx p parakeet
Because /., =+MR’ and L. =1 MR’w; +Rmv,, ..
"7 X ﬁparakeet = Rmvparakeet : = %MRZa)f + Rm(Ra)f)
=1 MR’ w; + mR’ w;
The initial angular momentum of the L=1 @ =+ MR o,
system is given by:
Substituting for L and L; in equation LMR*w, + mR’w, —L MR, =0
(1) yields:
Solve for ax to obtain: M
®; = @
M +2m
(b) Apply conservation of angular AL=L,-L =0 (2)
momentum to the turntable-parakeet
system as the parakeet jumps off to
obtain:
The final angular momentum of the L; =L e + Lirareet
system is given by: ==
Y g Y =1 turntablea)f +irx P parakeet
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_ 1 2 —1 2
Because 1,.,,c =3 MR" and L =3 MR @ + Rmv,, . 3)
‘l" X pparakeet = Rm vparakeet :
Express the speed of the parakeet Voarakeet = Viumtanle TV = R@p +V

relative to the turntable:

Using the expression derived in (a),

. . vparakeet = —Ra)i +v
substitute for wr to obtain: M +2m
Substituting for vparakeet 1 €quation L =1 MR’w. +mR Reo + v
(3) and simplifying yields: b2 ! M+2m

The initial angular momentum of the L =1 MR’w,
system is the same as the final
angular momentum in (a):

Substituting for L and L; in equation (2) yields:

L MR’ o, +mRKM 5
+2m

jRa)i +v}—%MR2wi =0

Solving for ax yields:

SEEEE

81 e Youare given a heavy but thin metal disk (like a coin, but larger;
Figure 10-59). (Objects like this are called Euler disks.) Placing the disk on a
turntable, you spin the disk, on edge, about a vertical axis through a diameter of
the disk and the center of the turntable. As you do this, you hold the turntable still
with your other hand, letting it go immediately after you spin the disk. The
turntable is a uniform solid cylinder with a radius equal to 0.250 m and a mass
equal to 0.735 kg and rotates on a frictionless bearing. The disk has an initial
angular speed of 30.0 rev/min. (a) The disk spins down and falls over, finally
coming to rest on the turntable with its symmetry axis coinciding with the
turntable’s. What is the final angular speed of the turntable? (b) What will be the
final angular speed if the disk’s symmetry axis ends up 0.100 m from the axis of
the turntable?

Picture the Problem Let the letters d, m, and r denote the disk and the letters ¢,
M, and R the turntable. We can use conservation of angular momentum to relate
the final angular speed of the turntable to the initial angular speed of the Euler
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disk and the moments of inertia of the turntable and the disk. In part (b) we’ll
need to use the parallel-axis theorem to express the moment of inertia of the disk
with respect to the rotational axis of the turntable. You can find the moments of
inertia of the disk in its two orientations and that of the turntable in Table 9-1.

(a) Use conservation of angular l o+ 0,10, =0
momentum to relate the initial and
final angular momenta of the

system:
Because oy = wyr: 1o, +1,00 1,04 =0
Solving for wi yields: p
8 v Wy = I— 0, (1
Idf + Itf
Ignoring the negligible thickness of I,=1 mr?
the disk, express its initial moment
of inertia:
Express the final moment of inertia I,=1 mr’
of the disk:
Express the final moment of inertia I;=1 MR?
of the turntable:
Substitute in equation (1) and Lmr?
simplify to obtain: Of =T 2 Y
plly t %mr2 + %MR2
1 ()
I — O
242 MR
mr
Express @y in rad/s: o, =30.0 re'v y 2z rad « Imin
min  rev 60s
= zwrrad/s
Substitute numerical values in 3 mrad/s
equation (2) and evaluate ay: Dy = (0_735 kg)(0.2 50m)2

(0.500kg)(0.125m)’
=| 0.228rad/s
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(b) Use the parallel-axis theorem to Iy=2mr’+ml = m(% o+ LZ)
express the final moment of inertia
of the disk when it is a distance L
from the center of the turntable:
Substitute in equation (1) to Lmy?

e .. = ;.
obtain: f m(%rz +L2)+%MR2 i

- L2 MR2 di
2+4—+2—
r mr
Substitute numerical values and evaluate @
zrad/s
@, = =| 0.192rad/s

(0.100m)’ o (0.735kg)(0.250m)’

2+4
’ (0.125m)*  (0.500kg)(0.125m)’

82 e (a) Assuming Earth to be a homogeneous sphere that has a radius r
and a mass m, show that the period 7 (time for one daily rotation) of Earth’s
rotation about its axis is related to its radius by 7= br?, where b = (4/5)zm/L.
Here L is the magnitude of the spin angular momentum of Earth. (b) Suppose that
the radius » changes by a very small amount Ar due to some internal cause such as
thermal expansion. Show that the fractional change in the period AT is given
approximately by AT/T = 2Ar/r. (c) By how many kilometers would 7 need to
increase for the period to change by 0.25 d/y (so that leap years would no longer
be necessary)?

Picture the Problem We can express the period of the earth’s rotation in terms of
its angular velocity of rotation and relate its angular velocity to its angular
momentum and moment of inertia with respect to an axis through its center. We
can differentiate this expression with respect to 7" and then use differentials to
approximate the changes in » and 7.

(a) Express the period of the earth’s 2z
rotation in terms of its angular o
velocity of rotation:

Relate the earth’s angular velocity of
rotation to its angular momentum

and moment of inertia:
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Substitute for @ and simplify to r_ 2%(% mrz) | dzm ,
obtain: B L | 5L d
(b) Find dT/dr: dr _d (4zm , 5 4 m -
dr dr\ 5L 5L
( T j 2T
= —2 yV=—
r r
Solving for dT/T yields:
olving for yields Ezzﬂjﬂz 2&
T r T r
(¢) Using the equation we just AT _4d « ly _ 1 A
derived, substitute for the change in T y 365.24d 1460 r

the period of the earth:

Solving for Ar yields: Ape_T
r=
2(1460)
Substitute numerical values and 6.37x10° km
r=—————=|2.18km
evaluate Ar: 2(1460)

83 e¢ [SSM] The term precession of the equinoxes refers to the fact that
the Earth’s spin axis does not stay fixed but moves with a period of about 26,000
y. (This explains why our pole star, Polaris, will not remain the pole star forever.)
The reason for this instability is that Earth is a giant gyroscope. The spin axis of
Earth precesses because of the torques exerted on it by the gravitational forces of
the Sun and Moon. The angle between the direction of Earth’s spin axis and the
normal to the ecliptic plane (the plane of Earth’s orbit) is 22.5 degrees. Calculate
an approximate value for this torque, given that the period of rotation of the earth
is 1.00 d and its moment of inertia is 8.03 x 10°” kg-m”.

Picture the Problem Let ap be the angular velocity of precession of the earth-as-
gyroscope, s its angular velocity about its spin axis, and / its moment of inertia
with respect to an axis through its poles, and relate wp to @, and I using its
definition.

Use its definition to express the T
precession rate of the earth as a giant @p = I
gyroscope:

Substitute for 7 and solve for rto 7= Lo, = loo,

obtain:
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The angular velocity s of the earth

2 : .
: LT i ® =2 where Tis the period of
about its spin axis is given by: T

rotation of the earth.

Substitute for @ to obtain: L 2r lw,
T

Substitute numerical values and evaluate z;

7= 27[(8.03><1037 kg- mz) (7.66>< 1072 S_l)

ldx 24(11h o 3600s

= 4.47x10% N-m

84 e Asindicated in the text, according to the Standard Model of Particle
Physics, electrons are point-like particles having no spatial extent. (This
assumption has been confirmed experimentally, and the radius of the electron has
been shown to be less than 10™'® m.) The intrinsic spin of an electron could in
principle be due to its rotation. Let’s check to see if this conclusion is feasible.
(a) Assuming that the electron is a uniform sphere whose radius is 1.00 x 10™"* m,
what angular speed would be necessary to produce the observed intrinsic angular
momentum of 7/2? (b) Using this value of angular speed, show that the speed of
a point on the "equator” of a "spinning” electron would be moving faster than the
speed of light. What is your conclusion about the spin angular momentum being
analogous to a spinning sphere with spatial extent?

Picture the Problem We can use the definition of the angular momentum of a
spinning sphere, together with the expression for its moment of inertia, to find the
angular speed of a point on the surface of a spinning electron. The speed of such a
point is directly proportional to the angular speed of the sphere.

(a) Express the angular momentum L=I1o=1h
of the spinning electron:

Assuming a spherical electron of I=2MR’
radius R, its moment of inertia,

relative to its spin axis, is:

Substituting for / yields:
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Substitute numerical values and oo 5(1 05x1077. s)

evaluate w: 4(9. 11x107" kg)(lO‘18 m)Z
=|1.44x10% rad/s

(b) The speed of a point on the v=Rw
"equator” of a spinning electron of
radius R is given by:

Substitute numerical values and V= (1 0'® m)(l 44x10* rad/s)

evaluate v: =|1.44x10" m/s |>c

Given that our model predicts a value for the speed of a point on the "equator” of
a spinning electron that is greater than the speed of light, the idea that the spin
angular momentum of an electron is analogous to that of a spinning sphere with
spatial extent lacks credibility.

85 e Aninteresting phenomenon occurring in certain pulsars (see Problem
26) is an event known as a "spin glitch,” that is, a quick change in the spin rate of
the pulsar due to a shift in mass location and a resulting rotational inertia change.
Imagine a pulsar whose radius is 10.0 km and whose period of rotation is 25.032
ms. The rotation period is observed to suddenly decrease from 25.032 ms to
25.028 ms. If that decrease was related to a contraction of the star, by what
amount would the pulsar radius have had to change?

Picture the Problem We can apply the conservation of angular momentum to the
shrinking pulsar to relate its radii to the observed periods.

The change in the radius of the AR=R, - R, (1)
pulsar is:

Apply conservation of angular AL=L.-L =0

momentum to the shrinking pulsar to or

obtain: Lo, — Lo =0

Substituting for /rand /; yields: 2MR} @, -2 MR}, =0

2

a)f =—1a)
R

Solve for wrto obtain:
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Because w=27/T , where Tis the 27 R:orx T
. . _— S - Rf = _le

rotation period: T, R'T T,
Substitute for R¢ in equation (1) and

o f d ) AR = ER_R.: E—IR
simplify to obtain: ot T i
Substitute numerical values and 25.028 ms
evaluate AR: AR = \/m ~1/(10.0km)

= -799cm

86 eee  Figure 10.60 shows a pulley in the form of a uniform disk with a rope
hanging over it. The circumference of the pulley is 1.2 m and its mass is 2.2 kg.
The rope is 8.0 m long and its mass is 4.8 kg. At the instant shown in the figure,
the system is at rest and the difference in height of the two ends of the rope is 0.60
m. (a) What is the angular speed of the pulley when the difference in height
between the two ends of the rope is 7.2 m? (b) Obtain an expression for the
angular momentum of the system as a function of time while neither end of the
rope is above the center of the pulley. There is no slippage between rope and
pulley wheel.

Picture the Problem Let the origin of the coordinate system be at the center of
the pulley with the upward direction positive. Let A be the linear density (mass
per unit length) of the rope and L, and L, the lengths of the hanging parts of the
rope. We can use conservation of mechanical energy to find the angular velocity
of the pulley when the difference in height between the two ends of the rope is

7.2 m.

(a) Apply conservation of energy to AK +AU =0

relate the final kinetic energy of the or, because K; =0,

system to the change in potential K+AU =0 (1)
energy:

Express the change in potential energy of the system:
AU =U; -U;=—7L; (Llf/l)g —3 Ly (sz/I)g _[_ 3Ly (Lliﬂ')g —3Ly (in/i)g]
= {0 + L g+ (0 + 1 Jhe
= _%ig[(l’?f + L )_ (Lfi + L5, )]



Because L; + L, =7.4 m,
in — Lli =0.6 m, and
Ly¢— L= 7.2 m, we obtain:

Angular Momentum 1039

Lli: 34 m, in =40 m,
Lir=0.1m, and Ly=7.3 m.

Substitute numerical values and evaluate AU:

AU = —%(O.60kg/m)(9.81m/s2)[(O.lOm)2 +(7.3m)’ - (3.4m)’ - (4.0m)2J

=-75.75]

Express the kinetic energy of the
system when the difference in height
between the two ends of the rope is
7.2 m:

Substitute numerical values and
simplify:

Substitute in equation (1) and solve
for w:

(b) Noting that the moment arm of
each portion of the rope is the same,
express the total angular momentum
of the system:

Letting @be the angle through which
the pulley has turned, express U(6):

Express AU and simplify to obtain:

Assuming that, at £ =0, Ly; = Ly;:

2
K =1[t(2.2ke)+4.8ke] (122—““) o
T

=(0.1076kg-m? )o?

(0.1076kg-m? Jo® —=75.751 =0

and

o= LJZ: 27rad/s
0.1076kg-m

L=L,+L =1, 0+M R0
— (LM R+ M R Jo )
— (LM, +M, )R

U(H): _%[(Lli - Re)z + (in + RH)Z]Ag

AU =U, -U, =U(0)-U(0)
= —%[(Lli ~RO) +(L, +R0)2](1g
w3+ 3 g
=—R0*Ag+(L,~L,)ROLg

AU ~-R*0*Ag
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Substitute for K and AU in equation
(1) to obtain:

Solving for @ yields:

Substitute numerical values to
obtain:

Express w as the rate of change
of 6:

Integrate 6 from 0 to &to obtain:

Transform from logarithmic to
exponential form to obtain:

Differentiate to express was a
function of time:

Substitute for @ in equation (2)
to obtain:

(0.1076kg-m*)w® - R*6°A g =0

B R6°Ag
0.1076kg-m’

12m (0.6kg/m)(9.81m/s?)
0 1076kg -m*
(1 415")
%9 (1415 )o= ——(141s-‘)dt

In6o=(1.41s")

H(t) _ e(1.4ls")z

olt) =99 = (La1s b1}

dt

L=(tn, + 0, )R (14157 flors )

Substitute numerical values and evaluate L:

L=[1(2.2kg)+ (4. 8kg)](1 ;mj [(1 41s™ )e(lfﬂs*‘)t]:

w

7

(0.30 kg-m’ /s)e(l“”sfl)‘




