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Chapter 9 
Rotation 
 
Conceptual Problems 
 
1 • Two points are on a disk that is turning about a fixed-axis through its 
center, perpendicular to the disk and through its center, at increasing angular 
velocity. One point on the rim and the other point is halfway between the rim and 
the center. (a) Which point moves the greater distance in a given time? (b) Which 
point turns through the greater angle? (c) Which point has the greater speed?  
(d) Which point has the greater angular speed? (e) Which point has the greater 
tangential acceleration? (f) Which point has the greater angular acceleration?  
(g) Which point has the greater centripetal acceleration? 
 
Determine the Concept (a) Because r is greater for the point on the rim, it moves 
the greater distance. (b) Both points turn through the same angle. (c) Because r is 
greater for the point on the rim, it has the greater speed. (d) Both points have the 
same angular speed. (e) Both points have zero tangential acceleration. (f) Both 
have zero angular acceleration. (g) Because r is greater for the point on the rim, it 
has the greater centripetal acceleration.  
 
2 • True or false: 
(a) Angular speed and linear velocity have the same dimensions. 
(b) All parts of a wheel rotating about a fixed axis must have the same angular 

speed. 
(c) All parts of a wheel rotating about a fixed axis must have the same angular 

acceleration. 
(d) All parts of a wheel rotating about a fixed axis must have the same centripetal 

acceleration. 
 
(a) False. Angular speed has the dimensions [ ]T1 whereas linear velocity has 
dimensions [ ]TL . 
 
(b) True. The angular speed of all points on a wheel is dθ/dt. 
 
(c) True. The angular acceleration of all points on the wheel is dω/dt. 
 
(d) False. The centripetal acceleration at a point on a rotating wheel is directly 
proportional to its distance from the center of the wheel 
 
3 • Starting from rest and rotating at constant angular acceleration, a disk 
takes 10 revolutions to reach an angular speed ω. How many additional 
revolutions at the same angular acceleration are required for it to reach an angular 
speed of 2ω? (a) 10 rev, (b) 20 rev, (c) 30 rev, (d) 40 rev, (e) 50 rev? 
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Picture the Problem The constant-acceleration equation that relates the given 
variables is θαωω Δ+= 22

0
2 . We can set up a proportion to determine the number 

of revolutions required to double ω and then subtract to find the number of 
additional revolutions to accelerate the disk to an angular speed of 2ω. 
 
Using a constant-acceleration 
equation, relate the initial and final 
angular velocities to the angular 
acceleration: 

θαωω Δ+= 22
0

2  
or, because 2

0ω = 0, 
θαω Δ= 22  

 
Let Δθ10 represent the number of 
revolutions required to reach an 
angular speed ω: 
 

10
2 2 θαω Δ=                              (1) 

Let Δθ2ω represent the number of 
revolutions required to reach an 
angular speed ω: 
 

( ) ωθαω 2
2 22 Δ=                         (2) 

Divide equation (2) by equation (1) 
and solve for Δθ2ω: 
 

( )
10102

2

2 42 θθ
ω
ωθ ω Δ=Δ=Δ  

The number of additional 
revolutions is: 

( ) rev30rev103Δ3ΔΔ4 101010 ===− θθθ

and )(c is correct. 

 
4 • You are looking down from above at a merry-go-round, and observe 
that is rotating counterclockwise and its rotation rate is slowing. If we designate 
counterclockwise as positive, what is the sign of the angular acceleration?  
 
Determine the Concept Because the merry-go-round is slowing, the sign of its 
angular acceleration is negative.  

  
5 • Chad and Tara go for a ride on a merry-go-round.  Chad sits on a pony 
that is 2.0 m from the rotation axis, and Tara sits on a pony 4.0 m from the axis.   
The merry-go-round is traveling counterclockwise and is speeding up.  Does Chad 
or Tara have (a) the larger linear speed? (b) the larger centripetal acceleration?  
(c)  the larger tangential acceleration? 
 
Determine the Concept   
(a) The linear speed of all points on the merry-go-round is given by v = rω. 
Because she is farther from the rotation axis, Tara has the larger linear speed. 
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(b) The centripetal acceleration of all points on the merry-go-round is given by  
ac = rω2. Because she is farther from the rotation axis, Tara has the larger 
centripetal acceleration. 
 
(c) The tangential acceleration of all points on the merry-go-round is given by  
at = rα.   Because the angular acceleration is the same for all points on the merry-
go-round and she is farther from the rotation axis, Tara has the larger tangential 
acceleration. 
 
6 • Disk B was identical to disk A before a hole was drilled though the 
center of disk B. Which disk has the largest moment of inertia about its symmetry 
axis center? Explain your answer. 
 
Determine the Concept Because its mass is now greater than that of disk B, disk 

A has the larger moment of inertia about its axis of symmetry. 

 
7 • [SSM] During a baseball game, the pitcher has a blazing fastball. 
You have not been able to swing the bat in time to hit the ball. You are now just 
trying to make the bat contact the ball, hit the ball foul, and avoid a strikeout. So, 
you decide to take your coach’s advice and grip the bat high rather than at the 
very end. This change should increase bat speed; thus you will be able to swing 
the bat quicker and increase your chances of hitting the ball. Explain how this 
theory works in terms of the moment of inertia, angular acceleration, and torque 
of the bat. 
  
Determine the Concept The closer the rotation axis to the center of mass, the 
smaller the moment of inertia of the bat. By choking up, you are rotating the bat 
about an axis closer to the center of mass, thus reducing the bat’s moment of 
inertia.  The smaller the moment of inertia the larger the angular acceleration (a 
quicker bat). 
 
8 • (a) Is the direction of an object’s angular velocity necessarily the same 
as the direction of the net torque on it? Explain. (b) If the net torque and angular 
velocity are in opposite directions, what does that tell you about the angular 
speed? (c) Can the angular velocity be zero even if the net torque is not zero? If 
your answer is yes, give an example. 
 
(a) No. If the object is slowing down, they are oppositely directed. 
 
(b) The angular speed of the object will decrease. 
 
(c) Yes. At the instant the object is stopping and turning around (angularly), such 
as a pendulum at its turnaround (highest) point, the net torque is not zero and the 
angular velocity is zero. 
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9 • A disk is free to rotate about a fixed axis. A tangential force applied a 
distance d from the axis causes an angular acceleration α. What angular 
acceleration is produced if the same force is applied a distance 2d from the axis? 
(a) α, (b) 2α, (c) α/2, (d) 4α, (e) α/4? 
 
Determine the Concept The angular acceleration of a rotating object is 
proportional to the net torque acting on it. The net torque is the product of the 
tangential force and its lever arm.  
 
Express the angular acceleration of 
the disk as a function of the net 
torque acting on it: 
 

d
I
F

I
Fd

I
=== netτα ⇒ d∝α  

 

Because d∝α , doubling d will double the angular acceleration.  )(b is correct. 

 
10 • The moment of inertia of an object about an axis that does not pass 
through its center of mass is ______ the moment of inertia about a parallel axis 
through its center of mass. (a) always less than, (b) sometimes less than,  
(c) sometimes equal to, (d) always greater than. 
 
Determine the Concept From the parallel-axis theorem we know that 

,2
cm MhII += where Icm is the moment of inertia of the object with respect to an 

axis through its center of mass, M is the mass of the object, and h is the distance 
between the parallel axes. Therefore, I is always greater than Icm by Mh2. 

 )( d is correct. 

 
11 • [SSM] The motor of a merry-go-round exerts a constant torque on it. 
As it speeds up from rest, the power output of the motor (a) is constant,  
(b) increases linearly with the angular speed of the merry-go-round, (c) is zero. 
(d) None of the above. 
  
Determine the Concept The power delivered by the constant torque is the 
product of the torque and the angular speed of the merry-go-round. Because the 
constant torque causes the merry-go-round to accelerate, the power output 
increases linearly with the angular speed of the merry-go-round.  )(b is correct. 

 
12 • A constant net torque acts on a merry-go-round from startup until it 
reaches its operating speed. During this time, the merry-go-round’s rotational 
kinetic energy (a) is constant, (b) increases linearly with angular speed,  
(c) increases quadratically as the square of the angular speed, (d) none of the 
above. 
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Determine the Concept The work done by the net torque increases the rotational 
kinetic energy of the merry-go-round. Because ,2

2
1

rot ωIK = ( )c is correct. 

 
13 • Most doors knobs are designed so the knob is located on the side 
opposite the hinges (rather than in the center of the door, for example).  Explain 
why this practice makes doors easier to open. 
 
Determine the Concept The moment arm of the force (pull) on the knob 
increases with the radial distance of the knob from the rotation axis.  The larger 
the moment arm the greater the torque for the same pull. Thus, with the knob 
farthest from the axis the pull is most effective in rotating the door. 
 
14 • A wheel of radius R and angular speed ω is rolling without slipping 
toward the north on a flat, stationary surface. The velocity of the point on the rim 
that is (momentarily) in contact with the surface is (a) equal in magnitude to Rω 
and directed toward the north, (b) equal to in magnitude Rω and directed toward 
the south, (c) zero, (d) equal to the speed of the center of mass and directed 
toward the north, (e) equal to the speed of the center of mass and directed toward 
the south. 
 
Determine the Concept If the wheel is rolling without slipping, a point at the top 
of the wheel moves with a speed twice that of the center of mass of the wheel, but 
the bottom of the wheel is momentarily at rest.  )(c is correct. 

 
15 • A uniform solid cylinder and a uniform solid sphere have equal 
masses. Both roll without slipping on a horizontal surface without slipping. If 
their total kinetic energies are the same, then (a) the translational speed of the 
cylinder is greater than the translational speed of the sphere, (b) the translational 
speed of the cylinder is less than the translational speed of the sphere, (c) the 
translational speeds of the two objects are the same, (d) (a), (b), or (c) could be 
correct depending on the radii of the objects. 
  
Picture the Problem The kinetic energies of both objects is the sum of their 
translational and rotational kinetic energies. Their speed dependence will differ 
due to the differences in their moments of inertia. We can express the total kinetic 
of both objects and equate them to decide which of their translational speeds is 
greater. 
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Express the kinetic energy of the 
cylinder: 

( )
2
cyl4

3

2
cyl2

1
2

2
cyl2

2
1

2
1

2
cyl2

12
cylcyl2

1
cyl

mv

mv
r
v

mr

mvIK

=

+=

+= ω

 

 
Express the kinetic energy of the 
sphere: 

( )
2
sph10

7

2
sph2

1
2

2
sph2

5
2

2
1

2
sph2

12
sphlsph2

1
sph

mv

mv
r

v
mr

mvIK

=

+=

+= ω

 

 
Equate the kinetic energies and 
simplify to obtain: 

sphsph15
14

cyl vvv <= and  )(b is correct. 

 
16 • Two identical-looking 1.0-m-long pipes are each plugged with 10 kg 
of lead. In the first pipe, the lead is concentrated at the middle of the pipe, while 
in the second the lead is divided into two 5-kg masses placed at opposite ends of 
the pipe.  The ends of the pipes are then sealed using four identical caps. Without 
opening either pipe, how could you determine which pipe has the lead at both 
ends? 
  
Determine the Concept You could spin the pipes about their center.  The one 
which is easier to spin has its mass concentrated closer to the center of mass and, 
hence, has a smaller moment of inertia. 
 
17 •• Starting simultaneously from rest, a coin and a hoop roll without 
slipping down an incline. Which of the following statements is true? (a) The hoop 
reaches the bottom first. (b) The coin reaches the bottom first. (c) The coin and 
hoop arrive at the bottom simultaneously. (d) The race to the bottom depends on 
their relative masses. (e) The race to the bottom depends on their relative 
diameters. 
 
Picture the Problem The object moving the fastest when it reaches the bottom of 
the incline will arrive there first. Because the coin and the hoop begin from the 
same elevation, they will have the same kinetic energy at the bottom of the 
incline. The kinetic energies of both objects is the sum of their translational and 
rotational kinetic energies. Their speed dependence will differ due to the 
differences in their moments of inertia. We can express the total kinetic of both 
objects and equate them to their common potential energy loss to decide which of 
their translational speeds is greater at the bottom of the incline. 
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Express the kinetic energy of the 
coin at the bottom of the incline: 

( )
2
coincoin4

3

2
coincoin2

1
2

2
coin2

coin2
1

2
1

2
coincoin2

12
coincyl2

1
coin

vm

vm
r

vrm

vmIK

=

+=

+= ω

 

 
Express the kinetic energy of the 
hoop at the bottom of the incline: 

( )
2
hoophoop

2
hoophoop2

1
2

2
hoop2

hoop2
1

2
hoophoop2

12
hoophoop2

1
hoop

vm

vm
r

v
rm

vmIK

=

+=

+= ω

 

 
Equate the kinetic energy of the coin 
to its change in potential energy as it 
rolled down the incline and solve for 
vcoin: 
 

ghmvm coin
2
coincoin4

3 = ⇒ ghv 3
4

coin =  

 

Equate the kinetic energy of the hoop 
to its change in potential energy as it 
rolled down the incline and solve for 
vhoop: 
 

ghmvm hoop
2
hoophoop = ⇒ ghv =hoop  

 

Express the ratio of these speeds to 
obtain: 3

43
4

hoop

coin ==
gh
gh

v
v

⇒ hoopcoin vv >  

and  )(b is correct. 

 
18 •• For a hoop of mass M and radius R that is rolling without slipping, 
which is larger, its translational kinetic energy or its rotational kinetic energy?  
(a) Its translational kinetic energy is larger. (b) Its rotational kinetic energy is 
larger. (c) Both energies have the same magnitude. (d) The answer depends on the 
radius of the hoop. (e) The answer depends on the mass of the hoop. 
 
Picture the Problem We can use the definitions of the translational and rotational 
kinetic energies of the hoop and the moment of inertia of a hoop (ring) to express 
and compare the kinetic energies. 
 
Express the ratio of the translational 
kinetic energy of the hoop to its 
rotational kinetic energy and 
simplify to obtain: 
 

( )
1

2

2
2

2

2
hoop2

1

2
2
1

rot

trans ===

r
vmr

mv
I

mv
K
K

ω
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Therefore, the translational and rotational kinetic energies are the same and  

 )( c is correct. 
 
19 •• For a disk of mass M and radius R that is rolling without slipping, 
which is larger, its translational kinetic energy or its rotational kinetic energy?  
(a) Its translational kinetic energy is larger. (b) Its rotational kinetic energy is 
larger. (c) Both energies have the same magnitude. (d) The answer depends on the 
radius of the disk. (e) The answer depends on the mass of the disk. 
 
Picture the Problem We can use the definitions of the translational and rotational 
kinetic energies of the disk and the moment of inertia of a disk (cylinder) to 
express and compare the kinetic energies. 
 
Express the ratio of the translational 
kinetic energy of the disk to its 
rotational kinetic energy: 
 

( )
2

2

2
2

2
1

2

2
disk2

1

2
2
1

rot

trans ===

r
vmr

mv
I
mv

K
K

ω
 

 
Therefore, the translational kinetic energy is greater by a factor of two and 

 )( a is correct. 

 
20 •• A perfectly rigid ball rolls without slipping along a perfectly rigid 
horizontal plane. Show that the frictional force acting on the ball must be zero. 
Hint: Consider a possible direction for the action of the frictional force and what 
effects such a force would have on the velocity of the center of mass and on the 
angular velocity. 
 
Picture the Problem Let us assume that f ≠ 0 and acts along the direction of 
motion. Now consider the acceleration of the center of mass and the angular 
acceleration about the point of contact with the plane. Because Fnet ≠ 0, acm ≠ 0. 
However, τ  = 0 because  = 0, and so α  = 0. But  α  = 0 is not consistent with  
acm ≠ 0. Consequently, f = 0. 
 
21 •• [SSM] A spool is free to rotate about a fixed axis (see Figure 9-
42a), and a string wrapped around the axle causes the spool to rotate in a 
counterclockwise direction.  However, if the spool is set on a horizontal tabletop 
(Figure 9-42b), the spool instead (given sufficient frictional force between the 
table and the spool) rotates in a clockwise direction, and rolls to the right.   By 
considering torque about the appropriate axes, show that these conclusions are 
consistent with Newton’s second law for rotations. 
 
Determine the Concept First, visualize the situation. The string pulling to the 
right exerts a torque on the spool with a moment arm equal in length to the radius 
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of the inner portion of the spool. When the spool is freely rotating about that axis, 
then the torque due to the pulling string causes a counter clockwise rotation.  
Second, in the situation in which the spool is resting on the horizontal tabletop, 
one should (for ease of understanding) consider torques not about the central axle 
of the spool, but about the point of contact with the tabletop.  In this situation, 
there is only one force that can produce a torque – the applied force. The motion 
of the spool can then be understood in terms of the force applied by the string and 
the moment arm equal to the difference between the outer radius and the inner 
radius. This torque will cause a clockwise rotation about the point of contact 
between spool and table – and thus the spool rolls to the right (whereas we might 
have thought the spool would rotate in a counter-clockwise sense, and thus move 
left). 
 
22 • You want to locate the center of gravity of an arbitrarily shaped flat 
object. You are told to suspend the object from a point, and to suspend a plumb 
line from the same point. Then draw a vertical line on the object to represent the 
plumb line. Next, you repeat the process using a different suspension point.  The 
center of gravity will be at the intersection of the drawn lines. Explain the 
principle(s) behind this process. 
 
Determine the Concept You are finding positions at which gravity exerts no 
torque on the object, so the gravitational force (weight) passes through the center 
of mass. Thus you are triangulating, and in theory, two such lines should intersect 
at the center of mass. In practice, several lines do a better and more accurate job. 
 
Estimation and Approximation 
 
23 •• A baseball is thrown at 88 mi/h, and with a spin rate of 1500 rev/min.   
If the distance between the pitcher’s point of release and the catcher’s glove is 
about 61 feet, estimate how many revolutions the ball makes between release and 
catch.  Neglect any effects of gravity or air resistance on the ball’s flight. 
 
Picture the Problem The number of revolutions made by the ball is the ratio of 
the angle through which it rotates to 2π  rad/rev. 
 
The number of revolutions N the ball 
makes between release and catch is 
given by: 
 

rad/rev2
Δ

π
θ

=N                        (1) 

where Δθ is the angular displacement 
of the ball as it travels from the pitcher 
to the catcher. 
 

Because ,2 fπω = Δθ is given by: tft Δ2ΔΔ πωθ ==  
 

Substituting for Δθ in equation (1) 
yields: rad/rev

Δ
rad/rev2
Δ2 tftfN ==

π
π       (2) 
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Express the time-of-flight of the ball: 
  v

dt =Δ  

where d is the distance from the release 
point to the catcher’s glove and v is the 
speed of the ball. 
 

Substituting for Δt in equation (2) 
yields: 
 

rad/rev v
fdN =  

Substitute numerical values and 
evaluate N: 
 

( )

rev 12

rev
rad 

s 3600
h 1

mi
ft 5280

h
mi 88

ft 61
s 60

min 1
min
rev 5001

≈

⎟
⎠
⎞

⎜
⎝
⎛ ××

⎟
⎠
⎞

⎜
⎝
⎛ ×

=N
 

 
24 •• Consider the Crab Pulsar, discussed on page 293.  Justify the statement 
that the loss in rotational energy is equivalent to the power output of 100 000 
Suns. The total power radiated by the Sun is about 4 × 1026 W. Assume that the 
pulsar has a mass that is 2 × 1030 kg, has a radius of 20 km, is rotating at about  
30 rev/s, and has a rotational period that is increasing at 10–5 s/y. 
 
Picture the Problem The power dissipated in the loss of rotational kinetic energy 
is the rate at which the rotational kinetic energy of the Crab Pulsar is decreasing. 
 
Express the rate at which the 
rotational kinetic energy of the Crab 
Pulsar is changing: 
 

t
KK

t
KP

ΔΔ
Δ if

Pulsar Crab
−

==  

 

Substitute for Kf and Ki and simplify 
to obtain: 

( )
t

I
t

IIP

Δ

Δ
2
i

2
f2

1

2
i2

12
f2

1

Pulsar Crab

ωω

ωω

−
=

−
=

 

 
Letting δωωω −= if  yields: 
 

( )[ ]
t

IP
Δ

2
i

2
i2

1

Pulsar Crab
ωδωω −−

=  

 
Expand the binomial expression and 
simplify to obtain: 

( )[ ]
t

IP
Δ

2 i
2

2
1

Pulsar Crab
δωωδω −

=     (1) 

 
Express δω in terms of ωf and ωi: 

i
f

if
2 ωπωωδω −=−=
T
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Substituting for Tf and ωi yields: 
 

rad/s 60
s 10

2
5

i

ππδω −
+

= −T
 

 
Substitute for Ti and simplify to 
obtain: 
 

1

5

s 0565.0

rad/s 60
s 10s

60
2

2

−

−

−=

−
+

= π

π
π

πδω
 

 
Because δω << ωi: 
 

( ) δωωδωωδω ii
2 22 −≈−  

With this substitution, equation (1) 
becomes: 
 

[ ]

t
I

t
IP

Δ

Δ
2

i

i2
1

Pulsar Crab

δωω

δωω

−
=

−
=

           (2) 

 
The moment of inertia of a sphere of 
mass M and radius R is: 
 

2
5
2 MRI =  

Substitute for I in equation (2) to 
obtain: 
 

t
MRP
Δ

i
2

5
2

Pulsar Crab
δωω−

=          (3) 

Dividing both sides of equation (3) 
by the power radiated by the Sun 
yields: 
 

sun

i
2

5
2

sun

Pulsar Crab

P
MR

P
P δωω−

=  

 

Substitute numerical values and evaluate SunPulsar Crab PP : 
 

( )( ) ( )

( )
5

7
26

1230
5
2

Sun

Pulsar Crab 10

y
s 103.156y 1 W104

s 0565.0
s

rad 60km 20kg 102
≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××

−⎟
⎠
⎞

⎜
⎝
⎛×−

=

−π

P
P

 

 
25 •• A 14-kg bicycle has 1.2-m-diameter wheels, each with a mass of 3.0 
kg. The mass of the rider is 38 kg. Estimate the fraction of the total kinetic energy 
of the rider-bicycle system is associated with rotation of the wheels. 
 
 
Picture the Problem Assume the wheels are hoops. That is, neglect the mass of 
the spokes, and express the total kinetic energy of the bicycle and rider. Let M 
represent the mass of the rider, m the mass of the bicycle, mw the mass of each 
bicycle wheel, and r the radius of the wheels. 
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Express the ratio of the kinetic 
energy associated with the rotation 
of the wheels to that associated with 
the total kinetic energy of the bicycle 
and rider: 
 

rottrans

rot

tot

rot

KK
K

K
K

+
=                  (1) 

Express the translational kinetic 
energy of the bicycle and rider: 2

2
12

2
1

riderbicycletrans

Mvmv

KKK

+=

+=
 

 
Express the rotational kinetic energy 
of the bicycle wheels: 

( )
( ) 2

w2

2
2

w

2
w2

1
wheel1rot,rot 22

vm
r
vrm

IKK

==

== ω
 

 
Substitute for rotK  and transK  in equation (1) and simplify to obtain: 
 

w

w2
1

2
1

w
2

w
2

2
12

2
1

2
w

tot

rot

2

2

m
MmmMm

m
vmMvmv

vm
K
K

+
+

=
++

=
++

=  

 
Substitute numerical values and 
evaluate rotK / transK : 

%10

kg3.0
kg38kg142

2

tot

rot =
+

+
=

K
K  

 
26 •• Why does toast falling off a table always land jelly-side down? The 
question may sound silly, but it has been a subject of serious scientific enquiry. 
The analysis is too complicated to reproduce here, but R. D. Edge and Darryl 
Steinert showed that a piece of toast, pushed gently over the edge of a table until 
it tilts off, typically falls off the table when it makes an angle of about 30° with 
the horizontal (Figure 9-43) and at that instant has an angular speed of 

g956.0=ω , where  is the length of one edge of the piece of toast (assumed 
to be square). Assuming that a piece of toast is jelly-side up, what side will it land 
on if it falls from a 0.500-m-high table? If it falls from a 1.00-m-high table? 
Assume that  = 10.0 cm. Ignore any forces due to air resistance.  
 
Picture the Problem We can apply the definition of angular speed to find the 
angular orientation of the slice of toast when it has fallen a distance of 0.500 m 
(or 1.00 m) from the edge of the table. We can then interpret the orientation of the 
toast to decide whether it lands jelly-side up or down. 
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Relate the angular orientation θ  of 
the  toast to its initial angular 
orientation, its angular speed ω, and 
time of fall Δt:  
 

tΔ+= ωθθ 0                             

Substituting the expression given for 
ω in the problem statement to obtain: 
 

tgΔ956.00 += θθ                 (1) 

 
Using a constant-acceleration 
equation, relate the distance the toast 
falls Δy to its time of fall Δt: 
 

( )2
2
1

0 tatvy yy Δ+Δ=Δ  
or, because v0y = 0 and ay = g, 

( )2
2
1 tgy Δ=Δ ⇒

g
yt Δ

=Δ
2  

 
Substitute for Δt in equation (1) and 
simplify to obtain: 

y

g
yg

Δ2956.0

Δ2956.0

0

0

+=

+=

θ

θθ
 

 
Substitute numerical values and 
evaluate θ  for Δy = 0.500 m: 

( )

°=

°
×=

+=

203
rad 

180rad 547.3

m 100.0
m 500.02956.0

6m 0.50

π

πθ

 

 
Substitute numerical values and 
evaluate θ  for Δy = 1.00 m: 

( )

°=

°
×=

+=

275
rad 

180rad 799.4

m 100.0
m .0012956.0

6m 1.0

π

πθ

 

 
The orientation of the slice of toast will therefore be at angles of 203° and 275° 
with respect to ground; that is, with the jelly-side down. 
 
27 •• Consider your moment of inertia about a vertical axis through the 
center of your body, both when you are standing straight up with your arms flat 
against your sides, and when you are standing straight up holding yours arms 
straight out to the side. Estimate the ratio of the moment of inertia with your arms 
straight out to the moment of inertia with your arms flat against your sides. 
 
Picture the Problem Assume that the mass of an average adult male is about 80 
kg, and that we can model his body when he is standing straight up with his arms 
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at his sides as a cylinder.  From experience in men’s clothing stores, a man’s 
average waist circumference seems to be about 34 inches, and the average chest 
circumference about 42 inches.  We’ll also assume that about 20% of your body’s 
mass is in your two arms, and that each has a length L = 1 m, so that each arm has 
a mass of about m = 8 kg.   
 
Letting Iout represent his moment of 
inertia with his arms straight out and 
Iin his moment of inertia with his 
arms at his side, the ratio of these 
two moments of inertia is: 
 

in

armsbody

in

out

I
II

I
I +

=                     (1) 

Express the moment of inertia of the 
″man as a cylinder″: 
 

2
2
1

in MRI =  

Express the moment of inertia of his 
arms: 
 

( ) 2
3
1

arms 2 mLI =  
 

Express the moment of inertia of his 
body-less-arms: 
 

( ) 2
2
1

body RmMI −=  
 

Substitute in equation (1) to obtain: 
 

( ) ( )
2

2
1

2
3
12

2
1

in

out 2
MR

mLRmM
I
I +−

=  

 
Assume the circumference of the 
cylinder to be the average of the 
average waist circumference and the 
average chest circumference: 
 

in38
2

in42in34
av =

+
=c  

Find the radius of a circle whose 
circumference is 38 in: 
 

m154.0
2π

cm100
m1

in
cm2.54in38

2
av

=

××
==

π
cR  

 
Substitute numerical values and evaluate  Iout/ Iin: 
 

( )( ) ( )( )
( )( )

6
m0.154kg80

m1kg8m0.154kg16kg80
2

2
1

2
3
22

2
1

in

out ≈
+−

=
I
I  

 
Angular Velocity, Angular Speed and Angular Acceleration 

28 • A particle moves with a constant speed of 25 m/s in a 90-m-radius 
circle. (a) What is its angular speed, in radians per second, about the center of the 
circle? (b) How many revolutions does it make in 30 s? 
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Picture the Problem The tangential and angular velocities of a particle moving in 
a circle are directly proportional. The number of revolutions made by the particle 
in a given time interval is proportional to both the time interval and its angular 
speed. 
 
(a) Relate the angular speed of the 
particle to its speed along the 
circumference of the circle: 
 

r
v

=ω  

Substitute numerical values and 
evaluate ω: 

rad/s0.28rad/s0.278
m90

m/s25
===ω  

 
(b) Using a constant-acceleration 
equation, relate the number of 
revolutions made by the particle in a 
given time interval to its angular 
speed: 

( )

rev3.1

rad2
rev1s30

s
rad278.0ΔΔ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛==

π
ωθ t

 
 
29 • [SSM] A wheel released from rest is rotating with constant angular 
acceleration of 2.6 rad/s2. At 6.0 s after its release: (a) What is its angular speed? 
(b) Through what angle has the wheel turned? (c) How many revolutions has it 
completed? (d) What is the linear speed, and what is the magnitude of the linear 
acceleration, of a point 0.30 m from the axis of rotation?  
 
Picture the Problem Because the angular acceleration is constant, we can find 
the various physical quantities called for in this problem by using constant-
acceleration equations. 
 
(a) Using a constant-acceleration 
equation, relate the angular speed of 
the wheel to its angular acceleration: 

tΔ+= αωω 0  
or, when ω0 = 0, 

tΔ= αω  
 

Evaluate ω when Δt = 6.0 s: ( )

rad/s16

rad/s 6.15s6.02rad/s2.6

=

=⎟
⎠
⎞⎜

⎝
⎛=ω

 

 
(b) Using another constant-
acceleration equation, relate the 
angular displacement to the wheel’s 
angular acceleration and the time it 
has been accelerating: 
 

( )2
2
1

0 tt Δ+Δ=Δ αωθ  
or, when ω0 = 0, 

( )2
2
1 tΔ=Δ αθ  
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Evaluate θΔ  when Δt = 6.0 s: ( ) ( )( )
rad47

rad8.46s6.0rad/s2.6s6Δ 22
2
1

=

==θ

 
(c) Convert ( )s0.6Δθ from radians to 
revolutions: 

( ) rev4.7
rad2

rev1rad8.46s0.6Δ =×=
π

θ

 
(d) Relate the angular speed of the 
particle to its tangential speed and 
evaluate the latter when  
Δt = 6.0 s: 
 

( )( )
m/s4.7

rad/s15.6m0.30

=

== ωrv
 

Relate the resultant acceleration of 
the point to its tangential and 
centripetal accelerations when  
Δt = 6.0 s: 
 

( ) ( )
42

2222
c

2
t

ωα

ωα

+=

+=+=

r

rraaa  

Substitute numerical values and evaluate a: 
 

( ) ( ) ( ) 2422 m/s73rad/s15.6rad/s2.6m0.30 =+=a  

 
30 • When a turntable rotating at 33 rev/min is shut off, it comes to rest in 
26 s. Assuming constant angular acceleration, find (a) the angular acceleration. 
During the 26 s, find (b) the average angular speed, and (c) the angular 
displacement, in revolutions. 
 
Picture the Problem Because we’re assuming constant angular acceleration; we 
can find the various physical quantities called for in this problem by using 
constant-acceleration equations for rotational motion. 
 
(a) The angular acceleration of the 
turntable is given by: tt Δ

−
=

Δ
Δ

= 0ωωωα  

 
Substitute numerical values and 
evaluate α : 

2rad/s0.13

s26
s60

min1
rev

rad2π
min
rev330

=

××−
=α  
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(b) Because the angular acceleration 
is constant, the average angular 
speed is given by: 
 

2
0

av
ωω

ω
+

=  

 

Substitute numerical values and 
evaluate ωav: 

rad/s7.1rad/s73.1
2

s60
min1

rev
rad2

min
rev33

av

==

××
=

π

ω  

 
(c) Using the definition of ωav, find 
the angular displacement of the 
turntable as it slows to a stop: 

( )( )

rev2.7
rad2

rev1rad9.44

s26rad/s1.73ΔΔ av

=×=

==

π

ωθ t
 

 
31 • A 12-cm-radius disk that is begins to rotate about its axis at t = 0, 
rotates with a constant angular acceleration of 8.0 rad/s2. At t = 5.0 s, (a) what is 
the angular speed of the disk, and (b) what are the tangential and centripetal 
components of the acceleration  of a point on the edge of the disk? 
 
Picture the Problem Because the angular acceleration of the disk is constant, we 
can use a constant-acceleration equation to relate its angular speed to its 
acceleration and the time it has been accelerating. We can find the tangential and 
centripetal accelerations from their relationships to the angular speed and angular 
acceleration of the disk. 
 
(a) Using a constant-acceleration 
equation, relate the angular speed of 
the disk to its angular acceleration 
and time during which it has been 
accelerating: 
 

tΔ+= αωω 0  
or, because ω0 = 0, 

tΔ= αω  

Evaluate ω when t = 5.0 s: ( ) ( )( )
rad/s40

s5.0rad/s8.0s0.5 2

=

=ω
 

 
(b) Express at in terms of α: 
 

αra =t  

Evaluate at when t = 5.0 s: ( ) ( )( )
2

2
t

m/s96.0

rad/s8.0m0.12s0.5

=

=a
 

 
Express ac in terms of ω: 2

c ωra =  
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Evaluate ac when t = 5.0 s: ( ) ( )( )
2

2
c

km/s19.0

rad/s40m0.12s0.5

=

=a
 

 
32 • A 12-m-radius Ferris wheel rotates once each 27 s. (a) What is its 
angular speed (in radians per second)? (b) What is the linear speed of a 
passenger? (c) What is the acceleration of a passenger? 
 
Picture the Problem We can find the angular speed of the Ferris wheel from its 
definition and the linear speed and centripetal acceleration of the passenger from 
the relationships between those quantities and the angular speed of the Ferris 
wheel.  
 
(a) Find ω from its definition: 

rad/s23.0

rad/s233.0
s27

rad2
Δ
Δ

=

===
πθω

t  

 
(b) Find the linear speed of the 
passenger from his/her angular 
speed:  
 

( )( )
m/s8.2

rad/s0.233m12

=

== ωrv
 

Find the passenger’s centripetal 
acceleration from his/her angular 
speed: 

( )( )
2

22
c

m/s65.0

rad/s0.233m12

=

== ωra
 

 
33 • A cyclist accelerates uniformly from rest. After 8.0 s, the wheels have 
rotated 3.0 rev. (a) What is the angular acceleration of the wheels? (b) What is the 
angular speed of the wheels at the end of the 8.0 s? 
 
Picture the Problem Because the angular acceleration of the wheels is constant, 
we can use constant-acceleration equations in rotational form to find their angular 
acceleration and their angular speed at any given time. 
 
(a) Using a constant-acceleration 
equation, relate the angular 
displacement of the wheel to its 
angular acceleration and the time it 
has been accelerating: 
 

( )2
2
1

0 tt Δ+Δ=Δ αωθ  
or, because ω0 = 0, 

( )2
2
1 tΔ=Δ αθ ⇒

( )2
2

tΔ
Δ

=
θα  
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Substitute numerical values and 
evaluate α: 

( )

( )
22

2

rad/s59.0rad/s589.0

s0.8
rev

rad2rev0.32

==

⎟
⎠
⎞

⎜
⎝
⎛

=

π

α  

 
(b) Using a constant-acceleration 
equation, relate the angular speed of 
the wheel to its angular acceleration 
and the time it has been accelerating: 
 

tΔ+= αωω 0  
or, when ω0 = 0, 

tΔ= αω  

Evaluate ω when Δt = 8.0 s: ( ) ( )( )
rad/s7.4

s8.0rad/s589.0s0.8 2

=

=ω
 

 
34 • What is the angular speed of Earth, in radians per second, as it rotates 
about its axis? 
 
Picture the Problem Earth rotates through 2π radians every 24 hours. 
 
Apply the definition of angular 
speed to obtain: 

rad/s73

h
s3600h24

rad2
Δ
Δ μπθω =

×
==

t
 

 
35 • A wheel rotates through 5.0 rad in 2.8 s as it is brought to rest with 
constant angular acceleration. Determine the wheel’s initial angular speed before 
braking began. 
 
Picture the Problem When the angular acceleration of a wheel is constant, its 
average angular speed is the average of its initial and final angular velocities. We 
can combine this relationship with the always applicable definition of angular 
speed to find the initial angular velocity of the wheel. 
 
Express the average angular speed of 
the wheel in terms of its initial and 
final angular speeds: 

2
0

av
ωω

ω
+

=  

or, because ω = 0, 
02

1
av ωω =  

 
The average angular speed of the 
wheel is also given by: 
 

tΔ
Δ

=
θωav  
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Equate these two expressions for 

avω and solve for ω0 to obtain: tΔ
Δ2

0
θω =  

 
Substitute numerical values and 
evaluate ω0: 

( ) rad/s6.3
s2.8
rad0.52

0 ==ω  

 
36 • A bicycle has 0.750-m-diameter wheels. The bicyclist accelerates from 
rest with constant acceleration to 24.0 km/h in 14.0 s. What is the angular 
acceleration of the wheels? 
 
Picture the Problem The tangential and angular accelerations of the wheel are 
directly proportional to each other with the radius of the wheel as the 
proportionality constant. Provided there is no slippage, the acceleration of a point 
on the rim of the wheel is the same as the acceleration of the bicycle. We can use 
its defining equation to determine the acceleration of the bicycle. 
 
Relate the tangential acceleration of 
a point on the wheel (equal to the 
acceleration of the bicycle) to the 
wheel’s angular acceleration and 
solve for its angular acceleration: 
 

αraa == t ⇒
r
a

=α  

Use its definition to express the 
acceleration of the wheel: t

vv
t
va

Δ
−

=
Δ
Δ

= 0  

or, because v0 = 0,  

t
va
Δ

=  

 
Substitute in the expression for α 
to obtain: td

v
td

v
tr

v
Δ

=
Δ

=
Δ

=
2

2
1

α  

 
Substitute numerical values and 
evaluate α: 

( )( )
2rad/s3.1

s14.0m0.750
km

m1000
s3600

h1
h

km24.02

=

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=α  

 
37 •• [SSM]  The tape in a standard VHS videotape cassette has a total 
length of 246 m, which is enough for the tape to play for 2.0 h (Figure 9-44). As 
the tape starts, the full reel has a 45-mm outer radius and a 12-mm inner radius. 
At some point during the play, both reels have the same angular speed. Calculate 
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this angular speed in radians per second and in revolutions per minute.  (Hint:  
Between the two reels the tape moves at constant speed.)  
 
Picture the Problem The two tapes will have the same tangential and angular 
velocities when the two reels are the same size, i.e., have the same area. We can 
calculate the tangential speed of the tape from its length and running time and 
relate the angular speed to the constant tangential speed and the radius of the reels 
when they are turning with the same angular speed. 
 
Relate the angular speed of the tape 
to its tangential speed: 
 

r
v

=ω                                        (1) 

Letting Rf represent the outer radius 
of the reel when the reels have the 
same area,  express the condition that 
they have the same speed: 
 

( )22
2
122

f rRrR ππππ −=−  

Solving for Rf yields: 
2

22

f
rRR +

=  

 
Substitute numerical values and 
evaluate Rf: 

( ) ( ) mm32.9
2

mm12mm45 22

f =
+

=R  

 
Find the tangential speed of the tape 
from its length and running time: cm/s42.3

h
s3600h2.0

m
cm100m246

Δ
=

×

×
==

t
Lv  

 
Substitute in equation (1) and 
evaluate ω: 

rad/s1.0

rad/s1.04

mm10
cm1mm32.9

cm/s3.42

=

=
×

=ω

 

 
Convert 1.04 rad/s to rev/min: 

rev/min9.9

min
s60

rad2
rev1

s
rad04.1rad/s04.1

=

××=
π  

 
38 •• To start a lawn mower, you must pull on a rope wound around the 
perimeter of a flywheel. After you pull the rope for 0.95 s, the flywheel is rotating 
at 4.5 revolutions per second, at which point the rope disengages. This attempt at 
starting the mower does not work, however, and the flywheel slows, coming to 
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rest 0.24 s after the disengagement. Assume constant acceleration during both 
spin up and spin down. (a) Determine the average angular acceleration during the 
4.5-s spin-up and again during the 0.24-s spin-down. (b) What is the maximum 
angular speed reached by the flywheel? (c) Determine the ratio of the number of 
revolutions made during spin-up to the number made during spin-down.  
 
Picture the Problem The average angular acceleration of the starter is the ratio of 
the change in angular speed to the time during which the starter either speeds up 
slows down. The number of revolutions through which the starter turns is the 
product of its average angular speed and the elapsed time. 
 
(a) The average angular acceleration 
of the starter is given by: 
 

tt ΔΔ
Δ if

av
ωωωα −

==  

Evaluate αav for ωi = 0 and  
ωf = 4.5 rev/s: 
 

2

2
av

rad/s 30

rad/s 8.29
s 95.0

0
rev

rad 2
s

rev 5.4

=

=
−×

=

π

α  

 
Evaluate αav for ωi = 4.5 rev/s and  
ωf = 0: 
 

222

av

rad/s 102.1rad/s 118
s 24.0

rev
rad 2

s
rev 5.40

×−=−=

×−
=

π

α  

 
(b) The maximum angular speed 
reached by the starter is the angular 
speed it had when the rope comes 
off: 
 

rad/s 82
rev

rad 2
s

rev 5.4max =×=
πω  

 

(c) Use a constant-acceleration 
equation to express the ratio of the 
number of revolutions during startup 
to the number of revolutions during 
slowdown: 
 

( )
( ) downspin downspin av,

upspin upspin av,

downspin 

upspin 

Δ
Δ

Δ
Δ

t
t

ω
ω

θ
θ

=    

or, because downspin  av,upspin  av, ωω = , 
( )

( ) downspin 

upspin 

downspin 

upspin 

Δ
Δ

Δ
Δ

t
t

=
θ
θ

 

 
Substitute numerical values and 
evaluate Δθspin up/Δθspin down: 

0.4
s 24.0
s 95.0

Δ
Δ

downspin 

upspin ==
θ
θ
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39 ••• During a period of 687 days Mars orbits the Sun at a mean orbital 
radius of 228 Gm (1 Gm = 109 m) and has an orbital period of 687 d. Earth orbits 
the Sun at a mean orbital radius of 149.6 Gm. (a) The Earth-Sun line sweeps out 
an angle of 360° during one Earth year.  Approximately what angle is swept out 
by the Mars-Sun line during one Earth-year? (b) How frequently are Mars and the 
Sun in opposition (on diametrically opposite sides of Earth)?  
 
Picture the Problem The angle between the Earth-Sun line and the Mars-Sun 
line is ( ) Earth1Δ θθ f−= where f is the ratio of the periods of Earth and Mars. 
 
(a) The angle between the Earth-Sun 
line and the Mars-Sun line is given 
by: 
 

( ) Earth

EarthEarthMarsEarth

1
Δ

θ
θθθθθ

f
f

−=
−=−=

 

where f is the ratio of the periods of 
Earth and Mars. 
 

Substitute numerical values and 
evaluate Δθ: 
 

( )

rad 94.2

rad 2
d 687

d 24.3651Δ

=

⎟
⎠
⎞

⎜
⎝
⎛ −= πθ

 

 
(b) The second alignment of Earth 
and Mars will occur when both 
planets have the same angular 
displacement from their initial 
alignment-with Earth having made 
one full revolution more than Mars: 
 

MarsEarthEarth 2Δ θπωθ +== t       (1) 
 

The angular position of Mars at this 
time is: 
 

tΔMarsMars ωθ =                           (2) 

Substituting for θMars in equation (1) 
yields: 
 

tt Δ2Δ MarsEarth ωπω +=  
 

Solve for Δt to obtain: 
 MarsEarth

2Δ
ωω

π
−

=t                     (3) 

 
The angular speeds of Earth and 
Mars are related to their periods: 
 

Earth
Earth

2
T

πω = and
Mars

Mars
2

T
πω =  

 
Substituting for ωEarth and ωMars in 
equation (3) and simplifying yields: 
 

EarthMars

MarsEarth

MarsEarth

22
2Δ

TT
TT

TT

t
−

=
−

= ππ
π  
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Substitute numerical values and 
evaluate Δt: 
 

( )( ) d 780
d 24.365d 687
d 687d 24.365Δ =

−
=t  

 
Calculating the Moment of Inertia 

40 • A tennis ball has a mass of 57 g and a diameter of 7.0 cm. Find the 
moment of inertia about its diameter. Model the ball as a thin spherical shell. 
 
Picture the Problem One can find the formula for the moment of inertia of a thin 
spherical shell in Table 9-1. 
 
The moment of inertia of a thin 
spherical shell about its diameter is: 
 

2
3
2 MRI =  

Substitute numerical values and 
evaluate I: 

( )( )
25

2
3
2

mkg104.7

m0.035kg0.057

⋅×=

=
−

I
 

 
41 • [SSM]  Four particles, one at each of the four corners of a square 
with 2.0-m long edges, are connected by massless rods (Figure 9-45). The masses 
of the particles are m1= m3 = 3.0 kg and m2 = m4 = 4.0 kg. Find the moment of 
inertia of the system about the z axis. 
 
Picture the Problem The moment of inertia of a system of particles with respect 
to a given axis is the sum of the products of the mass of each particle and the 
square of its distance from the given axis. 
 
Use the definition of the moment of 
inertia of a system of four particles 
to obtain: 
 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI

+++=

= ∑
 

Substitute numerical values and evaluate Iz axis: 
 

( )( ) ( )( ) ( )( ) ( )( )
2

2222
axis 

mkg60

0kg3.0m2.0kg4.0m22kg4.0m2.0kg3.0

⋅=

+++=zI
 

 
42 •• Use the parallel-axis theorem and the result for Problem 41 to find the 
moment of inertia of the four-particle system in Figure 9-45 about an axis that 
passes through the center of mass and is parallel with the z axis. Check your result 
by direct computation.  
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Picture the Problem According to the parallel-axis theorem, 2
cm MhII += , 

where Icm is the moment of inertia of the object with respect to an axis through its 
center of mass, M is the mass of the object, and h is the distance between the 
parallel axes. Note that the center of mass of the system is not at the intersection 
of the diagonals connecting the four masses. Hence we’ll need to determine its 
position as a part of our confirmation of our results using the parallel-axis 
theorem.  
 
Express the parallel axis theorem: 
 

2
cm MhII +=  

Solve for cmI : 2
axis cm MhII z −=                        (1) 

 
Use the definition of the moment of 
inertia of a system of four particles 
to express cmI : 
 

2
44

2
33

2
22

2
11

i

2
iicm

rmrmrmrm

rmI

+++=

= ∑
(2) 

Express the x coordinate of the 
center of mass of the four-particle 
system: 
 

4321

44332211
cm mmmm

xmxmxmxmx
+++

+++
=  

Substitute numerical values and evaluate xcm: 
 

( )( ) ( )( ) ( )( ) ( )( ) m 143.1
kg 0.4kg 0.3kg 0.4kg 0.3

m 0.2kg 0.40kg 0.3m 0.2kg 0.40kg 0.3
cm =

+++
+++

=x  

 
Express the y coordinate of the 
center of mass of the four-particle 
system: 
 

4321

44332211
cm mmmm

ymymymymy
+++

+++
=  

Substitute numerical values and evaluate ycm: 
 

( )( ) ( )( ) ( )( ) ( )( ) m 000.1
kg 0.4kg 0.3kg 0.4kg 0.3

0kg 0.40kg 0.3m 0.2kg 0.4m 0.2kg 0.3
cm =

+++
+++

=y  

 
Find the square of the distance from 
the center of mass to the z axis (note 
that this distance is also the distance 
from the center of mass to the center 
of the object whose mass is m1): 
 

( ) ( )
2

22

2
1

2

m306.2
m 1.00m 0.2m 143.10

=

−+−=

= rh
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Substitute numerical values in 
equation (1) and evaluate Icm: 
 

( )( )
2

22
cm

mkg 28

m 306.2kg 14mkg 60

⋅=

−⋅=I
 

 
Find the square of the distance from 
the center of mass to the center of the 
object whose mass is m2: 
 

( ) ( )
2

222
2

m734.1
m 1.00m 0.2m 143.10.2

=

−+−=r  

Because m1 = m3, m2 = m4, 2
1r = 2

3r , 

and 2
2r = 2

4r , equation (2) becomes: 
 ( )2

22
2

11

2
22

2
11

2
22

2
11

2
22

2
11cm

2

22

rmrm

rmrm

rmrmrmrmI

+=

+=

+++=

 

 
Substitute numerical values and evaluate Icm: 
 

( )( ) ( )( )[ ] 222
cm mkg 28m .7341kg 0.4m 306.2kg 0.32 ⋅=+=I  

 
43 • For the four-particle system of Figure 9-45, (a) find the moment of 
inertia Ix about the x axis, which passes through m2 and m3, and (b) find the 
moment of inertia Iy about the y axis, which passes through m1and m2. 
 
Picture the Problem The moment of inertia of a system of particles with respect 
to a given axis is the sum of the products of the mass of each particle and the 
square of its distance from the given axis. 
 
(a) Apply the definition of the 
moment of inertia of a system of 
particles to express Ix: 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI x

+++=

= ∑
 

 
Substitute numerical values 
and evaluate Ix: 

( )( ) ( )( )
( )( ) ( )( )

2

22

22

mkg28

m2.0kg3.00kg4.0

0kg4.0m2.0kg3.0

⋅=

++

+=xI

 

 
(b) Apply the definition of the 
moment of inertia of a system of 
particles to express Iy: 

2
44

2
33

2
22

2
11

i

2
ii

rmrmrmrm

rmI y

+++=

= ∑
 

 
Substitute numerical values 
and evaluate Iy: 

( )( ) ( )( )
( )( ) ( )( )

2

22

2

mkg32

m2.0kg0.4m2.0kg3.0

0kg4.00kg3.0

⋅=

++

+=yI
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44 • Determine the moment of inertia of a uniform solid sphere of mass M 
and radius R about an axis that is tangent to the surface of the sphere (Figure 9-
46). 
 
Picture the Problem According to the parallel-axis theorem, ,2

cm MhII +=  
where Icm is the moment of inertia of the object with respect to an axis through its 
center of mass, M is the mass of the object, and h is the distance between the 
parallel axes. 
 
The moment of inertia of a solid 
sphere of mass M and radius R about 
an axis that is tangent to the sphere is 
given by: 
 

2
cm MhII +=                            (1) 

Use Table 9-1 to find the moment of 
inertia of a sphere with respect to an 
axis through its center of mass: 
 

2
5
2

cm MRI =  

Substitute for Icm and h in equation 
(1) and simplify to obtain: 

2
5
722

5
2 MRMRMRI =+=  

 
45 •• A 1.00-m-diameter wagon wheel consists of a thin rim having a mass 
of 8.00 kg and 6 spokes, each with a mass of 1.20 kg. Determine the moment of 
inertia of the wagon wheel about its axis. 
 
Picture the Problem The moment of inertia of the wagon wheel is the sum of the 
moments of inertia of the rim and the six spokes. 
 
Express the moment of inertia of the 
wagon wheel as the sum of the 
moments of inertia of the rim and the 
spokes: 
 

spokesrimwheel III +=                    (1) 

Using Table 9-1, find formulas for 
the moments of inertia of the rim and 
spokes: 2

spoke3
1

spoke

2
rimrim

and
LMI

RMI

=

=
 

 
Substitute for rimI and spokeI  in 

equation (1) to obtain: 
( )

2
spoke

2
rim

2
spoke3

12
rimwheel

2

6

LMRM

LMRMI

+=

+=
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Substitute numerical values and evaluate wheelI : 
 

( )( ) ( )( ) 222
wheel mkg6.2m0.50kg1.202m50.0kg8.00 ⋅=+=I  

 
46 •• Two point masses m1and m2 are separated by a massless rod of length 
L. (a) Write an expression for the moment of inertia I about an axis perpendicular 
to the rod and passing through it a distance x from mass m1. (b) Calculate dI/dx 
and show that I is at a minimum when the axis passes through the center of mass 
of the system. 
 
Picture the Problem The moment of inertia of a system of particles depends on 
the axis with respect to which it is calculated. Once this choice is made, the 
moment of inertia is the sum of the products of the mass of each particle and the 
square of its distance from the chosen axis. 
 
(a) Apply the definition of the 
moment of inertia of a system of 
particles: 
 

( )2
2

2
1

i

2
ii xLmxmrmI −+== ∑  

(b) Set the derivative of I with 
respect to x equal to zero in order to 
identify values for x that correspond 
to either maxima or minima: 
 

( )( )

( )
extremafor  0

2

122

221

21

=
−+=

−−+=

Lmxmxm

xLmxm
dx
dI

 

If 0=
dx
dI , then: 

 

0221 =−+ Lmxmxm  

Solving for x yields: 
21

2

mm
Lmx

+
=  

 
Convince yourself that you’ve found 
a minimum by showing that 

22 dxId is positive at this point. 

. from
 mass ofcenter   theof distance

  the,definitionby  is, 
21

2

m

mm
Lmx

+
=

 

 
47 •• A uniform rectangular plate has mass m and edges of lengths a and b. 
(a) Show by integration that the moment of inertia of the plate about an axis that 
is perpendicular to the plate and passes through one corner is m(a2 + b2)/3.  
(b) What is the moment of inertia about an axis that is perpendicular to the plate 
and passes through its center of mass? 
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Picture the Problem Let σ be the 
mass per unit area of the uniform 
rectangular plate. Then the elemental 
unit has mass dm = σ dxdy. Let the 
corner of the plate through which the 
axis runs be the origin. The distance 
of the element whose mass is dm 
from the corner r is related to the 
coordinates of dm through the 
Pythagorean relationship r2 = x2 + y2. 

 

 
(a) Express the moment of inertia of 
the element whose mass is dm  with 
respect to an axis perpendicular to it 
and passing through one of the 
corners of the uniform rectangular 
plate: 
 

( )dxdyyxdI 22 += σ  

Integrate this expression to find I: ( ) ( )

( )32
3
1

33
3
1

0 0

22

bam

abbadxdyyxI
a b

+=

+=+= ∫ ∫ σσ
 

 
(b) Letting d represent the distance 
from the origin to the center of mass 
of the plate, use the parallel axis 
theorem to relate the moment of 
inertia found in (a) to the moment of 
inertia with respect to an axis 
through the center of mass: 
 

( ) 222
3
12

cm

2
cm

or
mdbammdII

mdII

−+=−=

+=
 

Using the Pythagorean theorem, 
relate the distance d to the center of 
mass to the lengths of the sides of the 
plate:  
 

( ) ( ) ( )22
4
12

2
12

2
12 babad +=+=  

Substitute for d2 in the expression for 
Icm and simplify to obtain: 

( ) ( )
( )22

12
1

222
4
122

3
1

cm

bam

bambamI

+=

+−+=
 

   
48 •• In attempting to ensure a spot on the pep squad, you and your friend 
Corey research baton-twirling. Each of you is using ″The Beast″ as a model 
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baton: two uniform spheres, each of mass 500 g and radius 5.00 cm, mounted at 
the ends of a 30.0-cm uniform rod of mass 60.0 g (Figure 9-47). You want to 
determine the moment of inertia I of ″The Beast″ about an axis perpendicular to 
the rod and passing through its center. Corey uses the approximation that the two 
spheres can be treated as point particles that are 20.0 cm from the axis of rotation, 
and that the mass of the rod is negligible. You, however, decide to do an exact 
calculation. (a) Compare the two results. (Give the percentage difference between 
them). (b) Suppose the spheres were replaced by two thin spherical shells, each of 
the same mass as the original solid spheres. Give a conceptual argument 
explaining how this replacement would, or would not, change the value of I. 
 
Picture the Problem Corey will use the point-particle relationship 

2
22

2
11

i

2
iiapp rmrmrmI +== ∑ for his calculation whereas your calculation will take 

into account not only the rod but also the fact that the spheres are not point 
particles. 
 
(a) Using the point-mass 
approximation and the definition of 
the moment of inertia of a system of 
particles, express appI : 

 

2
22

2
11

i

2
iiapp rmrmrmI +== ∑  

 

Substitute numerical values and evaluate appI : 

 
( )( ) ( )( ) 222

app mkg0.0400m0.200kg0.500m0.200kg0.500 ⋅=+=I  

 
Express the moment of inertia of the 
two spheres and connecting rod 
system: 
 

rodspheres III +=  

Use Table 9-1 to find the moments 
of inertia of a sphere (with respect to 
its center of mass) and a rod (with 
respect to an axis through its center 
of mass): 
 

2
rod12

1
rod

2
sphere5

2
sphere

and
LMI

RMI

=

=

 

Because the spheres are not on the 
axis of rotation, use the parallel axis 
theorem to express their moment of 
inertia with respect to the axis of 
rotation: 
 

2
sphere

2
sphere5

2
sphere hMRMI +=  

where h is the distance from the center 
of mass of a sphere to the axis of 
rotation. 
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Substitute to obtain: [ ] 2
rod12

12
sphere

2
sphere5

22 LMhMRMI ++=

 
Substitute numerical values and evaluate I: 
 

( )( ) ( )( )[ ] ( )( )
2

2
12
122

5
2

mkg0415.0

m0.300kg0.0600m0.200kg0.500m0.0500kg0.5002

⋅=

++=I
 

 
The percent difference between I and appI is: 

 

%6.3
mkg0.0415

mkg0.0400mkg0.0415
2

22
app =

⋅
⋅−⋅

=
−

I
II

 

 
(b) The rotational inertia would increase because Icm of a hollow sphere is greater 
than Icm of a solid sphere. 
 
49 •• The methane molecule (CH4) has four hydrogen atoms located at the 
vertices of a regular tetrahedron of edge length 0.18 nm, with the carbon atom at 
the center of the tetrahedron (Figure 9-48). Find the moment of inertia of this 
molecule for rotation about an axis that passes through the centers of the carbon 
atom and one of the hydrogen atoms. 
 
Picture the Problem The axis of 
rotation passes through the center of the 
base of the tetrahedron. The carbon 
atom and the hydrogen atom at the apex 
of the tetrahedron do not contribute to I 
because the distance of their nuclei 
from the axis of rotation is zero. From 
the geometry, the distance of the three 
H nuclei from the rotation axis is 

3/a , where a is the length of a side 
of the tetrahedron. a

C

H

HH

H

 
 
Apply the definition of the moment 
of inertia for a system of particles to 
obtain: 2

H

2

H

2
3H

2
2H

2
1H

i

2
ii

3
3 amam

rmrmrmrmI

=⎟
⎠

⎞
⎜
⎝

⎛=

++== ∑
 

 
Substitute numerical values and 
evaluate I: 

( )( )
247

2927

mkg104.5

m1018.0kg101.67

⋅×=

××=
−

−−I
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50 •• A hollow cylinder has mass m, an outside radius R2, and an inside 
radius R1. Use integration to show that the moment of inertia about its axis is 
given by

  
I = 1

2 m R2
2 + R1

2( ). Hint: Review Section 9-3, where the moment of inertia 
is calculated for a solid cylinder by direct integration. 
  
Picture the Problem Let the mass of 
the element of volume dV be  
dm = ρdV = 2πρhrdr where h is the 
height of the cylinder. We’ll begin 
by expressing the moment of inertia 
dI for the element of volume and 
then integrating it between R1 and 
R2.  
  
Express the moment of inertia of an 
element of mass dm: 
 

drhrdmrdI 32 2πρ==  

Integrate dI from R1 to R2 to obtain: ( )

( )( )2
1

2
2

2
1

2
22

1

4
1

4
22

13
2

1

2

RRRRh

RRhdrrhI
R

R

+−=

−== ∫
πρ

πρπρ
 

 
The mass of the hollow cylinder is 

( )2
1

2
2 RRhm −= ρπ , so: 

 
( )2

1
2
2 RRh
m

−
=

π
ρ  

Substitute for ρ and simplify to obtain: 
 

( ) ( )( ) ( )2
1

2
22

12
1

2
2

2
1

2
22

1
2
2

2
1 RRmRRRRh

RRh
mI +=+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
π

π  

 
51 •• While slapping the water’s surface with his tail to communicate 
danger, a beaver must rotate it about one of its narrow ends. Let us model the tail 
as a rectangle of uniform thickness and density (Figure 9-49). Estimate its 
moment of inertia about the line passing through its narrow end (dashed line). 
Assume the tail measures 15 by 30 cm with a thickness of 1.0 cm and that the 
flesh has the density of water. 
 
Picture the Problem The pictorial representation shows our model of the beaver 
tail pivoted about the dashed line shown to the left. We can apply ∫= dmxI 2 to 
this configuration to derive an expression for the moment of inertia of the beaver 
tail. 
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dx

w

L

x
dm

 
 
The moment of inertia, about an axis 
through the short side of the 
rectangular object, is:  
 

∫= dmxI 2  

 

Letting the density of the beaver’s 
tail be represented by ρ: 
 

wtdxdVdm ρρ ==  

Substituting for dm yields: ∫∫ == dxxwtdxwtxI 22 ρρ  

 
Integrating over the length L of the 
beaver’s tail yields: 
 

3
3
1

0

2 wtLdxxwtI
L

ρρ == ∫               

Substitute numerical values and 
evaluate I: 

( )( )( )

22

3
33

1

mkg104.1

cm 30cm 0.1cm 15
cm

g 0.1

⋅×=

⎟
⎠
⎞

⎜
⎝
⎛=

−

I

 
Remarks: Had we substituted wtLm ρ= in the expression for I, we would 
have obtained 2

3
1 mLI = as the expression for the moment of inertia, about an 

axis through its short side, of a rectangular plate of uniform thickness. 
 
52 •• To prevent damage to her shoulders, your elderly grandmother wants 
to purchase the rug beater (Figure 9-50) with the lowest moment of inertia about 
its grip end. Knowing you are taking physics, she asks your advice. There are two 
models to choose from. Model A has a 1.0-m-long handle and a 40-cm-edge-
length square, where the masses of the handle and square are 1.0 kg and 0.5 kg, 
respectively. Model B has a 0.75-m-long handle and a 30-cm-edge-length square, 
where the masses of the handle and square are 1.0 kg and 0.5 kg, respectively. 
Which model should you recommend? Determine which beater is easiest to swing 
from the very end by computing the moment of inertia for both beaters. 
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Picture the Problem The pictorial representation models the rug beater as two 
rectangles of different dimensions. The moment of inertia of the rug beater, about 
the axis shown to the left, is the sum of the moments of inertia of the handle and 
the paddle. The rug beater that is easiest for your grandmother to use is the one 
with the smaller moment of inertia about an axis through the grip end of the 
handle. 

handleL
paddlewhandlew

paddleL

h  
 
The moment of inertia of the rug 
beater, with respect to an axis 
through the end of its handle, is the 
sum of the moments of inertia of its 
handle and paddle: 
 

paddlehandle III +=                       (1) 

The handle of the rug beater is 
shown to the right. We can apply 

∫= dmxI 2 to this configuration to 

derive an expression for Ihandle. 
 

dx

dm
x

handleL

handlew

  

The moment of inertia of the handle, 
about an axis through the grip end of 
the handle, is: 
  

∫= dmxI 2  

 

Let thandle represent the thickness of 
the handle and ρ its density yields: 
 

dxtwdVdm handlehandleρρ ==  

Substituting for dm yields: 

∫
∫

=

=

dxxtw

dxxtwI
2

handlehandle

2
handlehandlehandle

ρ

ρ
 

 
Integrating over the length of the 
handle yields: 
 3

handlehandlehandle3
1

0

2
handlehandle

handle

Ltw

dxxtwI
L

ρ

ρ

=

= ∫        

        
Because the mass of the handle is 
given by handlehandlehandlehandle Ltwm ρ= : 

2
handlehandle3

1
handle LmI =                  
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We can find the moment of inertia of 
the paddle, relative to an axis 
through the grip end of the handle, 
by first finding its moment of inertia 
with respect to an axis through its 
center of mass and then applying the 
parallel-axis theorem. 

dx

x

dm

paddleL

paddlew

 
 

 
The moment of inertia, about an axis 
through the center of mass of the 
paddle, is:  

∫= dmxI 2
paddle  

 

 
The mass of the infinitesimal 
element of the paddle is given by: 
 

dxtwdVdm paddlepaddleρρ ==  

Substituting for dm yields:  

∫
∫

=

=

dxxtw

dxxtwI
2

paddlepaddle

2
paddlepaddle

ρ

ρ
 

 
Integrating over the length Lpaddle of 
the rectangular object yields: 
 

3
paddlepaddlepaddle12

1

2
paddlepaddlepaddle

paddle2
1

paddle2
1

Ltw

dxxtwI
L

L

ρ

ρ

=

= ∫
−     

           
Because the mass of the paddle is 
given by paddlepaddlepaddlepaddle Ltwm ρ= : 

 

2
paddlepaddle12

1
cm paddle, LmI =  

 

Apply the parallel-axis theorem to 
express the moment of inertia of the 
paddle with respect to an axis 
through the grip end of the handle: 

2
paddlecmpaddle hmII +=  

or, because paddle2
1

handle LLh += , 

( )2
paddle2

1
handlepaddle

cm paddle,paddle

LLm

II

++

=
 

 
Substituting for Ipaddle, cm yields: 
 

( )2
paddle2

1
handlepaddle

2
paddlepaddle12

1
paddle LLmLmI ++=  

 
Substitute for Ihandle and Ipaddle in equation (1) to obtain: 
 

( )2
paddle2

1
handlepaddle

2
paddlepaddle12

12
handlehandle3

1 LLmLmLmI +++=  
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Substitute numerical values and evaluate I1, the moment of inertia of the rug 
beater with the shorter handle: 
 

( )( ) ( )( ) ( ) ( )( )
2

2
2
12

12
12

3
1

1

mkg 06.1

m 4.0m 0.1kg 50.0m 40.0kg 50.0m 0.1kg 0.1

⋅=

+++=I
 

 
Substitute numerical values and evaluate I2, the moment of inertia of the rug 
beater with the longer handle: 

 
( )( ) ( )( ) ( ) ( )( )

2

2
2
12

12
12

3
1

2

mkg 77.0

m 3.0m 75.0kg 60.0m 30.0kg 60.0m .750kg 5.1

⋅=

+++=I
 

 
Because I2 < I1, the more massive rug beater will be easier to swing. 

 
53 ••• [SSM] Use integration to show that the moment of inertia of a thin 
spherical shell of radius R and mass m about an axis through its center is 2mR2/3.  
 
Picture the Problem We can derive the given expression for the moment of 
inertia of a spherical shell by following the procedure outlined in the problem 
statement. 
 
Find the moment of inertia of a 
sphere, with respect to an axis 
through a diameter, in Table 9-1: 
 

2
5
2 mRI =  

Express the mass of the sphere as a 
function of its density and radius: 
 

3
3
4 Rm ρπ=  

Substitute for m to obtain: 
 

5
15
8 RI ρπ=  

Express the differential of this 
expression:  
 

dRRdI 4
3
8 ρπ=                        (1) 

 

Express the increase in mass dm as 
the radius of the sphere increases by 
dR: 
 

dRRdm 24 ρπ=                       (2) 

Eliminate dR between equations (1) 
and (2) to obtain: 
 

dmRdI 2
3
2=  
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Integrate over the mass of the 
spherical shell to obtain: 

2
3
2

shell spherical mRI =  

 
54  ••• According to one model, the density of Earth varies with the distance r 
from the center of Earth as ρ  = C [1.22 – (r/R)], where R is the radius of Earth 
and C is a constant. (a) Find C in terms of the total mass M and the radius R.  
(b) According to this model, what is the moment of inertia of Earth about and axis 
through its center. (See Problem 53.) 
 
Picture the Problem We can find C in terms of M and R by integrating a 
spherical shell of mass dm with the given density function to find the mass of 
Earth as a function of M and then solving for C. In Part (b), we’ll start with the 
moment of inertia of the same spherical shell, substitute the Earth’s density 
function, and integrate from 0 to R. Let the axis of rotation be the Earth’s axis. 
 
(a) Express the mass of Earth using 
the given density function:  

33

0

3

0

2

0

2

22.1
3

4

422.14

4

CRCR

drr
R

CdrrC

drrdmM

RR

R

ππ

ππ

ρπ

−=

−=

==

∫∫

∫∫

 

 
Solve for C as a function of M and R 
to obtain: 
 

3508.0
R
MC =  

(b) From Problem 9-53 we have: drrdI 4
3
8 ρπ=  

 
Integrate and simplify to obtain: 
  

( )

2

55
3

0 0

54
3

0

4
3
8

329.0

6
1

5
22.126.4122.1

3
508.08

MR

RR
R

Mdrr
R

drr
R

MdrrI
R RR

=

⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
−== ∫ ∫∫

πρπ
 

 
55 ••• Use integration to determine the moment of inertia about its axis of a 
uniform right circular cone of height H, base radius R, and mass M. 
 
Picture the Problem Let the origin be at the apex of the cone, with the z axis 
along the cone’s symmetry axis. Then the radius of the elemental ring, at a 

distance z from the apex, can be obtained from the proportion
H
R

z
r

= . The mass 

dm of the elemental disk is ρdV = ρπr2dz. We’ll integrate r2dm to find the 
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moment of inertia of the disk in terms of R and H and then integrate dm to obtain 
a second equation in R and H that we can use to eliminate H in our expression for 
I. 

 
 
Express the moment of inertia of the 
cone in terms of the moment of 
inertia of the elemental disk: 

102

4

0

4
4

4

2
2

2
2

0
2

2

2
1

2
2
1

HRdzz
H
R

dzz
H
Rz

H
R

dmrI

H

H

πρπρ

ρπ

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

∫

∫

∫
 

 
Express the total mass of the cone in 
terms of the mass of the elemental 
disk: 

HR

dzz
H
RdzrM

HH

2
3
1

0

2
2

2

0

2

πρ

πρπρ

=

== ∫∫  

 
Divide I by M, simplify, and solve 
for I to obtain: 

2
10
3 MRI =  

 
56 ••• Use integration to determine the moment of inertia about its axis of a 
thin uniform disk of mass M and radius R. Check your answer by referring to 
Table 9-1. 
 
Picture the Problem Let the axis of rotation be the x axis. The radius r of the 
elemental area is 22 zR − and its mass, dm, is dzzRdA 222 −= σσ . We’ll 
integrate z2 dm to determine I in terms of σ and then divide this result by M in 
order to eliminate σ  and express I in terms of M and R. 
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Express the moment of inertia about 
the x axis: 
 

∫∫ == dAzdmzI σ22  

 

Substitute for dm to obtain: ( )∫
−

−=
R

R

dzzRzI 222 2σ  

 
Carrying out the integration yields: 4

4
1 RI σπ=  

 
The mass of the thin uniform disk is: 2RM σπ=  

 
Divide I by M, simplify, and solve 
for I to obtain: 
 

2
4
1 MRI = , a result in agreement 

with the expression given in Table 9-1 
for a cylinder of length L = 0. 

 
57 ••• An advertising firm has contacted your engineering firm to create a 
new advertisement for a local ice-cream stand. The owner of this stand wants to 
add rotating solid cones (painted to look like ice-cream cones, of course) to catch 
the eye of travelers. Each cone will rotate about an axis parallel to its base and 
passing through its apex. The actual size of the cones is to be decided upon, and 
the owner wonders if it would be more energy-efficient to rotate smaller cones 
than larger ones. He asks your firm to write a report showing the determination of 
the moment of inertia of a homogeneous right circular cone of height H, base 
radius R, and mass M. What is the result of your report? 
 
Picture the Problem Choose the coordinate system shown in the diagram to the 
right. Then the radius of the elemental disk, at a distance z from the apex, can be 

obtained from the proportion
H
R

z
r

= . The mass dm of the elemental disk is  

ρdV = ρπr2dz. Each elemental disk rotates about an axis that is parallel to its 
diameter but removed from it by a distance z. We can use the result from Problem 
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9-56 for the moment of inertia of the elemental disk with respect to a diameter 
and then use the parallel axis theorem to express the moment of inertia of the cone 
with respect to the x axis. 

 
 
Using the parallel axis theorem, 
express the moment of inertia of the 
elemental disk with respect to the x 
axis: 
 

2
disk zdmdIdI x +=                   (1) 

where 
dzrdVdm 2ρπρ ==  

In Problem 9-56 it was established that the moment of inertia of a thin uniform 
disk of mass M and radius R rotating about a diameter is .2

4
1 MR  Express this 

result in terms of our elemental disk: 
 

( ) dzz
H
RrdzrdI

2
2

2

2

4
122

4
1

disk ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ρπρπ  

 
Substituting for dIdisk in equation (1) yields: 
 

2
22

2
2

2

4
1 zdzz

H
Rdzz

H
RdI x ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= πρπρ  

 
Integrate from 0 to H to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∫

520

4
1

324

0

4
2

22
2

2

2

HRHR

dzz
H
Rz

H
RI

H

x

πρ

πρ
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Express the total mass of the cone in 
terms of the mass of the elemental 
disk: HR

dzz
H
RdzrM

HH

2
3
1

0

2
2

2

0

2

πρ

πρπρ

=

== ∫∫  

 
Divide Ix by M, simplify, and solve 
for Ix to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

205
3

22 RHMI x  

 Remarks: Because both H and R appear in the numerator, the larger the 
cones are, the greater their moment of inertia and the greater the energy 
consumption required to set them into motion. 
 
Torque, Moment of Inertia, and Newton’s Second Law for 
Rotation 
 
58 • A firm wants to determine the amount of frictional torque in their 
current line of grindstones, so they can redesign them to be more energy efficient. 
To do this, they ask you to test the best-selling model, which is basically a disk-
shaped grindstone of mass 1.70 kg and radius 8.00 cm which operates at  
730 rev/min. When the power is shut off, you time the grindstone and find it takes 
31.2 s for it to stop rotating. (a) What is the angular acceleration of the 
grindstone? (Assume constant angular acceleration.) (b) What is the frictional 
torque exerted on the grindstone? 
 
Picture the Problem (a) We can use the definition of angular acceleration to find 
the angular acceleration of the grindstone. (b) Apply Newton’s 2nd law in 
rotational form will allow us to find the torque exerted by the friction force acting 
on the grindstone.  
 
(a) From the definition of angular 
acceleration we have: tt Δ

−
=

Δ
Δ

= 0ωωωα  

or, because ω = 0, 

tΔ
−

= 0ωα  

 
Substitute numerical values and 
evaluate α: 

2rad/s45.2

s2.31
s60

min1
rev

rad2
min
rev730

−=

××
−=

π

α  

where the minus sign means that the 
grindstone is slowing down. 
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(b) Use Newton’s 2nd law in 
rotational form to relate the angular 
acceleration of the grindstone to the 
frictional torque slowing it: 
 

ατ I−=frictional  

Express the moment of inertia of 
disk with respect to its axis of 
rotation:  
 

2
2
1 MRI =  

Substitute for I to obtain: ατ 2
2
1

frictional MR−=  
 

Substitute numerical values and evaluate τfrictional: 
 

( )( ) ( ) mN 0133.0rad/s45.2m0.0800kg1.70 22
2
1

frictional ⋅=−−=τ  

 
59 • [SSM] A 2.5-kg 11-cm-radius cylinder, initially at rest, is free to 
rotate about the axis of the cylinder. A rope of negligible mass is wrapped around 
it and pulled with a force of 17 N. Assuming that the rope does not slip, find (a) 
the torque exerted on the cylinder by the rope, (b) the angular acceleration of the 
cylinder, and (c) the angular speed of the cylinder after 0.50 s.  
 
Picture the Problem We can find the torque exerted by the 17-N force from the 
definition of torque. The angular acceleration resulting from this torque is related 
to the torque through Newton’s 2nd law in rotational form. Once we know the 
angular acceleration, we can find the angular speed of the cylinder as a function 
of time. 
 
(a) The torque exerted by the rope is: ( )( )

mN1.9

mN1.87m0.11N17

⋅=

⋅=== Fτ
 

 
(b) Use Newton’s 2nd law in 
rotational form to relate the 
acceleration resulting from this 
torque to the torque: 
 

I
τα =  

Express the moment of inertia of the 
cylinder with respect to its axis of 
rotation: 
 

2
2
1 MRI =  

Substitute for I and simplify to 
obtain: 2

2
MR

τα =  
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Substitute numerical values and 
evaluate α: 

( )
( )( )

22

2
2

rad/s102.1

rad/s 124
m0.11kg2.5

mN1.872

×=

=
⋅

=α
 

 
(c) Using a constant-acceleration 
equation, express the angular speed 
of the cylinder as a function of time: 
 

tαωω += 0  
or, because ω0 = 0, 

tαω =  

Substitute numerical values and 
evaluate ω (5.0 s): 

( ) ( )( )
rad/s106.2

s5.0rad/s124s0.5
2

2

×=

=ω
 

 
60 •• A grinding wheel is initially at rest. A constant external torque of  
50.0 N⋅m is applied to the wheel for 20.0 s, giving the wheel an angular speed of 
600 rev/min. The external torque is then removed, and the wheel comes to rest 
120 s later. Find (a) the moment of inertia of the wheel, and (b) the frictional 
torque, which is assumed to be constant. 
 
Picture the Problem We can apply Newton’s 2nd law in rotational form to both 
the speeding up and slowing down motions of the wheel to obtain two equations 
in I, the moment of inertia of the wheel, and τfr, the frictional torque, that we can 
solve simultaneously for I and τfr. We’ll assume that both the speeding-up and 
slowing-down of the wheel took place under constant-acceleration conditions. 
 
Apply ατ I=∑ to the wheel during 
the speeding-up portion of its 
motion: 
 

up speedingfrext αττ I=−                 (1) 

Apply ατ I=∑ to the wheel during 
the slowing-down portion of its 
motion: 
 

down slowingfr ατ I=                        (2) 

(a) Eliminating τfr between 
equations (1) and (2) and solving for 
I yields: 
 

down slowingup speeding

ext

αα
τ
+

=I  

 

Substituting for αspeeding up and 
αslowing down yields: 
 

down slowing

down slowing

up speeding

up speeding

ext

Δ
Δ

Δ
Δ

tt

I
ωω

τ

+
=  
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Substitute numerical values and evaluate I: 
 

2

2

mkg 1.19

mkg 10.19

s 120
s 60

min 1
rev

rad 2
min
rev600

s 0.20
s 60

min 1
rev

rad 2
min
rev600

mN 0.50

⋅=

⋅=
××−

+
××

⋅
= ππI

 

 
(b) Substitute numerical values in equation (2) and evaluate τfr: 
 

( ) mN 0.10
s 120

s 60
min 1

rev
rad 2

min
rev600

mkg 10.19 2
fr ⋅−=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ××−
⋅=

π

τ  

where the minus sign is a consequence of the fact that the frictional torque 
opposes the motion of the wheel.   
 
61 •• A pendulum consisting of a string of length L attached to a bob of 
mass m swings in a vertical plane. When the string is at an angle θ to the vertical, 
(a) Using tt maF =∑ , calculate the tangential acceleration of the bob? (b) What 

is the torque exerted about the pivot point? (c) Show that∑ = ατ I  with αLa =t  
gives the same tangential acceleration as found in Part (a). 
  
Picture the Problem The pendulum 
and the forces acting on it are shown in 
the free-body diagram. Note that the 
tension in the string is radial, and so 
exerts no tangential force on the ball. 
We can use Newton’s 2nd law in both 
translational and rotational form to find 
the tangential component of the 
acceleration of the bob. 

θ

T
r

gm
r

L

θ
 

 
(a) Referring to the free-body 
diagram, express the component of 

gm that is tangent to the circular path 
of the bob: 
 

θsint mgF =  
 
 

Use Newton’s 2nd law to express the 
tangential acceleration of the bob: 
 

θθ sinsint
t g

m
mg

m
Fa ===  
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(b) Noting that, because the line-of-
action of the tension passes through 
the pendulum’s pivot point, its lever 
arm is zero and the net torque is due 
to the weight of the bob, sum the 
torques about the pivot point to 
obtain: 

∑ = θτ sinpointpivot mgL  

 

 
(c) Use Newton’s 2nd law in 
rotational form to relate the angular 
acceleration of the pendulum to the 
net torque acting on it: 
 

αθτ ImgL == sinnet  

Solve for α to obtain: 
 I

mgL θα sin
=  

 
Express the moment of inertia of the 
bob with respect to the pivot point: 

2mLI =  

Substitute for I and simplify to 
obtain: L

g
mL

mgL θθα sinsin
2 ==  

 
Relate α to at, substitute for α, and 
simplify to obtain: 

θθα sinsin
t g

L
gLra =⎟

⎠
⎞

⎜
⎝
⎛==  

 
62 ••• A uniform rod of mass M and length L is pivoted at one end and hangs 
as in Figure 9-51 so that it is free to rotate without friction about its pivot. It is 
struck a sharp horizontal blow a distance x below the pivot, as shown. (a) Show 
that, just after the rod is struck, the speed of the center of mass of the rod is given 
by v0 = 3xF0Δt/(2ML), where F0 and Δt are the average force and duration, 
respectively, of the blow. (b) Find the horizontal component of the force exerted 
by the pivot on the rod, and show that this force component is zero if Lx 3

2= .  
This point (the point of impact when the horizontal component of the pivot force 
is zero) is called the center of percussion of the rod-pivot system.  
 
Picture the Problem We can express the velocity of the center of mass of the rod 
in terms of its distance from the pivot point and the angular speed of the rod. We 
can find the angular speed of the rod by using Newton’s 2nd law to find its angular 
acceleration and then a constant-acceleration equation that relates ω to α. We’ll  
use the impulse-momentum relationship to derive the expression for the force 
delivered to the rod by the pivot. Finally, the location of the center of percussion 
of the rod will be verified by setting the force exerted by the pivot to zero. 
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(a) Relate the velocity of the center 
of mass to its distance from the pivot 
point: 
 

ω
2cm
Lv =                                  (1) 

Express the torque due to F0: 
 

ατ pivot0 IxF == ⇒
pivot

0

I
xF

=α  

 
Express the moment of inertia of the 
rod with respect to an axis through 
its pivot point: 
 

2
3
1

pivot MLI =  

Substitute for pivotI  and simplify to 

obtain: 2
03

ML
xF

=α  

 
Express the angular speed of the rod 
in terms of its angular acceleration: 
 

2
03

ML
txFt Δ

=Δ= αω  

 
Substitute in equation (1) to obtain: 

ML
txF

v
2

3 0
cm

Δ
=  

 
(b) Let IP be the impulse exerted by 
the pivot on the rod. Then the total 
impulse (equal to the change in 
momentum of the rod) exerted on the 
rod is: 
 

cm0P MvtFI =Δ+  
and 

tFMvI Δ−= 0cmP  

Substitute your result from (a) to 
obtain: ⎟

⎠
⎞

⎜
⎝
⎛ −Δ=Δ−

Δ
= 1

2
3

2
3

00
0

P L
xtFtF

L
txFI  

 
Because tFI Δ= PP : 

⎟
⎠
⎞

⎜
⎝
⎛ −= 1

2
3

0P L
xFF  

 
If FP is zero, then: 

01
2
3

=−
L
x

⇒
3

2Lx =  

 
63 ••• A uniform horizontal disk of mass M and radius R is spinning about 
the vertical axis through its center with an angular speed ω.  When the spinning 
disk is dropped onto a horizontal tabletop, kinetic-frictional forces on the disk 
oppose its spinning motion. Let μk be the coefficient of kinetic friction between 
the disk and the tabletop.  (a) Find the torque dτ  exerted by the force of friction 
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on a circular element of radius r and width dr. (b) Find the total torque exerted by 
friction on the disk. (c) Find the time required for the disk to stop rotating. 
 
Picture the Problem We’ll first express the torque exerted by the force of 
friction on the elemental disk and then integrate this expression to find the torque 
on the entire disk. We’ll use Newton’s 2nd law to relate this torque to the angular 
acceleration of the disk and then to the stopping time for the disk. 
 
(a) Express the torque exerted on the 
elemental disk in terms of the 
friction force and the distance to the 
elemental disk: 
 

kf rdfd =τ                                 (1) 

Using the definition of the 
coefficient of friction, relate the 
force of friction to μk and the weight 
of the circular element: 
 

gdmdf kk μ=                             (2) 

Letting σ represent the mass per unit 
area of the disk, express the mass of 
the circular element: 
 

drrdm σπ2=                           (3) 

Substitute equations (2) and (3) in 
(1) to obtain: 
 

drrgd 2
kf 2 σμπτ =                 (4) 

Because 2R
M

π
σ = : drr

R
gMd 2

2
k

f
2μτ =  

 
(b) Integrate fτd to obtain the total 
torque on the elemental disk: gMRdrr

R
gM R

k3
2

0

2
2

k
f

2 μμτ == ∫  

 
(c) Relate the disk’s stopping time to 
its angular speed and acceleration: 
 

α
ω

=Δt  

Using Newton’s 2nd law, express α 
in terms of the net torque acting on 
the disk: 
 

I
fτα =  

Substituting for α yields: 
ff τ
ω

τ
ω I

I

t ==Δ  
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The moment of inertia of the disk, 
with respect to its axis of rotation, is: 
 

2
2
1 MRI =  

Substitute for I and fτ (from Part (a)) 
and simplify to obtain: g

R
gMR

MR
t

kk3
2

2
2
1

4
3
μ

ω
μ

ω
==Δ  

 
Energy Methods Including Rotational Kinetic Energy 

64 • The particles in Figure 9-52 are connected by a very light rod. They 
rotate about the y axis at 2.0 rad/s. (a) Find the speed of each particle, and use it to 
calculate the kinetic energy of this system directly from ∑ 2

ii2
1 vm . (b) Find the 

moment of inertia about the y axis, calculate the kinetic energy from 2
2
1 ωIK = , 

and compare your result with your Part-(a) result.  
 
Picture the Problem The kinetic energy of this rotating system of particles can 
be calculated either by finding the tangential velocities of the particles and using 
these values to find the kinetic energy or by finding the moment of inertia of the 
system and using the expression for the rotational kinetic energy of a system. 
 
(a) Use the relationship between v 
and ω to find the speed of each 
particle: 
 

( )( ) m/s0.40rad/s2,0m0.2033 === ωrv
and 

( )( ) m/s0.80rad/s2.0m0.4011 === ωrv  

The kinetic energy of the system is: 2
11

2
3313 22 vmvmKKK +=+=  

 
Substitute numerical values and 
evaluate K: 

( )( )
( )( )

J 1.1

m/s0.80kg1.0

m/s0.40kg3.0
2

2

=

+

=K

 

 
(b) Use the definition of the moment 
of inertia of a system of particles to 
obtain: 2

44
2

33
2

22
2

11

2

rmrmrmrm

rmI
i

ii

+++=

= ∑
 

 
Substitute numerical values and evaluate I: 
 

( )( ) ( )( ) ( )( ) ( )( )
2

2222

mkg560.0
m0.20kg3.0m0.40kg1.0m0.20kg3.0m0.40kg1.0

⋅=

+++=I
 

 
The kinetic energy of the system of 
particles is given by: 

2
2
1 ωIK =  
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Substitute numerical values and 
evaluate K: 

( )( )
J1.1

rad/s2.0mkg0.560 22
2
1

=

⋅=K
 

in agreement with our Part (a) result. 
 
65 • [SSM]  A 1.4-kg 15-cm-diameter solid sphere is rotating about its 
diameter at 70 rev/min. (a) What is its kinetic energy? (b) If an additional 5.0 mJ 
of energy are added to the kinetic energy, what is the new angular speed of the 
sphere?  
 
Picture the Problem We can find the kinetic energy of this rotating ball from its 
angular speed and its moment of inertia. In Part (b) we can use the work-kinetic 
energy theorem to find the angular speed of the sphere when additional kinetic 
energy has been added to the sphere. 
 
(a) The initial rotational kinetic 
energy of the ball is: 
 

2
i2

1
i ωIK =  

 

Express the moment of inertia of the 
ball with respect to its diameter: 
 

2
5
2 MRI =  

 

Substitute for I to obtain: 2
i

2
5
1

i ωMRK =  
 

Substitute numerical values and evaluate K: 
 

( )( ) Jm85Jm6.84
s60

min1
rev

rad2
min
rev70m0.075kg1.4

2
2

5
1

i ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××=

πK  

 
(b) Apply the work-kinetic energy 
theorem to the sphere to obtain: 
 

ifΔ KKKW −==  
or 

i
2
f2

1 KIW −= ω ⇒
( )

I
KW i

f
2 +

=ω  

 
Substitute for I and simplify to 
obtain: 

( ) ( )
2

i
2

5
2

i
f

52
MR

KW
MR

KW +
=

+
=ω  

 



   Chapter 9 
 

 

878 

Substitute numerical values and 
evaluate ωf: 
 

( )
( )( )

rev/min 72
min

s 60
rad 2

rev 1
s

rad542.7

cm 5.7kg 4.1
mJ 0.5mJ 6.845

2f

=

××=

+
=

π

ω

 

 
66 •• Calculate the kinetic energy of Earth due to its spinning about its axis, 
and compare your answer with the kinetic energy of the orbital motion of Earth’s 
center of mass about the Sun. Assume Earth to be a homogeneous sphere of mass 
6.0 × 1024 kg and radius 6.4 × 106 m. The radius of Earth’s orbit is 1.5 × 1011 m. 
 
Picture the Problem The earth’s rotational kinetic energy is given by 

2
2
1

rot ωIK = where I is its moment of inertia with respect to its axis of rotation. 
The center of mass of the earth-sun system is so close to the center of the sun and 
the earth-sun distance so large that we can use the earth-sun distance as the 
separation of their centers of mass and assume each to be point mass. 
 
Express the rotational kinetic energy 
of the earth: 
 

2
2
1

rot ωIK =                               (1) 

Find the angular speed of the earth’s 
rotation using the definition of ω: 

rad/s1027.7
h

s3600h24

rad2

5−×=

×
=

Δ
Δ

=
πθω

t  

 
From Table 9-1, for the moment of 
inertia of a homogeneous sphere, we 
find: 

( )( )
237

2624
5
2

2
5
2

mkg109.83

m106.4kg106.0

⋅×=

××=

= MRI

 

 
Substitute numerical values in 
equation (1) to obtain: 

( )
( )

J102.6J102.60

rad/s107.27

mkg109.83

2929

25

237
2
1

rot

×=×=

××

⋅×=
−

K

 

 
The earth’s orbital kinetic energy is: 
 

2
orb2

1
orb ωIK =                            (2) 
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Find the angular speed of the center 
of mass of the Earth-Sun system: 

rad/s1099.1
h

s3600
day
h24days365.24

rad2
Δ
Δ

7−×=

××
=

=

π

θω
t

 

 
The orbital moment of inertia of 
Earth is: ( )( )

247

21124

2
orbE

mkg101.35
m101.50kg106.0

⋅×=

××=

= RMI

 

 
Substitute for I in equation (2) and 
evaluate Korb: 

( )
( )

J102.68
rad/s101.99

mkg101.35

33

27

247
2
1

orb

×=

××

⋅×=
−

K

 

 

Evaluate the ratio 
rot

orb

K
K

: 4
29

33

rot

orb 10
J102.60
J102.68

≈
×
×

=
K
K  

 
67 •• [SSM]  A 2000-kg block is lifted at a constant speed of 8.0 cm/s by a 
steel cable that passes over a massless pulley to a motor-driven winch (Figure 9-
53). The radius of the winch drum is 30 cm. (a) What is the tension in the cable? 
(b) What torque does the cable exert on the winch drum? (c) What is the angular 
speed of the winch drum? (d) What power must be developed by the motor to 
drive the winch drum?  
 
Picture the Problem Because the load is not being accelerated, the tension in the 
cable equals the weight of the load. The role of the massless pulley is to change 
the direction the force (tension) in the cable acts. 
 
(a) Because the block is lifted at 
constant speed: 
 

( )( )
kN19.6

m/s9.81kg2000 2

=

== mgT
 

 
(b) Apply the definition of torque at 
the winch drum: 
 

( )( )
mkN5.9

m0.30kN19.6

⋅=

== Trτ
 

 
(c) Relate the angular speed of the 
winch drum to the rate at which the 
load is being lifted (the tangential 
speed of the cable on the drum): 

rad/s0.27
m0.30
m/s0.080

===
r
vω  
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(d) The power developed by the 
motor in terms is the product of the 
tension in the cable and the speed 
with which the load is being lifted: 

( )( )
kW1.6

m/s0.080kN19.6

=

== TvP
 

 
68 •• A uniform disk that has a mass M and a radius R can rotate freely 
about a fixed horizontal axis that passes through its center and perpendicular to 
the plane of the disk. A small particle that has a mass m is attached to the rim of 
the disk at the top, directly above the pivot. The system is gently nudged, and the 
disk begins to rotate. As the particle passes through its lowest point, (a) what is 
the angular speed of the disk, and (b) what force is exerted by the disk on the 
particle? 
 
Picture the Problem Let the zero of gravitational potential energy be at the 
lowest point of the small particle. We can use conservation of energy to find the 
angular speed of the disk when the particle is at its lowest point and Newton’s 2nd 
law to find the force the disk will have to exert on the particle to keep it from 
falling off. 
 
(a) Use conservation of energy to 
relate the initial potential energy of 
the system to its rotational kinetic 
energy when the small particle is at 
its lowest point: 
 

0=Δ+Δ UK  
or, because Uf = Ki = 0, 

( ) 02
fparticledisk2

1 =Δ−+ hmgII ω  

Solving for ωf yields: 

particledisk
f

2
II

hmg
+

Δ
=ω  

 
Substitute for Idisk, Iparticle, and Δh and 
simplify to obtain: 

( )

( )MmR
mg

mRMR
Rmg

+
=

+
=

2
8

22
22

2
1fω

 

 
(b) The mass is in uniform circular 
motion at the bottom of the disk, so 
the sum of the force F exerted by the 
disk and the gravitational force must 
be the centripetal force: 
 

2
fωmRmgF =− ⇒ 2

fωmRmgF +=  
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Substituting for 2
fω  and simplifying 

yields:: ( )

⎟
⎠
⎞

⎜
⎝
⎛

+
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=

Mm
mmg

MmR
mgmRmgF

2
81

2
8

 

 
69 •• A uniform 1.5-m-diameter ring is pivoted at a point on its perimeter so 
that it is free to rotate about a horizontal axis that is perpendicular to the plane of 
the ring. The ring is released with the center of the ring at the same height as the 
axis (Figure 9-54). (a) If the ring was released from rest, what was its maximum 
angular speed? (b) What minimum angular speed must it be given at release if it is 
to rotate a full 360°?  
 
Picture the Problem Let the zero of gravitational potential energy be at the 
center of mass of the ring when it is directly below the point of support. We’ll use 
conservation of energy to relate the maximum angular speed and the initial 
angular speed required for a complete revolution to the changes in the potential 
energy of the ring. 
 
(a) Use conservation of energy to 
relate the initial potential energy of 
the ring to its rotational kinetic 
energy when its center of mass is 
directly below the point of support: 
 

0=Δ+Δ UK  
or, because Uf = Ki = 0, 

02
max2

1 =Δ− hmgIPω                 (1) 

Use the parallel axis theorem and 
Table 9-1 to express the moment of 
inertia of the ring with respect to its 
pivot point P: 
 

2
cm mRII P +=  

Substitute in equation (1) to obtain: ( ) 02
max

22
2
1 =−+ mgRmRmR ω  
 

Solving for ωmax yields: 
R
g

=maxω  

 
Substitute numerical values and 
evaluate ωmax: rad/s3.6

m0.75
m/s9.81 2

max ==ω  

 
(b) Use conservation of energy to 
relate the final potential energy of 
the ring to its initial rotational kinetic 
energy: 

0=Δ+Δ UK  
or, because Ui = Kf = 0, 

02
i2

1 =Δ+− hmgI Pω               
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Noting that the center of mass must 
rise a distance R if the ring is to 
make a complete revolution, 
substitute for IP and Δh to obtain: 
 

( ) 02
i

22
2
1 =++− mgRmRmR ω  

Solving for iω  yields: 
R
g

=iω  

 
Substitute numerical values and 
evaluate ωi: rad/s3.6

m0.75
m/s9.81 2

i ==ω  

 
70 •• You set out to design a car that uses the energy stored in a flywheel 
consisting of a uniform 100-kg cylinder of radius R that has a maximum angular 
speed of 400 rev/s. The flywheel must deliver an average of 2.00 MJ of energy for 
each kilometer of distance. Find the smallest value of R for which the car can 
travel 300 km without the flywheel needing to be recharged. 
 
Picture the Problem We can find the energy that must be stored in the flywheel 
and relate this energy to the radius of the wheel and use the definition of 
rotational kinetic energy to find the wheel’s radius. 
 
Relate the kinetic energy of the 
flywheel to the energy it must 
deliver: 
 

2
cyl2

1
rot ωIK =  

Express the moment of inertia of the 
flywheel: 
 

2
2
1

cyl MRI =  

Substitute for Icyl to obtain: ( ) 22
2
1

2
1

rot ωMRK = ⇒
M

KR rot2
ω

=  

 
Substitute numerical values and evaluate R: 
 

( )
m95.1

kg100

km300
km
MJ2.00

rev
rad2

s
rev400

2
=

⎟
⎠
⎞

⎜
⎝
⎛

×
= πR  
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Pulleys, Yo-Yos, and Hanging Things 
 
71 •• [SSM]  The system shown in Figure 9-55consists of a 4.0-kg block 
resting on a frictionless horizontal ledge. This block is attached to a string that 
passes over a pulley, and the other end of the string is attached to a hanging  
2.0-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. 
Find the acceleration of each block and the tension in the string. 
 
Picture the Problem The diagrams show the forces acting on each of the masses 
and the pulley. We can apply Newton’s 2nd law to the two blocks and the pulley to 
obtain three equations in the unknowns T1, T2, and a. 

T1

m2 g

T1

Fn 4

m4 g

r

mp

x

T2

T2

x

x

 
 
Apply Newton’s 2nd law to the two 
blocks and the pulley: 

∑ == amTFx 41 ,                    (1) 

( )∑ =−= ατ p12 IrTTp ,          (2) 

and 
∑ =−= amTgmFx 222           (3) 

 
Substitute for Ip and α in equation 
(2) to obtain: 
 

aMTT p2
1

12 =−                        (4) 

 

Eliminate T1 and T2 between 
equations (1), (3) and (4) and solve 
for a: 
 

pMmm
gma

2
1

42

2

++
=  

 

Substitute numerical values and 
evaluate a: 

( )( )
( )

2

2
2
1

2

m/s3.1

m/s3.11

kg0.60kg4.0kg2.0
m/s9.81kg2.0

=

=

++
=a

 

 
Using equation (1), evaluate T1: ( )( ) N12m/s3.11kg4.0 2

1 ==T  

 
Solve equation (3) for T2: ( )agmT −= 22  
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Substitute numerical values and 
evaluate T2: 

( )( )
N13

m/s3.11m/s9.81kg2.0 22
2

=

−=T
 

 
Remarks: Note that the only effect of the pulley is to change the direction of 
the force in the string. 
 
72 •• For the system in Problem 71, the 2.0-kg block is released from rest. 
(a) Find the speed of the block after it falls a distance of 2.5 m. (b) What is the 
angular speed of the pulley at this instant? 
 
Picture the Problem We’ll solve this problem for the general case in which the 
mass of the block on the ledge is M, the mass of the hanging block is m, and the 
mass of the pulley is Mp, and R is the radius of the pulley. Let the zero of 
gravitational potential energy be 2.5 m below the initial position of the 2.0-kg 
block and R represent the radius of the pulley. Let the system include both blocks, 
the shelf and pulley, and the earth. The initial potential energy of the 2.0-kg block 
will be transformed into the translational kinetic energy of both blocks plus 
rotational kinetic energy of the pulley. 
 
(a) Use energy conservation to relate 
the speed of the 2 kg block when it 
has fallen a distance Δh to its initial 
potential energy and the kinetic 
energy of the system: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

( ) 02
pulley2

12
2
1 =−++ mghIvMm ω  

Substitute for Ipulley and ω to obtain:  ( ) ( ) 02

2
2

2
1

2
12

2
1 =−++ mgh

R
vMRvMm  

 
Solving for v yields: 

pMmM
mghv

2
1

2
++

=  

 
Substitute numerical values and 
evaluate v: 

( )( )( )
( )

m/s9.3m/s3.946

kg0.60kg2.0kg 4.0
m2.5m/s9.81kg2.02

2
1

2

==

++
=v

 

 
(b) The angular speed of the pulley is 
the ratio of its tangential speed to its 
radius:  

rad/s49
m0.080

m/s3.946
===

R
vω  
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73 •• For the system in Problem 71, if the (frictionless) ledge were 
adjustable in angle, at what angle would it have to be tilted upward so that once 
the system is set into motion the blocks will continue to move at constant speed? 
 
Picture the Problem The pictorial representation shows the ledge with its left 
end lowered and the 4.0-kg object moving with a constant speed v4. As this object 
whose mass is m4 slides down the frictionless incline, the object whose mass is m2 
rises. Let the system include the earth, the ledge, and both objects and apply 
conservation of mechanical energy to determine the angle of inclination of the 
ledge. 

θ

4vr
4vr

4m
2m

h
h

0g =U

'v4
r

'v4
r

 
 
Apply conservation of mechanical 
energy to the two moving objects to 
obtain: 
 

0ΔΔΔΔ 4242 =+++ UUKK  
 

Because the objects are moving at 
constant speed, ΔK2 = ΔK4 = 0 and: 
 

0ΔΔ 42 =+ UU  

Substituting for ΔU2 and ΔU4 yields: 
 

0sin42 =− θghmghm  

Solving for θ yields: 
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

4

21sin
m
mθ  

 
Substitute numerical values and 
evaluate θ : °=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − 30

kg 0.4
kg 0.2sin 1θ  

 
74 •• In the system shown in Figure 9-55, there is a 4.0-kg block resting on a 
horizontal ledge. The coefficient of kinetic friction between the ledge and the 
block is 0.25. The block is attached to a string that passes over a pulley and the 
other end of the string is attached to a hanging 2.0-kg block. The pulley is a 
uniform disk of radius 8.0 cm and mass 0.60 kg. Find the acceleration of each 
block and the tension in the string. 
 
Picture the Problem Assuming that the string does not stretch or slip on the 
pulley, we can apply Newton’s 2nd law in translational form to the 4.0-kg block 
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and Newton’s 2nd law in rotational form to the pulley to obtain simultaneous 
equations in the tension T in the string and the common acceleration a of the 
blocks. 

x

x

y

 T  T

 Mg

 kf

 nF

 mg

M

m

R P
pulley

 
 
Apply amF =∑ to the 4.0-kg 

block: 
 

MafTFx =−=∑ k                (1) 

and  
0n =−=∑ MgFFy ⇒ MgF =n             

 
Because nkk Ff μ= , equation (1) 
becomes: 

 

MaFT =− nkμ  
or 

MaMgT =− kμ                        (2) 
 

Apply ατ PP I=∑ to the pulley: 

  

αPITRmgR =−  
 

Assuming the string does not slip on 
the pulley, Ra=α and: 
 

R
aITRmgR P=−  

From Table 9-1, the moment of inertia 
of the pulley about an axis through P 
and perpendicular to the plane of the 
pulley is: 
 

2
pulley2

1 RmI P =  

Substituting for IP and simplifying 
yields: 

( )
R
aRmTRmgR 2

pulley2
1=−  

or 
amTmg pulley2

1=−                      (3) 

 
Add equations (2) and (3) to obtain: 
 

amMaMgmg pulley2
1

k +=− μ  
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Solving for a yields: 
 

( )
pulley2

1
k

mM
gMma

+
−

=
μ  

 
Substitute numerical values and 
evaluate a: 

( )( )( )( )
( )

22

2
1

2

m/s 3.2m/s 281.2

kg .600kg 0.4
m/s 81.9kg 0.425.0kg .02

==

+
−

=a
 

 
Solving equation (3) for T yields: 
 

ammgT pulley2
1−=  

Substitute numerical values and evaluate T: 
 

( )( ) ( )( ) N 93m/s .2812kg 60.0m/s 81.9kg 0.4 2
2
12 =−=T  

 
75 •• A 1200-kg car is being raised over water by a winch. At the moment 
the car is 5.0 m above the water (Figure 9-56), the gearbox breaks—allowing the 
winch drum to spin freely as the car falls. During the car’s fall, there is no 
slipping between the (massless) rope, the pulley wheel, and the winch drum. The 
moment of inertia of the winch drum is 320 kg⋅m2, and the moment of inertia of 
the pulley wheel is 4.00 kg⋅m2. The radius of the winch drum is 0.800 m, and the 
radius of the pulley is 0.300 m.  Assume the car starts to fall from rest. Find the 
speed of the car as it hits the water.  
 
Picture the Problem Let the zero of gravitational potential energy be at the 
water’s surface and let the system include the winch, the car, and the earth. We’ll 
apply conservation of energy to relate the car’s speed as it hits the water to its 
initial potential energy. Note that some of the car’s initial potential energy will be 
transformed into rotational kinetic energy of the winch and pulley. 
 
Use conservation of mechanical 
energy to relate the car’s speed as it 
hits the water to its initial potential 
energy: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

02
pp2

12
ww2

12
2
1 =Δ−++ hmgIImv ωω  

 

Express 2
wω  and 2

pω  in terms of the 

speed v of the rope, which is the 
same throughout the system: 
 

2
w

2
2
w r

v
=ω and 2

p

2
2
p r

v
=ω  

 

Substitute for 2
wω  and 2

pω to obtain: 
02

p

2

p2
1

2
w

2

w2
12

2
1 =Δ−++ hmg

r
vI

r
vImv  
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Solving for v yields: 

2
p

p
2

w

w

2

r
I

r
Im

hmgv
++

Δ
=  

 
Substitute numerical values and evaluate v: 
 

( )( )( )

( ) ( )

m/s21.8

m0.300
mkg4.00

m0.800
mkg320kg1200

m5.00m/s9.81kg12002

2

2

2

2

2

=
⋅

+
⋅

+
=v  

 
76 •• The system in Figure 9-57 is released from rest when the 30-kg block 
is 2.0 m above the ledge. The pulley is a uniform 5.0-kg disk with a radius of 10 
cm. Just before the 30-kg block hits the ledge, find (a) its speed, (b) the angular 
speed of the pulley, and (c) the tensions in the strings. (d) Find the time of descent 
for the 30-kg block. Assume that the string does not slip on the pulley. 
 
Picture the Problem Let the system 
include the blocks, the pulley and the 
earth. Choose the zero of gravitational 
potential energy to be at the ledge and 
apply energy conservation to relate the 
impact speed of the 30-kg block to the 
initial potential energy of the system. 
We can use a constant-acceleration 
equations and Newton’s 2nd law to find 
the tensions in the strings and the 
descent time. 

1T
r

2T
r

gm
r

20

gm
r

30

x

x  
 
(a) Use conservation of mechanical 
energy to relate the impact speed of 
the 30-kg block to the initial 
potential energy of the system: 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

03020

2
pp2

12
202

12
302

1

=Δ−Δ+

++

hgmhgm

Ivmvm ω
 

 
Substitute for ωp and Ip to obtain: ( )

0ΔΔ 3020

2

2
2

p2
1

2
12

202
12

302
1

=−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

hgmhgm
r
vrMvmvm

 

 
Solving for v yields: ( )

p2
1

3020

20302
Mmm

mmhgv
++
−Δ

=  
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Substitute numerical values and 
evaluate v: 

( )( )( )
( )

m/s7.2m/s73.2

kg5.0kg30kg20
kg20kg30m2.0m/s9.812

2
1

2

==

++
−

=v
 

 
(b) Find the angular speed at impact 
from the tangential speed at impact 
and the radius of the pulley: 
 

rad/s27
m0.10

m/s2.73
===

r
vω  

 

(c) Apply Newton’s 2nd law to the 
blocks: 

∑ =−= amgmTFx 20201          (1) 

and 
∑ =−= amTgmFx 30230          (2) 

 
Using a constant-acceleration 
equation, relate the speed at impact 
to the fall distance and the 
acceleration: 
 

havv Δ+= 22
0

2  
or, because v0 = 0, 

hav Δ= 22 ⇒
h

va
Δ2

2

=  

 
Substitute numerical values and 
evaluate a: 

( )
( )

2
2

m/s1.87
m2.02

m/s2.73
==a  

 
Solve equation (1) for T1 to obtain: 
 

( )agmT += 201  

Substitute numerical values and 
evaluate T1: 

( )( )
kN0.23

m/s1.87m/s9.81kg20 22
1

=

+=T
 

 
Solve equation (2) for T2 to obtain: 
 

( )agmT −= 302  

Substitute numerical values and 
evaluate T2: 

( )( )
kN0.24

m/s1.87m/s9.81kg30 22
2

=

−=T
 

 
(d) Noting that the initial speed of 
the 30-kg block is zero, express the 
time-of-fall in terms of the fall 
distance and the block’s average 
speed: 
 

v
h

v
h

v
ht Δ

=
Δ

=
Δ

=Δ
2

2
1

av

 

Substitute numerical values and 
evaluate Δt: 

( ) s1.5
m/s2.73
m2.02Δ ==t  
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77 •• A uniform solid sphere of mass M and radius R is free to rotate about a 
horizontal axis through its center. A string is wrapped around the sphere  and is 
attached to an object of mass m (Figure 9-58). Assume that the string does not slip 
on the sphere. Find (a) the acceleration of the object, and (b) the tension in the 
string. 
 
Picture the Problem The force diagram shows the forces acting on the sphere 
and the hanging object. The tension in the string is responsible for the angular 
acceleration of the sphere and the difference between the weight of the object and 
the tension is the net force acting on the hanging object. We can use Newton’s 2nd 
law to obtain two equations in a and T that we can solve simultaneously. 

0

R

x

T

T

mg

F

M

x  
 
(a) Noting that T = T ′, apply 
Newton’s 2nd law to the sphere and 
the hanging object: 

∑ == ατ sphere0 ITR                 (1) 

and 
∑ =−= maTmgFx                (2) 

 
Substitute for Isphere and α in 
equation (1) to obtain: 
 

( )
R
aMRTR 2

5
2=                         (3) 

Eliminate T between equations (2) 
and (3) and solve for a to obtain: 

m
M

ga

5
21+

=  

 
(b) Substitute for a in equation (2) 
and solve for T to obtain: Mm

mMgT
25

2
+

=  

 
78 •• Two objects, of masses m1= 500 g and m2 = 510 g, are connected by a 
string of negligible mass that passes over a pulley with frictionless bearings 
(Figure 9-59). The pulley is a uniform 50.0-g disk with a radius of 4.00 cm. The 
string does not slip on the pulley. (a) Find the accelerations of the objects.  
(b) What is the tension in the string between the 500-g block and the pulley? 
What is the tension in the string between the 510-g block and the pulley? By how 
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much do these tensions differ? (c) What would your answers be if you neglected 
the mass of the pulley? 
 
Picture the Problem The diagram shows the forces acting on both objects and 
the pulley. The direction of motion has been chosen to be the positive x direction. 
By applying Newton’s 2nd law of motion, we can obtain a system of three 
equations in the unknowns T1, T2, and a that we can solve simultaneously. 

1T
1T

2T
2T

gm1
gm2

F

r
0

x

x

x
 

 
(a) Apply Newton’s 2nd law to the 
pulley and the two objects: 

∑ =−= amgmTFx 111 ,          (1) 

( )∑ =−= ατ 0120 IrTT ,         (2) 

and 
∑ =−= amTgmFx 222           (3) 

 
Substitute for I0 = Ipulley and α in 
equation (2) to obtain: 

( ) ( )
r
amrrTT 2

2
1

12 =−                 (4) 

 
Eliminate T1 and T2 between 
equations (1), (3) and (4) and solve 
for a to obtain: 
 

( )
mmm

gmma
2
1

21

12

++
−

=  

 

Substitute numerical values and 
evaluate a: 

( )( )
( )

22

2
1

2

cm/s2.72cm/s175.72

g50.00g25.08g25.57
cm/s981g25.57g25.08

==

++
−

=a
 

 
(b) Substitute for a in equation (1) 
and solve for T1 to obtain: 

( )
( )

( )
N76.0

m/s0.27m/s9.81
kg5250.07

22

11

=

+×

=
+= agmT
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Substitute for a in equation (3) 
and solve for T2 to obtain: 

( )
( )

( )
N77.0

m/s0.27m/s9.81
kg0.08025

22

22

=

−×

=
−= agmT

 

 
ΔT is the difference between T2 and 
T1: N .010

N76.0N77.0Δ 12

=

−=−= TTT
 

 
(c) If we ignore the mass of the 
pulley, our acceleration equation 
becomes: 
 

( )
21

12

mm
gmma

+
−

=  

 

Substitute numerical values and 
evaluate a: 

( )( )

22

2

cm/s5.13cm/s543.13

g25.08g25.75
cm/s981g25.57g25.08

==

+
−

=a
 

 
Substitute for a in equation (1) and 
solve for T1 to obtain: 
 

( )agmT += 11  
 

Substitute numerical values and evaluate T1: 
 

( )( ) N81.0m/s0.32m/s9.81kg08025.0 22
1 =+=T  

 
From equation (4), if m = 0: 

12 TT =  
 
79 •• [SSM] Two objects are attached to ropes that are attached to two 
wheels on a common axle, as shown in Figure 9-60. The two wheels are attached 
together so that they form a single rigid object. The moment of inertia of the rigid 
object is 40 kg⋅m2. The radii of the wheels are R1 = 1.2 m and R2 = 0.40 m. (a) If  
m1= 24 kg, find m2 such that there is no angular acceleration of the wheels. (b) If 
12 kg is placed on top of m1, find the angular acceleration of the wheels and the 
tensions in the ropes.  
 
Picture the Problem The following diagram shows the forces acting on both 
objects and the pulley for the conditions of Part (b). By applying Newton’s 2nd 
law of motion, we can obtain a system of three equations in the unknowns T1, T2, 
and α that we can solve simultaneously. 
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1T

1T
2T

2T

gm1 gm2

F

0

x

x

x

1R
2R

 
 
(a) When the system does not 
accelerate, gmT 11 = and gmT 22 = . 
Under these conditions: 
 

022110 =−=∑ gRmgRmτ  

Solving for m2 yields: 
2

1
12 R

Rmm =  

 
Substitute numerical values and 
evaluate m2: 

( ) kg72
m0.40

m1.2kg242 ==m  

 
(b) Apply Newton’s 2nd law to the 
objects and the pulley: 

∑ =−= amTgmFx 111 ,          (1) 

∑ =−= ατ 022110 IRTRT ,      (2) 

and 
∑ =−= amgmTFx 222           (3) 

 
Eliminate a in favor of α in 
equations (1) and (3) and solve for T1 
and T2: 

( )α111 RgmT −=                      (4) 
and 

( )α222 RgmT +=                     (5) 
 

Substitute for T1 and T2 in equation 
(2) and solve for α to obtain: 

( )
0

2
22

2
11

2211

IRmRm
gRmRm

++
−

=α  

 
Substitute numerical values and evaluate α: 
 

( )( ) ( )( )[ ]( )
( )( ) ( )( )

22
222

2

rad/s4.1rad/s37.1
mkg40m0.40kg72m1.2kg36

m/s9.81m0.40kg72m1.2kg36
==

⋅++
−

=α  

 
Substitute numerical values in equation (4) to find T1: 
 

( )[ ( )( )] kN0.29rad/s1.37m1.2m/s9.81kg36 22
1 =−=T  
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Substitute numerical values in equation (5) to find T2: 
 

( )[ ( )( )] kN50.7rad/s1.37m40.0m/s9.81kg27 22
2 =+=T  

 
80 •• The upper end of the string wrapped around the cylinder in Figure 9-
61 is held by a hand that is accelerated upward so that the center of mass of the 
cylinder does not move as the cylinder spins up. Find (a) the tension in the string, 
(b) the angular acceleration of the cylinder, and (c) the acceleration of the hand.  
 
Picture the Problem By applying 
Newton’s 2nd law of motion, we can 
obtain a system of two equations in 
the unknowns T and a. In (b) we can 
use the torque equation from (a) and 
our value for T to find α. In (c) we 
use the condition that the acceleration 
of a point on the rim of the cylinder 
is the same as the acceleration of the 
hand, together with the angular 
acceleration of the cylinder, to find 
the acceleration of the hand. 

 

gM
r

M

R

T
r

y

0

 
 

 
(a) Apply ∑ = ατ I0  to the cylinder 

about an axis through its center of 
mass: 

∑ == ατ 00 ITR                      (1) 

and 
∑ =−= 0TMgFy                  (2) 

 
Solving equation (2) for T yields: 
 

MgT =  

 
(b) Solving equation (1) for α yields: 
 0I

TR
=α  

 
From Table 9-1, the moment of 
inertia of a cylinder about an axis 
through 0 and perpendicular to the 
end of the cylinder is: 
 

2
2
1

0 MRI =  

Substitute for T and I0 and simplify 
to obtain: R

g
MR

MgR 2
2

2
1

==α  
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(c) Relate the acceleration a of the 
hand to the angular acceleration of 
the cylinder: 
 

αRa =  

Substitute for α and simplify to 
obtain: 

g
R
gRa 22

=⎟
⎠
⎞

⎜
⎝
⎛=  

 
81 •• [SSM] A uniform cylinder of mass m1and radius R is pivoted on 
frictionless bearings. A massless string wrapped around the cylinder is connected 
to a block of mass m2 that is on a frictionless incline of angle θ, as shown in 
Figure 9-62. The system is released from rest with the block a vertical distance h 
above the bottom of the incline. (a) What is the acceleration of the block? (b) 
What is the tension in the string? (c) What is the speed of the block as it reaches 
the bottom of the incline? (d) Evaluate your answers for the special case where θ 
= 90° and m1= 0. Are your answers what you would expect for this special case? 
Explain.  
 
Picture the Problem Let the zero of 
gravitational potential energy be at 
the bottom of the incline. By 
applying Newton’s 2nd law to the 
cylinder and the block we can obtain 
simultaneous equations in a, T, and 
α from which we can express a and 
T. By applying the conservation of 
energy, we can derive an expression 
for the speed of the block when it 
reaches the bottom of the incline. 

 

0

R
m1

F

T

T

m2 g

Fn

x

y

θ

 

 
(a) Apply Newton’s 2nd law to the 
cylinder and the block: 

∑ == ατ 00 ITR                       (1) 

and 
∑ =−= amTgmFx 22 sinθ     (2) 

 
Substitute for α and I0 in equation 
(1), solve for T, and substitute in 
equation (2) and solve for a to 
obtain: 

2

1

2
1

sin

m
m

ga
+

=
θ  

 
(b) Substituting for a in equation (2) 
and solve for T yields: 

2

1

12
1

2
1

sin

m
m

gm
T

+
=

θ
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(c) Noting that the block is 
released from rest, express the 
total energy of the system when 
the block is at height h: 

ghmKUE 2=+=  

 
(d) Use the fact that this system is 
conservative to express the total 
energy at the bottom of the incline: 
 

ghmE 2bottom =  

(e) Express the total energy of the 
system when the block is at the 
bottom of the incline in terms of its 
kinetic energies: 
 

2
02

12
22

1

rottranbottom

ωIvm

KKE

+=

+=
 

 

Substitute for ω and I0 to obtain: ( ) ghm
r
vrmvm 22

2
2

12
1

2
12

22
1 =+  

 
Solving for v yields: 

2

1

2
1

2

m
m

ghv
+

=  

 
For θ = 0: 0=a and 0=T  

 
(f) For θ = 90° and m1 = 0: 
 

ga = , 0=T , and ghv 2=  
 
82 •• A device for measuring the moment of inertia of an object is shown in 
Figure 9-63. The circular platform is attached to a concentric drum of radius R, 
and are free to rotate about a frictionless vertical axis.  The string that is wound 
around the drum passes over a frictionless and massless pulley to a block of mass 
M. The block is released from rest, and the time t1 it takes for it to drop a distance 
D is measured. The system is then rewound, the object whose moment of inertia I 
we wish to measure is placed on the platform, and the system is again released 
from rest. The time t2 required for the block to drop the same distance D then 
provides the data needed to calculate I. Using R = 10 cm, M = 2.5 kg,  
D = 1.8 m and t1 =  4.2 s and t2 = 6.8 s, (a) find the moment of inertia of the 
platform-drum combination, (b) Using t2 = 6.9 s, find the moment of inertia of the 
platform-drum-object combination. (c) Use your results for Parts (a) and (b) to 
find the moment of inertia of the object. 
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Picture the Problem Let r be the radius of the concentric drum (10 cm) and let I0 
be the moment of inertia of the drum plus platform. We can use Newton’s 2nd law 
in both translational and rotational forms to express I0 in terms of a and a 
constant-acceleration equation to express a and then find I0. We can use the same 
equation to find the total moment of inertia when the object is placed on the 
platform and then subtract to find its moment of inertia. 

gM
r

M

T
rr

platform of  viewTop

'T
r

x

object falling of  viewSide  
 
(a) Apply Newton’s 2nd law to the 
platform and the weight: 

∑ == ατ 00 ITr                       (1) 

and 
∑ =−= MaTMgFx               (2) 

 
Substitute a/r for α in equation (1) 
and solve for T: 

a
r
IT 2

0=  

 
Substitute for T in equation (2) and 
solve for I0 to obtain: 

( )
a

agMrI −
=

2

0                        (3) 

 
Using a constant-acceleration 
equation, relate the distance of fall to 
the acceleration of the weight and the 
time of fall and solve for the 
acceleration: 

( )2
2
1

0 tatvx Δ+Δ=Δ  
or, because v0 = 0 and Δx = D, 

( )2
2

t
Da

Δ
=  

 
Substitute for a in equation (3) to 
obtain: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
=⎟

⎠
⎞

⎜
⎝
⎛ −= 1

2
1

2
22

0 D
tgMr

a
gMrI  

 
Substitute numerical values and evaluate I0: 
 

( )( ) ( )( )
( )

22
22

2
0 mkg1.2mkg1.1771

m1.82
s4.2m/s9.81m0.10kg2.5 ⋅=⋅=⎥

⎦

⎤
⎢
⎣

⎡
−=I  
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(b) Relate the moments of inertia of 
the platform, drum, shaft, and pulley 
(I0) to the moment of inertia of the 
object and the total moment of 
inertia: 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
=

⎟
⎠
⎞

⎜
⎝
⎛ −=+=

1
2

1

2
2

2
0tot

D
tgMr

a
gMrIII

 

 
Substitute numerical values and evaluate Itot: 
 

( )( ) ( )( )
( )

22
22

2
tot mkg1.3mkg125.31

m1.82
s8.6m/s9.81m0.10kg2.5 ⋅=⋅=⎥

⎦

⎤
⎢
⎣

⎡
−=I  

 
I is the difference between Itot and I0: 0tot III −=  

 
Substitute numerical values and 
evaluate I: 2

22

mkg1.9

mkg1.177mkg3.125

⋅=

⋅−⋅=I
 

 
Objects Rotating and Rolling Without Slipping 

83 • A homogeneous 60-kg cylinder of radius 18 cm is rolling without 
slipping along a horizontal floor at a speed of 15 m/s. What is the minimum 
amount of work that was required to give it this motion? 
 
Picture the Problem Any work done on the cylinder by a net force will change 
its kinetic energy. Therefore, the work needed to give the cylinder this motion is 
equal to its kinetic energy. 
 
Express the relationship between the 
work needed to give the cylinder this 
motion: 
 

2
2
12

2
1 ωImvKW +=Δ=  

or, because ωrv = (the cylinder is 
rolling without slipping), 

2

2
12

2
1 ⎟

⎠
⎞

⎜
⎝
⎛+=

r
vImvW  

 
Substitute for I (see Table 9-1) and 
simplify to obtain: ( ) 2

4
3

2

2
2

2
1

2
12

2
1 mv

r
vmrmvW =+=  

 
Substitute numerical values and 
evaluate W : 

( )( ) kJ01m/s15kg60 2
4
3 ==W  
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84 • An object is rolling without slipping.  What percentage of its total 
kinetic energy is its translational kinetic energy if the object is (a) a uniform 
sphere, (b) a uniform cylinder, or (c) a hoop. 
 
Picture the Problem The total kinetic energy of any object that is rolling without 
slipping is given by rottrans KKK += . We can find the percentages associated with 
each motion by expressing the moment of inertia of the objects as kmr2 and 
deriving a general expression for the ratios of rotational kinetic energy to total 
kinetic energy and translational kinetic energy to total kinetic energy and 
substituting the appropriate values of k.  
 
Express the total kinetic energy 
associated with a rotating and 
translating object: ( )

( )kmvkmvmv
r
vkmrmv

ImvKKK

+=+=

+=

+=+=

12
2
12

2
12

2
1

2

2
2

2
12

2
1

2
2
12

2
1

rottrans ω

 

 

Express the ratio 
K

K trans : 
( ) kkmv

mv
K

K
+

=
+

=
1

1
12

2
1

2
2
1

trans  

 
(a) Substitute 5

2=k  for a uniform 
sphere to obtain:  

%4.71714.0
4.01

1
sphere

trans ==
+

=
K

K  

 
(b) Substitute 2

1=k for a uniform 
cylinder to obtain: 

%7.66667.0
5.01

1
cylinder

trans ==
+

=
K

K

 
(c) Substitute k = 1 for a hoop to 
obtain: 

%0.50500.0
11

1
hoop

trans ==
+

=
K

K  

 
85 •• [SSM] In 1993 a giant 400-kg yo-yo with a radius of 1.5 m was 
dropped from a crane at a height of 57 m. One end of the string was tied to the top 
of the crane, so the yo-yo unwound as it descended. Assuming that the axle of the 
yo-yo had a radius of 0.10 m, estimate its linear speed at the end of the fall. 
 
Picture the Problem The forces acting 
on the yo-yo are shown in the figure. 
We can use a constant-acceleration 
equation to relate the velocity of 
descent at the end of the fall to the yo-
yo’s acceleration and Newton’s 2nd law 
in both translational and rotational form 
to find the yo-yo’s acceleration. 

r

mg

T

x

0m

R
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Using a constant-acceleration 
equation, relate the yo-yo’s final 
speed to its acceleration and fall 
distance: 

havv Δ+= 22
0

2  
or, because v0 = 0, 

hav Δ= 2                                (1) 

 
Use Newton’s 2nd law to relate the 
forces that act on the yo-yo to its 
acceleration: 

∑ =−= maTmgFx                (2) 

and 
ατ 00 ITr ==∑                       (3)   

        
Use αra =  to eliminate α in 
equation (3) r

aITr 0=                                   (4) 

 
Eliminate T between equations (2) 
and (4) to obtain: 

maa
r
I

mg =− 2
0                        (5) 

 
Substitute 2

2
1 mR for I0 in equation 

(5): 
maa

r
mR

mg =− 2

2
2
1

⇒

2

2

2
1

r
R

ga
+

=  

 
Substitute numerical values and 
evaluate a: ( )

( )

2

2

2

2

m/s0.0864

m0.102
m1.51

m/s9.81
=

+
=a  

 
Substitute in equation (1) and 
evaluate v: 

( )( ) m/s3.1m57m/s0.08642 2 ==v  

 
86 •• A uniform cylinder of mass M and radius R has a string wrapped 
around it. The string is held fixed, and the cylinder falls vertically as shown in 
Figure 9-64. (a) Show that the acceleration of the cylinder is downward with a 
magnitude a = 2g/3. (b) Find the tension in the string.  
 
Picture the Problem The forces acting 
on the cylinder are shown in the 
diagram. Choose a coordinate system in 
which the +y directions is downward. 
By applying Newton’s 2nd law of 
motion, we can obtain a system of two 
equations in the unknowns T, a and α 
that we can solve simultaneously. 

gM
r

M

R

T
r

y

O
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(a) Apply Newton’s 2nd law to the 
cylinder: 

∑ == ατ 00 ITR                      (1) 

and 
∑ =−= MaTMgFy              (2) 

 
Substitute for α and I0 (see Table 9-
1) in equation (1) to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

R
aMRTR 2

2
1 ⇒ MaT 2

1= (3) 

Substitute for T in equation (2) to 
obtain: 
 

MaMaMg =− 2
1 ⇒ ga 3

2=  

 

(b) Substitute for a in equation (3) 
and simplify to obtain: 

( ) MggMT 3
1

3
2

2
1 ==  

 
87 •• A 0.10-kg yo-yo consists of two solid disks, each of radius 10 cm, is 
joined by a massless rod of radius 1.0 cm. A string is wrapped around the rod. 
One end of the string is held fixed and is under tension as the yo-yo is released.  
The yo-yo rotates as it descends vertically.  Find (a) the acceleration of the yo-yo, 
and (b) the tension T. 
 
Picture the Problem The forces acting 
on the yo-yo are shown in the figure. 
Choose a coordinate system in which 
the +x direction is downward. Apply 
Newton’s 2nd law in both translational 
and rotational form to obtain 
simultaneous equations in T, a, and α 
from which we can eliminate α and 
solve for T and a.  

 

T
r

r

x

m

gm
r
R

0

 
 
Apply Newton’s 2nd law to the  
yo-yo: 

∑ =−= maTmgFx                (1) 

and 
ατ 00 ITr ==∑                       (2)   

        
Use αra =  to eliminate α in 
equation (2) r

aITr 0=                                   (3) 

 
Eliminate T between equations (1) 
and (3) to obtain: 
 

maa
r
I

mg =− 2
0                        (4) 
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Substitute 2
2
1 mR for I0 (see Table 9-

1) in equation (4): 
maa

r
mR

mg =− 2

2
2
1

⇒

2

2

2
1

r
R

ga
+

=  

 
Substitute numerical values and 
evaluate a: ( )

( )
2

2

2

2

2

m/s0.19

m/s0.192

m0.0102
m10.01

m/s9.81

=

=
+

=a

 

 
Solving equation (1) for T yields: 
 

( )agmT −=  

Substitute numerical values and 
evaluate T: 

( )( )
N0.96

m/s0.192m/s9.81kg0.10 22

=

−=T
 

 
88 •• A uniform solid sphere rolls down an incline without slipping. If the 
linear acceleration of the center of mass of the sphere is 0.2g, then what is the 
angle the incline makes with the horizontal? 
 
Picture the Problem From Newton’s 2nd law, the acceleration of the center of 
mass of the uniform solid sphere equals the net force acting on the sphere divided 
by its mass. The forces acting on the sphere are its weight gm downward, the 
normal force nF that balances the normal component of the weight, and the force 
of friction f acting up the incline. As the sphere accelerates down the incline, the 
angular speed of rotation must increase to maintain the nonslip condition. We can 
apply Newton’s 2nd law for rotation about a horizontal axis through the center of 
mass of the sphere to find α, which is related to the acceleration by the nonslip 
condition. The only torque about the center of mass is due to f because both 

gm and nF act through the center of mass. Choose the +x direction to be down the 
incline. 

θ

m r

gmr

nF
r

f
r

y

x

0
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Apply aF m=∑ to the sphere: cmsin mafmg =−θ                 (1) 

 
Apply ατ cmI=∑ to the sphere: αcmIfr =  

 
Use the nonslip condition to 
eliminate α and solve for f: 
 

r
aIfr cm

cm=  ⇒ cm2
cm a

r
If =  

 
Substitute this result for f in equation 
(1) to obtain: 
 

cmcm2
cmsin maa

r
Img =−θ        (2) 

From Table 9-1 we have, for a solid 
sphere: 
 

2
5
2

cm mrI =  
 

Substitute for cmI in equation (1) and 
simplify to obtain: 
 

cmcm5
2sin mamamg =−θ  

Solving for θ  yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

g
a
5

7sin cm1θ  

 
Substitute numerical values and 
evaluate θ : 

( )
°=⎥

⎦

⎤
⎢
⎣

⎡
= − 16

5
2.07sin 1

g
gθ  

 
89 •• A thin spherical shell rolls down an incline without slipping. If the 
linear acceleration of the center of mass of the shell is 0.20g, then what is the 
angle the incline makes with the horizontal? 
 
Picture the Problem From Newton’s 2nd law, the acceleration of the center of 
mass of the thin spherical shell equals the net force acting on the spherical shell 
divided by its mass. The forces acting on the thin spherical shell are its weight 

gm downward, the normal force nF that balances the normal component of the 
weight, and the force of friction f acting up the incline. As the spherical shell 
accelerates down the incline, the angular speed of rotation must increase to 
maintain the nonslip condition. We can apply Newton’s 2nd law for rotation about 
a horizontal axis through the center of mass of the shell to find α, which is related 
to the acceleration by the nonslip condition. The only torque about the center of 
mass is due to f because both gm and nF act through the center of mass. Choose 
the positive direction to be down the incline. 
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θ

m r

gmr

nF
r

f
r

y

x
0

 
 
Apply aF m=∑ to the thin 
spherical shell: 
 

cmsin mafmg =−θ                 (1) 
 

Apply ατ cmI=∑ to the thin 
spherical shell: 
 

αcmIfr =  
 

Use the nonslip condition to 
eliminate α and solve for f: 
 

r
aIfr cm

cm= and cm2
cm a
r
If =  

 
Substitute this result for f in equation 
(1) to obtain: 
 

cmcm2
cmsin maa

r
Img =−θ        (2) 

From Table 9-1 we have, for a thin 
spherical shell: 
 

2
3
2

cm mrI =  
 

Substitute for cmI in equation (1) 
and simplify to obtain: 
 

cmcm3
2sin mamamg =−θ  

 

Solving for θ yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

g
a
3

5sin cm1θ  

 
Substitute numerical values and 
evaluate θ : 

( )
°=⎥

⎦

⎤
⎢
⎣

⎡
= − 20

3
2.05sin 1

g
gθ  

 
Remarks: This larger angle makes sense, as the moment of inertia for a given 
mass is larger for a thin spherical shell than for a solid one. 
 
90 •• A basketball of mass m rolls without slipping down an incline of angle 
θ. The coefficient of static friction is μs. Model the ball as a thin spherical shell. 
Find (a) the acceleration of the center of mass of the ball, (b) the frictional force 
acting on the ball, and (c) the maximum angle of the incline for which the ball 
will roll without slipping. 
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Picture the Problem The three forces acting on the basketball are the weight of 
the ball, the normal force, and the force of friction.  Because the weight can be 
assumed to be acting at the center of mass, and the normal force acts through the 
center of mass, the only force which exerts a torque about the center of mass is 
the frictional force. Let the mass of the basketball be m and apply Newton’s 2nd 
law to find a system of simultaneous equations that we can solve for the quantities 
called for in the problem statement. 

θ

m r

gmr

nF
r

f
r

y

x
0

 
 
(a) Apply Newton’s 2nd law in both 
translational and rotational form to 
the ball: 

∑ =−= mafmgFx ssinθ ,     (1) 

∑ =−= 0cosn θmgFFy         (2) 

and 
∑ == ατ 0s0 Irf                       (3) 

 
Because the basketball is rolling 
without slipping we know that: 
 

r
a

=α  

Substitute in equation (3) to 
obtain: 
 

r
aIrf 0s =                                  (4) 

 
From Table 9-1 we have: 
 

2
3
2

0 mrI =  

Substitute for I0 and α in equation 
(4) and solve for fs: 
 

( ) maf
r
amrrf 3

2
s

2
3
2

s =⇒=      (5) 

Substitute for fs in equation (1) 
and solve for a: 

θsin5
3 ga =  

 
(b) Find fs using equation (5): ( ) θθ sinsin 5

2
5
3

3
2

s mggmf ==  

 
(c) Solve equation (2) for Fn: θcosn mgF =  

 
Use the definition of  fs,max to obtain:  
 

maxsnsmaxs, cosθμμ mgFf ==  
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Use the result of Part (b) to obtain: maxsmax5
2 cossin θμθ mgmg =  
 

Solve for θmax: ( )s2
51

max tan μθ −=  
 
91 •• A uniform solid cylinder of wood rolls without slipping down an 
incline of angle θ. The coefficient of static friction is μs. Find (a) the acceleration 
of the center of mass of the cylinder, (b) the frictional force acting on the cylinder, 
and (c) the maximum angle of the incline for which the cylinder will roll without 
slipping. 
 
Picture the Problem The three forces acting on the cylinder are the weight of the 
cylinder, the normal force, and the force of friction.  Because the weight can be 
assumed to be acting at the center of mass, and the normal force acts through the 
center of mass, the only force which exerts a torque about the center of mass is 
the frictional force. Let the mass of the cylinder by m and use Newton’s 2nd law to 
find a system of simultaneous equations that we can solve for the quantities called 
for in the problem statement. 

θ

m r

gmr

nF
r

f
r

y

x
0

 
 
(a) Apply Newton’s 2nd law in both 
translational and rotational form to 
the cylinder: 

∑ =−= mafmgFx ssinθ ,     (1) 

∑ =−= 0cosn θmgFFy        (2) 

and 
∑ == ατ 0s0 Irf                      (3) 

 
Because the cylinder is rolling 
without slipping we know that: 
 

r
a

=α  

Substitute in equation (3) to obtain: 
r
aIrf 0s =                                 (4) 

From Table 9-1 we have: 
 

2
2
1

0 mrI =  

Substitute for I0 and α in 
equation (4) and solve for fs: 

( ) maf
r
amrrf 2

1
s

2
2
1

s =⇒=     (5) 

 



                                                                                                     Rotation 
 

 

907

Substitute for fs in equation (1) 
and solve for a: 

θsin3
2 ga =  

 
(b) Find fs using equation (5): ( ) θθ sinsin 3

1
3
2

2
1

s mggmf ==  

 
(c) Solve equation (2) for Fn: 
 

θcosn mgF =  

Use the definition of  fs,max to obtain:  
 

maxsnsmaxs, cosθμμ mgFf ==  

Use the result of part (b) to obtain: maxsmax3
1 cossin θμθ mgmg =  
 

Solve for θmax: ( )s
1

max 3tan μθ −=  
 
92 •• A thin spherical shell and solid sphere of the same mass m and radius 
R roll without slipping down an incline through the same vertical drop H (Figure 
9-64). Each is moving horizontally as it leaves the ramp. The spherical shell hits 
the ground a horizontal distance L from the end of the ramp and the solid sphere 
hits the ground a distance L′ from the end of the ramp.  Find the ratio L′/L.  
 
Picture the Problem Let the zero of gravitational potential energy be at the 
elevation where the spheres leave the ramp. The distances the spheres will travel 
are directly proportional to their speeds when they leave the ramp. 
 
Express the ratio of the distances 
traveled by the two spheres in 
terms of their speeds when they 
leave the ramp: 
 

shell

solid

shell

solid

Δ
Δ

v
v

tv
tv

L
L'

==                            (1) 

Use conservation of mechanical 
energy to find the speed of the 
spheres when they leave the ramp: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0if =−UK                                 (2) 

Express fK for the spheres and 
simplify to obtain (Note that  
k = 2/3 for the spherical shell and 
2/5 for the uniform sphere): 

( )
( ) 2

2
12

2
12

2
1

2

2
2

2
12

2
1

2
cm2

12
2
1

rottransf

1 mvkkmvmv
R
vkmRmv

ImvKKK

+=+=

+=

+=+= ω

 

 
Substitute for fK in equation (2) to 
obtain: 

( ) mgHmvk =+ 2
2
11 ⇒

k
gH

v
+

=
1
2  
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Substitute for shellv  and solidv in 
equation (1) and simplify to obtain: 09.1

1
1

1
1

5
2
3
2

solid

shell =
+
+

=
+
+

=
k
k

L
L'  

 
93 •• [SSM] A uniform thin cylindrical shell and a solid cylinder roll 
horizontally without slipping. The speed of the cylindrical shell is v. The cylinder 
and the hollow cylinder encounter an incline that they climb without slipping. If 
the maximum height they reach is the same, find the initial speed v′ of the solid 
cylinder.  
 
Picture the Problem Let the subscripts u and h refer to the uniform and thin-
walled spheres, respectively. Because the cylinders climb to the same height, their 
kinetic energies at the bottom of the incline must be equal. 
 
Express the total kinetic energy of 
the thin-walled cylinder at the 
bottom of the inclined plane: ( ) 2

h2

2
2

h2
12

h2
1

2
h2

12
h2

1
rottransh

vm
r
vrmvm

IvmKKK

=+=

+=+= ω
 

 
Express the total kinetic energy of 
the solid cylinder at the bottom of 
the inclined plane: ( ) 2

u4
3

2

2
2

u2
1

2
12

u2
1

2
u2

12
u2

1
rottransu ''

v'm
r
v'rmv'm

IvmKKK

=+=

+=+= ω
 

 
Because the cylinders climb to the 
same height: 

ghmvm

ghmv'm

h
2

h

u
2

u4
3

and
=

=
 

 
Divide the first of these equations 
by the second: ghm

ghm
vm
v'm

h

u
2

h

2
u4

3
=  

 
Simplify to obtain: 

1
4
3

2

2

=
v
v'

⇒ vv'
3
4

=  

 
94 •• A thin cylindrical shell and a solid sphere start from rest and roll 
without slipping down a 3.0-m-long inclined plane. The cylinder arrives at the 
bottom of the incline 2.4 s after the sphere does. Determine the angle the incline 
makes with the horizontal. 
 
Picture the Problem Let the subscripts s and c refer to the solid sphere and thin-
walled cylinder, respectively. Because the cylinder and sphere descend from the 
same height, their kinetic energies at the bottom of the incline must be equal. The 
force diagram shows the forces acting on the solid sphere. We’ll use Newton’s 2nd 
law to relate the accelerations to the angle of the incline and use a constant 
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acceleration to relate the accelerations to the distances traveled down the incline. 

θ

m r

gmr

nF
r

f
r

y

x
0

 
 
 
Apply Newton’s 2nd law to the 
sphere: 

sssin∑ =−= mafmgFx θ ,   (1) 

∑ =−= 0cosn θmgFFy ,      (2) 

and 
∑ == ατ 0s0 Irf                      (3) 

 
Substitute for I0 and α in equation 
(3) and solve for fs: 
 

( ) s5
2

s
2

5
2

s maf
r
amrrf =⇒=  

Substitute for fs in equation (1) and 
solve for a: 
 

θsin7
5

s ga =  

Proceed as above for the thin 
cylindrical shell to obtain: 
 

θsin2
1

c ga =  

Using a constant-acceleration 
equation, relate the distance traveled 
down the incline to its acceleration 
and the elapsed time:  
 

( )2
2
1

0 tatvs Δ+Δ=Δ  
or, because v0 = 0, 

( )2
2
1 tas Δ=Δ                             (4) 

Because Δs is the same for both 
objects: 

2
cc

2
ss tata =  

where  
( ) 760.580.44.2 s

2
s

2
s

2
c ++=+= tttt  

provided tc and ts are in seconds. 
 

Substitute for as and ac and simplify 
to obtain the quadratic equation: 
 

0760.580.4429.0 s
2
s =−− tt  
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Use the quadratic formula or your 
graphing calculator to solve for the 
positive root: 
 

s28.12s =t  

Substitute in equation (4), simplify, 
and solve for θ : ⎥

⎦

⎤
⎢
⎣

⎡ Δ
= −

2
s

1

5
14sin

gt
sθ  

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
= −

33.0

s12.28m/s9.815
m3.014sin 22

1θ
 

 
95 •• A wheel has a thin 3.0-kg rim and four spokes, each of mass 1.2 kg. 
Find the kinetic energy of the wheel when it is rolling at 6.0 m/s on a horizontal 
surface. 
  
Picture the Problem The kinetic energy of the wheel is the sum of its 
translational and rotational kinetic energies. Because the wheel is a composite 
object, we can model its moment of inertia by treating the rim as a cylindrical 
shell and the spokes as rods. 
 
Express the kinetic energy of the 
wheel: 

2

2

cm2
12

tot2
1

2
cm2

12
tot2

1

rottrans

R
vIvM

IvM

KKK

+=

+=

+=

ω  

where spokerimtot 4MMM += . 

 
The moment of inertia of the wheel 
is the sum of the moments of inertia 
of the rim and spokes: 

( )
( ) 2

spoke3
4

rim

2
spoke3

12
rim

spokesrimcm

4

RMM

RMRM

III

+=

+=

+=

 

 
Substitute for Icm in the equation for K: 
 

( )[ ] ( )[ ] 2
spoke3

2
rimtot2

1
2

2
2

spoke3
4

rim2
12

tot2
1 vMMM

R
vRMMvMK ++=++=  

 
Substitute numerical values and evaluate K: 
 

( ) ( )[ ]( ) kJ0.22m/s6.0kg1.2kg3.0kg7.8 2
3
2

2
1 =++=K  
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96 •••  A uniform solid cylinder of mass M and radius R is at rest on 
a slab of mass m, which in turn rests on a horizontal, frictionless table (Figure 9-
65). If a horizontal force   

r
F  is applied to the slab, it accelerates and the cylinder 

rolls without slipping. Find the acceleration of the slab in terms of M, R, and F.  
 
Picture the Problem Let the letter S identify the slab and the letter C the 
cylinder. We can find the accelerations of the slab and cylinder by applying 
Newton’s 2nd law and solving the resulting equations simultaneously. 

FM

f

Mg

M
R

Fn

F

FM

m

mg

y

'f
r

xm

 
 
Apply xx maF =∑ to the slab: S' mafF =−                             (1) 

    
Apply xx maF =∑ to the cylinder: CMaf = ,                                 (2) 

 
Apply ατ CMCM I=∑ to the cylinder: 

 

αCMIfR =                                 (3) 

Substitute for ICM in equation (3) 
and solve for f = f ′ to obtain: 
 

αMRf 2
1=                               (4) 

Relate the acceleration of the slab to 
the acceleration of the cylinder: 

CSSC aaa +=  
or, because αRa −=CS is the 
acceleration of the cylinder relative to 
the slab, 

αRaa −= SC ⇒ CS aaR −=α   (5) 
 

Equate equations (2) and (4) and 
substitute from (5) to obtain: 
 

CS 3aa =  

Substitute equation (4) in equation 
(1) and substitute for aC to obtain: BS3

1 maMaF =− ⇒
mM

Fa
3

3
S +

=  
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97 ••• (a) Find the angular acceleration of the cylinder in Problem 96. Is the 
cylinder rotating clockwise or counterclockwise? (b) What is the cylinder’s linear 
acceleration (magnitude and direction) relative to the table? (c) What is the 
magnitude and direction of the linear acceleration of the center of mass of the 
cylinder relative to the slab? 
 
Picture the Problem Let the letter S identify the slab and the letter C the 
cylinder. In this problem, as in Problem 96, we can find the accelerations of the 
slab and cylinder by applying Newton’s 2nd law and solving the resulting 
equations simultaneously. 

FM

f

Mg

M
R

Fn

F

FM

m

mg

y

'f
r

xm

 

 
(a) Apply xx maF =∑ to the slab: S' mafF =−                             (1) 

    
Apply xx maF =∑ to the cylinder: CMaf = ,                                 (2) 

 
Apply ατ CMCM I=∑ to the cylinder: 

 

αCMIfR =                                 (3) 

Substitute for ICM in equation (3) and 
solve for f = f ′ to obtain: 
 

αMRf 2
1=                               (4) 

Relate the acceleration of the slab to 
the acceleration of the cylinder: 

CSSC aaa +=  
or, because αRa −=CS , 

αRaa −= SC ⇒
R

aa CS −
=α    (5) 

 
Equate equations (2) and (4) and 
substitute from (5) to obtain: 
 

CS 3aa =  

 Substitute for aS in equation (5) 
and simplify to obtain: 

( ) ckwisecounterclo ,
3

2

23 CCC

mMR
F

R
a

R
aa

+
=

=
−

=α
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(b) From equations (1) and (4) we 
have: 
 

SS3
1 maMaF =− ⇒

mM
Fa
3

3
S +

=  

Because CS 3aa = : 
 

F
mM

F
aa

 ofdirection 

 in the ,
3S3

1
C +==  

 
(c) The acceleration of the cylinder 
relative to the slab is the difference 
between the acceleration of the 
cylinder and the acceleration of the 
slab: 

F
mM

F

aaaaaa

 ofdirection  the

  toopposite ,
3

2

23 CCCSCCS

+
−

=

−=−=−=

 

 
98 ••• If the force in Problem 96 acts over a distance d, in terms of the 
symbols given, find (a) the kinetic energy of the slab, and (b) the total kinetic 
energy of the cylinder. (c) Show that the total kinetic energy of the slab-cylinder 
system is equal to the work done by the force. 
 
Picture the Problem Let the system include Earth, the cylinder (C), and the slab 
(S). Then F is an external force that changes the energy of the system by doing 
work on it. We can find the kinetic energy of the slab from its speed when it has 
traveled a distance d. We can find the kinetic energy of the cylinder from the sum 
of its translational and rotational kinetic energies. In Part (c) we can add the 
kinetic energies of the slab and the cylinder to show that their sum is the work 
done by F in displacing the system a distance d. 

FM

f

Mg

M
R

Fn

F

FM

m

mg

y

'f
r

xm

 
 
(a) Express the kinetic energy of the 
slab: 
 

2
S2

1
slabonS mvWK ==     
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Using a constant-acceleration 
equation, relate the velocity of the 
slab to its acceleration and the 
distance traveled: 
 

davv S
2
0

2
S 2+=  

or, because the slab starts from rest, 
dav S

2
S 2=  

Substitute for 2
Sv to obtain: 

 

( ) dmadamK SS2
1

S 2 ==            (1) 

Apply xx maF =∑ to the slab: SmafF =−                              (2)         
 

Apply xx maF =∑ to the cylinder: CMaf = ,                                  (3)           
   

Apply ατ CMCM I=∑ to the cylinder: αCMIfR =                                 (4) 
 

Substitute for ICM in equation (4) 
and solve for f: 
 

αMRf 2
1=                                (5) 

Relate the acceleration of the slab to 
the acceleration of the cylinder: 

CSSC aaa +=  
or, because αRa −=CS , 

αRaa −= SC  
 

Solving for Rα yields: 
 

CS aaR −=α                            (6) 
 

Equate equations (3) and (5) and 
substitute in (6) to obtain: 

CS 3aa =  

 
Substitute equation (5) in equation 
(2) and use CS 3aa = to obtain: 
 

SC maMaF =−  
or 

SS3
1 maMaF =−  

 
Solving for Sa yields: 

Mm
Fa

3
1S +

=  

 
Substitute for Sa in equation (1) to 
obtain: 
 

Mm
mFdK

3
1B +

=  
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(b) Express the total kinetic energy 
of the cylinder: 

2

2
CB

CM2
12

C2
1

2
CM2

12
C2

1
rottransC

R
vIMv

IMvKKK

+=

+=+= ω
(7) 

where SCCS vvv −= . 
 

In Part (a) it was established that:  CS 3aa =  
 

Integrate both sides of CS 3aa = with 
respect to time to obtain: 
 

constant3 CS += vv  
where the constant of integration is 
determined by the initial conditions that 
vC = 0 when vS = 0. 

 
Substitute the initial conditions to 
obtain: 
 

0constant = and CS 3vv =  
 

Substitute in the expression for CSv  
to obtain: 
 

CCCSCCS 23 vvvvvv −=−=−=  

Substitute for ICM and CSv  in 
equation (7) to obtain: 

( )( )

2
C2

3

2

2
C2

2
1

2
12

C2
1

C
2

Mv
R
vMRMvK

=

−
+=

    (8) 

 
Because S3

1
C vv = : 2

S9
12

C vv =  
 

It Part (a) it was established that: dav S
2
S 2=  and 

Mm
Fa

3
1S +

=  

 
Substitute to obtain: 
 ( )

( )Mm
Fd

d
Mm

Fdav

3
1

3
19

2
S9

12
C

9
2

2

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
 

 
Substituting in equation (8) and 
simplifying yields: ( )

( )Mm
MFd

Mm
FdMK

3
1

3
12

3
C

3

9
2

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
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(c) Express the total kinetic energy 
of the system and simplify to obtain: 

( )
( )
( ) FdFd

Mm
Mm

Mm
MFd

Mm
mFd

KKK

=
+
+

=

+
+

+
=

+=

3
1

3
1

3
1

CStot

3
3

3
 

 
99 ••• [SSM] Two large gears that are being designed as part of a large 
machine and are shown in Figure 9-66; each is free to rotate about a fixed axis 
through its center. The radius and moment of inertia of the smaller gear are  
0.50 m and 1.0 kg⋅m2, respectively, and the radius and moment of inertia of the 
larger gear are 1.0 m and 16 kg⋅m2, respectively. The lever attached to the smaller 
gear is 1.0 m long and has a negligible mass. (a) If a worker will typically apply a 
force of 2.0 N to the end of the lever, as shown, what will be the angular 
accelerations of gears the two gears? (b) Another part of the machine (not shown) 
will apply a force tangentially to the outer edge of the larger gear to temporarily 
keep the gear system from rotating. What should the magnitude and direction of 
this force (clockwise or counterclockwise) be? 
 
Picture the Problem The forces 
responsible for the rotation of the 
gears are shown in the diagram to the 
right. The forces acting through the 
centers of mass of the two gears have 
been omitted because they produce 
no torque. We can apply Newton’s 
2nd law in rotational form to obtain 
the equations of motion of the gears 
and the not slipping condition to 
relate their angular accelerations.  

 

R1

2N

F

R2

F

l

 

 
(a) Apply ατ I=∑ to the gears to 
obtain their equations of motion: 
 

111mN 2.0 αIFR =−⋅               (1) 
and 

222 αIFR =                                (2) 
where F is the force keeping the gears 
from slipping with respect to each 
other.   
 

Because the gears do not slip relative 
to each other, the tangential 
accelerations of the points where 
they are in contact must be the same: 

2211 αα RR =  
or 

12
1

1
2

1
2 ααα ==

R
R                      (3) 

 
Divide equation (1) by R1 to obtain: 

1
1

1

1

mN 2.0 α
R
IF

R
=−

⋅  
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Divide equation (2) by R2 to obtain: 
2

2

2 α
R
IF =  

 
Adding these equations yields: 

2
2

2
1

1

1

1

mN 2.0 αα
R
I

R
I

R
+=

⋅  

 
Use equation (3) to eliminate α2: 

1
2

2
1

1

1

1 2
mN 2.0 αα

R
I

R
I

R
+=

⋅  

 
Solving for α1 yields: 

2
2

1
1

1

2

mN0.2

I
R
RI +

⋅
=α  

 
Substitute numerical values and 
evaluate α1: 

( ) ( )
22

22
1

rad/s40.0rad/s400.0

mkg16
m1.02
m0.50mkg1.0

mN2.0

==

⋅+⋅

⋅
=α

 

 
Use equation (3) to evaluate α2: ( ) 22

2
1

2 rad/s0.20rad/s0.400 ==α  
 

(b) To counterbalance the 2.0-N·m 
torque, a counter torque of 2.0 N·m 
must be applied to the first gear:  
 

0mN 2.0 1 =−⋅ FR ⇒
1

mN0.2
R

F ⋅
=  

 

Substitute numerical values and 
evaluate F:    clockwise N,4.0

m0.50
mN2.0

=
⋅

=F  

 
100 ••• As the chief design engineer for a major toy company, you are in 
charge of designing a ″loop-the-loop″ toy for youngsters. The idea, as shown in 
Figure 9-67, is that a ball of mass m and radius r will roll down an inclined track 
and around the loop without slipping.  The ball starts from rest at a height h above 
the tabletop that supports the whole track.  The loop radius is R. Determine the 
minimum height h, in terms of R and r, for which the ball will remain in contact 
with the track during the whole of its loop-the-loop journey.  (Do not neglect the 
size of the ball’s radius when doing this calculation.) 
 
Picture the Problem Choose Ug = 0 at the bottom of the loop and let the system 
include the ball, the track, and the earth. We can apply conservation of energy to 
this system to relate h to the speed of the ball v at the top of the ″loop-to-loop″, 
the radius r of the ball, and the radius R of the ″loop-to-loop.″ We can then apply 
Newton’s 2nd law to the ball at the top of the loop to eliminate v. 
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Apply conservation of energy to the 
system to obtain: 

gext ΔΔ UKW +=  
and, because Wext = 0,  

0ΔΔΔ grottrans =++ UKK  
 
Substituting for ,Δ transK ,Δ rotK and gΔU yields: 
 

0ig,fg,irot,frot,i trans,ftrans, =−+−+− UUKKKK  

 
Because Ktrans,i = Krot,i = 0: 
 

0ig,fg,frot,ftrans, =−++ UUKK  

Substitute for ftrans,K , frot,K , fg,U , 

and ig,U to obtain: 
 

( ) 022
2
12

2
1 =−−++ mghrRmgImv ω  
 

Noting that, because the ball rolls without slipping, ωrv = and that 
,2

5
2

sphere mrI = substitute to obtain: 
 

( ) ( ) 02
2

2
5
2

2
12

2
1 =−−+⎟

⎠
⎞

⎜
⎝
⎛+ mghrRmg

r
vmrmv ⇒ rR

g
vh −+= 2

10
7 2

 

 
Noting that, for the minimum speed 
for which the ball remains in contact 
with the track at the top of the loop 
the centripetal force is the 
gravitational force, apply Newton’s 
second law to the ball to obtain: 
 

rR
vmmg
−

=
2

⇒ ( )rRgv −=2  

Substituting for v2 and simplifying 
yields: 
 

( )

rR

rR
g

rRgh

7.17.2

2
10

7

−=

−+
−

=
 

 
Rolling With Slipping  
 
101 •• A bowling ball of mass M and radius R is released so that at the instant 
it touches the floor it is moving horizontally with a speed v0 and is not rotating. It 
slides for a time t1 a distance s1 before it begins to roll without slipping. (a) If μk 
is the coefficient of kinetic friction between the ball and the floor, find s1, t1, and 
the final speed v1 of the ball. (b) Find the ratio of the final kinetic energy to the 
initial kinetic energy of the ball. (c) Evaluate s1, t1, and v1for v0 = 8.0 m/s and  
μk = 0.060. 
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Picture the Problem Part (a) of this problem is identical to Example 9-16. In Part 
(b) we can use the definitions of translational and rotational kinetic energy to find 
the ratio of the final and initial kinetic energies. 
 
(a) From Example 9-16: 

g
v

s
k

2
0

1 49
12

μ
= ,

g
v

t
k

0
1 7

2
μ

= , and 

01k2
5

1 7
5 vgtv == μ                 

 
(b) When the ball rolls without 
slipping, v1 = rω. The final kinetic 
energy of the ball is given by: 
 

2
2
12

12
1

rottransf

ωIMv

KKK

+=

+=
 

 

Substituting for I and simplifying 
yields: 

( )
2
014

52
110

7

2

2
12

5
2

2
12

12
1

f

MvMv
r
vMrMvK

==

+=
 

 
Express the ratio of the final and 
initial kinetic energies: 7

5
2
02

1

2
014

5

i

f ==
Mv
Mv

K
K  

 
(c) Substitute numerical values in the 
expression from (a) and evaluate s1: 

( )
( )( ) m27

m/s9.810.060
m/s8.0

49
12

2

2

1 ==s  

 
Substitute numerical values in the 
expression from (a) and evaluate t1: ( )( ) s3.9

m/s9.810.060
m/s8.0

7
2

21 ==t  

 
Substitute numerical values in the 
expression from (a) and evaluate v1: 

( ) m/s5.7m/s8.0
7
5

1 ==v  

 
102 •• During a game of pool, the cue ball (a uniform sphere of radius r) is at 
rest on the horizontal pool table (Figure 9-68). You strike the ball horizontally 
with your cue stick, which delivers a large horizontal force of magnitude F0 for a 
short time. The stick strikes the ball at a point a vertical height h above the 
tabletop. Assume the striking location is above the ball’s center. Show that the 
ball’s angular speed ω is related to the initial linear speed of its center of mass vcm 
by ω = (5/2)vcm(h – r)/r2.  Estimate the ball’s rotation rate just after the hit using 
reasonable estimates for h, r and vcm.  
 
Picture the Problem We can apply Newton’s 2nd law in rotational form and the 
impulse-momentum theorem to obtain two equations that we can solve 
simultaneously for ω. 



   Chapter 9 
 

 

920 

 
Apply Newton’s 2nd law in rotational 
form to the cue ball: 
 

( )

t
mr

t
mrIrhF

Δ

Δ
Δ

2
5
2

2
5
2

cm0

ω

ωα

=

==−
 

 
Solving for ω yields: 
 

( )
2

0

2
Δ5

mr
trhF −

=ω                    (1) 

 
From the impulse-momentum 
theorem: 
 

00 ΔΔ mvptFI === ⇒
0

0Δ
F

mvt =  

Substitute for Δt in equation (1) and 
simplify to obtain: 
 

( ) ( )
2

0
2

0

0
0

2
5

2

5

r
rhv

mr
F

mvrhF
−

=
−

=ω  

 
Assume that v0 ≈ 1.0 m/s, r ≈ 4.0 cm, 
and h ≈ 6.0 cm, to estimate ω: 

( )( )
( )

rad/s 30

cm 0.42
cm 0.4cm 0.6m/s 0.15

2

≈

−
=ω

 

 
103 •• A uniform solid sphere is set rotating about a horizontal axis at an 
angular speed ω0 and then is placed on the floor with its center of mass at rest. If 
the coefficient of kinetic friction between the sphere and the floor is μk, find the 
speed of the center of mass of the sphere when the sphere begins to roll without 
slipping. 
 
Picture the Problem The angular 
speed of the rotating sphere will 
decrease until the condition for rolling 
without slipping is satisfied and then it 
will begin to roll. The force diagram 
shows the forces acting on the sphere. 
We can apply Newton’s 2nd law to the 
sphere and use the condition for rolling 
without slipping to find the speed of 
the center of mass when the sphere 
begins to roll without slipping.  

y

m

gm
r

nF
r

r

kf x

0
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Relate the velocity of the sphere 
when it begins to roll to its 
acceleration at that moment and the 
elapsed time: 
 

tav Δ=                                      (1) 

Apply Newton’s 2nd law to the 
sphere: 

∑ == mafFx k  ,                    (2) 

∑ =−= 0n mgFFy ,               (3) 

and 
∑ == ατ 0k0 Irf                      (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) and solve for a: 
 

ga kμ=  

Substitute in equation (1) to obtain: tgtav Δ=Δ= kμ                       (5) 
 

Solving for α in equation (4) yields: 
r
g

mr
mar

I
rf k

2
5
2

0

k

2
5 μα ===  

Express the angular speed of the 
sphere when it has been moving for a 
time Δt: 
 

t
r
gt Δ−=Δ−=

2
5 k

00
μωαωω  (6) 

 

Express the condition that the sphere 
rolls without slipping: 
 

ωrv =  

Substitute from equations (5) and (6) 
and solve for the elapsed time until 
the sphere begins to roll: 
 

g
r

t
k

0

7
2

μ
ω

=Δ  

Use equation (5) to find v when the 
sphere begins to roll: 7

2
7
2Δ 0

k

k0
k

ω
μ

μωμ r
g

grtgv ===  

 
104 •• A uniform solid ball rests on a horizontal surface and has a mass that is  
0.80 kg and a radius that is 5.0 cm. A sharp force is applied to the ball in a 
horizontal direction 9.0 cm above the horizontal surface. The force increases 
linearly from 0 N to 40 kN in 1.0 × 10–4 s, and then decreases linearly to 0 N in  
1.0 × 10–4 s. (a) What is the speed of the ball just after impact? (b) What is the 
angular speed of the ball after impact? (c) What is the speed of the ball when it 
begins to roll without slipping? (d) How far does the ball travel along the surface 
before it begins to roll without slipping? Assume that μk = 0.50. 
 



   Chapter 9 
 

 

922 

Picture the Problem (a) The sharp force delivers a translational impulse to the 
ball that changes its linear momentum. We can use the impulse-momentum 
theorem to find the speed of the ball after impact. (b) We can find the angular 
speed of the ball after impact by applying Newton’s 2nd law in rotational form. 
Because the ball has a forward spin, the friction force is in the direction of motion 
and will cause the ball’s translational speed to increase. In Parts (c) and (d) we 
can apply Newton’s 2nd law to the ball to obtain equations describing both the 
translational and rotational motion of the ball. We can then solve these equations 
to find the constant accelerations that allow us to apply constant-acceleration 
equations to find the velocity of the ball when it begins to roll and its sliding time.  
 
(a) and (b) 

avF
r

gm
r

nF
r

m r

h

y

x

+

 

(c) and (d) 

gm
r

nF
r kf

r

m r

y

x

+

 
 

 
(a) Apply the impulse-momentum 
theorem to the ball to obtain: 
 

0 av ΔΔ mvptFI ===  

Solving for 0v yields: 
m

tFv Δav
0 =                             (1) 

 
Substitute numerical values and 
evaluate 0v : 

( )( ) m/s0.5
kg0.80

s102.0kN20 4

0 =
×

=
−

v  

 
(b) Referring to the force diagram for 
(a) and (b), apply Newton’s 2nd law 
in rotational form to the ball to 
obtain: 
 

( )
t

IIrhF
Δ

0
cmcmav

ωα ==−  

Solving for ω0 yields: 
 

( ) ( )
2

5
2

av

cm

av
0

ΔΔ
mr

trhF
I

trhF −
=

−
=ω  

 
Solve equation (1) for Δt: 
 av

0Δ
F
mvt =  
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Substitute for Δt  and simplify to 
obtain: 
 

( ) ( )
2

0
2

5
2

av

0
av

0 2
5

r
rhv

mr
F
mvrhF

−
=

−
=ω  

 
Substitute numerical values and 
evaluate ω0: 

( )( )
( )

rad/s002

m.0502
m0.050m0.090m/s0.55

20

=

−
=ω

 

 
(c) Use a constant-acceleration 
equation to relate the speed of the 
ball to the acceleration and the time: 
 

tavv xx  cm0 cm +=                      (1) 

Referring to the force diagram for (c) 
and (d), apply Newton’s 2nd law to 
the ball to obtain:  

xx mafF
 cmk∑ == ,               (2) 

∑ =−= 0n mgFFy ,               (3) 

and 
∑ =−= ατ cmkcm Irf               (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) to obtain: 
 

xmamg  cmk =μ ⇒ ga x k cm μ=  

Substitute for xa  cm  in equation (1) to 
obtain: 
 

tvv x gk0  cm μ+=                       (5) 

Solving for α in equation (4) yields: 
r
g

mr
mgr

I
rf

2
5 k

2
5
2

k

cm

k μμα −=−=−=  

 
Use a constant-acceleration equation 
to relate the angular speed of the ball 
to the angular acceleration and the 
time: 
 

t
r
gt

2
5 k

00
μωαωω −=+=       (6) 

When the ball rolls without slipping: 
 

tgr

t
r
grrv x

2
5

2
5

k
0

k
0 cm

μω

μωω

−=

⎟
⎠
⎞

⎜
⎝
⎛ −==

    (7) 

 
Equate equations (5) and (7) to 
obtain: 

tvtgr g
2

5
k0

k
0 μμω +=−  
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Solve for the time t at which 
ωrv x = cm : 

 

( )
g
vrt

k

00

7
2

μ
ω −

=  

 
Substitute numerical values and evaluate t: 
 

( )( )( )
( )( ) s 2912.0

m/s 81.950.07
m/s 0.5rad/s 002m 050.02

2 =
−

=t  

 
Substitute numerical values in equation (5) and evaluate ( )s .29120 cm xv : 
 

( ) ( )( )( ) m/s .46m/s 429.6s .29120m/s 81.950.0m/s 0.5s .29120 2
 cm ==+=xv  

 
(d) The distance traveled in time t is: 
 

2
k2

1
0

2
cm2

1
0Δ gttvtatvx μ+=+=  

 
Substitute numerical values and evaluate ( )s .29120Δx : 
 

( ) ( ) ( )( ) ( )( ) ( )( ) m 7.1s s .29120m/s 81.950.0s s .29120m/s .05s .29120Δ 22
2
1 =+=x  

 
105 •• [SSM] A 0.16-kg billiard ball whose radius is 3.0 cm is given a 
sharp blow by a cue stick. The applied force is horizontal and the line of action of 
the force passes through the center of the ball. The speed of the ball just after the 
blow is 4.0 m/s, and the coefficient of kinetic friction between the ball and the 
billiard table is 0.60. (a) How long does the ball slide before it begins to roll 
without slipping? (b) How far does it slide? (c) What is its speed once it begins 
rolling without slipping? 
 
Picture the Problem Because the impulse is applied through the center of mass,  
ω0 = 0. We can use the results of Example 9-16 to find the rolling time without 
slipping, the distance traveled to rolling without slipping, and the velocity of the 
ball once it begins to roll without slipping. 
 
(a) From Example 9-16 we have: 

g
vt
k

0
1 7

2
μ

=  

 
Substitute numerical values and 
evaluate t1: 
 

( )( ) s0.19
m/s9.810.60

m/s4.0
7
2

21 ==t  

 
(b) From Example 9-16 we have: 

g
vs
k

2
0

1 49
12

μ
=  
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Substitute numerical values and 
evaluate s1: 
 

( )
( )( ) m0.67

m/s9.810.60
m/s4.0

49
12

2

2

1 ==s  

 
(c) From Example 9-16 we have: 

01 7
5 vv =  

 
Substitute numerical values and 
evaluate v1: 

( ) m/s2.9m/s4.0
7
5

1 ==v  

 
106 •• A billiard ball that is initially at rest is given a sharp blow by a cue 
stick. The force is horizontal and is applied at a distance 2R/3 below the 
centerline, as shown in Figure 9-69. The speed of the ball just after the blow is v0 
and the coefficient of kinetic friction between the ball and the billiard table is μk. 
(a) What is the angular speed of the ball just after the blow? (b) What is the speed 
of the ball once it begins to roll without slipping? (c) What is the kinetic energy of 
the ball just after the hit?  
 
Picture the Problem Because the impulsive force is applied below the center 
line, the ball will have a backward spin and the direction of the friction force is 
opposite the direction of motion. This will cause the ball’s translational speed to 
decrease. We’ll use the impulse-momentum theorem and Newton’s 2nd law in 
rotational form to find the linear and rotational speeds and accelerations of the 
ball and constant-acceleration equations to relate these quantities to each other 
and to the elapsed time-to-rolling without slipping. 
(a) 

m

y

x

nF
r

gm
r

R

impulsiveF
r

0

+

Rh 3
2=

 

(b) 

kf
r

m

y

x

nF
r

gm
r

R

0

+

v

 
 
(a) Apply Newton’s 2nd law in 
rotational form to the ball to obtain: 
 

( )
t

IIRhF
Δ

0
cmcmav0

ω
ατ ==−=∑  

Solving for ω0 yields: 
 

( ) ( )
2

5
2

av

cm

av
0

ΔΔ
mr

tRhF
I

tRhF −
=

−
=ω  
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Solve equation (1) for Δt: 
 av

0Δ
F
mvt =  

 
Substitute for Δt  and simplify to 
obtain: 
 

( ) ( )
2

0
2

5
2

av

0
av

0 2
5

r
rhv

mr
F
mvrhF

−
=

−
=ω  

 
(b) Apply Newton’s 2nd law to the 
ball when it is rolling without 
slipping to obtain: 

∑ == ατ cmk0 IRf ,                (1) 

∑ =−= 0n mgFFy ,               (2) 

and 
∑ =−= mafFx k                     (3) 

 
Using the definition of fk and Fn from 
equation (2), solve for α: R

g
mR
mgR

I
mgR

2
5 k

2
5
2

k

cm

k μμμα ===  

 
Using a constant-acceleration 
equation, relate the angular speed of 
the ball to its acceleration: 

t
R

gt Δ+=Δ+=
2

5 k
00

μωαωω  

 
 

Using the definition of fk and Fn from 
equation (2), solve equation (3) for 
a: 
 

ga kμ−=  

Using a constant-acceleration 
equation, relate the speed of the ball 
to its acceleration: 
 

tgvtavv Δ−=Δ+= k00 μ         (4) 

Impose the condition for rolling 
without slipping to obtain: tgvt

R
gR Δ−=⎟

⎠
⎞

⎜
⎝
⎛ Δ+ k0

k
0 2

5
μ

μ
ω  

 
Solving for Δt yields: 

g
v

t
k

0

21
16

μ
=Δ  

 
Substitute in equation (4) to obtain: 

0
k

0
k0 21

5
21
16 vgvgvv =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

μ
μ  
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(c) Express the initial kinetic energy 
of the ball and simplify to obtain: 

( )

2
0

2
02

5
2

2
12

02
1

2
02

12
02

1
rottransi

18
19

3
5

mv

R
vmRmv

ImvKKK

=

⎟
⎠
⎞

⎜
⎝
⎛+=

+=+= ω

 

 
107 •• A bowling ball of radius R has an initial speed v0 down the lane and a 
forward spin ω0 = 3v0/R just after its release. The coefficient of kinetic friction is 
μk. (a) What is the speed of the ball just as it begins rolling without slipping?  
(b) For how long a time does the ball slide before it begins rolling without 
slipping? (c) What distance does the ball slide down the lane before it begins 
rolling without slipping? 
 
Picture the Problem The figure shows 
the forces acting on the bowling during 
the sliding phase of its motion. Because 
the ball has a forward spin, the friction 
force is in the direction of motion and 
will cause the ball’s translational speed 
to increase. We’ll apply Newton’s 2nd 
law to find the linear and rotational 
velocities and accelerations of the ball 
and constant-acceleration equations to 
relate these quantities to each other and 
to the elapsed time to rolling without 
slipping. 

gm
r

nF
r kf

r

m

y

x

+
R

v

 
 
(a) and (b) Relate the velocity of the 
ball when it begins to roll to its 
acceleration and the elapsed time: 
 

tavv Δ+= 0                               (1) 

Apply Newton’s 2nd law to the ball: ∑ == mafFx k ,                     (2) 

∑ =−= 0n mgFFy ,               (3) 

and 
∑ =−= ατ 0k0 IRf                 (4) 

 
Using the definition of fk and Fn 
from equation (3), substitute in 
equation (2) and solve for a: 
 

ga kμ=  

Substitute in equation (1) to obtain: tgvtavv Δ+=Δ+= k00 μ       (5) 
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Solve for α in equation (4): 
R

g
mR

maR
I

Rf k
2

5
2

0

k

2
5 μ

α −=−=−=  

 
Relate the angular speed of the ball 
to its acceleration: 

t
R

g
Δ−= k

0 2
5 μ

ωω  

 
Apply the condition for rolling 
without slipping and simplify to 
obtain: 

tgv

t
R

g
R
vR

t
R

gRRv

Δ
2
53

Δ
2
53

Δ
2
5

k0

k0

k
0

μ

μ

μωω

−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −==

    (6) 

 
Equate equations (5) and (6) and 
solve for Δt: g

v
t

k

0

7
4

μ
=Δ     

 
Substitute for Δt in equation (6) 
to obtain: 07

11vv =  

 
(c) Relate Δx to the average speed of 
the ball and the time it moves before 
beginning to roll without slipping: 
 

( ) tvvtvx ΔΔΔ 02
1

av +==  

Substitute for v0 + v and Δt and 
simplify to obtain: g

v
g

vvvx
k

2
0

k

0
002

1

49
36

7
4

7
11Δ

μμ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=

 
General Problems 
 
108 •• The radius of a small playground merry-go-round is 2.2 m. To start it 
rotating, you wrap a rope around its perimeter and pull with a force of 260 N for 
12 s. During this time, the merry-go-round makes one complete rotation. Neglect 
any effects of friction. (a) Find the angular acceleration of the merry-go-round. 
(b) What torque is exerted by the rope on the merry-go-round? (c) What is the 
moment of inertia of the merry-go-round? 
 
Picture the Problem The force you exert on the rope results in a net torque that 
accelerates the merry-go-round. The moment of inertia of the merry-go-round, its 
angular acceleration, and the torque you apply are related through Newton’s 2nd 
law. 
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(a) Using a constant-acceleration 
equation, relate the angular 
displacement of the merry-go-round 
to its angular acceleration and 
acceleration time: 
 

( )2
2
1

0 tt Δ+Δ=Δ αωθ  
or, because ω0 = 0, 

( )2
2
1 tΔ=Δ αθ ⇒

( )2Δ
Δ2
t
θα =  

Substitute numerical values and 
evaluate α: 

( )
( )

2

2
2

rad/s087.0

rad/s0873.0
s12
rad22

=

==
πα

 

 
(b) Use the definition of torque to 
obtain: 

( )( )
mkN0.57

mN572m2.2N260

⋅=

⋅=== Frτ
 

 
(c) Use Newton’s 2nd law to find the 
moment of inertia of the merry-go-
round: 23

2
net

mkg106.6

rad/s0.0873
mN572

⋅×=

⋅
==

α
τI

 

 
109 •• A uniform 2.00-m-long stick is raised at an angle of 30° to the 
horizontal above a sheet of ice. The bottom end of the stick rests on the ice. The 
stick is released from rest. The bottom of the stick remains in contact with the ice 
at all times. How far will the bottom end of the stick have traveled during the time  
the rest of the stick is falling to the ice? Assume that the ice is frictionless. 
 
Picture the Problem Because there are 
no horizontal forces acting on the stick, 
the center of mass of the stick will not 
move in the horizontal direction. 
Choose a coordinate system in which 
the origin is at the horizontal position 
of the center of mass. The diagram 
shows the stick in its initial raised 
position and when it has fallen to the 
ice. 

cm

cm

x,m

x,m

x1

x2

0

0

/

•

•

θ

 
 
Express the displacement of the right 
end of the stick Δx as the difference 
between the position coordinates x1 
and x2: 
 

12 xxx −=Δ                              (1) 

Using trigonometry, find the initial 
coordinate of the right end of the 
stick: 
 

( ) m0.866cos30m2.00
cos

2
1
2
1

1

=°=
= θx
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Because the center of mass has not 
moved horizontally: 
 

m00.12
1

2 ==x  

Substitute for x1 and x2 in equation 
(1) to find the displacement of the 
right end of the stick: 

cm13m0.866m00.1Δ =−=x  

 
110 •• A uniform 5.0-kg disk that has a 0.12-m radius is pivoted so that it 
rotates freely about its axis (Figure 9-70). A string wrapped around the disk is 
pulled with a force equal to 20 N. (a) What is the torque being exerted by this 
force about the rotation axis? (b) What is the angular acceleration of the disk?  
(c) If the disk starts from rest, what is its angular speed after 5.0 s? (d) What is its 
kinetic energy after the 5.0 s? (e) What is the angular displacement of the disk 
during the 5.0 s? (f) Show that the work done by the torque, θτ Δ , equals the 
kinetic energy.  
 
Picture the Problem The force applied to the string results in a torque about the 
center of mass of the disk that accelerates it. We can relate these quantities to the 
moment of inertia of the disk through Newton’s 2nd law and then use constant-
acceleration equations to find the disks angular speed the angle through which it 
has rotated in a given period of time. The disk’s rotational kinetic energy can be 
found from its definition. 
 
(a) Use the definition of torque to 
obtain: 

( )( )
mN2.4

mN2.40m0.12N20

⋅=

⋅=== FRτ
 

 
(b) Use Newton’s 2nd law to express 
the angular acceleration of the disk 
in terms of the net torque acting on it 
and its moment of inertia: 
 

2
net

2
2
1

netnet 2
MRMRI
τττ

α ===  

 

Substitute numerical values and 
evaluate α: 

( )
( )( )

2

2
2

rad/s67

rad/s66.7
m0.12kg5.0

mN2.402

=

=
⋅

=α
 

 
(c) Using a constant-acceleration 
equation, relate the angular speed of 
the disk to its angular acceleration 
and the elapsed time: 
 

tΔ+= αωω 0  
or, because ω0 = 0, 

tΔ= αω  
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Substitute numerical values and 
evaluate ω: 
 

( )( )
rad/s103.3

rad/s333s5.0rad/s66.7
2

2

×=

==ω
 

 
(d) Use the definition of rotational 
kinetic energy to obtain: 
 

( )
22

4
1

22
2
1

2
12

2
1

rot

ω

ωω

MR

MRIK

=

==
 

 
Substitute numerical values and 
evaluate rotK : 

( )( ) ( )
kJ2.0

rad/s333m0.12kg5.0 22
4
1

rot

=

=K
 

 
(e) Using a constant-acceleration 
equation, relate the angle through 
which the disk turns to its angular 
acceleration and the elapsed time: 
 

( )2
2
1

0 tt Δ+Δ=Δ αωθ  
or, because ω0 = 0, 

( )2
2
1 tΔ=Δ αθ  

 

Substitute numerical values and 
evaluate Δθ : 
 

( )( )
rad108.3

s5.0rad/s66.7Δ
2

22
2
1

×=

=θ
 

 
(f) Substitute for I and ω2 in the 
expression for K and simplify to 
obtain: 

( ) ( )

θτ

ατα
α
τω

Δ

ΔΔ 2
2
12

2
12

2
1

=

=⎟
⎠
⎞

⎜
⎝
⎛== ttIK

 

 
111 •• A uniform 0.25-kg thin rod that has a 80-cm length is free to rotate 
about a fixed horizontal axis perpendicular to, and through one end, of the rod. It 
is held horizontal and released. Immediately after it is released, what is (a) the 
acceleration of the center of the rod, and (b) the initial acceleration of the free end 
of the rod? (c) What is the speed of the center of mass of the rod when the rod is 
(momentarily) vertical. 
 
Picture the Problem The diagram shows the rod in its initial horizontal position 
and then, later, as it swings through its vertical position. The center of mass is 
denoted by the numerals 0 and 1. Let the length of the rod be represented by L and 
its mass by m. We can use Newton’s 2nd law in rotational form to find, first, the 
angular acceleration of the rod and then, from α, the acceleration of any point on 
the rod. We can use conservation of energy to find the angular speed of the center 
of mass of the rod when it is vertical and then use this value to find its linear 
velocity. 
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P

Ug = 0
1

0

L
2

Δ h=

 
 
(a) Relate the acceleration of the 
center of the rod to the angular 
acceleration of the rod: 
 

αα
2
La ==  

Use Newton’s 2nd law to relate the 
torque about the suspension point of 
the rod (exerted by the weight of the 
rod) to the rod’s angular 
acceleration: 
 

L
g

ML

LMg

I 2
32

2
3
1

P

===
τα  

 

Substitute numerical values and 
evaluate α: 

( )
( )

2
2

rad/s18.4
m0.802

m/s9.813
==α  

 
Substitute numerical values and 
evaluate a: 
 

( )( ) 22
2
1 m/s7.4rad/s18.4m0.80 ==a  

 

(b) Relate the acceleration of the end 
of the rod to α: 
 

αLa =end  
 

Substitute numerical values and 
evaluate aend: 
 

( )( ) 22
end m/s15rad/s18.4m0.80 ==a  

(c) Relate the linear velocity of the 
center of mass of the rod to its 
angular speed as it passes through 
the vertical: 
 

Lhv ωω 2
1=Δ=                         (1) 

Solving for Δh yields: 
 

Lh 2
1Δ =  
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Use conservation of energy to relate 
the changes in the kinetic and 
potential energies of the rod as it 
swings from its initial horizontal 
orientation through its vertical 
orientation: 
 

00101 =−+−=Δ+Δ UUKKUK  
or, because K0 = U1 = 0, 

001 =−UK  

Substitute for K1 and U0 to obtain: 
 

0Δ2
P2

1 =− hmgI ω  

Substituting for IP and Δh yields: 
 ( ) ( ) 02

122
3
1

2
1 =− LmgmL ω ⇒

L
g3

=ω  

 
Substituting for ω in equation (1) 
yields: gL

L
gLv 33

2
1

2
1 ==  

 
Substitute numerical values and 
evaluate v: 

( )( ) m/s2.4m0.80m/s9.813 2
2
1 ==v  

 
112 •• A marble of mass M and radius R rolls without slipping down the track 
on the left from a height h1, as shown in Figure 9-71. The marble then goes up the 
frictionless track on the right to a height h2. Find h2.  
 
Picture the Problem Let the zero of gravitational potential energy be at the 
bottom of the track. The initial potential energy of the marble is transformed into 
translational and rotational kinetic energy and gravitational potential energy (note 
that its center of mass is a distance R above the bottom of the track when it 
reaches the lowest point on the track) as it rolls down the track to its lowest point 
and then, because the portion of the track to the right is frictionless, into 
translational kinetic energy and, eventually, into gravitational potential energy. 
 
Using conservation of energy, relate 
h2 to the kinetic energy of the marble 
at the bottom of the track: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf to obtain: 
02

2
2
1 =−− MghMv ⇒

g
vh
2

2

2 =    (1) 

 
Using conservation of energy, relate 
h1 to the energy of the marble at the 
bottom of the track: 
 

0=Δ+Δ UK  
or, because Ki = 0, 

0ifrot f, transf, =−++ UUKK  
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Substitute for the energies  to obtain: 01
2

2
12

2
1 =−++ MghMgRIMv ω  
 

The moment of inertia of a sphere of 
mass M and radius R, about an axis 
through its center, is 2

5
2 MR : 

 

( ) 01
22

5
2

2
12

2
1 =−++ MghMgRMRMv ω  

Because the marble is rolling without 
slipping, v = Rω and: 
 

( )
01

2
2

5
2

2
12

2
1

=−

+⎟
⎠
⎞

⎜
⎝
⎛+

Mgh

MgR
R
vMRMv  

 
Solve for v2 to obtain: 
 

( )Rhgv −= 17
102  

Substitute for v2 in equation (1) and 
simplify to obtain: 

( ) ( )Rh
g

Rhg
h −=

−
= 17

517
10

2 2
 

 
Remarks: If h1, h2 >> R, then our result becomes 17

5
2 hh = . 

 
113 •• [SSM] A uniform 120-kg disk with a radius equal to 1.4 m initially 
rotates with an angular speed of 1100 rev/min.  A constant tangential force is 
applied at a radial distance of 0.60 m from the axis. (a) How much work must this 
force do to stop the wheel? (b) If the wheel is brought to rest in 2.5 min, what 
torque does the force produce? What is the magnitude of the force? (c) How many 
revolutions does the wheel make in these 2.5 min?  
 
Picture the Problem To stop the wheel, the tangential force will have to do an 
amount of work equal to the initial rotational kinetic energy of the wheel. We can 
find the stopping torque and the force from the average power delivered by the 
force during the slowing of the wheel. The number of revolutions made by the 
wheel as it stops can be found from a constant-acceleration equation. 
 
(a) Relate the work that must be 
done to stop the wheel to its kinetic 
energy: 
 

( ) 22
4
122

2
1

2
12

2
1 ωωω mrmrIW ===  

 

Substitute numerical values and evaluate W: 
 

( )( ) kJ108.7kJ780
s60

min1
rev

rad2
min
rev1100m1.4kg120 2

2
2

4
1 ×==⎥

⎦

⎤
⎢
⎣

⎡
××=

πW  
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(b) Express the stopping torque in 
terms of the average power required: 
 

avav τω=P ⇒
av

av

ω
τ P

=  

Substitute numerical values and evaluate τ : 
 

( )( )
( )( )( ) mN90mN3.90

2
smin/601rad/rev2rev/min1100

s/min60min2.5
kJ780

⋅=⋅==
π

τ  

 
Relate the stopping torque to the 
magnitude of the required force and 
evaluate F: 
 

kN0.15
m0.60

mN90.3
=

⋅
==

R
F τ  

 

(c) Using a constant-acceleration 
equation, relate the angular 
displacement of the wheel to its 
average angular speed and the 
stopping time: 
 

tΔ=Δ avωθ  

Substitute numerical values and 
evaluate Δθ: 

( )

rev101.4

min2.5
2

rev/min1100Δ

3×=

⎟
⎠
⎞

⎜
⎝
⎛=θ

 

 
114 •• A day-care center has a merry-go-round that consists of a uniform 
240-kg circular wooden platform 4.00 m in diameter. Four children run alongside 
the merry-go-round and push tangentially along the platform’s circumference 
until, starting from rest, the merry-go-round is spinning at 2.14 rev/min. During 
the spin up: (a) If each child exerts a sustained force equal to 26 N how far does 
each child run? (b) What is the angular acceleration of the merry-go-round during 
spin up? (c) How much work does each child do? (d) What is the increase in the 
kinetic energy of the merry-go-round?  
 
Picture the Problem The work done by the four children on the merry-go-round 
will change its kinetic energy. We can use the work-energy theorem to relate the 
work done by the children to the distance they ran and Newton’s 2nd law to find 
the angular acceleration of the merry-go-round. 
 
(a) Use the work-kinetic energy 
theorem to relate the work done by 
the children to the kinetic energy of 
the merry-go-round: 

fforcenet Δ KKW ==  

or 
2

2
14 ωIsF =Δ  
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Substitute for I to obtain: 
 

( ) 22
4
122

2
1

2
1Δ4 ωω mrmrsF ==  

Solving for Δs yields: 
F

mrs
16

Δ
22ω

=  

 
Substitute numerical values and 
evaluate Δs: ( )( )

( )
m12m6.11

N2616
rev

rad2
s2.8

rev1m2.00kg240
Δ

2
2

==

⎥
⎦

⎤
⎢
⎣

⎡
×

=

π

s

 
(b) Apply Newton’s 2nd law to 
express the angular acceleration of 
the merry-go-round: 
 

mr
F

mr
Fr

I
84

2
2
1

net ===
τα  

 

Substitute numerical values and 
evaluate α: 

( )
( )( )

2rad/s0.43
m2.00kg240

N268
==α  

 
(c) Use the definition of work to 
relate the force exerted by each child 
to the distance over which that force 
is exerted: 
 

( )( ) kJ0.30m11.6N26Δ === sFW  

(d) Relate the kinetic energy of the 
merry-go-round to the work that was 
done on it: 
 

sFKKW Δ=−=Δ= 40fforcenet  

Substitute numerical values and 
evaluate Wnet force: 

( )( ) kJ1.2m11.6N264forcenet ==W  

 
115 •• A uniform 1.5-kg hoop with a 65-cm radius has a string wrapped 
around its circumference and lies flat on a horizontal frictionless table. The free 
end of the string is pulled with a constant horizontal force equal to 5.0 N and the 
string does not slip on the hoop. (a) How far does the center of the hoop travel in 
3.0 s? (b) What is the angular speed of the hoop after 3.0 s? 
 
Picture the Problem Because the center of mass of the hoop is at its center, we 
can use Newton’s second law to relate the acceleration of the hoop to the net force 
acting on it. The distance moved by the center of the hoop can be determined 
using a constant-acceleration equation, as can the angular speed of the hoop. 
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(a) Using a constant-acceleration 
equation, relate the distance the 
center of the hoop travels in 3.0 s to 
the acceleration of its center of mass: 
 

( )2
cm2

1 tas Δ=Δ  

Relate the acceleration of the center 
of mass of the hoop to the net force 
acting on it: 
 

m
Fa net

cm =  

Substitute for cma to obtain: ( )
m
tFs

2

2Δ
=Δ  

 
Substitute numerical values and 
evaluate Δs: 

( )( )
( ) m15

kg1.52
s3.0N5.0Δ

2

==s  

 
(b) Relate the angular speed of the 
hoop to its angular acceleration and 
the elapsed time: 
 

tΔ= αω  

Use Newton’s 2nd law to relate the 
angular acceleration of the hoop to 
the net torque acting on it:  
 

mR
F

mR
FR

I
=== 2

netτα  

Substitute for α in the expression 
for ω to obtain: mR

tFΔ
=ω  

 
Substitute numerical values and 
evaluate ω: 

( )( )
( )( ) rad/s 15

m0.65kg1.5
s3.0N5.0

==ω  

 
116 ••  A hand driven grinding wheel is a uniform 60-kg disk with a 45-cm 
radius. It has a handle of negligible mass 65 cm from the rotation axis. A compact 
25-kg load is attached to the handle when it is at the same height as the horizontal 
rotation axis. Neglecting the effects of friction, find (a) the initial angular 
acceleration of the wheel, and (b) the maximum angular speed of the wheel. 
 
Picture the Problem Let R represent the radius of the grinding wheel, M its mass, 
r the radius of the handle, and m the mass of the load attached to the handle. In the 
absence of information to the contrary, we’ll treat the 25-kg load as though it 
were concentrated at a point. Let the zero of gravitational potential energy be 
where the 25-kg load is at its lowest point. We’ll apply Newton’s 2nd law and the 
conservation of mechanical energy to determine the initial angular acceleration 
and the maximum angular speed of the wheel. 
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(a) Use Newton’s 2nd law to relate 
the acceleration of the wheel to the 
net torque acting on it: 
 

I
mgr

I
== netτα  

 

The moment of inertia of the wheel-
and-load system is the sum of their 
moments of inertia. Substituting for I 
yields: 
 

22
2
1 mrMR

mgr
+

=α  

Substitute numerical values and evaluate α: 
 

( )( )( )
( )( ) ( )( )

2
22

2
1

2

rad/s9.6
m0.65kg25m0.45kg60

m0.65m/s9.81kg25
=

+
=α  

 
(b) Use conservation of mechanical 
energy to relate the initial potential 
energy of the load to its kinetic 
energy and the rotational kinetic 
energy of the wheel when the load is 
directly below the center of mass of 
the wheel: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0irotf,transf, =−+ UKK . 

 

Substitute for transf,K , rotf,K , and Ui to 

obtain: 
 

( ) 022
2
1

2
12

2
1 =−+ mgrMRmv ω  
 

Solving for ω yields: 
222

4
MRmr

mgr
+

=ω  

 
Substitute numerical values and evaluate ω: 
 

( )( )( )
( )( ) ( )( )

rad/s4.4
m0.45kg60m0.65kg252

m0.65m/s9.81kg254
22

2

=
+

=ω  

 
117 •• A uniform disk of radius R and mass M is pivoted about a horizontal 
axis parallel to its symmetry axis and passing through a point on its perimeter, so 
that it can swing freely in a vertical plane (Figure 9-72). It is released from rest 
with its center of mass at the same height as the pivot. (a) What is the angular 
speed of the disk when its center of mass is directly below the pivot? (b) What 
force is exerted by the pivot on the disk at this moment?  
 
Picture the Problem Let the zero of gravitational potential energy be at the 
center of the disk when it is directly below the pivot. The initial gravitational 
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potential energy of the disk is transformed into rotational kinetic energy when its 
center of mass is directly below the pivot. We can use Newton’s 2nd law to relate 
the force exerted by the pivot to the weight of the disk and the centripetal force 
acting on it at its lowest point. 
  
(a) Use conservation of mechanical 
energy to relate the initial potential 
energy of the disk to its kinetic 
energy when its center of mass is 
directly below the pivot: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0irotf, =−UK  

Substitute for rotf,K and iU to 

obtain: 
 

02
2
1 =− MgrIω                          (1) 
 

Use the parallel-axis theorem to 
relate the moment of inertia of the 
disk about the pivot to its moment 
of inertia with respect to an axis 
through its center of mass: 
 

2
cm MhII +=  

or 
2

2
322

2
1 MrMrMrI =+=  

 

Substituting for I in equation (1) 
yields: 
 

( ) 022
2
3

2
1 =− MgrMr ω ⇒

r
g

3
4

=ω  

 
(b) Letting F represent the force 
exerted by the pivot, use Newton’s 
2nd law to express the net force 
acting on the swinging disk as it 
passes through its lowest point: 
 

2
net ωMrMgFF =−=  

Solve for F to obtain: 
 

2ωMrMgF +=  

Substituting for ω2 and simplifying 
yields: 

Mg
r
gMrMgF 3

7

3
4

=+=  

 
118 •• The roof of the student dining hall at your college will be supported by 
high cross-braced wooden beams attached in the shape of an upside-down L 
(Figure 9-73). Each vertical beam is 12.0 ft high and 2.0 ft wide, and the 
horizontal cross-member is 6.0 ft long. The mass of the vertical beam is 350 kg, 
and the mass of the horizontal beam is 175 kg. As the workers were building the 
hall, one of these structures started to fall over before it was anchored into place. 
(Luckily, they stopped it before it fell.) (a) If it started falling from an upright 
position, what was the initial angular acceleration of the structure? Assume that 
the bottom did not slide across the floor and that it did not fall “out of plane,” that 
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is, that during the fall the structure remained in the vertical plane defined by the 
initial position of the structure. (b) What would be the magnitude of the initial 
linear acceleration of the right end of the horizontal beam? (c) What would the 
horizontal component of the initial linear acceleration be at this same location?  
(d) Assuming the workers caught the cross-braced beam just before it hit the 
floor, estimate the beam’s rotational speed when they caught it. 
 
Picture the Problem The pictorial representation shows one of the structures 
initially in its upright position and, later, as it is about to strike the floor. Because 
we need to take moments about the axis of rotation (a line through point P), we’ll 
need to use the parallel-axis theorem to find the moments of inertia of the two 
parts of this composite structure. Let the numeral 1 denote the vertical member 
and the numeral 2 the horizontal member. We can apply Newton’s 2nd law in 
rotational form to the structure to express its angular acceleration in terms of the 
net torque causing it to fall and its moment of inertia with respect to point P. 
 

1r

2r

w

w

1m

2m

P

d

cm

R

θ

θ

cm

cm cm14
1 r≈hΔ

 
 

(a) Taking clockwise rotation to be 
positive (this is the direction the 
structure is going to rotate), apply 

ατ PI=∑ : 
 

αPIwgmgm =⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

22 1
2

2  

Solving for α yields: 
PI

gwmgm
2

122 −
=α    

 
Because IP = I1P + I2P: ( )

( )PP II
wmmg

21

122

2 +
−

=α                   (1) 
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Convert wand,, 21 to SI units: 
 

m3.05
ft3.281

m1ft10.01 =×= , 

m83.1
ft3.281

m1ft6.02 =×= , and 

m610.0
ft3.281

m1ft2.0 =×=w  

 
Using Table 9-1 and the parallel-axis 
theorem, express the moment of 
inertia of the vertical member about 
an axis through point P: 
 

( )2
4
12

13
1

1

2

1
2
113

1
1 2

wm

wmmI P

+=

⎟
⎠
⎞

⎜
⎝
⎛+=

 

 
Substitute numerical values and 
evaluate I1P: 

( ) ( ) ( )[ ]
23

2
4
12

3
1

1

mkg1012.1

m0.610m3.05kg350

⋅×=

+=PI

 
Using the parallel-axis theorem, 
express the moment of inertia of the 
horizontal member about an axis 
through point P: 
 

2
2cm,22 dmII P +=                     (2)      

where 
( ) ( )2

22
12

2
1

1
2 wwd −++=   

Solving for d yields: 
 

( ) ( )2
22

12
2
1

1 wwd −++=  
 

Substitute numerical values and evaluate d: 
 

( )[ ] ( )[ ] m37.3m0.610m1.83m0.610m3.05 2
2
12

2
1 =−++=d  

 
From Table 9-1 we have: 2

2212
1

cm,2 mI =  
 

Substitute in equation (2) to obtain: 
 ( )22

212
1

2

2
2

2
2212

1
2

dm

dmmI P

+=

+=
 

 
Evaluate I2P: ( ) ( ) ( )[ ]

23

22
12
1

2

mkg10036.2

m3.37m1.83kg175

⋅×=

+=PI
 

 
Substitute numerical values in equation (1) and evaluate α: 
 

( ) ( )( ) ( )( )[ ]
( )

22
23

2

rad/s17.0rad/s166.0
mkg102.0361.122

m0.61kg350m1.83kg175m/s9.81
==

⋅×+
−

=α  
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(b) Express the magnitude of the 
acceleration of the top right-corner 
of the cross member: 
 

Ra α=  
where ( ) ( )2

2
2

1
2 wwR −++= . 

 

Solving for R yields: ( ) ( )2
2

2
1 wwR −++=  

 
Substitute numerical values and evaluate R: 
 

( ) ( ) m86.3m0.610m1.83m0.610m3.05 22 =−++=R  
 

Substitute numerical values and 
evaluate a: 
 

( )( )
2

22

m/s0.64

m/s0.641m86.3rad/s0.166

=

==a
 

 
(c) Refer to the diagram to express ax 
in terms of a: 
 

R
waaax

+
== 1cosθ  

Substitute numerical values and 
evaluate ax: ( )

2

2

2

m/s0.61

m/s 608.0
m86.3

m0.610m3.05m/s0.641

=

=

+
=xa

 

 
(d) Letting the system include the 
beam and the earth, apply 
conservation of mechanical energy to 
the beam to obtain: 
  

0ΔΔ ififg =−+−=+ UUKKUK  
where the subscript ″f″ refers to the 
beam just before it is caught and the 
subscript ″i″ refers to its initial vertical 
position. 
 

Letting Ug = 0 in the final state: 
 

0if =−UK  

Substituting for Kf and Ui yields: ( ) 0Δ2
f2

1 =− hmgIPω  
 

From the pictorial representation: 
 

14
1Δ ≈h  

Substituting for Δh yields: 
014

12
f2

1 =− mgI Pω ⇒
PI

mg
2

1
f =ω  

 
Substitute numerical values and 
evaluate ωf: 

( )( )( )
( )
rad/s .31

mkg 1004.212.12
m 05.3m/s 81.9kg 350

23

2

f

≈

⋅×+
=ω
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119 •• [SSM] You are participating in league bowling with your friends. 
Time after time, you notice that your bowling ball rolls back to you without 
slipping on the flat section of track. When the ball encounters the slope that brings 
it up to the ball return, it is moving at 3.70 m/s.  The length of the sloped part of 
the track is 2.50 m. The radius of the bowling ball is 11.5 cm. (a) What is the 
angular speed of the ball before it encounters the slope? (b) If the speed with 
which the ball emerges at the top of the incline is 0.40 m/s, what is the angle 
(assumed constant), that the sloped section of the track makes with the horizontal? 
(c) What is the magnitude of the angular acceleration of the ball while it is on the 
slope? 
  
Picture the Problem The pictorial representation shows the bowling ball slowing 
down as it rolls up the slope. Let the system include the ball, the incline, and the 
earth. Then Wext = 0 and we can use conservation of mechanical energy to find the 
angle of the sloped section of the track.  

θ
1

2L
m

r

0g =U
 

 
(a) Because the bowling ball rolls 
without slipping, its angular speed is 
directly proportional to its linear 
speed: 
 

r
v

=ω  

where r is the radius of the bowling 
ball. 
 

Substitute numerical values and 
evaluate ω: 
 rad/s 2.32

rad/s 17.32
m 115.0

m/s 70.3

=

==ω
 

 
(b) Apply conservation of 
mechanical energy to the system as 
the bowling ball rolls up the incline: 
 

UKW ΔΔext +=  
or, because Wext = 0, 

012r,1r,2t,1t,2 =−+−+− UUKKKK  
 

Substituting for the kinetic and potential energies yields: 
 

0sin2
1ball2

12
2ball2

12
12

12
22

1 =+−+− θωω mgLIImvmv  
 

Solving for θ yields: 
 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ −+−
= −

mgL
Ivvm

2
sin

2
2

2
1ball

2
2

2
11 ωωθ  
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Because :2
5
2

ball mrI =  ( ) ( )

( )
⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎥
⎦

⎤
⎢
⎣

⎡ −+−
=

−

−

gL
vv

mgL
mrvvm

10
7sin

2
sin

2
2

2
11

2
2

2
1

2
5
22

2
2
11 ωω

θ
 

 
Substitute numerical values and 
evaluate θ : 

( ) ( )( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡ −
= −

23

m 50.2m/s 81.910
m/s 40.0m/s 70.37sin 2

22
1θ

 

 
(c) The angular acceleration of the 
bowling ball is directly proportional 
to its translational acceleration: 
 

r
a

=α                                      (1) 

Use a constant-acceleration equation 
to relate the speeds of the ball at 
points 1 and 2 to its acceleration: 
 

aLvv 22
1

2
2 += ⇒

L
vva

2

2
1

2
2 −

=  

Substitute in equation (1) to obtain: 
rL

vv
2

2
1

2
2 −

=α  

 
Substitute numerical values and 
evaluate α : 

( ) ( )
( )( )

2

22

rad/s 24

m 50.2m 115.02
m/s .703m/s 40.0

=

−
=α

 

 
120 •• Figure 9-74 shows a hollow cylinder that has a length equal to 1.80 m, 
a mass equal to 0.80 kg, and radius equal to 0.20 m. The cylinder is free to rotate 
about a vertical axis that passes through its center and is perpendicular to the 
cylinder. Two objects are inside the cylinder. Each object has a mass equal to  
0.20 kg, is attached to springs that have a force constant k and unstressed lengths 
equal to 0.40 m. The inside walls of the cylinder are frictionless. (a) Determine 
the value of the force constant if the objects are located 0.80 m from the center of 
the cylinder when the cylinder rotates at 24 rad/s. (b) How much work is required 
to bring the system from rest to an angular speed of 24 rad/s?  
 
Picture the Problem Let m represent the mass of the 0.20-kg cylinder, M the 
mass of the 0.80-kg cylinder, L the 1.8-m length, and x + Δx the distance from the 
center of the objects whose mass is m. We can use Newton’s 2nd law to relate the 
radial forces on the masses to the spring’s force constant and use the work-energy 
theorem to find the work done as the system accelerates to its final angular speed. 
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(a) Express the net inward force acting 
on each of the 0.2-kg masses: 
 

( )∑ Δ+=Δ= 2
radial ωxxmxkF  

Solving for k yields: ( ) 2

x
xxmk

Δ
Δ+

=
ω  

 
Substitute numerical values and 
evaluate k: 

( )( )( )

kN/m23.0N/m230

m0.40
rad/s24m0.80kg0.20 2

==

=k
 

 
(b) Using the work-energy theorem, 
relate the work done to the change in 
energy of the system: 
 

( )2
2
12

2
1

springrot

xkI

UKW

Δ+=

Δ+=

ω
               (1) 

Express I as the sum of the moments 
of inertia of the cylinder and the 
masses: 

m

mM

IMLMr

III

22
12
12

2
1

2

++=

+=
 

 
From Table 9-1 we have, for a solid 
cylinder about a diameter through its 
center: 
 

2
12
12

4
1 mLmrI +=  

where L is the length of the cylinder. 

For a disk (thin cylinder),  L is small 
and: 
 

2
4
1 mrI =  

Apply the parallel-axis theorem to 
obtain: 
 

22
4
1 mxmrIm +=  

Substitute to obtain: ( )
( )22

4
12

12
12

2
1

22
4
12

12
12

2
1

2

2

xrmMLMr

mxmrMLMrI

+++=

+++=
 

 
Substitute numerical values and evaluate I: 
 

( )( ) ( )( ) ( ) ( ) ( )[ ]
2

22
4
12

12
12

2
1

mN492.0

m0.80m0.20kg0.202m1.8kg0.80m0.20kg0.80

⋅=

+++=I
 

 
Substitute in equation (1) to obtain: 
 

( )( ) ( )( ) kJ0.16m0.40N/m230rad/s24mN0.492 2
2
122

2
1 =+⋅=W  
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121 •• [SSM] A popular classroom demonstration involves taking a 
meterstick and holding it horizontally at the 0.0-cm end with a number of pennies 
spaced evenly along its surface. If the hand is suddenly relaxed so that the 
meterstick pivots freely about the 0.0-cm mark under the influence of gravity, an 
interesting thing is seen during the first part of the stick’s rotation: the pennies 
nearest the 0.0-cm mark remain on the meterstick, while those nearest the 100-cm 
mark are left behind by the falling meterstick. (This demonstration is often called 
the ″faster than gravity″ demonstration.)  Suppose this demonstration is repeated 
without any pennies on the meterstick. (a) What would the initial acceleration of 
the 100.0-cm mark then be?  (The initial acceleration is the acceleration just after 
the release.) (b) What point on the meterstick would then have an initial 
acceleration greater than g? 
 
Picture the Problem The diagram shows the force the hand supporting the 
meterstick exerts at the pivot point and the force the earth exerts on the meterstick 
acting at the center of mass. We can relate the angular acceleration to the 
acceleration of the end of the meterstick using αLa = and use Newton’s 2nd law 
in rotational form to relate α to the moment of inertia of the meterstick. 

handF
r

gM
r

x
LL2

10

cm

 
 
(a) Relate the acceleration of the far 
end of the meterstick to the angular 
acceleration of the meterstick: 
 

αLa =                                      (1) 

Apply ατ PP I=∑ to the meterstick: 
 

αPILMg =⎟
⎠
⎞

⎜
⎝
⎛

2
⇒

PI
MgL
2

=α  

 
From Table 9-1, for a rod pivoted at 
one end, we have: 

2

3
1 MLI P =  

 
Substitute for PI in the expression 
for α to obtain: 
 

L
g

ML
MgL

2
3

2
3

2 ==α  

 
Substitute for α  in equation (1) 
to obtain: 
 

2
3ga =  

 
Substitute numerical values and 
evaluate a: 

( ) 2
2

m/s14.7
2
m/s9.813

==a  
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(b) Express the acceleration of a 
point on the meterstick a distance x 
from the pivot point: 
 

x
L
gxa

2
3

== α  

Express the condition that the 
meterstick have an initial 
acceleration greater than g: 
 

gx
L
g

>
2
3

⇒
3

2Lx >  

Substitute the numerical value of L 
and evaluate x: 

( ) cm7.66
3

cm0.1002
=>x  

 
122 •• A solid metal rod, 1.5 m long, is free to pivot without friction about a 
fixed horizontal axis perpendicular to the rod and passing through one of its ends. 
The rod is held in a horizontal position. Small coins, each of mass m, are placed 
on the rod 25 cm, 50 cm, 75 cm, 1 m, 1.25 m, and 1.5 m from the pivot. If the free 
end is now released, calculate the initial force exerted on each coin by the rod. 
Assume that the masses of the coins can be neglected in comparison to the mass 
of the rod.  
 
Picture the Problem While the angular acceleration of the rod is the same at each 
point along its length, the linear acceleration and, hence, the force exerted on each 
coin by the rod, varies along its length. We can relate this force the linear 
acceleration of the rod through Newton’s 2nd law and the angular acceleration of 
the rod. 
 
Letting x be the distance from the 
pivot, use Newton’s 2nd law to 
express the force F acting on a coin: 
 

( ) ( )xmaxFmgF =−=net  
or 

( ) ( )( )xagmxF −=                    (1) 

Use Newton’s 2nd law to relate the 
angular acceleration of the system to 
the net torque acting on it: L

g
ML

LMg

I 2
32

2
3
1

net ===
τα  

 
Relate a(x) and α: ( ) ( ) gxgxxxa ===

m5.12
3α  

 
Substitute in equation (1) to obtain: 
 

( ) ( ) ( )xmggxgmxF −=−= 1  

Evaluate F(0.25 m):  ( ) ( )
mg

mgF

75.0

m25.01m25.0

=

−=
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Evaluate F(0.50 m): ( ) ( )
mg

mgF

50.0

m50.01m50.0

=

−=
 

 
Evaluate F(0.75 m): ( ) ( )

mg

mgF

25.0

m75.01m75.0

=

−=
 

 
Evaluate F(1.0 m): ( ) ( ) ( )

0

m5.1m25.1m0.1

=

== FFF
 

 
123 •• Suppose that for the system described in Problem 120, the force 
constants are each 60 N/m. The system starts from rest and slowly accelerates 
until the masses are 0.80 m from the center of the cylinder. How much work was 
done in the process? 
 
Picture the Problem Let m represent the mass of the 0.20-kg cylinder, M the 
mass of the 0.80-kg cylinder, L the 1.80-m length, and x + Δx the distance from 
the center of the objects whose mass is m. We can use Newton’s 2nd law to relate 
the radial forces on the masses to the spring’s force constant and use the work-
energy theorem to find the work done as the system accelerates to its final angular 
speed. 
 
Using the work-energy theorem, 
relate the work done to the change in 
energy of the system: 
 

( )2
2
12

2
1

springrot

xkI

UKW

Δ+=

Δ+=

ω
               (1) 

Express I as the sum of the moments 
of inertia of the cylinder and the 
masses: 
 

m

mM

IMLMr

III

22
12
12

2
1

2

++=

+=
 

From Table 9-1 we have, for a solid 
cylinder about a diameter through its 
center: 
 

2
12
12

4
1 mLmrI +=  

where L is the length of the cylinder. 

For a disk (thin cylinder),  L is small 
and: 
 

2
4
1 mrI =  

Apply the parallel-axis theorem to 
obtain: 
 

22
4
1 mxmrIm +=  
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Substitute for the moments of 
inertia and simplify to obtain: 

( )
( )22

4
12

12
12

2
1

22
4
12

12
12

2
1

2

2

xrmMLMr

mxmrMLMrI

+++=

+++=
 

 
Substitute numerical values and evaluate I: 
 

( )( ) ( )( ) ( ) ( ) ( )[ ]
2

22
4
12

12
12

2
1

mN492.0

m0.80m0.20kg0.202m1.80kg0.80m0.20kg0.80

⋅=

+++=I

 
Express the net inward force acting 
on each of the 0.2-kg masses: 
 

( )∑ Δ+=Δ= 2
radial ωxxmxkF  

Solving for ω yields: 
( )xxm

xk
Δ+

Δ
=ω  

 
Substitute numerical values and 
evaluate ω: 

( )( )
( )( ) rad/s12.25

m0.80kg0.20
m0.40N/m60

==ω  

 
Substitute numerical values in equation (1) and evaluate W: 
 

( )( ) ( )( ) J24m0.40N/m06rad/s25.21mN0.492 2
2
122

2
1 =+⋅=W  

 
124 ••• A string is wrapped around a uniform cylinder of radius R and mass M 
that rests on a horizontal frictionless surface (The string does not touch the 
surface because there is a groove cut in the surface to provide space for the string 
to clear). The string is pulled horizontally from the top with force F. (a) Show that 
the magnitude of the angular acceleration of the cylinder is twice the magnitude 
of the angular acceleration needed for rolling without slipping, so that the bottom 
point on the cylinder slides backward against the table. (b) Find the magnitude 
and direction of the frictional force between the table and cylinder that would be 
needed for the cylinder to roll without slipping. What would be the magnitude of 
the acceleration of the cylinder in this case? 
 
Picture the Problem The force 
diagram shows the forces acting on the 
cylinder. Because F causes the cylinder 
to rotate clockwise, f, which opposes 
this motion, is to the right. We can use 
Newton’s 2nd law in both translational 
and rotational forms to relate the linear 
and angular accelerations to the forces 
acting on the cylinder. 

Mg

f

R

0 x

y
F

Fn

M
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(a) Use Newton’s 2nd law to relate 
the angular acceleration of the center 
of mass of the cylinder to F: 
 

MR
F

MR
FR

I
2

2
2
1

net ===
τα  

Use Newton’s 2nd law to relate the 
acceleration of the center of mass of 
the cylinder to F: 

M
F

M
Fa == net

cm  

 
 

Apply the rolling-without-slipping 
condition to the linear and angular 
accelerations: 
 

R
a' cm=α  

Substituting for acm yields: αα 2
1==

MR
F'  

 
(b) Take the point of contact with the 
floor as the ″pivot″ point, express the 
net torque about that point:  
 

ατ IFR == 2net ⇒
I
FR2

=α    (1) 

 
 

Express the moment of inertia of the 
cylinder with respect to the pivot 
point: 
 

2
2
322

2
1 MRMRMRI =+=  

 
 

Substitute for I in equation (1) to 
obtain: MR

F
MR
FR

3
42

2
2
3

==α  

 
The linear acceleration of the 
cylinder is: M

FRa
3
4

cm == α  

 
Apply Newton’s 2nd law to the 
cylinder to obtain: 
 

∑ =+= cmMafFFx  

Solving for f and substituting for acm 
yields: 

direction.  positive in the 
3

4

3
1

cm

xF

FFFMaf

=

−=−=
 

 
125  ••• [SSM] Let’s calculate the position y of the falling load attached to 
the winch in Example 9-8 as a function of time by numerical integration. Let the 
+y direction be straight downward. Then, v(y) = dy/dt, or 
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t =

1
v ′y( )0

y

∫ d ′y ≈
1

v ′yi( )Δ ′y
i=0

N

∑  

where t is the time taken for the bucket to fall a distance y, Δy′ is a small 
increment of y′, and y′ = NΔy′. Hence, we can calculate t as a function of d by 
numerical summation. Make a graph of y versus t between 0 s and 2.00 s. Assume 
mw = 10.0 kg, R = 0.50 m, mb = 5.0 kg, L = 10.0 m, and mc = 3.50 kg. Use  
Δy′ = 0.10 m. Compare this position to the position of the falling load if it were in 
free-fall. 
 
Picture the Problem As the load falls, mechanical energy is conserved. As in 
Example 9-7, choose the initial potential energy to be zero and let the system 
include the winch, the bucket, and the earth. Apply conservation of mechanical 
energy to obtain an expression for the speed of the bucket as a function of its 
position and use the given expression for t to determine the time required for the 
bucket to travel a distance y. 
 
Apply conservation of mechanical 
energy to the system to obtain: 
 

000iiff =+=+=+ KUKU      (1) 
 

Express the total potential energy 
when the bucket has fallen a distance 
y: 
 

⎟
⎠
⎞

⎜
⎝
⎛−−=

++=

2c

wfcfbff

y'gmmgy

UUUU
 

where 'mc is the mass of the hanging 
part of the cable. 
 

Assume the cable is uniform and 
express 'mc in terms of mc, y, and L: L

m
y
'm cc = or y

L
m'm c

c =  

 
Substitute for 'mc to obtain: 
 L

gym
mgyU

2

2
c

f −−=  

 
Noting that bucket, cable, and rim of 
the winch have the same speed v, 
express the total kinetic energy when 
the bucket is falling with speed v: 
 ( )

2
4
12

c2
12

2
1

2

2
2

2
1

2
12

c2
12

2
1

2
f2

12
c2

12
2
1

wfcfbff

Mvvmmv
R
vMRvmmv

Ivmmv

KKKK

++=

++=

++=

++=

ω
 

 
Substituting in equation (1) yields: 
 

0
2

2
4
12

c2
12

2
1

2
c =+++−− Mvvmmv

L
gymmgy  
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Solving for v yields: 
 

c

c

mmM
L
gymmgy

v
22

24
2

++

+
=  

 
A spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
D9 0 y0 
D10 D9+$B$8 y + Δy 
E9 0 v0 
E10 ((4*$B$3*$B$7*D10+2*$B$7*D10^2/(2*$B$5))/

($B$1+2*$B$3+2*$B$4))^0.5 

c

c

mmM
L
gymmgy

22

24
2

++

+
 

F10 F9+$B$8/((E10+E9)/2) 
yvvt nn

n Δ⎟
⎠
⎞

⎜
⎝
⎛ +

+ −
− 2

1
1

 
J9 0.5*$B$7*H9^2 2

2
1 gt   

 
 A B C D E F G H I J 
1 M= 10 kg        
2 R= 0.5 m        
3 m= 5 kg        
4 mc= 3.5 kg        
5 L= 10 m        
6           
7 g= 9.81 m/s2        
8 dy= 0.1 m y v(y) t(y)  t(y) y 0.5gt2

9    0.0 0.00 0.00  0.00 0.0 0.00 
10    0.1 0.85 0.23  0.23 0.1 0.27 
11    0.2 1.21 0.33  0.33 0.2 0.54 
12    0.3 1.48 0.41  0.41 0.3 0.81 
13    0.4 1.71 0.47  0.47 0.4 1.08 
15    0.5 1.91 0.52  0.52 0.5 1.35 
        

105    9.6 9.03 2.24  2.24 9.6 24.61 
106    9.7 9.08 2.25  2.25 9.7 24.85 
107    9.8 9.13 2.26  2.26 9.8 25.09 
108    9.9 9.19 2.27  2.27 9.9 25.34 
109    10.0 9.24 2.28  2.28 10.0 25.58  
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The solid line on the following graph shows the position of the bucket as a 
function of time when it is in free fall and the dashed line shows its position as a 
function of time under the conditions modeled in this problem.  

0

2

4

6

8

10

12

14

16

18

20

0.0 0.4 0.8 1.2 1.6 2.0

t (s)

y 
(m

)

y'
free fall

 
 
126 ••• Figure 9-75 shows a solid cylinder that has mass M and radius R to 
which a second solid cylinder that has mass m and radius r is attached. A string is 
wound about the smaller cylinder. The solid cylinder rests on a horizontal surface. 
The coefficient of static friction between the larger cylinder and the surface is μs. 
If a light tension is applied to the string in the vertical direction, the cylinder will 
roll to the left; if the tension is applied with the string horizontally to the right, the 
cylinder rolls to the right. Find the angle between the string and with the 
horizontal that will allow the cylinder to remain stationary when a light tension is 
applied to the string. 
 
Picture the Problem The pictorial 
representation shows the forces acting 
on the cylinder when it is stationary. 
First, we note that if the tension is 
small, then there can be no slipping, 
and the system must roll. Now 
consider the point of contact of the 
cylinder with the surface as the ″pivot″ 
point. If τ about that point is zero, the 
system will not roll. This will occur if 
the line of action of the tension passes 
through the pivot point. 

R Mg

fs Fn

T

r
θ

θ

 
 
From the diagram we see that: 

⎟
⎠
⎞

⎜
⎝
⎛= −

R
r1cosθ  
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127 ••• [SSM] In problems dealing with a pulley with a nonzero moment of 
inertia, the magnitude of the tensions in the ropes hanging on either side of the 
pulley are not equal. The difference in the tension is due to the static frictional 
force between the rope and the pulley; however, the static frictional force cannot 
be made arbitrarily large. Consider a massless rope wrapped partly around a 
cylinder through an angle Δθ (measured in radians). It can be shown that if the 
tension on one side of the pulley is T, while the tension on the other side is T′  
(T′ > T), the maximum value of T′ that can be maintained without the rope 
slipping is   ′Tmax = TeμsΔθ , where μs is the coefficient of static friction. Consider the 
Atwood’s machine in Figure 9-77: the pulley has a radius R = 0.15 m, the moment 
of inertia is I = 0.35 kg⋅m2, and the coefficient of static friction between the wheel 
and the string is μs = 0.30. (a) If the tension on one side of the pulley is 10 N, 
what is the maximum tension on the other side that will prevent the rope from 
slipping on the pulley? (b) What is the acceleration of the blocks in this case? (c) 
If the mass of one of the hanging blocks is 1.0 kg, what is the maximum mass of 
the other block if, after the blocks are released, the pulley is to rotate without 
slipping? 
  
Picture the Problem Free-body 
diagrams for the pulley and the two 
blocks are shown to the right. Choose 
a coordinate system in which the 
direction of motion of the block whose 
mass is M (downward) is the positive y 
direction. We can use the given 
relationship θμ Δ= s

max' TeT to relate the 
tensions in the rope on either side of 
the pulley and apply Newton’s 2nd law 
in both rotational form (to the pulley) 
and translational form (to the blocks) 
to obtain a system of equations that we 
can solve simultaneously for a, T1, T2, 
and M. 

T1 T2

m

mg

T1

M

Mg

T2

R

 
 
(a) Use θμ Δ= s

max' TeT to evaluate the 
maximum tension required to 
prevent the rope from slipping on the 
pulley: 
 

( ) ( )

N26

N66.25N10' 30.0
max

=

== πeT
 

 

(b) Given that the angle of wrap is π 
radians, express T2 in terms of T1: 
 

( )π30.0
12 eTT =                             (1) 
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Because the rope doesn’t slip, we 
can relate the angular acceleration, 
α, of the pulley to the acceleration, 
a, of the hanging masses by: 
 

R
a

=α  

 

Apply ∑ = ατ I to the pulley to 
obtain: 

( )
R
aIRTT =− 12                         (2) 

 
Substitute for T2 from equation (1) in 
equation (2) to obtain: 
 

( )( )
R
aIRTeT =− 1

30.0
1

π  

Solving for T1 yields: 
 ( )( ) a

Re
IT 230.01 1−

= π                              

 
Apply yy maF =∑ to the block 
whose mass is m to obtain: 
 

mamgT =−1   
and 

mgmaT +=1                            (3)             
 

Equating these two expressions for 
T1 and solving for a yields: 
 ( )( ) 1

1 230.0 −
−

=

mRe
I

ga
π

 

 
Substitute numerical values and 
evaluate a: 
 ( )( )( )( )

2

2

230.0

2

2

m/s 1.1

m/s 098.1

1
m 15.0kg 0.11

mkg 35.0
m/s 81.9

=

=

−
−

⋅
=

πe

a

 

 
(c) Apply yy maF =∑ to the block 
whose mass is M to obtain: 
 

MaTMg =− 2  ⇒ 
ag

TM
−

= 2                  

 
Substitute for T2 (from equation (1)) 
and T1 (from equation (3)) yields: 
 

( ) ( )

ag
egamM

−
+

=
π30.0

 

 
Substitute numerical values and evaluate M: 
 

( )( ) ( )
kg 2.3

m/s098.1m/s81.9
m/s 81.9m/s 098.1kg 0.1

22

30.022

=
−

+
=

πeM  
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128 ••• A massive, uniform cylinder has a mass m and a radius R (Figure 9-
77). It is accelerated by a tension force  

r
T  that is applied through a rope wound 

around a light drum of radius r that is attached to the cylinder. The coefficient of 
static friction is sufficient for the cylinder to roll without slipping. (a) Find the 
frictional force. (b) Find the acceleration a of the center of the cylinder. (c) Show 
that it is possible to choose r so that a is greater than T/m. (d) What is the 
direction of the frictional force in the circumstances of Part (c)? 
 
Picture the Problem When the tension is horizontal, the cylinder will roll 
forward and the friction force will be in the direction of .T  We can use Newton’s 
2nd law to obtain equations that we can solve simultaneously for a and f. 
 
(a) Apply Newton’s 2nd law to the 
cylinder: 

∑ =+= mafTFx                  (1) 

and 
∑ =−= ατ IfRTr                  (2) 

 
Substitute for I and α in equation (2) 
to obtain: 

mRa
R
amRfRTr 2

12
2
1 ==−      (3) 

 
Solve equation (3) for f: ma

R
Trf 2

1−=                          (4) 

 
Substitute equation (4) in equation 
(1) to obtain: 

mama
R
TrT =−+ 2

1                          

 
Solving for a yields: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

R
r

m
Ta 1

3
2                         (5) 

 
Substitute equation (5) in equation 
(4) to obtain: ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−=

R
r

m
Tm

R
Trf 1

3
2

2
1  

 
Simplifying yields: 

⎟
⎠
⎞

⎜
⎝
⎛ −= 12

3 R
rTf  

 
(b) Solve equation (4) for a: 
 

m
R
Trf

a
⎟
⎠
⎞

⎜
⎝
⎛ −

=
2
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Substituting for f yields: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ −

=

R
r

m
T

m
R
Tr

R
rT

a

1
3
2

12
3

2

 

 
(c) Express the condition that 

m
Ta > : 

11
3
21

3
2

>⎟
⎠
⎞

⎜
⎝
⎛ +⇒>⎟

⎠
⎞

⎜
⎝
⎛ +

R
r

m
T

R
r

m
T  

or 
Rr 2

1>  

 
(d) If Rr 2

1> : . ofdirection  in the i.e., ,0 T>f  
 
129 ••• A uniform rod that has a length L and a mass M is free to rotate about 
a horizontal axis through one end, as shown in Figure 9-78. The rod is released 
from rest at θ = θ0. Show that the parallel and perpendicular components of the 
force exerted by the axis on the rod are given by ( )02

1
P cos3cos5 θθ −= MgF  and 

θsin4
1 MgF =⊥ , where   FP is the component parallel with the rod and  F⊥  is the 

component perpendicular to the rod.  
 
Picture the Problem The system is 
shown in the drawing in two positions, 
with angles θ0 and θ with the vertical. 
The drawing also shows all the forces 
that act on the stick. These forces 
result in a rotation of the stick—and its 
center of mass—about the pivot, and a 
tangential acceleration of the center of 
mass. We’ll apply the conservation of 
mechanical energy and Newton’s 2nd 
law to relate the radial and tangential 
forces acting on the stick. 

Mg

L

θθ

θ
0

⏐⏐
F
r

⊥F
r

 
 
Apply conservation of mechanical 
energy to relate the kinetic energy of 
the stick when it makes an angle θ 
with the vertical and its initial 
potential energy: 
 

0ifif =−+− UUKK  
or, because Ki = 0, 

0cos
2

cos
2 0

2
2
1 =−+− θθω LMgLMgI
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Substitute for I to obtain: 
 

( ) 0cos
2

cos
2 0

22
3
1

2
1 =−+− θθω LMgLMgML  

 
Solving for ω2 yields: ( )0

2 coscos3 θθω −=
L
g  

 
Express the centripetal force acting 
on the center of mass: 

2
c 2

ωLMF =  

 
Substitute for ω2 and simplify to 
obtain: 

( )

( )0

0c

coscos
2

3

coscos3
2

θθ

θθ

−=

⎥⎦
⎤

⎢⎣
⎡ −=

Mg
L
gLMF

 

 
Express the radial component of 

gM : 
 

( ) θcosradial MgMg =  
 

The total radial force at the hinge is: ( )radialc MgFF +=||  

 
Substitute for Fc and (Mg)radial and 
simplify to obtain: 

( )

( )02
1

0

cos3cos5

coscoscos
2

3

θθ

θθθ

−=

+−=||

Mg

MgMgF
 

 
Relate the tangential acceleration of 
the center of mass to its angular 
acceleration: 
 

a⊥= 2
1 Lα 

 

Use Newton’s 2nd law to relate the 
angular acceleration of the stick to 
the net torque acting on it: L

g
ML

LMg

I 2
sin3sin

2
2

3
1

net θθτα ===  

 
Express a⊥ in terms of α:⊥ 

M
FggLa ⊥

⊥ +=== θθα sinsin4
3

2
1  
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Solving for F⊥ yields: F⊥ θsin4

1 Mg−= where the minus 

sign indicates that the force is directed 
oppositely to the tangential component 
of .gM  
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