
713 

Chapter 8 
Conservation of Linear Momentum 
 
Conceptual Problems 
 
1 • [SSM] Show that if two particles have equal kinetic energies, the 
magnitudes of their momenta are equal only if they have the same mass. 
 

Determine the Concept The kinetic energy of a particle, as a function of its 
momentum, is given by .22 mpK =  
 

The kinetic energy of the particles is 
given by: 
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Equate these kinetic energies to 
obtain: 
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momenta are equal: 21
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2 • Particle A has twice the (magnitude) momentum and four times the 
kinetic energy of particle B. A also has four times the kinetic energy of B. What is 
the ratio of their masses (the mass of particle A to that of particle B)? Explain 
your reasoning. 
 
Determine the Concept The kinetic energy of a particle, as a function of its 
momentum, is given by .22 mpK =  
 

The kinetic energy of particle A is 
given by: 
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The kinetic energy of particle B is 
given by: 
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Divide the first of these equations by 
the second and simplify to obtain: 
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Because particle A has twice the 
(magnitude) momentum of particle B 
and four times as much kinetic 
energy: 
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3 • Using SI units, show that the units of momentum squared divided by 
those of mass is equivalent to the joule. 
 
Determine the Concept The SI units of momentum are kg⋅m/s. 
 
Express the ratio of the square of the 
units of momentum to the units of 
mass: kg
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Simplify to obtain: 
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4 • True or false: 
 
(a) The momentum of a 1.00-kg object is greater than that of a 0.25-kg object  

moving at the same speed. 
(b) The total linear momentum of a system may be conserved even when the 

mechanical energy of the system is not. 
(c) For the total linear momentum of a system to be conserved, there must be no 

external forces acting on the system. 
(d) The velocity of the center of mass of a system changes only when there is a 

net external force on the system. 
 
(a) True. The momentum of an object is the product of its mass and velocity. 
Therefore, if we are considering just the magnitudes of the momenta, the 
momentum of a heavy object is greater than that of a light object moving at the 
same speed. 
 
(b) True. Consider the collision of two objects of equal mass traveling in opposite 
directions with the same speed. Assume that they collide inelastically. The 
mechanical energy of the system is not conserved (it is transformed into other 
forms of energy), but the momentum of the system is the same after the collision 
as before the collision; that is, zero. Therefore, for any inelastic collision, the 
momentum of a system may be conserved even when mechanical energy is not. 
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(c) False. The net external force must be zero if the linear momentum of the 
system is to be conserved. 
 
(d) True. This non-zero net force accelerates the center of mass. Hence its 
velocity changes. 
 
5 • If a bullet is fired due west, explain how conservation of linear 
momentum enables you to predict that the recoil of the rifle be exactly due east. Is 
kinetic energy conserved here? 
 

Determine the Concept The momentum of the bullet-gun system is initially zero. 
After firing, the bullet’s momentum is directed west.  Momentum conservation  
requires that the system’s total momentum does not change, so the gun’s 
momentum must be directed east. 
 
6 • A child jumps from a small boat to a dock. Why does she have to jump 
with more effort than she would need if she were jumping through an identical 
displacement, but from a boulder to a tree stump? 
 
Determine the Concept When she jumps from a boat to a dock, she must, in 
order for momentum to be conserved, give the boat a recoil momentum, i.e., her 
forward momentum must be the same as the boat’s backward momentum. When 
she jumps through an identical displacement from a boulder to a tree stump, the 
mass of the boulder plus the Earth is so large that the momentum she imparts to 
them is essentially zero. 
 
7 •• [SSM] Much early research in rocket motion was done by Robert 
Goddard, physics professor at Clark College in Worcester, Massachusetts. A 
quotation from a 1920 editorial in the New York Times illustrates the public 
opinion of his work: ″That Professor Goddard with his ′chair′ at Clark College 
and the countenance of the Smithsonian Institution does not know the relation 
between action and reaction, and the need to have something better than a vacuum 
against which to react—to say that would be absurd. Of course, he only seems to 
lack the knowledge ladled out daily in high schools.″ The belief that a rocket 
needs something to push against was a prevalent misconception before rockets in 
space were commonplace. Explain why that belief is wrong. 
 
Determine the Concept In a way, the rocket does need something to push upon.  
It pushes the exhaust in one direction, and the exhaust pushes it in the opposite 
direction.  However, the rocket does not push against the air. 
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8 • Two identical bowling balls are moving with the same center-of-mass 
velocity, but one just slides down the alley without rotating, whereas the other 
rolls down the alley. Which ball has more kinetic energy? Which one has more 
total momentum (magnitude)? Because of the relationship between kinetic energy 
and momentum of a particle ( mpK 22= ), it would seem there is something 
wrong with your answer. Explain why there is nothing wrong with your answer. 
 
Determine the Concept The kinetic energy of the sliding ball is 2

cm2
1 mv . The 

kinetic energy of the rolling ball is rel
2
cm2

1 Kmv + , where relK is its kinetic energy 
relative to its center of mass. Because the bowling balls are identical and have 
the same velocity, the rolling ball has more energy. There is no problem here 
because the relationship mpK 22=  is between the center of mass kinetic 
energy of the ball and its linear momentum.  
 
9 •  A philosopher tells you, ″Changing motion of objects is impossible. 
Forces always come in equal but pairs. Therefore, all forces cancel out. Since 
forces cancel, the momenta of objects can never be changed.″ Answer his 
argument. 
 
Determine the Concept Think of someone pushing a box across a floor.  Her 
push on the box is equal but opposite to the push of the box on her, but the action 
and reaction forces act on different objects.  Newton’s second law is that the sum 
of the forces acting on the box equals the rate of change of momentum of the box.  
This sum does not include the force of the box on her. 
 
10 • A moving objects collides with an arbitrary. Is it possible for both 
objects to be at rest immediately after the collision? (Assume any external forces 
acting on this two-object system are negligibly small.) Is it possible for one object 
to be at rest immediately after the collision? Explain. 
 
Determine the Concept It’s not possible for both to remain at rest after the 
collision, as that wouldn't satisfy the requirement that momentum is conserved.  It 
is possible for one to remain at rest:  This is what happens for a one-dimensional 
collision of two identical particles colliding elastically. 
 
11 • Several researchers in physics education claim that part of the cause of 
physical misconceptions amongst students comes from special effects they 
observe in cartoons and movies.  Using the conservation of linear momentum, 
how would you explain to a class of high school physics students what is 
conceptually wrong with a superhero hovering at rest in midair while tossing 
massive objects such as cars at villains? Does this action violate conservation of 
energy as well? Explain. 
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Determine the Concept Hovering in midair while tossing objects violates the 
conservation of linear momentum!  To throw something forward requires being 
pushed backward. Superheroes are not depicted as experiencing this backward 
motion that is predicted by conservation of linear momentum.  This action also 
violates conservation of energy in that, with no change in the superheroes 
potential or kinetic energy resulting from the tossing of objects, the mechanical 
energy of the hero-object-Earth system is greater after the toss than it was before 
the toss.  
 
12 •• A struggling physics student asks ″If only external forces can cause the 
center of mass of a system of particles to accelerate, how can a car move? Doesn’t 
the car’s engine supply the force needed to accelerate the car? ″ Explain what 
external agent produces the force that accelerates the car, and explain how the 
engine makes that agent do so. 
 
Determine the Concept There is only one force which can cause the car to move 
forward−the friction of the road!  The car’s engine causes the tires to rotate, but if 
the road were frictionless (as is closely approximated by icy conditions) the 
wheels would simply spin without the car moving anywhere.  Because of friction, 
the car’s tire pushes backwards against the road and the frictional force acting on 
the tire pushes it forward.  This may seem odd, as we tend to think of friction as 
being a retarding force only, but it is true. 
 
13 •• When we push on the brake pedal to slow down a car, a brake pad is 
pressed against the rotor so that the friction of the pad slows the rotor’s, and thus 
the wheel’s rotation. However, the friction of the pad against the rotor can’t be the 
force that slows the car down, because it is an internal force—both the rotor and 
the wheel are parts of the car, so any forces between them are internal, not 
external, forces. What external agent exerts the force that slows down the car? 
Give a detailed explanation of how this force operates. 
 
Determine the Concept The frictional force by the road on the tire causes the car 
to slow.  Normally the wheel is rotating at just the right speed so both the road 
and the tread in contact with the road are moving backward at the same speed 
relative to the car.  By stepping on the brake pedal, you slow the rotation rate of 
the wheel.  The tread in contact with the road is no longer moving as fast, relative 
to the car, as the road.  To oppose the tendency to skid, the tread exerts a forward 
frictional force on the road and the road exerts an equal and opposite force on the 
tread. 
 
14 • Explain why a circus performer falling into a safety net can survive 
unharmed, while a circus performer falling from the same height onto the hard 
concrete floor suffers serious injury or death. Base your explanation on the 
impulse-momentum theorem. 
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Determine the Concept Because Δp = FΔt is constant, the safety net reduces the 
force acting on the performer by increasing the time Δt during which the slowing 
force acts.  
 
15 •• [SSM] In Problem 14 for the performer falling from a height of  
25 m, estimate the ratio of the collision time with the safety net to the collision 
time with the concrete. Hint:  Use the procedure outlined in Step 4 of the 
Problem-Solving Strategy located in Section 8-3.     
 
Determine the Concept The stopping time for the performer is the ratio of the 
distance traveled during stopping to the average speed during stopping. 
 
Letting dnet be the distance the net 
gives on impact, dconcrete the distance 
the concrete gives, and vav, with net and 
vav,without net the average speeds during 
stopping, express the ratio of the 
impact times: 
 

net without av,

concrete

net with av,

net

concrete

net

Δ
Δ

v
d

v
d

t
tr ==         (1) 

 

Assuming constant acceleration, the 
average speed of the performer 
during stopping is given by: 
  

2
f

av
vvv +

=  

or, because vf = 0 in both cases, 
vv 2

1
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where v is the impact speed. 
 

Substituting in equation (1) and 
simplifying yields: 
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Assuming that the net gives about  
1 m and concrete about 0.1 mm 
yields: 

410
mm 1.0
m 1

≈=r  

 
16 •• (a) Why does a drinking glass survive a fall onto a carpet but not onto 
a concrete floor? (b) On many race tracks, dangerous curves are surrounded by 
massive bails of hay. Explain how this setup reduces the chances of car damage 
and driver injury. 
 
Determine the Concept In both (a) and (b), longer impulse times  
(Impulse = FavΔt) are the result of collisions with a carpet and bails of hay. The 
average force on a drinking glass or a car is reduced (nothing can be done about 
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the impulse, or change in linear momentum, during a collision but increasing the 
impulse time decreases the average force acting on an object) and the likelihood 
of breakage, damage or injury is reduced. 
 
17 • True or false: 
 
(a) Following any perfectly inelastic collision, the kinetic energy of the system 

is zero after the collision in all inertial reference frames. 
(b) For a head-on elastic collision, the relative speed of recession equals the 

relative speed of approach. 
(c) During a perfectly inelastic head-on collision with one object initially at rest, 

only some of the system’s kinetic energy is dissipated. 
(d)  After a perfectly inelastic head-on collision along the east-west direction, the 

two objects are observed to be moving west. The initial total system 
momentum was, therefore, to the west. 

 
(a) False. Following a perfectly inelastic collision, the colliding bodies stick 
together but may or may not continue moving, depending on the momentum 
each brings to the collision. 
 
(b) True. For a head-on elastic collision both kinetic energy and momentum are 
conserved and the relative speeds of approach and recession are equal. 
 
(c) True. This is the definition of an inelastic collision. 
 
(d) True. The linear momentum of the system before the collision must be in the 
same direction as the linear momentum of the system after the collision. 
 
18 •• Under what conditions can all the initial kinetic energy of an isolated 
system consisting of two colliding objects be lost in a collision? Explain how this 
result can be, and yet the momentum of the system can be conserved. 
 
Determine the Concept If the collision is perfectly inelastic, the objects stick 
together and neither will be moving after the collision. Therefore the final 
kinetic energy will be zero and all of it will have been lost (that is, transformed 
into some other form of energy). Momentum is conserved because in an isolated 
system the net external force is zero. 
 
19 •• Consider a perfectly inelastic collision of two objects of equal mass. 
(a) Is the loss of kinetic energy greater if the two objects are moving in opposite 
directions, each moving with at speed v/2, or if one of the two objects is initially 
at rest and the other has an initial speed of v? (b) In which of these situations is 
the percentage loss in kinetic energy the greatest? 
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Determine the Concept We can find the loss of kinetic energy in these two 
collisions by finding the initial and final kinetic energies. We’ll use conservation 
of momentum to find the final velocities of the two masses in each perfectly 
elastic collision. 
 
(a) Letting V represent the velocity 
of the masses after their perfectly 
inelastic collision, use conservation 
of momentum to determine V: 
 

afterbefore pp =  
or 

02 =⇒=− VmVmvmv  

Express the loss of kinetic energy 
for the case in which the two 
objects have oppositely directed 
velocities of magnitude v/2: 
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Letting V represent the velocity of 
the masses after their perfectly 
inelastic collision, use conservation 
of momentum to determine V: 
 

afterbefore pp =  
or 

vVmVmv 2
12 =⇒=  

Express the loss of kinetic energy 
for the case in which the one object 
is initially at rest and the other has 
an initial velocity v: 
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The loss of kinetic energy is the same in both cases. 
 

(b) Express the percentage loss for 
the case in which the two objects 
have oppositely directed velocities 
of magnitude v/2: 
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Express the percentage loss for the 
case in which the one object is 
initially at rest and the other has an 
initial velocity v: 
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The percentage loss is greatest for the case in which the two objects have 
oppositely directed velocities of magnitude v/2. 

 
20 •• A double-barreled pea shooter is shown in Figure 8-41. Air is blown 
into the left end of the pea shooter, and identical peas A and B are positioned 
inside the straw as shown. If the shooter is held horizontally while the peas are 
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shot off, which pea, A or B, will travel farther after leaving the straw? Explain. 
Base your explanation on the impulse–momentum theorem. 
 
Determine the Concept A will travel farther.  Both peas are acted on by the same 
force, but pea A is acted on by that force for a longer time.  By the impulse-
momentum theorem, its momentum (and, hence, speed) will be higher than pea 
B’s speed on leaving the shooter. 
 
21 •• A particle of mass m1 traveling with a speed v makes a head-on elastic 
collision with a stationary particle of mass m2. In which scenario will the largest 
amount of energy be imparted to the particle of mass m2? (a) m2 << m1,  
(b) m2 = m1, (c) m2 >> m1, (d) None of the above. 
 
Determine the Concept Refer to the particles as particle 1 and particle 2. Let the 
direction particle 1 is moving before the collision be the positive x direction. 
We’ll use both conservation of momentum and conservation of mechanical 
energy to obtain an expression for the velocity of particle 2 after the collision. 
Finally, we’ll examine the ratio of the final kinetic energy of particle 2 to that of 
particle 1 to determine the condition under which there is maximum energy 
transfer from particle 1 to particle 2.  
 
Use conservation of momentum to 
obtain one relation for the final 
velocities: 
 

f2,2f1,1i1,1 vmvmvm +=                 (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach: 
 

( ) i1,i1,i2,f1,f2, vvvvv =−−=−       (2) 

To eliminate v1,f, solve equation (2) 
for v1,f, and substitute the result in 
equation (1): 
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Solve for v2,f to obtain: 
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Express the ratio R of K2,f to K1,i 
in terms of m1 and m2: 
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Differentiate this ratio with respect 
to m2,  set the derivative equal to 
zero, and obtain the quadratic 
equation: 
 

012
1

2
2 =+−

m
m  

Solve this equation for m2 to 
determine its value for maximum 
energy transfer: 
 

12 mm =  

( )b is correct because all of particle 1’s kinetic energy is transferred to 

particle 2 when 12 mm = . 
 
22 •• Suppose you are in charge of an accident-reconstruction team which 
has reconstructed an accident in which a car was ″rear-ended″ and the two cars 
locked bumpers and skidded to a halt.  During the trial, you are on the stand as an 
expert witness for the prosecution and the defense lawyer claims that you wrongly 
neglected friction and the force of gravity during the fraction of a second while 
the cars collided. Defend your report. Why were you correct in ignoring these 
forces? You did not ignore these two forces in your skid analysis both before and 
after the collision. Can you explain to the jury why you did not ignore these two 
forces during the pre- and post-collision skids? 
 
Determine the Concept You only used conservation of linear momentum for the 
few fractions of a second of actual contact between the cars. Over that short time, 
friction and other external forces can be neglected. In the long run, over the 
duration of the accident, they cannot.  
 
23 •• Nozzles for a garden hose are often made with a right-angle shape as 
shown in Figure 8-41.  If you open the nozzle and spray water out, you will find 
that the nozzle presses against your hand with a pretty strong force—much 
stronger than if you used a nozzle not bent into a right angle. Why is this situation 
true? 
 
Determine the Concept The water is changing direction when it rounds the 
corner in the nozzle.  Therefore, the nozzle must exert a force on the stream of 
water to change its momentum, and this requires a net force in the direction of the 
momentum change. 
 
Conceptual Problems from Optional Sections 

24 •• Describe a perfectly inelastic head-on collision between two stunt cars 
as viewed in the center-of-mass reference frame. 
 
Determine the Concept In the center-of-mass reference frame the two objects 
approach with equal but opposite momenta and remain at rest after the collision. 
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25 •• One air-hockey puck is initially at rest. An identical air-hockey puck 
collides with it, striking it with a glancing blow. Assume the collision was elastic 
and neglect any rotational motion of the pucks. Describe the collision in the 
center-of-mass frame of the pucks. 
 
Determine the Concept Before the collision, the center-of-mass is midway 
between the two pucks and continues on a straight line throughout the interaction 
between the pucks. As viewed from the center of mass, the two pucks approach 
each other and then recede in a different direction, but with the same relative 
speed before and after the collision. 
 
26 •• A baton with one end more massive than the other is tossed at an angle 
into the air. (a) Describe the trajectory of the center of mass of the baton in the 
reference frame of the ground. (b) Describe the motion of the two ends of the 
baton in the center-of-mass frame of the baton. 
 
Determine the Concept  
(a) In the center-of-mass frame of the ground, the center of mass moves in a 
parabolic arc. 
 
(b) Relative to the center of mass, each end of the baton would describe a circular 
path. The more massive end of the baton would travel in the circle with the 
smaller radius because it is closer to the location of the center of mass. 
 
27 •• Describe the forces acting on a descending Lunar lander as it fires its 
retrorockets to slow it down for a safe landing. (Assume its mass loss during the 
rocket firing is not negligible.)  
 
Determine the Concept The forces acting on a descending Lunar lander are the 
downward force of lunar gravity and the upward thrust provided by the rocket 
engines. 
 
28 •• A railroad car rolling along by itself is passing by a grain elevator, 
which is dumping grain into it at a constant rate. (a) Does momentum 
conservation imply that the railroad car should be slowing down as it passes the 
grain elevator? Assume that the track is frictionless and perfectly level and that 
the grain is falling vertically. (b) If the car is slowing down, this situation implies 
that there is some external force acting on the car to slow it down. Where does 
this force come from? (c) After passing the elevator, the railroad car springs a 
leak, and grain starts leaking out of a vertical hole in its floor at a constant rate. 
Should the car speed up as it loses mass? 
 
Determine the Concept We can apply conservation of linear momentum and 
Newton’s laws of motion to each of these scenarios. 
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(a) Yes, the car should slow down.  An easy way of seeing this is to imagine a 
"packet" of grain being dumped into the car all at once:  This is a completely 
inelastic collision, with the packet having an initial horizontal velocity of 0.  After 
the collision, it is moving with the same horizontal velocity that the car does, so 
the car must slow down. 
 
(b) When the packet of grain lands in the car, it initially has a horizontal velocity 
of 0, so it must be accelerated to come to the same speed as the car of the train.  
Therefore, the train must exert a force on it to accelerate it.  By Newton’s 3rd law, 
the grain exerts an equal but opposite force on the car, slowing it down.  In 
general, this is a frictional force which causes the grain to come to the same speed 
as the car. 
 
(c) No it doesn’t speed up.  Imagine a packet of grain being "dumped" out of the 
railroad car.  This can be treated as a collision, too.  It has the same horizontal 
speed as the railroad car when it leaks out, so the train car doesn’t have to speed 
up or slow down to conserve momentum. 
 
29 ••• [SSM] To show that even really intelligent people can make 
mistakes, consider the following problem which was asked of a freshman class at 
Caltech on an exam (paraphrased): A sailboat is sitting in the water on a windless 
day. In order to make the boat move, a misguided sailor sets up a fan in the back 
of the boat to blow into the sails to make the boat move forward. Explain why the 
boat won’t move. The idea was that the net force of the wind pushing the sail 
forward would be counteracted by the force pushing the fan back (Newton’s third 
law). However, as one of the students pointed out to his professor, the sailboat 
could in fact move forward. Why is that? 
 
Determine the Concept Think of the sail facing the fan (like the sail on a square 
rigger might), and think of the stream of air molecules hitting the sail.  Imagine 
that they bounce off the sail elastically−their net change in momentum is then 
roughly twice the change in momentum that they experienced going through the 
fan.  Thus the change in momentum of the air is backward, so to conserve 
momentum of the air-fan-boat system the change in momentum of the fan-boat 
system will be forward. 
 
Estimation and Approximation 
 
30 •• A 2000-kg car traveling at 90 km/h crashes into an immovable 
concrete wall. (a) Estimate the time of collision, assuming that the center of the 
car travels halfway to the wall with constant acceleration. (Use any plausible 
length for the car.) (b) Estimate the average force exerted by the wall on the car. 
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Picture the Problem We can estimate the time of collision from the average 
speed of the car and the distance traveled by the center of the car during the 
collision. We’ll assume a car length of 6.0 m. We can calculate the average force 
exerted by the wall on the car from the car’s change in momentum and its 
stopping time. 
 
(a) Relate the stopping time to the 
assumption that the center of the car 
travels halfway to the wall with 
constant deceleration: 
 

( )
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2
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Because a is constant, the average 
speed of the car is given by: 
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Substitute numerical values and 
evaluate vav: 
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Substitute numerical values in 
equation (1) and evaluate Δt: 
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(b) Relate the average force exerted by the wall on the car to the car’s change in 
momentum: 
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31 •• During hand-pumped railcar races, a speed of 32.0 km/h has been 
achieved by teams of four people. A car that has a mass equal to 350 kg is moving 
at that speed toward a river when Carlos, the chief pumper, notices that the bridge 
ahead is out. All four people (each with a mass of 75.0 kg) simultaneously jump 
backward off the car with a velocity that has a horizontal component of 4.00 m/s 
relative to the car. The car proceeds off the bank and falls into the water a 
horizontal distance of 25.0 m from the bank. (a) Estimate the time of the fall of 
the railcar. (b) What is the horizontal component of the velocity of the pumpers 
when they hit the ground? 
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Picture the Problem Let the direction the railcar is moving be the positive x 
direction and the system include the earth, the pumpers, and the railcar. We’ll 
also denote the railcar with the letter c and the pumpers with the letter p. We’ll 
use conservation of linear momentum to relate the center of mass frame 
velocities of the car and the pumpers and then transform to the earth frame of 
reference to find the time of fall of the car. 
 
(a) Relate the time of fall of the 
railcar to the distance it falls and 
its velocity as it leaves the bank: 
 

cv
yt Δ

=Δ                                      (1) 

Use conservation of momentum to 
find the speed of the car relative to 
the velocity of its center of mass: 
 

0
or

ppcc

fi

=+

=

umum

pp GG

 

 
Relate uc to up and solve for uc: m/s00.4pc =− uu  

and 
m/s00.4cp −= uu  

 
Substitute for up to obtain: ( ) 0m/s00.4cpcc =−+ umum  

 
Solving for uc yields: 

p

c
c

1

m/s00.4

m
mu

+
=  

 
Substitute numerical values and 
evaluate uc: 

( )

m/s87.1

kg75.04
kg3501

m/s00.4
c =

+
=u  

 
Relate the speed of the car to its 
speed relative to the center of mass 
of the system: 
 

cmcc vuv +=  
 

Substitute numerical values and evaluate vc: 
 

m/s7.10
km

m1000
s3600

h1
h

km32.0
s
m.871c =⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=v  
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Substitute numerical values in 
equation (1) and evaluate Δt: 

s2.34
m/s10.7
m25.0Δ ==t  

 
(b) The horizontal velocity of 
the pumpers when they hit the 
ground is: 

m/s6.7

m/s4.00m/s10.7pcp

=

−=−= uvv
 

 
32 •• A wooden block and a gun are firmly fixed to opposite ends of a long 
glider mounted on a frictionless air track (Figure 8-43). The block and gun are a 
distance L apart. The system is initially at rest. The gun is fired and the bullet 
leaves the gun with a velocity vb and impacts the block, becoming imbedded in it. 
The mass of the bullet is mb and the mass of the gun–glider–block system is mp.  
(a) What is the velocity of the glider immediately after the bullet leaves the gun? 
(b) What is the velocity of the glider immediately after the bullet comes to rest in 
the block? (c) How far does the glider move while the bullet is in transit between 
the gun and the block? 
 
Picture the Problem Let the system include the earth, platform, gun, bullet, and 
block.  Then extnet,F

G
= 0 and momentum is conserved within the system. Choose a 

coordinate system in which the +x direction is the direction of the bullet and let b 
and p denote the bullet and platform, respectively.  
 
(a) Apply conservation of linear 
momentum to the system just 
before and just after the bullet 
leaves the gun: 
 

afterbefore pp GG
=  

Or 
gliderbullet0 pp GG

+=  

 

Substitute for bulletpG  and gliderpG to 

obtain: 
 

ppbb
ˆ0 vmivm G

+=  

 

Solving for pvG yields: 
iv

m
mv ˆ

b
p

b
p −=

G  

 
(b) Apply conservation of 
momentum to the system just 
before the dart leaves the gun and 
just after it comes to rest in the 
block: 
 

afterbefore pp GG
=  

or 

glider0 p
G

= ⇒ 0glider =vG  

 

(c) Express the distance Δs traveled 
by the glider: 
 

tvs ΔΔ p=  
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Express the velocity of the bullet 
relative to the glider:  

b
p

bp
b

p

b

b
p

b
bpbrel

1 v
m

mm
v

m
m

v
m
mvvvv

+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+=−=

 

 
Relate the time of flight Δt to L 
and vrel: 
 

relv
Lt =Δ  

Substitute and simplify to find the distance Δs moved by the glider in time Δt: 
 

L
mm

m

v
m

mm
Lv

m
m

v
Lv

m
mtvs

bp

b

b
p

bp
b

p

b

rel
b

p

b
pΔΔ

+
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==  

 
Conservation of Linear Momentum 

33 • [SSM] Tyrone, an 85-kg teenager, runs off the end of a horizontal 
pier and lands on a free-floating 150-kg raft that was initially at rest. After he 
lands on the raft, the raft, with him on it, moves away from the pier at 2.0 m/s.  
What was Tyrone’s speed as he ran off the end of the pier? 
 
Picture the Problem Let the system include the raft, the earth, and Tyrone and 
apply conservation of linear momentum to find Tyrone’s speed when he ran off 
the end of the pier. 
 
Apply conservation of linear 
momentum to the system consisting 
of the raft and Tyrone to obtain: 
 

0ΔΔΔ raftTyronesystem =+= ppp GGG  

or, because the motion is one-
dimensional, 

0rafti,raftf,Tyrone ,iTyronef, =−+− pppp  

 
Because the raft is initially at rest: 
 

0raftf,Tyrone ,iTyronef, =+− ppp  

 
Use the definition of linear momentum to obtain: 
 

0raftf,raftTyronei,TyroneTyronef,Tyrone =+− vmvmvm  

 
Solve for Tyronei,v to obtain: 

 
Tyronef,raftf,

Tyrone

raft
Tyronei, vv

m
mv +=  
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Letting v represent the common final 
speed of the raft and Tyrone yields: 
 

v
m
mv ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

Tyrone

raft
Tyronei, 1  

 
Substitute numerical values and 
evaluate Tyronei,v : ( )

m/s .55

m/s 0.2
kg 85
kg 1501Tyrone i,

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=v

 

 
34 ••  A 55-kg woman contestant on a reality television show is at rest at the 
south end of a horizontal 150-kg raft that is floating in crocodile-infested waters.  
She and the raft are initially at rest.  She needs to jump from the raft to a platform 
that is several meters off the north end of the raft. She takes a running start.  When 
she reaches the north end of the raft she is running at 5.0 m/s relative to the raft.  
At that instant, what is her velocity relative to the water?  
 
Picture the Problem Let the system include the woman, the canoe, and the 
earth. Then the net external force is zero and linear momentum is conserved as 
she jumps off the canoe. Let the direction she jumps be the positive x direction. 
 
Apply conservation of linear 
momentum to the system: 
 

0raftraftwomanwomanii =+=∑ vmvmvm
GGG  

 

Solving for raftvG yields: 
raft

womanwoman
raft m

vmv
GG

−=  

 
Substitute numerical values and 
evaluate raftvG : 

( )( ) ( )iiv ˆm/s 8.1
kg150

ˆm/s0.5kg55
raft −=−=

G

  
35 • A 5.0-kg object and a 10-kg object are connected by a massless 
compressed spring and rest on a frictionless table. The spring is released and the 
objects fly off in opposite directions. The 5.0-kg object has a velocity of 8.0 m/s 
to the left. What is the velocity of the 10-kg object? 
 

Picture the Problem If we include the earth in our system, then the net external 
force is zero and linear momentum is conserved as the spring delivers its energy 
to the two objects. Choose a coordinate system in which the +x direction is to the 
right. 
 

Apply conservation of linear 
momentum to the system: 

0101055ii =+=∑ vvv
GGG

mmm  
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Solving for 10vG yields: 
10

55
10 m

vmv
GG

−=  

 
Substitute numerical values and 
evaluate 10vG : 

( )( ) ( )iiv ˆm/s 0.4
kg10

ˆm/s8.0kg5.0
10 =

−
−=

G

or 4.0 m/s to the right. 
 
36 • Figure 8-44 shows the behavior of a projectile just after it has broken 
up into three pieces. What was the speed of the projectile the instant before it 
broke up? (a) v3. (b) v3/3. (c) v3/4. (d) 4v3. (e) (v1 + v2 + v3)/4. 
 
Picture the Problem This is an explosion-like event in which linear momentum 
is conserved. Thus we can equate the initial and final momenta in the x direction 
and the initial and final momenta in the y direction. Choose a coordinate system in 
the +x direction is to the right and the +y direction is upward. 
 
Equate the momenta in the y 
direction before and after the 
explosion: 
 

( ) 022

2

11

12fy,iy,

=−=

−== ∑∑
mvvm

mvmvpp
 

 

We can conclude that the momentum was entirely in the x direction before the 
particle exploded. 
 
Equate the momenta in the x 
direction before and after the 
explosion: 

∑ ∑= fx,ix, pp  

or 
3projectile4 mvmv =  

 
Solving for projectilev  yields: 

34
1

projectile vv =  and ( )c is correct. 
 
37 • A shell of mass m and speed v explodes into two identical fragments. 
If the shell was moving horizontally with respect to Earth, and one of the 
fragments is subsequently moving vertically with speed v, find the velocity     

G
′ v  of 

the other fragment immediately following the explosion. 
 
Picture the Problem Choose the direction the shell is moving just before the 
explosion to be the positive x direction and apply conservation of momentum.  
 
 
Use conservation of momentum to 
relate the masses of the fragments to 
their velocities: 
 

fi pp
GG

=  
or 

'ˆˆ
2
1

2
1 vji

Gmmvmv += ⇒ jiv ˆˆ2' vv −=
G
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38 •• During this week’s physics lab, the experimental setup consists of two 
gliders on a horizontal frictionless air track (see Figure 8-45).  Each glider 
supports a strong magnet centered on top of it, and the magnets are oriented so 
they attract each other. The mass of glider 1 and its magnet is 0.100 kg and the 
mass of glider 2 and its magnet is 0.200 kg. You and your lab partners take the 
origin to be at the left end of the track and to center glider 1 at x1 = 0.100 m and 
glider 2 at x2 = 1.600 m. Glider 1 is 10.0 cm long, while glider 2 is 20.0 cm long 
and each glider has its center of mass at its geometric center. When the two are 
released from rest, they will move toward each other and stick. (a) Predict the 
position of the center of each glider when they first touch. (b) Predict the velocity 
the two gliders will continue to move with after they stick. Explain the reasoning 
behind this prediction for your lab partners. 
 
Picture the Problem Because no external forces act on either glider, the center 
of mass of the two-glider system can’t move. We can use the data concerning the 
masses and separation of the gliders initially to calculate its location and then 
apply the definition of the center of mass a second time to relate the positions x1 
and x2 of the centers of the carts when they first touch. We can also use the 
separation of the centers of the gliders when they touch to obtain a second 
equation in x1 and x2 that we can solve simultaneously with the equation obtained 
from the location of the center of mass. 
 
(a) The x coordinate of the center of 
mass of the 2-glider system is given 
by: 
 

21

2211
cm mm

xmxmx
+
+

=
 

 

Substitute numerical values and evaluate xcm: 
 

( )( ) ( )( ) m10.1
kg0.200kg0.100

m1.600kg0.200m0.100kg0.100
cm =

+
+

=x  

from the left end of the air track. 
 
Because the location of the center 
of mass has not moved when two 
gliders first touch: 
 

21

2211m10.1
mm

XmXm
+
+

=  

 

Substitute numerical values and 
simplify to obtain: 
 

23
2

13
1m10.1 XX +=  

Also, when they first touch, their 
centers are separated by half their 
combined lengths: 

( )
m0.150

cm20.0cm10.02
1

12

=
+=− XX
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Thus we have: 
 

m10.123
2

13
1 =+ XX  
and 

m0.15012 =− XX  
 

Solving these equations 
simultaneously yields: 
 

m00.11 =X  and m15.12 =X  
 

(b) Because the momentum of the system was zero initially, it must be zero just 
before the collision and after the collision in which the gliders stick together. 
Hence their velocity after the collision must be 0 . 
 
39 •• Bored, a boy shoots his pellet gun at a piece of cheese that sits, 
keeping cool for dinner guests, on a massive block of ice.  On one particular shot, 
his 1.2 g pellet gets stuck in the cheese, causing it to slide 25 cm before coming to 
a stop. If the muzzle velocity of the gun is 65 m/s and the cheese has a mass of 
120 g, what is the coefficient of friction between the cheese and ice? 
 
Picture the Problem Let the system consist of the pellet and the cheese. Then we 
can apply the conservation of linear momentum and the conservation of energy 
with friction to this inelastic collision to find the coefficient of friction between 
the cheese and the ice. 
 
Apply conservation of linear 
momentum to the system to obtain: 
 

0ΔΔΔ cheesepelletsystem =+= ppp GGG  

or, because the motion is one-
dimensional, 

0cheesei,cheesef,pelleti,pelletf, =−+− pppp  

 
Because the cheese is initially at 
rest: 
 

0cheesetf,pelleti,pelletf, =+− ppp  

Letting m represent the mass of the 
pellet, M the mass of the cheese, and 
v the common final speed of the 
pellet and the cheese, use the 
definition of linear momentum to 
obtain: 
 

0pelleti, =+− Mvmvmv  

Solving for v yields: 
 pelleti,v

Mm
mv
+

=                       (1) 
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Apply the conservation of energy 
with friction to the system to obtain: 
 

thermmechext ΔΔ EEW +=  
or, because Wext = 0, 

0ΔΔΔ thermg =++ EUK  

 
Because ΔUg = Kf = 0, and 

sfE ΔΔ therm = (where Δs is the 
distance the cheese slides on the 
ice): 
 

( ) 0Δ2
2
1 =++− sfvMm  

f is given by: ( )gMmf += kμ  
 

Substituting for f yields: ( ) ( ) 0Δk
2

2
1 =+++− sgMmvMm μ  

 
Substitute for v from equation (1) to obtain: 
 

( ) ( ) 0Δk

2

pelleti,2
1 =++⎟

⎠
⎞

⎜
⎝
⎛

+
+− sgMmv

Mm
mMm μ  

 
Solving for μk yields: 
 

2
pelleti,

k Δ2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
Mm

mv
sg

μ  

 
Substitute numerical values and evaluate μk: 
 

( )( )
( )( ) 084.0

kg 120.0kg 0012.0
m/s 65kg 0012.0

m 25.0m/s 81.92
1

2

2k =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=μ  

 
40 ••• A wedge of mass M, as shown in Figure 8-46, is placed on a 
frictionless, horizontal surface, and a block of mass m is placed on the wedge, 
whose surface is also frictionless.  The center of mass of the block moves 
downward a distance h, as the block slides from its initial position to the 
horizontal floor. (a) What are the speeds of the block and of the wedge, as they 
separate from each other and each go their own way? (b) Check your calculation 
plausibility by considering the limiting case when M >>m.  
 
Picture the Problem Let the system include the earth, block, and wedge and 
apply conservation of energy and conservation of linear momentum. 
 
(a) Apply conservation of energy 
with no frictional forces to the 
system to obtain: 

UKW ΔΔext +=  
or, because Wext = 0, 

0ΔΔ =+ UK  
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Substituting for ΔK and ΔU yields: 
 

0ifif =−+− UUKK  

Because Ki = Uf = 0: 
 

0if =−UK  

Letting ″b″ refer to the block and ″w″ 
to the wedge yields: 
 

0ib,fw,fb, =−+ UKK  

Substitute for Kb,f, Kw,f, and Ub,i to 
obtain: 
 

02
w2

12
b2

1 =−+ mghMvmv         (1) 

Applying conservation of linear 
momentum to the system yields: 
 

0ΔΔΔ wbsys =+= ppp GGG  

or 
0iw,fw,ib,fb, =−+− pppp GGGG  

 
Because 0iw,ib, == pp GG : 0fw,fb, =+ pp GG  

 
Substituting for fb,pG and fw,pG yields: 

 
0ˆˆ

wb =+− iMvimv  
or 

0wb =+− Mvmv  
 

Solve for vw to obtain: 
 bw v

M
mv =                                 (2) 

 
Substituting for vw in equation (1) 
yields: 
 

0
2

b2
12

b2
1 =−⎟

⎠
⎞

⎜
⎝
⎛+ mghv

M
mMmv  

Solve for vb to obtain: 
 mM

ghMv
+

=
2

b                       (3) 

 
Substitute for vb in equation (2) and 
simplify to obtain: 
 

( )mMM
ghm

mM
ghM

M
mv

+
=

+
=

2

w

2

2

              (4) 

 
(b) Rewriting equation (3) by 
dividing the numerator and 
denominator of the radicand by M 
yields: 
 

M
m

ghv
+

=
1

2
b  
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When M >> m: 
 

ghv 2b =  
 

Rewriting equation (4) by dividing 
the numerator and denominator of 
the radicand by M yields: 
 M

m
M
mgh

v
+

⎟
⎠
⎞

⎜
⎝
⎛

=
1

2
2

w  

 
When M >> m: 
 

0w =v  
 

These results are exactly what we’d expect in this case:  the physics is that of a 

block sliding down a fixed wedge incline with no movement of the incline. 

 
Kinetic Energy of a System of Particles 

41 •• [SSM] A 3.0-kg block is traveling to the right (the +x direction) at 
5.0 m/s, and a second 3.0-kg block is traveling to the left at 2.0 m/s. (a) Find the 
total kinetic energy of the two blocks. (b) Find the velocity of the center of mass 
of the two-block system. (c) Find the velocity of each block relative to the center 
of mass. (d) Find the kinetic energy of the blocks relative to the center of mass. 
(e) Show that your answer for Part (a) is greater than your answer for Part (d) by 
an amount equal to the kinetic energy associated with the motion of the center of 
mass. 
 
Picture the Problem Choose a coordinate system in which the positive x direction 
is to the right. Use the expression for the total momentum of a system to find the 
velocity of the center of mass and the definition of relative velocity to express the 
sum of the kinetic energies relative to the center of mass. 
 
(a) The total kinetic energy is the 
sum of the kinetic energies of the 
blocks: 
 

2
222

12
112

1
21 vmvmKKK +=+=  

 

Substitute numerical values and evaluate K: 
 

( )( ) ( )( ) J44J43.5m/s2.0kg3.0m/s5.0kg3.0 2
2
12

2
1 ==+=K  

 
(b) Relate the velocity of the center 
of mass of the system to its total 
momentum:  
 

2211cm vvv GGG mmM +=  
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Solving for cmvG  yields: 
21

2211
cm mm

mm
+
+

=
vvv
GGG  

 
Substitute numerical values and evaluate :cmvG  
 

( )( ) ( )( ) ( )iiiv ˆm/s5.1
kg3.0kg3.0

ˆm/s2.0kg3.0ˆm/s5.0kg3.0
cm =

+
+

=
G  

 
(c) The velocity of an object relative 
to the center of mass is given by: 
 

cmrel vvv GGG
−=  

Substitute numerical values to 
obtain: 

( ) ( )
( )

( ) ( )
( )i

iiv

i

iiv

ˆm/s5.3

ˆm/s5.1ˆm/s0.2

ˆm/s5.3

ˆm/s5.1ˆm/s0.5

rel2,

rel1,

−=

−−=

=

−=

G

G

 

 
(d) Express the sum of the kinetic 
energies relative to the center of 
mass: 
 

2
rel,222

12
rel,112

1
rel,2rel,1rel vmvmKKK +=+=  

 

Substitute numerical values and evaluate relK : 
 

( )( ) ( )( ) J73m/s5.3kg3.0m/s3.5kg3.0 2
2
12

2
1

rel =−+=K  

 
(e) cmK is given by: 
 

2
cmtot2

1
cm vmK =  

Substitute numerical values and 
evaluate cmK : 

( )( )

rel

2
2
1

cm

J36.75J43.5J6.75
m/s1.5kg6.0

KK

K

−=

−==

=

 

 
42 •• Repeat Problem 41 with the second 3.0-kg block replaced by a 5.0-kg 
block moving to the right at 3.0 m/s. 
 

Picture the Problem Choose a coordinate system in which the positive x direction 
is to the right. Use the expression for the total momentum of a system to find the 
velocity of the center of mass and the definition of relative velocity to express the 
sum of the kinetic energies relative to the center of mass. 
 



Conservation of Linear Momentum 
 

 

737

(a) The total kinetic energy is the 
sum of the kinetic energies of the 
blocks: 
 

2
222

12
112

1
21 vmvmKKK +=+=  

 

Substitute numerical values and evaluate K: 
 

( )( ) ( )( ) J06J0.06m/s3.0kg5.0m/s5.0kg3.0 2
2
12

2
1 ==+=K  

 
(b) Relate the velocity of the center 
of mass of the system to its total 
momentum:  
 

2211cm vvv GGG mmM +=  
 
 

Solving for cmvG  yields: 
21

2211
cm mm

mm
+
+

=
vvv
GGG  

 
Substitute numerical values and evaluate :cmvG  
 

( )( ) ( )( ) ( ) ( )iiiiv ˆm/s8.3ˆm/s75.3
kg5.0kg3.0

ˆm/s3.0kg5.0ˆm/s5.0kg3.0
cm ==

+
+

=
G  

 
(c) The velocity of an object relative 
to the center of mass is given by: 
 

cmrel vvv GGG
−=  

Substitute numerical values to 
obtain: 

( ) ( )
( )

( ) ( )
( )

( )i
i

iiv

i

iiv

ˆm/s8.0

ˆm/s75.0

ˆm/s75.3ˆm/s0.3

ˆm/s3.1

ˆm/s75.3ˆm/s0.5

rel2,

rel1,

−=

−=

−=

=

−=

G

G

 

 
(d) Express the sum of the kinetic 
energies relative to the center of 
mass: 
 

2
rel,222

12
rel,112

1
rel,2rel,1rel vmvmKKK +=+=  

 

Substitute numerical values and evaluate relK : 
 

( )( ) ( )( ) J4J 75.3m/s75.0kg5.0m/s25.1kg3.0 2
2
12

2
1

rel ==−+=K  
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(e) cmK  is given by: 
 

2
cmtot2

1
cm vmK =  

Substitute numerical values and 
evaluate cmK : 

( )( )

rel

2
2
1

cm

J3.65
m/s75.3kg8.0

KK

K

−≈

≈
=

 

 
Impulse and Average Force 

43 • [SSM] You kick a soccer ball whose mass is 0.43 kg. The ball 
leaves your foot with an initial speed of 25 m/s. (a) What is the magnitude of the 
impulse associated with the force of your foot on the ball? (b) If your foot is in 
contact with the ball for 8.0 ms, what is the magnitude of the average force 
exerted by your foot on the ball? 
 
Picture the Problem The impulse imparted to the ball by the kicker equals the 
change in the ball’s momentum. The impulse is also the product of the average 
force exerted on the ball by the kicker and the time during which the average 
force acts. 
 
(a) Relate the magnitude of the 
impulse delivered to the ball to its 
change in momentum: 

ifΔ pppI −==
G  

or, because vi = 0, 
fmvI =  

 
Substitute numerical values and 
evaluate I: 
 

( )( )
sN11

sN8.10m/s25kg0.43

⋅=

⋅==I
 

 
(b) The impulse delivered to the ball 
as a function of the average force 
acting on it is given by: 
 

tFI Δ= av ⇒
t

IF
Δav =  

 

Substitute numerical values and 
evaluate avF : 

kN1.3
s0.0080
sN10.8

av =
⋅

=F  

 
44 • A 0.30-kg brick is dropped from a height of 8.0 m. It hits the ground 
and comes to rest. (a) What is the impulse exerted by the ground on the brick 
during the collision? (b) If it takes 0.0013 s from the time the brick first touches 
the ground until it comes to rest, what is the average force exerted by the ground 
on the brick during impact? 
  
 
 



Conservation of Linear Momentum 
 

 

739

Picture the Problem The impulse exerted by the ground on the brick equals the 
change in momentum of the brick and is also the product of the average force 
exerted by the ground on the brick and the time during which the average force 
acts. 
 
(a) Express the magnitude of the 
impulse exerted by the ground on the 
brick: 
 

bricki,brickf,brick pppI −=Δ=  

Because pf,brick = 0: vmpI brickbricki, ==                     (1) 

 
Use conservation of energy to 
determine the speed of the brick at 
impact: 0

or
0

ifif =−+−

=Δ+Δ

UUKK

UK
 

 
Because Uf = Ki = 0: 0if =−UK  

and 
0brick

2
brick2

1 =− ghmvm ⇒ ghv 2=  
 

Substitute in equation (1) to obtain: ghmI 2brick=  
 

Substitute numerical values and 
evaluate I: 

( ) ( )( )
sN8.3sN76.3

m8.0m/s9.812kg0.30 2

⋅=⋅=

=I
 

 
(c) The average force acting on the 
brick is: 
 

t
IF
Δav =  

Substitute numerical values and 
evaluate Fav: 

kN9.2
s0.0013
sN76.3

av =
⋅

=F  

 
45 • A meteorite that has a mass equal to 30.8 tonne (1 tonne = 1000 kg) is 
exhibited in the American Museum of Natural History in New York City. 
Suppose that the kinetic energy of the meteorite as it hit the ground was 617 MJ. 
Find the magnitude of the impulse I experienced by the meteorite up to the time 
its kinetic energy was halved (which took about t = 3.0 s). Find also the average 
force F exerted on the meteorite during this time interval. 
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Picture the Problem The impulse exerted by the ground on the meteorite equals 
the change in momentum of the meteorite and is also the product of the average 
force exerted by the ground on the meteorite and the time during which the 
average force acts. 
 
Express the magnitude of the 
impulse exerted by the ground on the 
meteorite: 
 

ifmeteoriteΔ pppI −==
G  

Relate the kinetic energy of the 
meteorite to its initial momentum 
and solve for its initial momentum: 
 

ii

2
i

i 2
2

mKp
m

pK =⇒=  

 

Express the ratio of the initial and 
final kinetic energies of the 
meteorite: 

2

2m

2
2
f

2
i

2
f

2
i

f

i ===
p
p

p
m

p

K
K

⇒
2
i

f
pp =  

 
Substitute in our expression for I 
and simplify: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ −=−=

1
2

12

1
2

1
2

i

ii
i

mK

pppI
 

 
Because our interest is in its magnitude, substitute numerical values and evaluate 
the absolute value of I: 
 

( )( ) sMN81.11
2

1J10617kg1030.82 63 ⋅=⎟
⎠
⎞

⎜
⎝
⎛ −××=I  

 
The average force acting on the 
meteorite is: t

IF
Δav =  

 
Substitute numerical values and 
evaluate Fav: 

MN60.0
s3.0

sMN81.1
av =

⋅
=F  
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46 •• A 0.15-kg baseball traveling horizontally is hit by a bat and its 
direction exactly reversed. Its velocity changes from +20 m/s to –20 m/s.  
(a) What is the magnitude of the impulse delivered by the bat to the ball? (b) If 
the baseball is in contact with the bat for 1.3 ms, what is the average force exerted 
by the bat on the ball? 
 
Picture the Problem The impulse exerted by the bat on the ball equals the 
change in momentum of the ball and is also the product of the average force 
exerted by the bat on the ball and the time during which the bat and ball were in 
contact. 
 
(a) Express the impulse exerted by 
the bat on the ball in terms of the 
change in momentum of the ball: 

( ) iii

pppI
ˆ2ˆˆ

if

ifball

mvmvmv =−−=

−=Δ=
GGGG

 

where v = vf = vi 

 
Substitute for m and v and 
evaluate I

G
: 

( )( )
sN0.6

sN00.6m/s20kg15.02

⋅=

⋅==I
 

 
(b) The average force acting on the 
ball is: t

IF
Δav =  

 
Substitute numerical values and 
evaluate Fav: 

kN6.4
ms3.1

sN00.6
av =

⋅
=F  

 
47 •• A 60-g handball moving with a speed of 5.0 m/s strikes the wall at an 
angle of 40º with the normal, and then bounces off with the same speed at the 
same angle with the normal. It is in contact with the wall for 2.0 ms. What is the 
average force exerted by the ball on the wall? 
 
Picture the Problem The figure shows 
the handball just before and 
immediately after its collision with the 
wall. Choose a coordinate system in 
which the positive x direction is to the 
right. The wall changes the momentum 
of the ball by exerting a force on it 
during the ball’s collision with it. The 
reaction to this force is the force the 
ball exerts on the wall. Because these 
action and reaction forces are equal in 
magnitude, we can find the average 
force exerted on the ball by finding the 
change in momentum of the ball. 
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Using Newton’s 3rd law, relate the 
average force exerted by the ball on 
the wall to the average force exerted 
by the wall on the ball: 
  

ballon  avon wall av FF
GG

−=  
and 

ballon  avon wall av FF =                       (1) 

Relate the average force exerted by 
the wall on the ball to its change in 
momentum: 
 

t
m

t Δ
Δ

=
Δ
Δ

=
vpF
GGG

ballon  av  

 

Express vGΔ in terms of its 
components: 
 

yx vvv GGG ΔΔΔ +=  

or, because 
jvjvv yyy
ˆˆΔ ,i,f −=

G and yy vv ,i,f = . 

xvv GG ΔΔ =  
 

Express xvGΔ for the ball: 
 

iiv ˆˆ
,i,f xxx vv −=Δ

G  
or, because θcosi, vv x =  and  

θcosf, vv x −= , 

iiiv ˆcos2ˆcosˆcos θθθ vvvx −=−−=Δ
G  

 
Substituting in the expression for 

ballon  avF
G

yields: 
ivF ˆcos2

ballon  av t
mv

t
m

Δ
−=

Δ
Δ

=
θ

GG
 

 
The magnitude of ballon  avF

G
is: 

 t
mvF
Δ
cos2

ballon  av
θ

=  

 
Substitute numerical values and 
evaluate Fav on ball: 

( )( )

kN23.0
ms2.0

cos40m/s5.0kg0.0602
ballon  av

=

°
=F

 

 
Substitute in equation (1) to obtain:  kN23.0on wall av =F  
 
48  •• You throw a 150-g ball straight up to a height of 40.0 m.  (a) Use a 
reasonable value for the displacement of the ball while it is in your hand to 
estimate the time the ball is in your hand while you are throwing it. (b) Calculate 
the average force exerted by your hand while you are throwing it. (Is it OK to 
neglect the gravitational force on the ball while it is being thrown?)  
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Picture the Problem The pictorial 
representation shows the ball during 
the interval of time during which you 
are exerting a force on it to accelerate 
it upward. The average force you exert 
can be determined from the change in 
momentum of the ball. The change in 
the velocity of the ball can be found by 
applying conservation of mechanical 
energy to the ball-earth system once it 
has left your hand. 

avF
r

gmF
rr

=g

1

2

m 01 =y

dy =2

?2 =v

01 =v

01 =t

ttt += 12 Δ

 
  
(a) Relate the time the ball is in your 
hand to its average speed while it is 
in your hand and the displacement of 
your hand: 
 

handyour in  av,

ΔΔ
v

yt =  

Letting Ug = 0 at the initial elevation 
of your hand, use conservation of 
mechanical energy to relate the 
initial kinetic energy of the ball to its 
potential energy when it is at its 
highest point: 
 

0ΔΔ =+ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Kf and Ui and solve 
for v2: 
 

02
22

1 =+− mghmv ⇒ ghv 22 =  

Because 22
1

handyour in  av, vv = : 
gh
y

v
yt

2
2ΔΔΔ

22
1

==  

 
Assuming the displacement of your 
hand is 0.70 m as you throw the ball 
straight up, substitute numerical 
values and evaluate Δt: 
 

( )
( )( )
ms 05

ms 0.50
m 40m/s 81.92

m 0.702Δ
2

=

==t
 

(b) Relate the average force exerted 
by your hand on the ball to the 
change in momentum of the ball: 
 

t
pp

t
pF

ΔΔ
Δ 12

av
−

==  

or, because v1 = p1 = 0, 

t
mvF
Δ

2
av =  
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Substitute for v2 to obtain: 
t
ghm

F
Δ
2

av =  

 
Substitute numerical values and 
evaluate Fav: 

( ) ( )( )

N84N1.84
ms 50.0

m40m/s9.812kg0.15 2

av

==

=F
 

 
Express the ratio of the gravitational 
force on the ball to the average force 
acting on it: 
 

avav

g

F
mg

F
F

=  

 

Substitute numerical values and 
evaluate Fg/Fav: 
 

( )( ) %2
N84.1

m/s9.81kg0.15 2

av

g <=
F
F

 

Because the gravitational force acting on the ball is less than 2% of the average 
force exerted by your hand on the ball, it is reasonable to have neglected the 
gravitational force. 
 
49 •• A 0.060-kg handball is thrown straight toward a wall with a speed of 
10 m/s. It rebounds straight backward at a speed of 8.0 m/s. (a) What impulse is 
exerted on the wall? (b) If the ball is in contact with the wall for 3.0 ms, what 
average force is exerted on the wall by the ball? (c)  The rebounding ball is 
caught by a player who brings it to rest.  During the process, her hand moves back  
0.50 m.  What is the impulse received by the player? (d) What average force was 
exerted on the player by the ball? 
 
Picture the Problem Choose a coordinate system in which the direction the ball 
is moving after its collision with the wall is the +x direction. The impulse 
delivered to the wall or received by the player equals the change in the 
momentum of the ball during these two collisions. We can find the average 
forces from the rate of change in the momentum of the ball. 
 
(a) The impulse delivered to the 
wall is the change in momentum of 
the handball: 
 

ifΔ vmvmpI GGGG
−==  

 

Substitute numerical values and 
evaluate I

G
: 

( )( )
( )( )[ ]

( ) ( )  ̂sN1.1 ̂sN08.1

ˆm/s01kg0.060

ˆm/s8.0kg0.060

ii

i

iI

⋅=⋅=

−−

=
G

 

or 1.1 N⋅s directed into the wall. 
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(b) Fav is the rate of change of the 
ball’s momentum: 
 

t
pF

Δ
Δ

av =  

Substitute numerical values and 
evaluate Fav: 

 wall. theinto kN,60.3

N603
s0.0030
sN08.1

av

=

=
⋅

=F
 

 
(c) The impulse received by the 
player from the change in 
momentum of the ball is given by: 
 

vmpI ΔΔ ball ==  
 

Substitute numerical values and 
evaluate I: 

( )( )
 wall. thefromaway  s,N48.0

sN480.0m/s8.0kg0.060

⋅=

⋅==I
 

 
(d) Relate avF  to the change in the 
ball’s momentum: t

p
F

Δ
Δ

= ball
av  

 
Express the stopping time in terms 
of the average speed vav of the ball 
and its stopping distance d: 
 

avv
dt =Δ  

 

Substitute for tΔ and simplify to 
obtain: d

pvF ballav
av

Δ
=  

 
Substitute numerical values and 
evaluate avF : 

( )( )

 wall. thefromaway  N,8.3

m0.50
sN480.0m/s4.0

av

=

⋅
=F

 

 
50 •• A spherical 0.34-kg orange, 2.0 cm in radius, is dropped from the top 
of a 35 m-tall building.  After striking the pavement, the shape of the orange is a 
0.50 cm thick pancake.  Neglect air resistance and assume that the collision is 
completely inelastic. (a) How much time did the orange take to completely 
″squish″ to a stop? (b) What average force did the pavement exert on the orange 
during the collision? 
 
Picture the Problem The following pictorial representation shows the orange 
moving with velocity v

G , just before impact, after falling from a height of 35 m. 
Let the system be the orange and let the zero of gravitational potential energy be 
at the center of mass of the squished orange. The external forces are gravity, 
acting on the orange throughout its fall, and the normal force exerted by the 
ground that acts on the orange as it is squished. We can find the squishing time 
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from the displacement of the center-of-mass of the orange as it stops and its 
average speed during this period of (assumed) constant acceleration. We can use 
the impulse-momentum theorem to find the average force exerted by the ground 
on the orange as it slowed to a stop. 

0g =U

y

0

d

v
r

 
 
(a) Express the stopping time for the 
orange in terms of its average speed 
and the distance traveled by its center 
of mass: 
 

av

Δ
v
dt =                                     (1) 

 

In order to find vav, apply the 
conservation of mechanical energy to 
the free-fall portion of the orange’s 
motion: 
 

0ig,fg,if =−+− UUKK  
or, because Ki = 0, 

0ig,fg,f =−+ UUK  
 

Substituting for Kf, Ug,f, and Ug,i 
yields: 
 

( ) 02
2
1 =−−+ dhmgmgdmv  

Solving for v yields: 
⎟
⎠
⎞

⎜
⎝
⎛ −=

h
dghv 212  

or, because d << h, 
ghv 2≈  

 
Assuming constant acceleration as the 
orange squishes: 

ghvv 22
1

2
1

av ==                          
 

Substituting for vav in equation (1) 
and simplifying yields: 
 

gh
dt

2
2Δ =  

 
Substitute numerical values and 
evaluate Δt: 

( )
( )( )

ms 0.44s 1043.4

m 35m/s 81.92
cm 25.22Δ

4

2

=×=

=

−

t
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(b) Apply the impulse-momentum 
theorem to the squishing orange to 
obtain: 
 

ifav ΔΔ ppptF GGGG
−==      

or, because pf = 0,                         

iavΔ ptF = ⇒
t

mv
t

pF
ΔΔ

ii
av ==  

 
In Part (a) we showed that 

ghvv 2i ≈= . Therefore: 
 

t
ghm

F
Δ
2

av =  

Substitute numerical values and 
evaluate avF : 

( ) ( )( )

kN 45
s 1043.4

m 35m/s 81.92kg 34.0
4

2

av

≈

×
= −F

 

 
51 •• The pole-vault landing pad at an Olympic competition contains what is 
essentially a bag of air that compresses from its ″resting″ height of 1.2 m down to 
0.20 m as the vaulter is slowed to a stop.  (a) What is the time interval during 
which a vaulter who has just cleared a height of 6.40 m slows to a stop? (b) What 
is the time interval if instead the vaulter is brought to rest by a 20 cm layer of 
sawdust that compresses to 5.0 cm when he lands?  (c) Qualitatively discuss the 
difference in the average force the vaulter experiences from the two different 
landing pads. That is, which landing pad exerts the least force on the vaulter and 
why? 
 
Picture the Problem The pictorial representation shows the vaulter moving with 
velocity vG , just before impact on the landing pad after falling from a height of  
6.40 m. In order to determine the time interval during which the vaulter stops, we 
have to know his momentum change and the average net force acting on him.  
With knowledge of these quantities, we can use the impulse-momentum equation, 

ptF ΔΔnet = .  We can determine the average force by noting that as the vaulter 
comes to a stop on the landing pad, work is done on him by the airbag.   

y

v
r

d
m 20.0

m 2.1
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(a) Use the impulse-momentum 
theorem to relate the stopping time to 
the average force acting on the 
vaulter: 
 

ptF ΔΔnet =                                    
 

Use the work-kinetic energy 
theorem to obtain: 
 

( ) KdmgFdFW Δairbagnetnet =−==      
where d is the distance the vaulter 
moves while being decelerated.                
 

Substituting for Fnet in equation 
(1) yields: 
 

( ) ptmgF ΔΔairbag =−  
or 

pt
d
K ΔΔΔ

=  

 
Solve for Δt to obtain: 
 

( )
if

if

Δ
ΔΔ

KK
ppd

K
pdt

−
−

==  

or, because Kf = pf = 0, 
( )

i

i

i

iΔ
K

dp
K
pdt =

−
−

=   

                

Use 
m
pK

2

2

= to obtain: 
ii

2
i

i

2
222Δ

mK
md

p
md

p
dmpt ===  

 
Rationalizing the denominator of this 
expression and simplifying yields: 

i

2Δ
K
mdt =                              (1) 

 
Ki is equal to the change in the 
gravitational potential energy of the 
vaulter as he falls a distance Δy 
before hitting the airbag: 

ymgK Δi =                              
 

 
Substituting for Ki in equation (1) 
and simplifying yields: 
 yg

dt
Δ
2Δ =              

 
Substitute numerical values and evaluate Δt: 
 

( ) ( )( ) s 20.0s 198.0
m 1.2m 4.6m/s 9.81

2m 0.2m 2.1Δ 2 ==
−

−=t  
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(b) In this case, d1 = 20 cm, d2 = 5.0 cm. Substitute numerical values and evaluate 
Δt: 
 

( ) ( )( ) ms 72ms 2.27
m 0.20m 4.6m/s 9.81

2m 0.05m 20.0Δ 2 ==
−

−=t  

 
The average force exerted on the vaulter by the airbag is much less than the 
average force the sawdust exerts on him because the collision time is much 
shorter for the sawdust landing.  
 
52 ••• Great limestone caverns have been formed by dripping water. (a) If 
water droplets of 0.030 mL fall from a height of 5.0 m at a rate of 10 droplets per 
minute, what is the average force exerted on the limestone floor by the droplets of 
water during a 1.0-min period? (Assume the water does not accumulate on the 
floor.) (b) Compare this force to the weight of one water droplet. 
 
Picture the Problem The average force exerted on the limestone by the droplets 
of water equals the rate at which momentum is being delivered to the floor. 
We’re given the number of droplets that arrive per minute and can use 
conservation of mechanical energy to determine their velocity as they reach the 
floor. 
 
(a) Letting N represent the rate at 
which droplets fall, relate Fav to the 
change in the droplet’s momentum: 
 

t
vmN

t
p

F
Δ
Δ

=
Δ

Δ
= droplets

av              

or, because the droplets fall from rest, 

mv
t

NF
Δav =                                (1)    

where v is their speed after falling  
5.0 m. 
 

The mass of the droplets is the 
product of their density and 
volume: 

Vm ρ=  
 

Letting Ug = 0 at the point of 
impact of the droplets, use 
conservation of mechanical energy 
to relate their speed at impact to 
their fall distance: 
 

0
or

0

ifif =−+−

=Δ+Δ

UUKK

UK
 

 

Because Ki = Uf = 0: 02
2
1 =− mghmv ⇒ ghv 2=  
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Substitute for m and v in equation 
(1) to obtain: 
 

ghV
t

NF 2
Δav ρ=  

Substitute numerical values and 
evaluate Fav: 
 

N 50N1095.4 5
av μ=×= −F  

 

(b) Express the ratio of the weight of 
a droplet to Fav: 
 

avav F
mg

F
w

=  

Substitute numerical values and 
evaluate w/Fav: 

( )( )  6
N104.95
m/s9.81kg103

5

25

av

≈
×

×
= −

−

F
w  

 
Collisions in One Dimension 
 
53 • [SSM] A 2000-kg car traveling to the right at 30 m/s is chasing a 
second car of the same mass that is traveling in the same direction at 10 m/s. (a) If 
the two cars collide and stick together, what is their speed just after the collision?  
(b) What fraction of the initial kinetic energy of the cars is lost during this 
collision? Where does it go? 
 
Picture the Problem We can apply conservation of linear momentum to this 
perfectly inelastic collision to find the after-collision speed of the two cars. The 
ratio of the transformed kinetic energy to kinetic energy before the collision is 
the fraction of kinetic energy lost in the collision. 
 
(a) Letting V be the velocity of the 
two cars after their collision, apply 
conservation of linear momentum 
to their perfectly inelastic collision: 
 

finalinitial pp =  
or 

( )Vmmmvmv +=+ 21 ⇒
2

21 vvV +
=  

 
Substitute numerical values and 
evaluate V: 

m/s20
2

m/s10m/s30
=

+
=V  

 
(b) The ratio of the kinetic energy 
that is lost to the kinetic energy of 
the two cars before the collision is: 
 

1Δ

initial

final

initial

initialfinal

initial

−=
−

=
K
K

K
KK

K
K  

 

Substitute for the kinetic energies 
and simplify to obtain: 

( )

12

12Δ

2
2

2
1

2

2
22

12
12

1

2
2
1

initial

−
+

=

−
+

=

vv
V

mvmv
Vm

K
K

 

 



Conservation of Linear Momentum 
 

 

751

Substitute numerical values and 
evaluate ΔK/Kinitial: 

( )
( ) ( )

20.0

1
m/s10m/s30

m/s202Δ
22

2

initial

−=

−
+

=
K

K
 

 
20% of the initial kinetic energy is transformed into heat, sound, and the 

deformation of the materials from which the car is constructed. 
 
54 • An 85-kg running back moving at 7.0 m/s makes a perfectly inelastic 
head-on collision with a 105-kg linebacker who is initially at rest. What is the 
speed of the players just after their collision? 
 
Picture the Problem We can apply conservation of linear momentum to this 
perfectly inelastic collision to find the after-collision speed of the two players. 
 
Letting the subscript 1 refer to the 
running back and the subscript 2 
refer to the linebacker, apply 
conservation of momentum to their 
perfectly inelastic collision: 
 

fi pp =  
or 

( )Vmmvm 2111 += ⇒ 1
21

1 v
mm

mV
+

=  

Substitute numerical values and 
evaluate V: 

( ) m/s1.3m/s7.0
kg051kg58

kg58
=

+
=V

 
 
55 • A 5.0-kg object with a speed of 4.0 m/s collides head-on with a 10-kg 
object moving toward it with a speed of 3.0 m/s. The 10-kg object stops dead after 
the collision. (a) What is the post-collision speed of the 5.0-kg object? (b) Is the 
collision elastic? 
 
Picture the Problem We can apply conservation of linear momentum to this 
collision to find the post-collision speed of the 5.0-kg object. Let the direction the 
5.0-kg object is moving before the collision be the positive direction. We can 
decide whether the collision was elastic by examining the initial and final kinetic 
energies of the system.  
 
(a) Letting the subscript 5 refer to the 
5.0-kg object and the subscript 10 
refer to the 10-kg object, apply 
conservation of momentum to obtain: 
 

f,55i,10105i,5

fi

or
vmvmvm

pp

=−

=
 

 

Solve for vf,5: 
5

i,10105i,5
f,5 m

vmvm
v

−
=  
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Substitute numerical values and 
evaluate vf,5: 

( )( ) ( )( )

m/s0.2

kg5
m/s3.0kg10m/s4.0kg5.0

f,5

−=

−
=v

where the minus sign means that the 
5.0-kg object is moving to the left after 
the collision. 
 

(b) Evaluate ΔK for the collision: 
 

( )( ) ( )( )[ ( )( ) ]
J75

m/s3.0kg10m/s4.0kg5.0m/s2.0kg5.0Δ 2
2
12

2
12

2
1

if

−=

+−=−= KKK  

 
Because ΔK ≠ 0, the collision was not elastic. 

 
56 • A small superball of mass m moves with speed v to the right toward a 
much more massive bat that is moving to the left with speed v. Find the speed of 
the ball after it makes an elastic head-on collision with the bat. 
 
Picture the Problem The pictorial 
representation shows the ball and bat 
just before and just after their collision. 
Take the direction the bat is moving to 
be the positive direction. Because the 
collision is elastic, we can equate the 
speeds of recession and approach, with 
the approximation that vi,bat ≈ vf,bat to 
find vf,ball.  
 
Express the speed of approach of the 
bat and ball: 
 

( )balli,bati,ballf,batf, vvvv −−=−  

Because the mass of the bat is much 
greater than that of the ball: 
 

batf,bati, vv ≈  

Substitute to obtain: 
 

( )balli,batf,ballf,batf, vvvv −−=−  

Solve for and evaluate vf,ball: ( )

v

vvvv
vvvv

3

22 batf,balli,

balli,batf,batf,ballf,

=

+=+−=

−+=
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57 •• A proton that has a mass m and is moving at 300 m/s undergoes a 
head-on elastic collision with a stationary carbon nucleus of mass 12m. Find the 
velocity of the proton and the carbon nucleus after the collision. 
 
Picture the Problem Let the direction the proton is moving before the collision 
be the +x direction. We can use both conservation of momentum and conservation 
of mechanical energy to obtain an expression for velocities of the proton and the 
carbon nucleus after the collision. 
 
Use conservation of linear 
momentum to obtain one relation for 
the final velocities: 
 

fnuc,nucfp,pip,p vmvmvm +=           (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of the 
velocity of approach: 
 

( ) ip,ip,inuc,fp,fnuc, vvvvv =−−=−   (2) 

To eliminate vnuc,f, solve equation (2) 
for vnuc,f, and substitute the result in 
equation (1): 
 

fp,ip,fnuc, vvv +=  

and 
( )fp,ip,nucfp,pip,p vvmvmvm ++=  

Solving for vp,f yields: 
ip,

nucp

nucp
fp, v

mm
mm

v
+

−
=                       

 
Substituting for mp and mnuc and 
simplifying yields: 
 

ip,ip,fp, 13
11

12
12 vv

mm
mmv −=

+
−

=  

Substitute the numerical value of  vp,i 
and evaluate vp,f: 
 

( ) m/s254m/s300
13
11

fp, −=−=v  

where the minus sign tells us that the 
velocity of the proton was reversed in 
the collision. 
 

Solving equation (2) for vnuc,f yields: fp,ip,fnuc, vvv +=  

 
Substitute numerical values and 
evaluate vnuc,f: forward m/s, 46

m/s 254m/s 300fnuc,

=

−=v
 

 
58 ••  A 3.0-kg block moving at 4.0 m/s makes a head-on elastic collision 
with a stationary block of mass 2.0 kg. Use conservation of momentum and the 
fact that the relative speed of recession equals the relative speed of approach to 
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find the velocity of each block after the collision. Check your answer by 
calculating the initial and final kinetic energies of each block. 
 
Picture the Problem We can use conservation of momentum and the definition 
of an elastic collision to obtain two equations in v2f and v3f that we can solve 
simultaneously. 
 
Use conservation of momentum to 
obtain one relation for the final 
velocities:  
 

2f23f33i3 vmvmvm +=                (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of the 
velocity of approach: 
 

( ) 3i3i2i3f2f vvvvv =−−=−       (2) 

Solve equation (2) for v3f , 
substitute in equation (1) to 
eliminate v3f, and solve for v2f to 
obtain: 
 

32

3i3
2f

2
mm
vmv

+
=  

 

Substitute numerical values and 
evaluate v2f: 

( )( )

m/s8.4

m/s80.4
kg3.0kg2.0
m/s4.0kg3.02

2f

=

=
+

=v
 

 
Use equation (2) to find v3f: 

m/s0.8

m/s4.0m/s4.83i2f3f

=

−=−= vvv
 

 
Evaluate Ki and Kf: 
 

( )( ) J24m/s4.0kg3.0 2
2
12

3i32
1

3ii ==== vmKK  
and 

( )( ) ( )( ) J24m/s4.8kg2.0m/s0.8kg3.0 2
2
12

2
1

2
2f22

12
3f32

1
2f3ff

=+=

+=+= vmvmKKK
 

 
Because Ki = Kf, we can conclude that the values obtained for v2f and v3f are 

consistent with the collision having been elastic. 
 
59 •• A block of mass m1 = 2.0 kg slides along a frictionless table with a 
speed of 10 m/s. Directly in front of it, and moving in the same direction with a 
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speed of 3.0 m/s, is a block of mass m2 = 5.0 kg. A massless spring that has a 
force constant k = 1120 N/m is attached to the second block as in Figure 8-47.  
(a) What is the velocity of the center of mass of the system? (b) During the 
collision, the spring is compressed by a maximum amount Δx. What is the value 
of Δx? (c) The blocks will eventually separate again. What are the final velocities 
of the two blocks measured in the reference frame of the table, after they 
separate? 
 
Picture the Problem We can find the velocity of the center of mass from the 
definition of the total momentum of the system. We’ll use conservation of 
energy to find the maximum compression of the spring and express the initial 
(i.e., before collision) and final (i.e., at separation) velocities. Finally, we’ll 
transform the velocities from the center-of-mass frame of reference to the table 
frame of reference. 
 
(a) Use the definition of the total 
momentum of a system to relate the 
initial momenta to the velocity of the 
center of mass: 

cmvvP
GGG

Mm
i

ii == ∑  

or 
( ) cm212i21i1 vmmvmvm +=+  

 
Solve for vcm: 

21

2i21i1
cm mm

vmvm
v

+
+

=  

 
Substitute numerical values and 
evaluate vcm: 
 

( )( ) ( )( )

m/s0.5m/s00.5

kg5.0kg2.0
m/s3.0kg5.0m/s10kg2.0

cm

==

+
+

=v

 
(b) Find the kinetic energy of the 
system at maximum compression  
(u1 = u2 = 0): 
 

( )( ) J87.5m/s5.00kg7.0 2
2
1

2
cm2

1
cm

==

== MvKK
 

Use conservation of mechanical 
energy to relate the kinetic energy of 
the system to the potential energy 
stored in the spring at maximum 
compression: 
 

0s =Δ+Δ UK  
or 

0sisfif =−+− UUKK  

Because Kf = Kcm and Usi = 0: ( ) 02
2
1

icm =Δ+− xkKK  
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Solving for Δx yields: 
 

( ) [ ]
k

Kvmvm
k

Kvmvm
k

KKx cm
2
i22

2
i11cm

2
i222

12
i112

1
cmi 222Δ −+

=
−+

=
−

=  

 
Substitute numerical values and evaluate Δx: 
 

( )( ) ( )( ) ( ) m25.0
N/m1120

J87.52
N/m1120

m/s3.0kg5.0m/s10kg2.0Δ
22

=⎥
⎦

⎤
−

+
=x  

 
(c) Find u1i, u2i, and u1f for this 
elastic collision: 

m/s5m/s50
and

m/s,2m/s5m/s3
m/s,5m/s5m/s10

cm1f1f

cm2i2i

cm1i1i

−=−=−=

−=−=−=
=−=−=

vvu

vvu
vvu

 

 
Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach and solve 
for u2f: 
 

( )1i2i1f2f uuuu −−=−     
and 

1f1i2i2f uuuu ++−=            
 

Substitute numerical values and 
evaluate u2f: 
 

( )
m/s2.0

m/s5.0m/s5.0m/s2.02f

=
−+−−=u

 

Transform u1f and u2f to the table 
frame of reference: 0

m/s5.0m/s5.0cm1f1f

=

+−=+= vuv
 

and 

m/s0.7

m/s5.0m/s0.2cm2f2f

=

+=+= vuv
 

 
60 •• A bullet of mass m is fired vertically from below into a thin horizontal 
sheet of plywood of mass M that is initially at rest, supported by a thin sheet of 
paper (Figure 8-48). The bullet punches through the plywood, which rises to a 
height H above the paper before falling back down. The bullet continues rising to 
a height h above the paper.  (a) Express the upward velocity of the bullet and the 
plywood immediately after the bullet exits the plywood in terms of h and H.  
(b) What is the speed of the bullet? (c) What is the mechanical energy of the 
system before and after the inelastic collision? (d) How much mechanical energy 
is dissipated during the collision? 
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Picture the Problem Let the system include the earth, the bullet, and the sheet 
of plywood. Then Wext = 0. Choose the zero of gravitational potential energy to 
be where the bullet enters the plywood. We can apply both conservation of 
energy and conservation of momentum to obtain the various physical quantities 
called for in this problem. 
 
(a) Use conservation of mechanical 
energy after the bullet exits the 
sheet of plywood to relate its exit 
speed to the height to which it 
rises: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

02
2
1 =+− mghmvm ⇒ ghvm 2=  

 

Proceed similarly to relate the 
initial velocity of the plywood to 
the height to which it rises: 
 

gHvM 2=  

(b) Apply conservation of 
momentum to the collision of the 
bullet and the sheet of plywood: 

fi pp
GG

=  
or 

Mmm Mvmvmv +=i  
 

Substitute for vm and vM and solve 
for vmi: 

gH
m
Mghvm 22i +=  

 
(c) Express the initial mechanical 
energy of the system (i.e., just 
before the collision): 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛++=

=

H
m
MhH

m
Mhmg

mvE m

2

2
i2

1
i

2  

 
Express the final mechanical 
energy of the system (that is, when 
the bullet and block have reached 
their maximum heights): 
 

( )MHmhgMgHmghE +=+=f  

 

(d) Use the work-energy theorem 
with Wext = 0 to find the energy 
dissipated by friction in the inelastic 
collision: 

0frictionif =+− WEE  
and 

⎥
⎦

⎤
⎢
⎣

⎡
−+=

−=

12

fifriction

m
M

H
hgMH

EEW
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61 •• A proton of mass m is moving with initial speed v0 directly toward the 
center of an α particle of mass 4m, which is initially at rest. Both particles carry 
positive charge, so they repel each other. (The repulsive forces are sufficient to 
prevent the two particles from coming into direct contact.) Find the speed v′ of the 
α particle (a) when the distance between the two particles is a minimum, and  
(b) later when the two particles are far apart. 
 
Picture the Problem We can find the velocity of the center of mass from the 
definition of the total momentum of the system. We’ll use conservation of 
energy to find the speeds of the particles when their separation is a minimum and 
when they are far apart.  
 
(a) Noting that when the distance 
between the two particles is a 
minimum, both move at the same 
speed, namely cmv , use the 
definition of the total momentum 
of a system to relate the initial 
momenta to the velocity of the 
center of mass: 
 

cmvvP
GGG

Mm
i

ii == ∑  

or 
( ) cmppip vmmvm α+= . 

 
 

Solve for cmv  to obtain: 

21

ipip
cm '

mm
vmvm

vv
+

+
== αα  

 
Additional simplification yields:  

0
0

cm 2.0
4

0' v
mm

mvvv =
+

+
==  

 
(b) Use conservation of linear 
momentum to obtain one relation 
for the final velocities: 
 

fpfp0p ααvmvmvm +=                  (1) 

Use conservation of mechanical 
energy to set the velocity of 
recession equal to the negative of 
the velocity of approach: 
 

( ) piipifpf vvvvv −=−−=− αα        (2) 

Solve equation (2) for vpf , 
substitute in equation (1) to 
eliminate vpf, and solve for vαf: 
 

α
α mm

vm
v

+
=

p

0p
f

2
 

Simplifying further yields: 
0

0
f 4.0

4
2 v

mm
mvv =
+

=α  
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62 •• An electron collides elastically with a hydrogen atom initially at rest. 
Assume all the motion occurs along a straight line. What fraction of the electron’s 
initial kinetic energy is transferred to the atom? (Take the mass of the hydrogen 
atom to be 1840 times the mass of an electron.) 
  
Picture the Problem Let the numeral 1 denote the electron and the numeral 2 the 
hydrogen atom. We can find the final velocity of the electron and, hence, the 
fraction of its initial kinetic energy that is transferred to the atom, by transforming 
to the center-of-mass reference frame, calculating the post-collision velocity of 
the electron, and then transforming back to the laboratory frame of reference. 
 
Express f, the fraction of the 
electron’s initial kinetic energy that 
is transferred to the atom: 
  

2

1i

f1
2
i112

1

2
f112

1

i

f

i

fi

11

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

−=
−

=

v
v

vm
vm

K
K

K
KKf

      (1) 

 
Find the velocity of the center of 
mass: 

21

i11
cm mm

vmv
+

=  

or, because m2 = 1840m1, 

1i
11

i11
cm 1841

1
1840

v
mm

vmv =
+

=  

 
Find the initial velocity of the 
electron in the center-of-mass 
reference frame: 
 1i

1i1icm1i1i

1841
11

1841
1

v

vvvvu

⎟
⎠
⎞

⎜
⎝
⎛ −=

−=−=
 

 
Find the post-collision velocity of 
the electron in the center-of-mass 
reference frame by reversing its 
velocity: 
  

1i1i1f 1
1841

1 vuu ⎟
⎠
⎞

⎜
⎝
⎛ −=−=  

To find the final velocity of the 
electron in the original frame, add 
vcm to its final velocity in the center-
of-mass reference frame: 
 

1icm1f1f 1
1841

2 vvuv ⎟
⎠
⎞

⎜
⎝
⎛ −=+=  

Substituting in equation (1) and 
simplifying yields: %217.01

1841
21

2

=⎟
⎠
⎞

⎜
⎝
⎛ −−=f  

 
63 •• [SSM] A16-g bullet is fired into the bob of a 1.5-kg ballistic 
pendulum (Figure 8-18). When the bob is at its maximum height, the strings make 
an angle of 60° with the vertical. The pendulum strings are 2.3 m long. Find the 
speed of the bullet prior to impact. 
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Picture the Problem The pictorial 
representation shows the bullet about to 
imbed itself in the bob of the ballistic 
pendulum and then, later, when the bob 
plus bullet have risen to their maximum 
height. We can use conservation of 
momentum during the collision to 
relate the speed of the bullet to the 
initial speed of the bob plus bullet (V). 
The initial kinetic energy of the bob 
plus bullet is transformed into 
gravitational potential energy when 
they reach their maximum height. 
Hence we apply conservation of 
mechanical energy to relate V to the 
angle through which the bullet plus bob 
swings and then solve the momentum 
and energy equations simultaneously 
for the speed of the bullet. 

 
 

θ

0g =Um M
bvr

cosL θ L

 

 
Use conservation of momentum to 
relate the speed of the bullet just 
before impact to the initial speed of 
the bob-bullet: 
 

( )VMmmv +=b ⇒ V
m
Mv ⎟

⎠
⎞

⎜
⎝
⎛ += 1b  (1) 

 

Use conservation of energy to relate 
the initial kinetic energy of the bob-
bullet to their final potential energy: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf to obtain: 
 

( )
( ) ( ) 0cos1

2
2
1

=−++

+−

θgLMm
VMm

 

 
Solving for V yields: ( )θcos12 −= gLV  

 
Substitute for V in equation (1) to 
obtain: 

( )θcos121b −⎟
⎠
⎞

⎜
⎝
⎛ += gL

m
Mv  

 
Substitute numerical values and evaluate vb: 
 

( )( )( ) km/s45.0cos601m2.3m/s9.812
kg0.016

kg1.51 2
b =°−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=v  

 
64 •• Show that in a one-dimensional elastic collision, if the mass and 
velocity of object 1 are m1 and v1i, and if the mass and velocity of object 2 are m2 
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and v2i, then their final velocities v1f  and v2f are given by 

      
v1f =

m1 − m2

m1 + m2
v1i +

2m2

m1 + m2
v2i  and 

   
v2f =

2m1

m1 + m2
v1i +

m2 − m1

m1 + m2
v2i .  

 
Picture the Problem We can apply conservation of linear momentum and the 
definition of an elastic collision to obtain equations relating the initial and final 
velocities of the colliding objects that we can solve for v1f and v2f. 
 
Apply conservation of momentum to 
the elastic collision of the particles 
to obtain: 
 

2i21i1f22f11 vmvmvmvm +=+     (1) 

Relate the initial and final kinetic 
energies of the particles in an elastic 
collision: 
 

2
i222

12
i112

12
f222

12
f112

1 vmvmvmvm +=+  

Rearrange this equation and factor to 
obtain: 

( ) ( )2
f1

2
i11

2
i2

2
f22 vvmvvm −=−  

or 
( )( )

( )( )1fi11fi11

2if22if22

vvvvm
vvvvm

+−=
+−

      (2) 

 
Rearrange equation (1) to obtain: 
 

( ) ( )1f1i12i2f2 vvmvvm −=−        (3) 
 

Divide equation (2) by equation 
(3) to obtain: 
 

1fi12if2 vvvv +=+  

Rearrange this equation to obtain 
equation (4): 
 

1ii2f2f1 vvvv −=−                     (4) 
 

Multiply equation (4) by m2 and 
add it to equation (1) to obtain: 
 

( ) ( ) 2i21i211f21 2 vmvmmvmm +−=+  

Solve for v1f to obtain: 
iif v

mm
mv

mm
mmv 2

21

2
1

21

21
1

2
+

+
+
−

=  

 
Multiply equation (4) by m1 and 
subtract it from equation (1) to 
obtain: 
 

( ) ( ) 1i1i212f221 2 vmvmmvmm +−=+  

Solve for v2f to obtain: 
i2

21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  
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Remarks: Note that the velocities satisfy the condition that 
( )1i2i1f2f vvvv −−=− . This verifies that the speed of recession equals the 

speed of approach. 
 
65 •• Investigate the plausibility of the results of Problem 64 by calculating 
the final velocities in the following limits: (a) When the two masses are equal, 
show that the particles ″swap″ velocities: 2i1f vv = i and 1i2f vv =  (b) If m2 >> m1, 
and 02i =v , show that 1i1f vv −≈ and 02f ≈v . (c) If m1 >> m2, and 02i =v , show 
that v1f ≈ v1i  and v2f ≈ 2v1i. 
 
Picture the Problem As in this problem, Problem 74 involves an elastic, one-
dimensional collision between two objects. Both solutions involve using the 
conservation of momentum equation 2i21i1f22f11 vmvmvmvm +=+ and the elastic 
collision equation 1ii2f2f1 vvvv −=− . In Part (a) we can simply set the masses 
equal to each other and substitute in the equations in Problem 64 to show that the 
particles "swap" velocities. In Part (b) we can divide the numerator and 
denominator of the equations in Problem 64 by m2 and use the condition that  
m2 >> m1 to show that v1f  ≈ −v1i+2v2i and v2f ≈ v2i. 
 
(a) From Problem 64 we have: 
 2i

21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=     (1) 

and 

2i
21

12
1i

21

1
2f

2 v
mm
mmv

mm
mv

+
−

+
+

=    (2) 

 
Set m1 = m2 = m to obtain: 

i2i2f1
2 vv

mm
mv =
+

=  

and 

1i1if2
2 vv

mm
mv =
+

=  

 
(b) Divide the numerator and 
denominator of both terms in 
equation (1) by m2 to obtain: 
 

2i

2

1
i1

2

1

2

1

f1

1

2

1

1
v

m
mv

m
m
m
m

v
+

+
+

−
=  

 
If m2 >> m1 and v2i = 0: 

i1f1 vv −≈  
 

Divide the numerator and 
denominator of both terms in 
equation (2) by m2 to obtain: 
 

2i

2

1

2

1

1i

2

1

2

1

2f

1

1

1

2
v

m
m

m
m

v

m
m

m
m

v
+

−
+

+
=  
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If m2 >> m1: 
2i2f vv ≈  

 
(c) Divide the numerator and 
denominator of equation (1) by m1 to 
obtain: 
 

2i

1

2

1

2

i1

1

2

1

2

f1

1

2

1

1
v

m
m
m
m

v

m
m
m
m

v
+

+
+

−
=  

 
If m1 >> m2 and v2i = 0: 
 i1f1 vv ≈  

 
Divide the numerator and denominator 
of equation (2) by m1 to obtain: 
 2i

1

2

1

2

1i

1

2
2f

1

1

1

2 v

m
m

m
m

v

m
mv

+

−
+

+
=  

 
If m1 >> m2 and v2i = 0: 
 1i2f 2vv ≈  

 
Remarks: Note that, in both parts of this problem, the velocities satisfy the 
condition that ( )1i2i1f2f vvvv −−=− . This verifies that the speed of recession 
equals the speed of approach. 
  
66 •• A bullet of mass m1 is fired horizontally with a speed v0 into the bob of 
a ballistic pendulum of mass m2. The pendulum consists of a bob attached to one 
end of a very light rod of length L. The rod is free to rotate about a horizontal axis 
through its other end. The bullet is stopped in the bob. Find the minimum v0 such 
that the bob will swing through a complete circle. 
 
Picture the Problem Choose Ug = 0 at the bob’s equilibrium position. 
Momentum is conserved in the collision of the bullet with bob and the initial 
kinetic energy of the bob plus bullet is transformed into gravitational potential 
energy as it swings up to the top of the circle. If the bullet plus bob just makes it 
to the top of the circle with zero speed, it will swing through a complete circle. 
 
Use conservation of momentum to 
relate the speed of the bullet just 
before impact to the initial speed 
of the bob plus bullet:  
 

( ) 02101 =+− Vmmvm  
                             

Solve for the speed of the bullet to 
obtain: 
 

V
m
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

1

2
0 1                            (1) 
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Use conservation of mechanical 
energy to relate the initial kinetic 
energy of the bob plus bullet to 
their potential energy at the top of 
the circle: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf: 
 

( ) ( ) ( ) 0221
2

212
1 =+++− LgmmVmm  

Solving for V yields: 
 

gLV 2=  

Substitute for V in equation (1) and 
simplify to obtain: gL

m
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

1

2
0 12  

 
67 •• A bullet of mass m1is fired horizontally with a speed v into the bob of 
a ballistic pendulum of mass m2 (Figure 8-19). Find the maximum height h 
attained by the bob if the bullet passes through the bob and emerges with a speed 
v/3. 
 
Picture the Problem Choose Ug = 0 at the equilibrium position of the ballistic 
pendulum. Momentum is conserved in the collision of the bullet with the bob 
and kinetic energy is transformed into gravitational potential energy as the bob 
swings up to its maximum height.  
 
Letting V represent the initial 
speed of the bob as it begins its 
upward swing, use conservation of 
momentum to relate this speed to 
the speeds of the bullet just before 
and after its collision with the bob:  
 

( ) Vmvmvm 23
1

11 += ⇒ v
m
m

V
2

1

3
2

=  

                             

Use conservation of energy to 
relate the initial kinetic energy of 
the bob to its potential energy at its 
maximum height: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf:  02
2

22
1 =+− ghmVm ⇒

g
Vh
2

2

=  
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Substitute for V in the expression 
for h and simplify to obtain: 

gm
vm

g

v
m
m

h 2
2

22
1

2

2

1

9
2

2
3
2

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  

 
68 •• A heavy wooden block rests on a flat table and a high-speed bullet is 
fired horizontally into the block, the bullet stopping in it. How far will the block 
slide before coming to a stop? The mass of the bullet is 10.5 g, the mass of the 
block is 10.5 g, the bullet’s impact speed is 750 m/s, and the coefficient of kinetic 
friction between the block and the table is 0.220. (Assume that the bullet does not 
cause the block to spin.) 
   
Picture the Problem Let the mass of the bullet be m, that of the wooden block M, 
the pre-collision velocity of the bullet v, and the post-collision velocity of the 
block+bullet be V. We can use conservation of momentum to find the velocity of 
the block with the bullet imbedded in it immediately after their perfectly inelastic 
collision. We can use Newton’s 2nd law to find the acceleration of the sliding 
block and a constant-acceleration equation to find the distance the block slides. 
 

M
m mM +

( )gmM
r

+

nF
r

kf
r

v
r

V
r

Δ

Before Aftery Immediatel Later Sometime

x  
 
Using a constant-acceleration 
equation, relate the velocity of the 
block+bullet just after their collision 
to their acceleration and 
displacement before stopping:  
 

xaV Δ+= 20 2 ⇒
a

Vx
2

2

−=Δ  

because the final velocity of the 
block+bullet is zero. 

Use conservation of momentum to 
relate the pre-collision velocity of 
the bullet to the post-collision 
velocity of the block+bullet: 
 

( )VMmmv += ⇒ v
Mm

mV
+

=  

Substitute for V in the expression for 
Δx to obtain: 

2

2
1

⎟
⎠
⎞

⎜
⎝
⎛

+
−=Δ v

Mm
m

a
x                

 
Apply aF GG

m=∑ to the block+bullet 
(see the force diagram above): 

( )aMmfFx +=−=∑ k           (1) 
and 

( ) 0n =+−=∑ gMmFFy         (2) 
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Use the definition of the coefficient 
of kinetic friction and equation (2) to 
obtain: 
 

( )gMmFf +== knkk μμ  

Substituting for fk in equation (1) 
yields: 
 

( ) ( )aMmgMm +=+− kμ  
 

Solve for a to obtain: 
 

ga kμ−=  

Substituting for a in the expression 
for Δx  yields: 

2

k2
1

⎟
⎠
⎞

⎜
⎝
⎛

+
=Δ v

Mm
m

g
x

μ
 

 
Substitute numerical values and evaluate Δx: 
 

( )( ) ( ) cm0.13m/s750
kg10.5kg0.0105

kg0.0105
m/s9.810.2202

1Δ
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=x  

 
69 •• [SSM] A 0.425-kg ball with a speed of 1.30 m/s rolls across a level 
surface toward an open 0.327-kg box that is resting on its side. The ball enters the 
box, and the box (with the ball inside slides across the surface a distance of  
x = 0.520 m. What is the coefficient of kinetic friction between the box and the 
table? 
 
Picture the Problem The collision of the ball with the box is perfectly inelastic 
and we can find the speed of the box-and-ball immediately after their collision by 
applying conservation of momentum. If we assume that the kinetic friction force 
is constant, we can use a constant-acceleration equation to find the acceleration of 
the box and ball combination and the definition of μk to find its value. 
 
Using its definition, express the 
coefficient of kinetic friction of the 
table: 
 

( )
( ) g

a
gmM
amM

F
f

=
+
+

==
n

k
kμ        (1) 

Use conservation of momentum to 
relate the speed of the ball just 
before the collision to the speed of 
the ball+box immediately after the 
collision: 
 

( )vMmMV += ⇒
Mm

MVv
+

=  (2) 

Use a constant-acceleration equation 
to relate the sliding distance of the 
ball+box to its initial and final 
velocities and its acceleration: 
 

xavv Δ+= 22
i

2
f  

or, because vf = 0 and vi = v, 

xav Δ+= 20 2 ⇒
x

va
Δ

−=
2

2
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Substitute for a in equation (1) to 
obtain: xg

v
Δ

=
2

2

kμ  

 
Use equation (2) to eliminate v: 
 

2

2

k

1Δ2
1

Δ2
1

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+
=⎟

⎠
⎞

⎜
⎝
⎛

+
=

M
m

V
xgMm

MV
xg

μ  

 
Substitute numerical values and evaluate μk: 
 

( )( ) 0529.0
1

kg0.425
kg0.327
m/s1.30

m0.520m/s9.812
1

2

2k =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=μ  

 
70 •• Tarzan is in the path of a pack of stampeding elephants when Jane 
swings in to the rescue on a rope vine, hauling him off to safety. The length of the 
vine is 25 m, and Jane starts her swing with the rope horizontal. If Jane’s mass is 
54 kg, and Tarzan’s is 82 kg, to what height above the ground will the pair swing 
after she rescues him? (Assume that the rope is vertical when she grabs him.) 
 
Picture the Problem Jane’s collision 
with Tarzan is a perfectly inelastic 
collision.  We can find her speed v1 just 
before she grabs Tarzan from 
conservation of energy and their speed 
V just after she grabs him from 
conservation of momentum. Their 
kinetic energy just after their collision 
will be transformed into gravitational 
potential energy when they have 
reached their greatest height h. 

 

0g =U

h
TJ+m

Jm
0

1

2

 

 
Use conservation of energy to relate 
the potential energy of Jane and 
Tarzan at their highest point (2) to 
their kinetic energy immediately 
after Jane grabbed Tarzan: 
 

12 KU =  
or 

2
TJ2

1
TJ Vmghm ++ = ⇒

g
Vh
2

2

=        (1) 
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Apply conservation of linear 
momentum to relate Jane’s velocity 
just before she collides with Tarzan 
to their velocity just after their 
perfectly inelastic collision: 
 

0TJ1J =− + Vmvm ⇒ 1
TJ

J v
m
mV

+

=   (2) 

Apply conservation of mechanical 
energy to relate Jane’s kinetic 
energy at 1 to her potential energy at 
0: 

01 UK =  
or 

gLmvm J
2
1J2

1 = ⇒ gLv 21 =  
 

Substitute for v1 in equation (2) to 
obtain: gL

m
mV 2

TJ

J

+

=  

 
Substitute for V in equation (1) and 
simplify: 
 

L
m
mgL

m
m

g
h

2

TJ

J

2

TJ

J 2
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

++

 

 
Substitute numerical values and 
evaluate h: ( ) m3.9m25

kg82kg45
kg45

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=h  

 
71 •• [SSM] Scientists estimate that the meteorite responsible for the 
creation of Barringer Meteorite Crater in Arizona weighed roughly 2.72 × 105 
tonne (1 tonne = 1000 kg) and was traveling at a speed of 17.9 km/s.  Take 
Earth’s orbital speed to be about 30.0 km/s. (a) What should the direction of 
impact be if Earth’s orbital speed is to be changed by the maximum possible 
amount? (b) Assuming the condition of collision in Part (a), estimate the 
maximum percentage change in Earth’s orbital speed as a result of this collision. 
(c) What mass asteroid, having a speed equal to Earth’s orbital speed, would be 
necessary to change Earth’s orbital speed by 1.00%? 
 
Picture the Problem Let the system include Earth and the asteroid. Choose a 
coordinate system in which the direction of Earth’s orbital speed is the +x 
direction. We can apply conservation of linear momentum to the perfectly 
inelastic collision of Earth and the asteroid to find the percentage change in 
Earth’s orbital speed as well as the mass of an asteroid that would change Earth’s 
orbital speed by 1.00%. Note that the following solution neglects the increase in 
Earth’s orbital speed due to the gravitational pull of the asteroid during descent. 
 
(a)  For maximum slowing of Earth, the collision would have to have taken place 
with the meteorite impacting Earth along a line exactly opposite Earth’s orbital 
velocity vector. In this case, we have a head-on inelastic collision. 
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(b) Express the percentage change in 
the Earth’s orbital speed as a result 
of the collision: 
 

Earth

f

Earth

fEarth

Earth

1Δ
v

v
v

vv
v

v
−=

−
=         (1) 

where vf is Earth’s orbital speed after 
the collision. 
 

Apply the conservation of linear 
momentum to the system to obtain: 

0Δ if =−= ppp
GGG  

or, because the asteroid and the earth 
are moving horizontally, 

0i,f, =− xx pp  

 
Because the collision is perfectly inelastic: 
 

( ) ( ) 0asteroidasteroidEarthEarthfasteroidEarth =−−+ vmvmvmm  
 

Solving for vf yields: 
 

Earth

asteroid

asteroid
Earth

asteroid

Earth

asteroid

Earth

asteroidEarth

asteroidasteroid

asteroidEarth

EarthEarth

asteroidEarth

asteroidasteroidEarthEarth
f

11
m

m

v
m

m

m
m
v

mm
vm

mm
vm

mm
vmvmv

+
−

+
=

+
−

+
=

+
−

=

 

 
Because masteroid << mEarth: 
 

1

Earth

asteroid
asteroid

Earth

asteroid
Earth

Earth

asteroid

asteroid
Earth

asteroid

Earthf 1
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

+
−≈

m
mv

m
mv

m
m

v
m

m

vv  

 

Expanding 
1

Earth

asteroid1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

m
m binomially 

yields: 
 

sorder termhigher  

11
Earth

asteroid

1

Earth

asteroid

+

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

m
m

m
m

 

Substitute for 
1

Earth

asteroid1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

m
m in the 

expression for vf to obtain: 
asteroid

Earth

asteroid
Earth

Earth

asteroid
asteroid

Earth

asteroid
Earthf 1

v
m

mv

m
mv

m
mvv

−≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−≈
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Substitute for vf in equation (1) to obtain: 
 

Earth

asteroid
Earth

asteroid

Earth

asteroid
Earth

asteroid
Earth

Earth

1Δ
v

v
m

m

v

v
m

mv

v
v

=
−

−=  

 
Using data found in the appendices of your text or given in the problem statement, 

substitute numerical values and evaluate 
Earth

Δ
v

v
: 

 

( )

%1071.2
km/s 0.30

kg 1098.5

km/s 9.17
 tonne1

kg 10 tonne1072.2

Δ 15
24

3
5

Earth

−×=×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××

=
v

v  

 
(c) If the asteroid is to change the 
earth’s orbital speed by 1%: 

100
1

Earth

asteroid
Earth

asteroid

=
v

v
m

m

 

 
Solve for masteroid to obtain: 
 asteroid

EarthEarth
asteroid 100v

mvm =  

 
Substitute numerical values and evaluate masteroid: 
 

( )( )
( ) kg 1000.1

km/s 9.17100
kg 1098.5km/s 0.30 23

24

asteroid ×=
×

=m  

 
Remarks: The mass of this asteroid is approximately that of the moon! 
 
72 ••• William Tell shoots an apple from his son’s head.   The speed of the 
125-g arrow just before it strikes the apple is 25.0 m/s, and at the time of impact it 
is traveling horizontally.  If the arrow sticks in the apple and the arrow/apple 
combination strikes the ground 8.50 m behind the son’s feet, how massive was the 
apple? Assume the son is 1.85 m tall. 
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Picture the Problem Let the system include Earth, the apple, and the arrow. 
Choose a coordinate system in which the direction the arrow is traveling before 
imbedding itself in the apple is the +x direction. We can apply conservation of 
linear momentum to express the mass of the apple in terms of the speed of the 
arrow-apple combination just after the collision and then use constant-
acceleration equations to find this post-collision speed. 
 
Apply conservation of linear 
momentum to the system to obtain: 

0Δ if =−= ppp GGG  
or, because the arrow and apple are 
moving horizontally, 

0i,f, =− xx pp  

 
Because the collision is perfectly 
inelastic (the arrow is imbedded in 
the apple): 
 

( ) 0arrowi,arrowapplearrow =−+ vmvmm x  

 

Solving for mapple yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1arrowi,

arrowapple
xv

v
mm          (1) 

 
Using constant-acceleration 
equations, express the horizontal and 
vertical displacements of the apple-
arrow after their collision: 
 

tvx xΔΔ =                                  (2) 
and 

( )2
2
1 ΔΔ tgy = ⇒

g
yt 2ΔΔ =                      

Substituting for Δt in equation (2) 
yields: 
 

g
yvx x

2ΔΔ = ⇒
y

gxvx 2Δ
Δ=  

Substitute for vx in equation (1) to 
obtain: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−= 1

2Δ
Δ

arrowi,
arrowapple

y
gx

v
mm  
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Substitute numerical values and evaluate mapple: 
 

( )
( ) ( )

g 0111

m 1.852
m/s 81.9m 50.8

m/s 0.25kg 125.0
2apple =

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−=m  

 
Explosions and Radioactive Decay 

73 •• [SSM] The beryllium isotope 8Be is unstable and decays into two α 
particles (mα = 6.64 × 10–27 kg) and releases 1.5 × 10–14 J of energy. Determine 
the velocities of the two α particles that arise from the decay of a 8Be nucleus at 
rest, assuming that all the energy appears as kinetic energy of the particles. 
 
Picture the Problem This nuclear reaction is 4Be → 2α + 1.5 × 10−14 J. In order 
to conserve momentum, the alpha particles will have move in opposite directions 
with the same velocities. We’ll use conservation of energy to find their speeds. 
 
Letting E  represent the energy 
released in the reaction, express 
conservation of energy for this 
process: 
 

( ) EvmK == 2
2
122 ααα ⇒

α
α m

Ev =  

Substitute numerical values and 
evaluate vα: m/s105.1

kg106.64
J101.5 6

27

14

×=
×
×

= −

−

αv  

 
74 •• The light isotope of lithium, 5Li, is unstable and breaks up 
spontaneously into a proton and an α particle. During this process, 3.15 × 10–13 J 
of energy are released, appearing as the kinetic energy of the two decay products. 
Determine the velocities of the proton and a particle that arise from the decay of a 
5Li nucleus at rest. (Note: The masses of the proton and alpha particle are  
mp = 1.67 × 10–27 kg and mα = 6.64 × 10–27 kg.) 
 
Picture the Problem This nuclear reaction is 5Li → α + p + 3.15 × 10−13 J. To 
conserve momentum, the alpha particle and proton must move in opposite 
directions. We’ll apply both conservation of energy and conservation of 
momentum to find the speeds of the proton and alpha particle. 
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Use conservation of momentum in 
this process to express the alpha 
particle’s speed in terms of the 
proton’s: 
 

0fi == pp  
and 

αα vmvm −= pp0  

 

Solve for vα and substitute for mα 
to obtain: p4

1
p

p

p
p

p

4
vv

m
m

v
m
m

v ===
α

α  

 
Letting E  represent the energy 
released in the reaction, apply 
conservation of energy to the 
process: 

EKK =+ αp  

or 
Evmvm =+ 2

2
12

pp2
1

αα  

 
Substitute for vα: ( ) Evmvm =+ 2

p4
1

2
12

pp2
1

α  

 
Solve for vp and substitute for mα 
to obtain: 

αmm
Ev
+

=
p

p 16
32  

 
Substitute numerical values and evaluate vp: 
 

( )
( ) m/s1074.1

kg 1064.6kg101.6761
J103.1532 7

2727

13

p ×=
×+×

×
= −−

−

v  

 
Use the relationship between vp 
and vα to obtain vα: 

( )
m/s104.34

m/s101.74
6

7
4
1

p4
1

×=

×== vvα
 

 
75 ••• A 3.00-kg projectile is fired with an initial speed of 120 m/s at an 
angle of 30.0º with the horizontal. At the top of its trajectory, the projectile 
explodes into two fragments of masses 1.00 kg and 2.00 kg. At 3.60 s after the 
explosion the 2.00-kg fragment lands on the ground directly below the point of 
explosion. (a) Determine the velocity of the 1.00-kg fragment immediately after 
the explosion. (b) Find the distance between the point of firing and the point at 
which the 1.00-kg fragment strikes the ground. (c) Determine the energy released 
in the explosion. 
  
Picture the Problem The pictorial representation shows the projectile at its 
maximum elevation and is moving horizontally. It also shows the two fragments 
resulting from the explosion. We’ll choose the system to include the projectile 
and the earth so that no external forces act to change the momentum of the 
system during the explosion. With this choice of system we can also use 
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conservation of energy to determine the elevation of the projectile when it 
explodes. We’ll also find it useful to use constant-acceleration equations in our 
description of the motion of the projectile and its fragments. Neglect air 
resistance. 

x0g =U

0v
r

1v
r

2v
r

θ

φ

3v
r

Δx Δx Δ+ x'=d

Δ y

y

1

2

3

0
 

 
(a) Use conservation of linear 
momentum to relate the velocity of 
the projectile before its explosion 
to the velocities of its two parts 
after the explosion: 
 

jjii

vvv
pp

ˆˆˆˆ
22111133

221133

fi

yyx vmvmvmvm

mmm

−+=

+=
=

GGG
GG

 

The only way this equality can hold 
is if the x and y components are 
equal: 

2211

1133

and

yy

x

vmvm

vmvm

=

=
 

 
Express v3 in terms of v0 and 
substitute for the masses to obtain: ( ) m/s312cos30.0m/s1203

cos33 031

=°=
== θvvvx  

and 
21 2 yy vv =                                    (1) 

 
Using a constant-acceleration 
equation with the downward 
direction positive, relate vy2 to the 
time it takes the 2.00-kg fragment 
to hit the ground: 
 

( )2
2
1

2 tgtvy y Δ+Δ=Δ  

( )
t

tgyvy Δ
Δ−Δ

=
2

2
1

2                     (2) 

With Ug = 0 at the launch site, 
apply conservation of energy to the 
climb of the projectile to its 
maximum elevation:  

0=Δ+Δ UK  
Because Kf = Ui = 0, 0fi =+− UK  
or 

03
2

032
1 =Δ+− ygmvm y  

 
Solving for Δy yields: ( )

g
v

g
v

y y

2
sin

2
Δ

2
0

2
0 θ

==  
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Substitute numerical values and 
evaluate Δy: 

( )[ ]
( ) m183.5

m/s9.812
sin30.0m/s120Δ 2

2

=
°

=y  

 
Substitute in equation (2) and 
evaluate vy2: 

( )( )

m/s33.31
s3.60

s3.60m/s9.81m183.5 22
2
1

2

=

−
=yv

 

 
Substitute in equation (1) and 
evaluate vy1: 
 

( ) m/s66.62m/s33.3121 ==yv  

 

Express 1vG in vector form: 

( ) ( ) ji

jiv

ˆm/s6.66ˆm/s312

ˆˆ
111

+=

+= yx vvG
 

 
(b) Express the total distance d 
traveled by the 1.00-kg fragment: 
 

'xxd Δ+Δ=                                (3) 

Relate Δx to v0 and the time-to-
explosion: 
 

( )( )exp0 ΔcosΔ tvx θ=                  (4) 

 

Using a constant-acceleration 
equation, express Δtexp: g

v
g

v
t y θsin00
exp ==Δ  

 
Substitute numerical values and 
evaluate Δtexp: 
 

( ) s6.116
m/s9.81
sin30.0m/s120Δ 2exp =

°
=t  

Substitute in equation (4) and 
evaluate Δx: 
 

( )( )( )
m635.6

s6.116cos30.0m/s120Δ
=

°=x
 

Relate the distance traveled by the 
1.00-kg fragment after the 
explosion to the time it takes it to 
reach the ground: 
 

t'vx' x Δ=Δ 1                                       

Using a constant-acceleration 
equation, relate the time Δt′ for the 
1.00-kg fragment to reach the 
ground to its initial speed in the y 
direction and the distance to the 
ground: 
 

( )2
2
1

1 t'gt'vy y Δ−Δ=Δ  
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Substitute to obtain the quadratic 
equation: 
 

( ) ( ) 0s4.37s6.13 22 =−Δ−Δ t't'  
 

Solve the quadratic equation to 
find Δt′: 
 

Δt′ = 15.945 s 
 

Substitute in equation (3) and 
evaluate d: ( )( )

km5.6

s15.945m/s312m635.6
ΔΔΔΔ 1

=

+=
+=+= t'vxx'xd x

 

 
(c) Express the energy released 
in the explosion: 
 

ifexp KKKE −=Δ=                   (5) 

Find the kinetic energy of the 
fragments after the explosion:  ( ) ( ) ( )[ ]

( )( )
kJ0.52

m/s33.3kg2.00

m/s66.6m/s312kg1.00
2

2
1

22
2
1

2
222

12
112

1
21f

=

+

+=

+=+= vmvmKKK

 
Find the kinetic energy of the 
projectile before the explosion: 

( )
( ) ( )[ ]

kJ2.16
30cosm/s201kg3.00

cos
2

2
1

2
032

12
332

1
i

=

°=

== θvmvmK

 

 
Substitute in equation (5) to 
determine the energy released in 
the explosion: 

kJ35.8

kJ16.2kJ0.52ifexp

=

−=−= KKE
 

 
76 ••• The boron isotope 9B is unstable and disintegrates into a proton and 
two α particles.  The total energy released as kinetic energy of the decay products 
is 4.4 × 10–14 J.  After one such event, with the 9B nucleus at rest prior to decay, 
the velocity of the proton is measured as 6.0 × 106 m/s. If the two a particles have 
equal energies, find the magnitude and the direction of their velocities with 
respect to the direction of the proton. 
 



Conservation of Linear Momentum 
 

 

777

Picture the Problem This nuclear 
reaction is  

9B → 2α + p + 4.4×10−14 J. 
Assume that the proton moves in the  
–x direction as shown in the diagram. 
The sum of the kinetic energies of the 
decay products equals the energy 
released in the decay. We’ll use 
conservation of momentum to find the 
angle between the velocities of the 
proton and the alpha particles. Note 
that αα v'v = . 

α

α

vrα

α'v
r

θ

θ

pv
r

x

y

p

 
 
Express the energy released to the 
kinetic energies of the decay 
products: 

relp 2 EKK =+ α  

or 
( ) rel

2
2
12

pp2
1 2 Evmvm =+ αα  

 
Solving for vα yields: 

α
α m

vmE
v

2
pp2

1
rel −

=  

 
Substitute numerical values and evaluate vα: 
 

( )( )

m/s104.1

m/s1044.1
kg106.64

m/s106.0kg101.67
kg106.64
J104.4

6

6
27

2627
2
1

27

14

×=

×=
×

××
−

×
×

= −

−

−

−

αv
 

 
Given that the boron isotope was 
at rest prior to the decay, use 
conservation of momentum to 
relate the momenta of the decay 
products: 
 

0if == pp GG   
or, because 0f =xp , 

( ) 0cos2 pp =− vmvm θαα  

 

Substituting for mα to obtain: 
 

( ) 0cos42 ppp =− vmvm θα  

Solving for θ yields: 
⎥
⎦

⎤
⎢
⎣

⎡
= −

α

θ
v
v

8
cos p1  
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Substitute numerical values and 
evaluate θ : ( ) °±=⎥

⎦

⎤
⎢
⎣

⎡
×

×
= − 59

m/s101.448
m/s106.0cos 6

6
1θ  

 
Let θ ′ equal the angle the velocities 
of the alpha particles make with that 
of the proton: 

( ) °±=°−°±= 12159180'θ  

 
Coefficient of Restitution 
 
77 • [SSM] During the design of a new alloy of steel, you are in charge 
of measuring its coefficient of restitution. You convince your engineering team to 
accomplish this task by simply dropping a small ball onto a plate, with both the 
ball and the plate made from the experimental alloy. If the ball is dropped from a 
height of 3.0 m and rebounds to a height of 2.5 m, what is the coefficient of 
restitution? 
 
Picture the Problem The coefficient of restitution is defined as the ratio of the 
velocity of recession to the velocity of approach. These velocities can be 
determined from the heights from which the ball was dropped and the height to 
which it rebounded by using conservation of mechanical energy. 
 
Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and 
recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface of the 
steel plate, apply conservation of 
energy to obtain: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0,  

0if =−UK  

Substituting for Kf and Ui yields: 0app
2
app2

1 =− mghmv  

 
Solving for vapp yields: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  
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Substitute numerical values and 
evaluate e: 91.0

m3.0
m2.5

==e  

 
78 • According to the official rules of racquetball, a ball acceptable for 
tournament play must bounce to a height of between 173 and 183 cm when 
dropped from a height of 254 cm at room temperature. What is the acceptable 
range of values for the coefficient of restitution for the racquetball–floor system? 
 
Picture the Problem The coefficient of restitution is defined as the ratio of the 
velocity of recession to the velocity of approach. These velocities can be 
determined from the heights from which the ball was dropped and the height to 
which it rebounded by using conservation of mechanical energy. 
 
Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface of the 
steel plate, the mechanical energy of 
the ball-Earth system is: 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0if =−UK  
 

Substituting for Kf and Ui yields: 
 

0app
2
app2

1 =− mghmv  

Solve for vapp: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 
Substitute numerical values and 
evaluate emin: 

825.0
cm254
cm173

min ==e  

 
Substitute numerical values and 
evaluate emax: 849.0

cm254
cm183

max ==e  

and 849.0825.0 ≤≤ e  
  
79 •• A ball bounces to 80 percent of its original height. (a) What fraction of 
its mechanical energy is lost each time it bounces? (b) What is the coefficient of 
restitution of the ball–floor system?  
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Picture the Problem Because the rebound kinetic energy is proportional to the 
rebound height, the percentage of mechanical energy lost in one bounce can be 
inferred from knowledge of the rebound height. The coefficient of restitution is 
defined as the ratio of the velocity of recession to the velocity of approach. These 
velocities can be determined from the heights from which an object was dropped 
and the height to which it rebounded by using conservation of mechanical energy. 
 
(a) We know, because the mechanical energy of the ball-earth system is constant, 
that the kinetic energy of an object dropped from a given height h is proportional 
to h. If, for each bounce of the ball, hrec = 0.80happ, 20% of its mechanical energy 
is lost. 
 
(b)  Use its definition to relate the 
coefficient of restitution to the 
velocities of approach and recession: 
 

app

rec

v
ve =  

Letting Ug = 0 at the surface from 
which the ball is rebounding, the 
mechanical energy of the ball is: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0if =−UK  
 

Substituting for Kf and Ui yields: 0app
2
app2

1 =− mghmv  

 
Solve for vapp: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute in the equation for e to 
obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 

Substitute for 
app

rec

h
h to obtain: 89.080.0 ==e  

 
80 •• A 2.0-kg object moving to the right at 6.0 m/s collides head-on with a 
4.0-kg object that is initially at rest. After the collision, the 2.0-kg object is 
moving to the left at 1.0 m/s. (a) Find the velocity of the 4.0-kg object after the 
collision. (b) Find the energy lost in the collision. (c) What is the coefficient of 
restitution for these objects? 
 
Picture the Problem Let the numerals 2 and 4 refer, respectively, to the 2.0-kg 
object and the 4.0-kg object. Choose a coordinate system in which the direction 
the 2.0-kg object is moving before the collision is the positive x direction and let 
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the system consist of Earth, the surface on which the objects slide, and the 
objects. Then we can use conservation of momentum to find the velocity of the 
recoiling 4.0-kg object. We can find the energy transformed in the collision by 
calculating the difference between the pre- and post-collision kinetic energies and 
find the coefficient of restitution from its definition. 
 
(a) Use conservation of  linear 
momentum in one dimension to 
relate the initial and final momenta 
of the participants in the collision: 
 

f22f44i22

fi

or
vmvmvm −=

= pp GG

 

Solve for the final velocity of the 
4.0-kg object: 4

f22i22
f4 m

vmvmv +
=  

 
Substitute numerical values and 
evaluate v4f: 

( )( )

m/s3.5m/s3.50

kg4.0
m/s1.0m/s6.0kg2.0

f4

==

+
=v

 

 
(b) Express the energy lost in terms 
of the kinetic energies before and 
after the collision: 

( )
( )[ ]2

f44
2
f2

2
i222

1

2
f442

12
f222

12
i222

1

filost

vmvvm

vmvmvm

KKE

−−=

+−=

−=

 

 
Substitute numerical values and evaluate Elost: 
 

( ) ( ) ( ){ }( ) ( )( )[ ] J11m/s3.50kg4.0m/s1.0m/s6.0kg2.0 222
2
1

lost =−−=E  

 
 

(c) From the definition of the 
coefficient of restitution we have: 
 

i2

f2f4

app

rec

v
vv

v
ve −

==  

Substitute numerical values and 
evaluate e: 

( ) 0.75
m/s6.0

m/s1.0m/s3.50
=

−−
=e  

 
81 •• A 2.0-kg block moving to the right with speed of 5.0 m/s collides with 
a 3.0-kg block that is moving in the same direction at 2.0 m/s, as in Figure 8-49. 
After the collision, the 3.0-kg block moves to the right at 4.2 m/s. Find (a) the 
velocity of the 2.0-kg block after the collision and (b) the coefficient of restitution 
between the two blocks. 
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Picture the Problem Let the numeral 2 refer to the 2.0-kg block and the numeral 
3 to the 3.0-kg block. Choose a coordinate system in which the direction the 
blocks are moving before the collision is the +x direction and let the system 
consist of Earth, the surface on which the blocks move, and the blocks. Then we 
can use conservation of momentum to find the velocity of the 2.0-kg block after 
the collision. We can find the coefficient of restitution from its definition. 
 
(a) Use conservation of  linear 
momentum in one dimension to 
relate the initial and final momenta 
of the participants in the collision: 
 

f33f223i3i22

fi

or
vmvmvmvm +=+

= pp GG

 

Solve for the final velocity of the 
2.0-kg object: 
 

2

f33i33i22
f2 m

vmvmvmv −+
=  

Substitute numerical values and evaluate v2f: 
 

( )( ) ( )( ) m/s7.1m/s70.1
kg2.0

m/s4.2m/s2.0kg3.0m/s5.0kg2.0
f2 ==

−+
=v  

 
(b) From the definition of the 
coefficient of restitution we have: i3i2

f2f3

app

rec

vv
vv

v
ve

−
−

==  

 
Substitute numerical values and 
evaluate e: 

0.83
m/s2.0m/s5.0
m/s7.1m/s2.4

=
−
−

=e  

 
82 ••• To keep homerun records and distances consistent from year to year, 
organized baseball randomly checks the coefficient of restitution between new 
baseballs and wooden surfaces similar to that of an average bat. Suppose you are 
in charge of making sure that no ″juiced″ baseballs are produced.  (a) In a random 
test, you find one that when dropped from 2.0 m rebounds 0.25 m. What is the 
coefficient of restitution for this ball?  (b) What is the maximum distance home 
run shot you would expect from this ball, neglecting any effects due to air 
resistance and making reasonable assumption for bat speeds and incoming pitch 
speeds? Is this a ″juiced″ ball, a ″normal″ ball, or a ″dead″ ball? 
 
Picture the Problem The coefficient of restitution is defined as the ratio of the 
velocity of recession to the velocity of approach. These velocities can be 
determined from the heights from which the ball was dropped and the height to 
which it rebounded by using conservation of mechanical energy. We can use the 
same elevation range equation to find the maximum home run you would expect 
from the ball with the experimental coefficient of restitution. 
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(a) The coefficient of restitution is 
the ratio of the speeds of approach 
and recession: 
 

app

rec

v
ve =                                      (1) 

Letting Ug = 0 at the surface of from 
which the ball rebounds, the 
mechanical energy of the ball-earth 
system is: 
 

0=Δ+Δ UK  
Because Ki = Uf = 0, 0if =−UK  
 

Substituting for Kf and Ui yields: 
 

0app
2
app2

1 =− mghmv  

Solve for vapp to obtain: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute for vrec and vapp in 
equation (1) and simplify to obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 
Substitute numerical values and 
evaluate e: 35.03536.0

m0.2
m25.0

===e  

 
(b) The ″same-elevation″ range 
equation is: 
 

g
ve

g
vR

θθ 2sin2sin 2
app

22
rec ==   (2) 

 
vapp is the sum of the speed of the 
ball and the speed of the bat: 
 

batballapp vvv +=  

Assuming that the bat travels about  
1 m in 0.2 s yields: 
 

m/s 5
s0.2

m 1
bat ==v  

Assuming that the speed of the 
baseball thrown by the pitcher is 
close to 100 mi/h yields: 
 

m/s 45ball ≈v  

Evaluate appv to obtain: 

 

m/s 50m/s 5m/s 45app =+=v  
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Assuming a 45° launch angle, 
substitute numerical values in 
equation (2) and evaluate R: 
 

( ) ( ) ( )

m 32
m/s 81.9

452sinm/s 503536.0
2

22

≈

°
=R

 

 
Because home runs must travel at least 100 m in modern major league ballparks, 

this is a ″dead″ ball and should be tossed out. 
 
83 •• [SSM] To make puck handling easy, hockey pucks are kept frozen 
until they are used in the game. (a) Explain why room temperature pucks would 
be more difficult to handle on the end of a stick than a frozen puck. (Hint: Hockey 
pucks are made of rubber.) (b) A room-temperature puck rebounds 15 cm when 
dropped onto a wooden surface from 100 cm.  If a frozen puck has only half the 
coefficient of restitution of a room-temperature one, predict how high the frozen 
puck would rebound under the same conditions. 
 
Picture the Problem The coefficient of restitution is defined as the ratio of the 
velocity of recession to the velocity of approach. These velocities can be 
determined from the heights from which the ball was dropped and the height to 
which it rebounded by using conservation of mechanical energy.  
 
(a) At room-temperature rubber will bounce more when it hits a stick than it will 
at freezing temperatures. 
 
(b) The mechanical energy of the 
rebounding puck is constant: 
 

0ΔΔ =+ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  
 

If the puck’s speed of recession is 
vrec and it rebounds to a height h, 
then: 
 

02
rec2

1 =+− mghmv ⇒
g

vh
2

2
rec=  

The coefficient of restitution is the 
ratio of the speeds of approach and 
recession: 
 

app

rec

v
ve = ⇒ apprec evv =                (1) 

Substitute for vrec to obtain: 
 g

ve
h

2

2
app

2

=                                  (2) 
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Letting Ug = 0 at the surface of from 
which the puck rebounds, the 
mechanical energy of the puck-Earth 
system is: 
 

0=Δ+Δ UK  
Because Ki = Uf = 0, 

0if =−UK  
 

Substituting for Kf and Ui yields: 
 

0app
2
app2

1 =− mghmv  

Solve for vapp to obtain: appapp 2ghv =  

 
In like manner, show that: recrec 2ghv =  

 
Substitute for vrec and vapp in 
equation (1) and simplify to obtain: 

app

rec

app

rec

2
2

h
h

gh
gh

e ==  

 
Substitute numerical values and 
evaluate eroom temp: 387.0

cm100
cm15

  temproom ==e  

 
For the falling puck, vapp is given 
by: 

gHv 2app =  

where H is the height from which the 
puck was dropped. 
 

Substituting for vapp in equation 
(2) and simplifying yields: 
 

He
g
gHeh 2

2

2
2

==                    (3) 

For the room-temperature puck: 
 

  temproom2
1

frozen ee =  

Substituting for e in equation (3) 
yields: 
 

Heh 2
  temproom4

1=  

Substitute numerical values and 
evaluate h: 
 

( ) ( ) cm 8.3cm 100387.0 2
4
1 ==h  

Remarks: The puck that rebounds only 3.8 cm is a much ″deader″ and, 
therefore, much better puck. 
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Collisions in More Than One Dimension 

84 •• In Section 8-3 it was proven by using geometry that when a particle 
elastically collides with another particle of equal mass that is initially at rest, the 
two post-collision velocities are perpendicular. Here we examine another way of 
proving this result that illustrates the power of vector notation. (a) Given that 
    
G
A  =     

G
B  +     

G
C ,  square both sides of this equation (obtain the scalar product of each 

side with itself) to show that A2 = B2 + C2 + 2   
G
B  ⋅    

G
C .  (b) Let the momentum of 

the initially moving particle be    
G

P  and the momenta of the particles after the 
collision be     

G
p 1 and     

G
p 2. Write the vector equation for the conservation of linear 

momentum and square both sides (obtain the dot product of each side with itself). 
Compare it to the equation gotten from the elastic-collision condition (kinetic 
energy is conserved) and finally show that these two equations imply that  

    
G
p 1 ⋅     

G
p 2 = 0. 

 
Picture the Problem We can use the definition of the magnitude of a vector and 
the definition of the scalar product to establish the result called for in (a). In Part 
(b) we can use the result of Part (a), the conservation of momentum, and the 
definition of an elastic collision (kinetic energy is conserved) to show that the 
particles separate at right angles. 
 
(a) Find the dot product of CB

GG
+  

with itself: 
 

( ) ( ) CBCBCBCB
GGGGGG

⋅++=+⋅+ 222  
 

Because CBA
GGG

+= : ( ) ( )CBCBCBA
GGGGGG

+⋅+=+=
22  

 
Substitute for ( ) ( )CBCB

GGGG
+⋅+ to 

obtain: 
 

CB
GG

⋅++= 2222 CBA  
 

(b) Apply conservation of 
momentum to the collision of the 
particles: 
 

ppp GGG
=+ 21  

Form the scalar product of each 
side of this equation with itself to 
obtain: 
 

( ) ( ) pppppp GGGGGG
⋅=+⋅+ 2121  

or 
2

21
2
2

2
1 2 ppppp =⋅++

GG
             (1) 

 
Use the definition of an elastic 
collision to obtain: 
 

m
p

m
p

m
p

222

22
2

2
1 =+  

or 
22

2
2
1 ppp =+                             (2) 
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Subtract equation (1) from 
equation (2) to obtain: 

02 21 =⋅ pp GG or 021 =⋅ pp GG  
i.e., the particles move apart along 
paths that are at right angles to each 
other. 

 
85 •• During a pool game, the cue ball, which has an initial speed of 5.0 m/s, 
makes an elastic collision with the eight ball, which is initially at rest. After the 
collision, the eight ball moves at an angle of 30º to the right of the original 
direction of the cue ball. Assume that the balls have equal masses. (a) Find the 
direction of motion of the cue ball immediately after the collision. (b) Find the 
speed of each ball immediately after the collision.  
  
Picture the Problem Let the initial direction of motion of the cue ball be the +x 
direction. We can apply conservation of energy to determine the angle the cue 
ball makes with the +x direction and the conservation of momentum to find the 
final velocities of the cue ball and the eight ball. 
 
(a) Use conservation of energy to 
relate the velocities of the collision 
participants before and after the 
collision: 

2
8

2
cf

2
ci

2
82

12
cf2

12
ci2

1

or
vvv

mvmvmv

+=

+=

 

 
This Pythagorean relationship 
tells us that 8cfci and,, vvv GGG form a 
right triangle. Hence: °=

°=+

60

and
90

cf

8cf

θ

θθ
 

 
(b) Use conservation of momentum 
in the x direction to relate the 
velocities of the collision participants 
before and after the collision: 
 

88cfcfci

xfxi

coscos
or

θθ mvmvmv +=

= pp GG

 

 

Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of the 
collision participants before and after 
the collision: 
 

88cfcf

yfyi

sinsin0
or

θθ mvmv +=

= pp
GG

 

 

Solve these equations simultaneously 
to obtain: 

m/s50.2cf =v and m/s33.48 =v  
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86 •• Object A that has a mass m and a velocity v0   ̂ i  collides head-on with 
object B that has a mass 2m and a velocity iv ˆ

02
1 . Following the collision, object B 

has a velocity of iv ˆ
04

1 . (a) Determine the velocity of object A after the collision. 
(b) Is the collision elastic? If not, express the change in the kinetic energy in terms 
of m and v0. 
 
Picture the Problem We can find the final velocity of the object whose mass is 
m by using the conservation of momentum. Whether the collision was elastic can 
be decided by examining the difference between the initial and final kinetic 
energy of the interacting objects. 
 
(a) Use conservation of linear 
momentum to relate the initial and 
final velocities of the two objects: 

fi pp GG
=  

or 
( ) ( ) 1f04

1
02

1
0

ˆ2ˆ2ˆ viji Gmvmvmmv +=+  
 

Simplify to obtain: 
 

1f02
1

00
ˆˆˆ viji G

+=+ vvv  

Solving for 1fvG  yields: jiv ˆˆ
002

1
1f vv +=

G
 

 
(b) Express the difference between 
the kinetic energy of the system 
before the collision and its kinetic 
energy after the collision: 
 

( )2f1f2i1ifiΔ KKKKKKE +−+=−=  

Substituting for the kinetic energies 
yields: 
 

( )2
f2

2
f1

2
i2

2
i12

1 22Δ mvmvmvmvE −−+=  

Substitute for speeds and simplify to 
obtain: 
 

( ) ( )[ ]
2
016

1

2
016

12
04

52
04

12
02

1 22Δ

mv

vvvvmE

=

−−+=
 

 
Because ΔE ≠ 0, the collision is inelastic. 

 
87 •• [SSM] A puck of mass 5.0 kg moving at 2.0 m/s approaches an 
identical puck that is stationary on frictionless ice. After the collision, the first 
puck leaves with a speed v1 at 30º to the original line of motion; the second puck 
leaves with speed v2 at 60º, as in Figure 8-50. (a) Calculate v1 and v2. (b) Was the 
collision elastic? 
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Picture the Problem Let the direction of motion of the puck that is moving 
before the collision be the +x direction. Applying conservation of momentum to 
the collision in both the x and y directions will lead us to two equations in the 
unknowns v1 and v2 that we can solve simultaneously. We can decide whether the 
collision was elastic by either calculating the system’s kinetic energy before and 
after the collision or by determining whether the angle between the final velocities 
is 90°. 
 
(a) Use conservation of linear 
momentum in the x direction to 
obtain: 
 

xfxi pp =  
or 

°+°= 60cos30cos 21 mvmvmv  

Simplify further to obtain: 
 

°+°= 60cos30cos 21 vvv            (1) 

Use conservation of momentum in 
the y direction to obtain a second 
equation relating the velocities of the 
collision participants before and 
after the collision: 
 

yfyi pp =  

or 
°−°= 60sin30sin0 21 mvmv  

Simplifying further yields: 
 

°−°= 60sin30sin0 21 vv           (2) 

Solve equations (1) and (2) 
simultaneously to obtain: 

m/s7.11 =v  and m/s0.12 =v  

 
(b) Because the angle between 1vG and 2vG  is 90°, the collision was elastic.  
 
88 •• Figure 8-51 shows the result of a collision between two objects of 
unequal mass. (a) Find the speed v2 of the larger mass after the collision and the 
angle θ2. (b) Show that the collision is elastic. 
 
Picture the Problem Let the direction of motion of the object that is moving 
before the collision be the +x direction. Applying conservation of momentum to 
the motion in both the x and y directions will lead us to two equations in the 
unknowns v2 and θ2 that we can solve simultaneously. We can show that the 
collision was elastic by showing that the system’s kinetic energy before and after 
the collision is the same. 
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(a) Use conservation of linear 
momentum in the x direction to 
relate the velocities of the collision 
participants before and after the 
collision: 

22100

22100

xfxi

cos2cos53

or
cos2cos53

or

θθ

θθ

vvv

mvmvmv

pp

+=

+=

=

 

 
Use conservation of linear 
momentum in the y direction to 
obtain a second equation relating the 
velocities of the collision participants 
before and after the collision: 
 

yfyi pp =  

or 
2210 sin2sin50 θθ mvmv −=  

Simplifying further yields: 
 

2210 sin2sin50 θθ vv −=  

Note that if tanθ1 = 2, then:   
5

2sinand
5

1cos 11 == θθ  

 
Substitute in the x-direction 
momentum equation and simplify 
to obtain: 

2200 cos2
5

153 θvvv +=  

or 
220 cosθvv =                             (1) 

 
Substitute in the y-direction 
momentum equation and simplify 
to obtain: 

220 sin2
5

250 θvv −=  

or 
220 sin0 θvv −=                         (2) 

 
Solve equations (1) and (2) 
simultaneously for θ2 : 

( ) °== − 0.451tan 1
2θ  

 
Substitute in equation (1) to find 
v2: 0

0

2

0
2 2

45coscos
vvvv =

°
==

θ
 

 
(b) To show that the collision was 
elastic, find the before-collision and 
after-collision kinetic energies: 

( )

( ) ( )( )
2
0

2

02
1

2

02
1

f

2
0

2
02

1
i

5.4

225

and
5.43

mv

vmvmK

mvvmK

=

+=

==

 

 
Because Ki = Kf, the collision is elastic. 
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89 •• A 2.0-kg ball moving at 10 m/s makes an off-center collision with a 
3.0-kg ball that is initially at rest. After the collision, the 2.0-kg ball is deflected at 
an angle of 30º from its original direction of motion and the 3.0-kg ball is moving 
at 4.0 m/s. Find the speed of the 2.0-kg ball and the direction of the 3.0-kg ball 
after the collision. Hint: 1cossin 22 =+ αα . 
 
Picture the Problem Let the direction of motion of the ball that is moving before 
the collision be the +x direction and use the subscripts 2 and 3 to designate the 
2.0-kg and 3.0-kg balls, respectively. Applying conservation of momentum to the 
collision in both the x and y directions will lead us to two equations in the 
unknowns 2fv  and θ that we can solve simultaneously.  

θ
2m

2m

3m

3m
°30

m/s 102i =v

?2f =
v

m/s 0.4
3f

=v
03i =v

x

y

 
 
Use conservation of momentum in 
the x and y directions to relate the 
speeds and directions of the balls 
before and after the collision: 
 

θsin30cos f332f22i2 vmvmvm +°=  

and 
°−= 30sinsin0 f223f3 vmvm θ  

Solve the first of these equations for 
cosθ to obtain: 
 

3f3

2f22i2 30coscos
vm
vmvm °−

=θ    (1)          

Solve the second of these equations 
for sinθ to obtain: 
 

3f3

2f2 30sinsin
vm

vm °
=θ                 (2) 

 
Using the hint given in the problem statement, square and add equations (1) 
and (2) and simplify the result to obtain the quadratic equation: 
 

( )
2
2

2
3f

2
32

2f2i
22

2f 30cos30sin
m

vm
vvv =°−+°  

 
Substituting numerical values and 
simplifying yields: 
 

( ) 222
2f

2
2f s/m 144866.0m/s 10 =−+ vv  
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Use the quadratic formula or your 
graphing calculator to obtain: 
 

m/s 11.977or  m/s 344.52f =v  

Because the larger of these values 
corresponds to there being more 
kinetic energy in the system after the 
collision than there was before the 
collision: 
 

m/s 3.52f =v  

Solving equation (2) for θ yields: 
⎥
⎦

⎤
⎢
⎣

⎡ °
= −

3f3

2f21 30sinsin
vm

vmθ  

 
Substitute numerical values and 
evaluate θ:   

( )( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡ °
= −

26

m/s 0.4kg 0.3
30sinm/s 344.5kg 0.2sin 1θ

 

 
90 •• A particle has initial speed v0. It collides with a second particle with 
the same mass that is initially at rest, and is deflected through an angle φ. Its 
speed after the collision is v. The second particle recoils, and its velocity makes an 
angle θ with the initial direction of the first particle. (a) Show that 

      
tan θ =

v sin φ
v0 − v cosφ( ).  (b) Show that if the collision is elastic, then v = v0 cos φ. 

 
Picture the Problem Choose the coordinate system shown in the following 
diagram with the +x direction the direction of the initial approach of the projectile 
particle.  Call V the speed of the target particle after the collision. In Part (a) we 
can apply conservation of momentum in the x and y directions to obtain two 
equations that we can solve simultaneously for tanθ. In Part (b) we can use 
conservation of momentum in vector form and the elastic-collision equation to 
show that v = v0cosφ. 

θ
x

y

φ
1

1

2

2

0v
r

v
r

V
r

 
 
(a) Apply conservation of linear 
momentum in the x direction to 
obtain: 

θφ coscos0 Vvv +=                  (1) 
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Apply conservation of  linear 
momentum in the y direction to 
obtain: 
 

θφ sinsin Vv =                          (2) 

Solve equation (1) for Vcosθ : 
 

φθ coscos 0 vvV −=                  (3) 

Divide equation (2) by equation (3) 
to obtain: 
 

φ
φ

θ
θ

cos
sin

cos
sin

0 vv
v

V
V

−
=  

or 

φ
φθ

cos
sintan

0 vv
v
−

=  

 
(b) Noting that the masses of the 
particles are equal, apply 
conservation of linear momentum 
to obtain: 
 

Vvv
GGG

+=0  

Draw the vector diagram 
representing this equation: 
 

 
Use the definition of an elastic 
collision to obtain: 
 

222
0 Vvv +=  

If this Pythagorean condition is to 
hold, the third angle of the triangle 
must be a right angle and, using the 
definition of the cosine function: 

φcos0vv =  

 
*Center-of-Mass Reference Frame 

91 •• In the center-of-mass reference frame a particle with mass m1 and 
momentum p1 makes an elastic head-on collision with a second particle of mass 
m2 and momentum p2 = –p1. After the collision its momentum is   ′ p 1 . Write the 
total kinetic energy in terms of m1, m2, and p1 and the total final energy in terms 
of m1, m2, and     ′ p 1 , and show that 11 p'p ±= . If 11 p'p −= , the particle is merely 
turned around by the collision and leaves with the speed it had initially. What is 
the situation for the 11 p'p += solution? 
 
Picture the Problem The total kinetic energy of a system of particles is the sum 
of the kinetic energy of the center of mass and the kinetic energy relative to the 
center of mass. The kinetic energy of a particle of mass m is related to its 
momentum according to mpK 22= . 
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Express the total kinetic energy 
of the system: 
 

cmrel KKK +=                             (1) 

Relate the kinetic energy relative 
to the center of mass to the 
momenta of the two particles: 
 

( )
21

21
2
1

2

2
1

1

2
1

rel 222 mm
mmp

m
p

m
pK +

=+=  

 

Express the kinetic energy of the 
center of mass of the two 
particles: 
 

( )
( ) 21

2
1

21

2
1

cm
2

2
2

mm
p

mm
pK

+
=

+
=  

 

Substitute in equation (1) and 
simplify to obtain: 

( )

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

+
+

+
=

2
212

2
1

2
221

2
1

2
1

21

2
1

21

21
2
1

6
2

2
2

mmmm
mmmmp

mm
p

mm
mmpK

 

 
In an elastic collision: 

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

=

2
212

2
1

2
221

2
1

2
1

2
212

2
1

2
221

2
1

2
1

fi

6
2

6
2

mmmm
mmmmp'

mmmm
mmmmp

KK

 

 
Simplify to obtain:  ( ) ( ) 11

2
1

2
1 pppp '' ±=⇒=  

and if 11 p'p += , the particles do not 
collide. 

 
92 •• A 3.0-kg block is traveling in the −x direction at 5.0 m/s, and a 1.0-kg 
block is traveling in the +x direction at 3.0 m/s. (a) Find the velocity vcm of the 
center of mass. (b) Subtract vcm from the velocity of each block to find the 
velocity of each block in the center-of-mass reference frame. (c) After they make 
a head-on elastic collision, the velocity of each block is reversed (in the center-of-
mass frame). Find the velocity of each block in the center-of-mass frame after the 
collision. (d) Transform back into the original frame by adding vcm to the velocity 
of each block. (e) Check your result by finding the initial and final kinetic 
energies of the blocks in the original frame and comparing them. 
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Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses 
are 3.0 kg and 1.0 kg respectively. We can use cmvv GG Mm

i
ii =∑ to find the 

velocity of the center-of-mass of the system and simply follow the directions in 
the problem step by step. 
 
(a) Express the total momentum of 
this two-particle system in terms of 
the velocity of its center of mass: 
 

( ) cm31cm

3311

vv

vvvP
GG

GGGG

mmM

mmm
i

ii

+==

+== ∑
 

Solve for cmvG : 
13

1133
cm mm

mm
+
+

=
vvv
GGG

 

 
Substitute numerical values and evaluate cmvG : 
 

( )( ) ( )( ) ( )iiiv ˆm/s3.0
kg1.0kg3.0

ˆm/s3.0kg1.0ˆm/s5.0kg3.0
cm −=

+
+−

=
G

 

 
(b) Find the velocity of the 3-kg 
block in the center of mass reference 
frame: 

( ) ( )
( )i

ii

vvu

ˆm/s2.0

ˆm/s3.0ˆm/s5.0
cm33

−=

−−−=

−=
GGG

 

 
Find the velocity of the 1-kg block in 
the center of mass reference frame: ( ) ( )

( )i

ii

vvu

ˆm/s0.6

ˆm/s3.0ˆm/s0.3
cm11

=

−−=

−=
GGG

 

 
(c) Express the after-collision 
velocities of both blocks in the 
center of mass reference frame: 

( )iu' ˆm/s0.23 =
G

 

and 
( )iu' ˆm/s0.61 −=

G
 

 
(d) Transform the after-collision 
velocity of the 3-kg block from the 
center of mass reference frame to the 
original reference frame: 
 

( ) ( )
( )i

ii

vuv ''

ˆm/s0.1

ˆm/s3.0ˆm/s2.0
cm33

−=

−+=

+=
GGG
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Transform the after-collision 
velocity of the 1-kg block from the 
center of mass reference frame to the 
original reference frame: 
 

( ) ( )
( )i

ii

vuv ''

ˆm/s0.9

ˆm/s3.0ˆm/s6.0
cm11

−=

−+−=

+=
GGG

 

 
(e) Express iK in the original frame 
of reference: 
 

2
112

12
332

1
i vmvmK +=  

 

Substitute numerical values and evaluate iK : 
 

( )( ) ( )( )[ ] J42m/s3.0kg1.0m/s5.0kg3.0 22
2
1

i =+=K  

 
Express iK in the original frame of 
reference: 
 

2
112

12
332

1
f v'mv'mK +=  

Substitute numerical values and evaluate fK : 
 

( )( ) ( )( )[ ] J42m/s9.0kg1.0m/s1.0kg3.0 22
2
1

f =+=K  

 
93 •• [SSM]  Repeat Problem 92 with the second block having a mass of 
5.0 kg and moving to the right at 3.0 m/s. 
 
Picture the Problem Let the numerals 3 and 5 denote the blocks whose masses 
are 3.0 kg and 5.0 kg respectively. We can use cmvv GG Mm

i
ii =∑ to find the 

velocity of the center-of-mass of the system and simply follow the directions in 
the problem step by step. 
 
(a) Express the total momentum of 
this two-particle system in terms of 
the velocity of its center of mass: 
 

( ) cm53cm

5533

vv

vvvP
GG

GGGG

mmM

mmm
i

ii

+==

+== ∑
 

Solve for cmvG : 
53

5533
cm mm

mm
+
+

=
vvv
GGG  

 
Substitute numerical values and evaluate cmvG : 
 

( )( ) ( )( ) 0
kg5.0kg3.0

ˆm/s3.0kg5.0ˆm/s5.0kg3.0
cm =

+
+−

=
iivG  
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(b) Find the velocity of the 3.0-kg 
block in the center of mass reference 
frame: 

( )
( ) i

ivvu
ˆm/s0.5

0ˆm/s5.0cm33

−=

−−=−=
GGG

 

 
Find the velocity of the 5.0-kg block 
in the center of mass reference 
frame: 

( )
( )i

ivvu
ˆm/s0.3

0ˆm/s0.3cm55

=

−=−=
GGG

 

 
(c) Express the after-collision 
velocities of both blocks in the 
center of mass reference frame: 

( )iu' ˆm/s0.53 =
G

 

and 
m/s75.05 ='u  

 
(d) Transform the after-collision 
velocity of the 3.0-kg block from 
the center of mass reference frame 
to the original reference frame: 
 

( )
( )i

ivuv ''

ˆm/s0.5

0ˆm/s0.5cm33

=

+=+=
GGG

 

 

Transform the after-collision 
velocity of the 5.0-kg block from 
the center of mass reference frame 
to the original reference frame: 
 

( )
( )i

ivuv ''

ˆm/s0.3

0ˆm/s0.3cm55

−=

+−=+=
GGG

 

 

(e) Express iK in the original 
frame of reference: 
 

2
552

12
332

1
i vmvmK +=  

 

Substitute numerical values and evaluate iK : 
 

( )( ) ( )( )[ ] J60m/s3.0kg5.0m/s5.0kg3.0 22
2
1

i =+=K  

 
Express fK in the original frame 
of reference: 
 

2
552

12
332

1
f v'mv'mK +=  

Substitute numerical values and evaluate fK : 
 

( )( )[ ( )( ) ] J60m/s0.3kg5.0m/s0.5kg3.0 22
2
1

f =+=K  
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*Systems With Continuously Varying Mass: Rocket Propulsion 

94 • A rocket burns fuel at a rate of 200 kg/s and exhausts the gas at a 
relative speed of 6.00 km/s relative to the rocket. Find the magnitude of the thrust 
of the rocket. 
  
Picture the Problem The thrust of a rocket Fth depends on the burn rate of its 
fuel dm/dt and the relative speed of its exhaust gases uex according to 

exth udtdmF = . 

 
Using its definition, relate the 
rocket’s thrust to the relative speed 
of its exhaust gases: 
 

exth u
dt
dmF =  

Substitute numerical values and 
evaluate Fth: 

( )( )
MN20.1

km/s6.00kg/s200th

=

=F
 

 
95 •• A rocket has an initial mass of 30,000 kg, of which 80 percent is the 
fuel. It burns fuel at a rate of 200 kg/s and exhausts its gas at a relative speed of 
1.80 km/s.  Find (a) the thrust of the rocket, (b) the time until burnout, and (c) its 
speed at burnout assuming it moves straight upward near the surface of Earth. 
Assume that g is constant and neglect any effects of air resistance.  
 
Picture the Problem The thrust of a rocket Fth depends on the burn rate of its 
fuel dm/dt and the relative speed of its exhaust gases uex according to 

exth udtdmF = . The final velocity vf of a rocket depends on the relative speed of 

its exhaust gases uex, its payload to initial mass ratio mf/m0 and its burn time 
according to ( ) b0fexf ln gtmmuv −−= . 
 
(a) Using its definition, relate the 
rocket’s thrust to the relative speed 
of its exhaust gases: 
 

exth u
dt
dmF =  

 

Substitute numerical values and 
evaluate Fth: 
 

( )( )
kN360

km/s80.1kg/s200th

=

=F
 

 
(b) Relate the time to burnout to 
the mass of the fuel and its burn 
rate: 
 

dtdm
m

dtdm
mt

/
8.0

/
0fuel

b ==  
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Substitute numerical values and 
evaluate bt : 

( )( ) s120
kg/s200

kg30,0000.80
b ==t  

 
(c) Relate the final velocity of a 
rocket to its initial mass, exhaust 
velocity, and burn time: 
 

b
0

f
exf ln gt

m
muv −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  

Substitute numerical values and evaluate vf: 
 

( ) ( )( ) km/s72.1s120m/s9.81
5
1lnkm/s1.80 2

f =−⎟
⎠
⎞

⎜
⎝
⎛−=v  

 
96 •• The specific impulse of a rocket propellant is defined as Isp = Fth/(Rg), 
where Fth is the thrust of the propellant, g the magnitude of free-fall acceleration, 
and R the rate at which the propellant is burned. The rate depends predominantly 
on the type and exact mixture of the propellant. (a) Show that the specific impulse 
has the dimension of time. (b) Show that uex = gIsp, where uex is the relative speed 
of the exhaust. (c) What is the specific impulse (in seconds) of the propellant used 
in the Saturn V rocket of Example 8-16. 
  
Picture the Problem We can use the dimensions of thrust, burn rate, and 
acceleration to show that the dimension of specific impulse is time. Combining 
the definitions of rocket thrust and specific impulse will lead us to spex gIu = . 
 
(a) Express the dimension of specific 
impulse in terms of the dimensions 
of Fth, R, and g: 
 

[ ] [ ]
[ ][ ] T

T
L

T
M

T
LM

2

2
th

sp =
⋅

⋅

==
gR

FI  

 
(b) From the definition of rocket 
thrust we have: 
 

exth RuF =  

Solve for uex: 
R
Fu th

ex =  

 
Substitute for Fth to obtain: 
 sp

sp
ex gI

R
RgI

u ==               (1) 

 
(c) Solve equation (1) for Isp and 
substitute for uex to obtain: Rg

FI th
sp =  

 
From Example 8-21 we have:  R = 1.384×104 kg/s  

and  
Fth = 3.4×106 N   
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Substitute numerical values and 
evaluate Isp: ( )( )

s25

m/s81.9kg/s101.384
N103.4

24

6

sp

=

×
×

=I
 

 
97 ••• [SSM] The initial thrust-to-weight ratio τ0 of a rocket is  
τ0 = Fth/(m0 g), where Fth is the rocket’s thrust and m0 the initial mass of the 
rocket, including the propellant. (a) For a rocket launched straight up from the 
earth’s surface, show that τ0 = 1 + (a0/g), where a0 is the initial acceleration of the 
rocket. For manned rocket flight, τ0 cannot be made much larger than 4 for the 
comfort and safety of the astronauts. (The astronauts will feel that their weight as 
the rocket lifts off is equal to τ0 times their normal weight.) (b) Show that the final 
velocity of a rocket launched from the earth’s surface, in terms of τ0 and Isp (see 
Problem 96) can be written as 

      
vf = gIsp 1n

m0

mf

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

1
τ0

1−
mf

m0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

 
where mf is the mass of the rocket (not including the spent propellant). (c) Using a 
spreadsheet program or graphing calculator, graph vf as a function of the mass 
ratio m0/mf for Isp = 250 s and τ0 = 2 for values of the mass ratio from 2 to 10. 
(Note that the mass ratio cannot be less than 1.) (d) To lift a rocket into orbit, a 
final velocity after burnout of vf = 7.0 km/s is needed. Calculate the mass ratio 
required of a single stage rocket to do this, using the values of specific impulse 
and thrust ratio given in Part (b). For engineering reasons, it is difficult to make a 
rocket with a mass ratio much greater than 10. Can you see why multistage 
rockets are usually used to put payloads into orbit around the earth? 
 
Picture the Problem We can use the rocket equation and the definition of rocket 
thrust to show that ga00 1+=τ . In Part (b) we can express the burn time tb in 
terms of the initial and final masses of the rocket and the rate at which the fuel 
burns, and then use this equation to express the rocket’s final velocity in terms of 
Isp, τ0, and the mass ratio m0/mf. In Part (d) we’ll need to use trial-and-error 
methods or a graphing calculator to solve the transcendental equation giving vf as 
a function of m0/mf. 
 
(a) Express the rocket equation: 
 

maRumg =+− ex  
 

From the definition of rocket thrust 
we have: 
 

exth RuF =  
 

Substitute for exRu to obtain: maFmg =+− th  
 

Solve for thF at takeoff: 000th amgmF +=  
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Divide both sides of this equation 
by m0g to obtain: 
 

g
a

gm
F 0

0

th 1+=  

 
Because )/( 0th0 gmF=τ : 

g
a0

0 1+=τ  

 
(b) Use Equation 8-39 to express 
the final speed of a rocket that 
starts from rest with mass m0: 

b
f

0
exf ln gt

m
muv −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ,                (1) 

where bt  is the burn time. 
 

Express the burn time in terms of 
the burn rate R (assumed 
constant): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

0

f0f0
b 1

m
m

R
m

R
mmt  

 
Multiply bt by one in the form 

th

th

gF
gF and simplify to obtain: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

f

0

sp

0

fth

th

0

0

f0

th

th
b

1

1

1

m
mI

m
m

gR
F

F
gm

m
m

R
m

gF
gFt

τ

 

 
Substitute in equation (1): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

f

0

sp

f

0
exf 1ln

m
mgI

m
muv

τ
 

 
From Problem 96 we have: 
 

spex gIu = ,  
where exu is the exhaust velocity of the 
propellant. 
 

Substitute for exu and factor to 
obtain: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

f

0f

0
sp

0

f

0

sp

f

0
spf

11ln

1ln

m
m

m
mgI

m
mgI

m
mgIv

τ

τ
 

 
(c) A spreadsheet program to calculate the final velocity of the rocket as a 
function of the mass ratio m0/mf is shown below. The constants used in the 
velocity function and the formulas used to calculate the final velocity are as 
follows: 
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Cell Content/Formula Algebraic Form 
B1 250 Isp 
B2 9.81 g 
B3 2 τ0 
D9 D8 + 0.25 m0/mf 
E8 $B$2*$B$1*(LOG(D8) − 

(1/$B$3)*(1/D8)) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0

f

0f

0
sp 11ln

m
m

m
mgI

τ
 

 
 

 A B C D E 
1 Isp = 250 s   
2 g = 9.81 m/s2   
3 τ0= 2    
4      
5      
6      
7    mass ratio vf 
8    2.00 1.252E+02
9    2.25 3.187E+02
10    2.50 4.854E+02
11    2.75 6.316E+02
12    3.00 7.614E+02
      

36    9.00 2.204E+03
37    9.25 2.237E+03
38    9.50 2.269E+03
39    9.75 2.300E+03
40    10.00 2.330E+03
41    725.00 7.013E+03 
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A graph of final velocity as a function of mass ratio follows. 

0.0

0.5

1.0

1.5

2.0

2.5

2 3 4 5 6 7 8 9 10

m 0/m f

v f
 (k

m
/s

)

 
(d) Substitute the data given in part (c) in the equation derived in Part (b) to 
obtain: 

( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

f

f

02 1
2
1lns250m/s9.81km/s7.00

m
m

m
m  

or 

x
x 5.05.0ln854.2 +−=  where x = m0/mf. 

 
Use trial-and-error methods or a 
graphing calculator to solve this 
transcendental equation for the root 
greater than 1: 

28≈x , a value considerably larger 
than the practical limit of 10 for single-
stage rockets. 

 
98 •• The height that a model rocket launched from Earth’s surface can 
reach can be estimated by assuming that the burn time is short compared to the 
total flight time, so for most of the flight the rocket is in free-fall. (This estimate 
neglects the burn time in calculations of both time and displacement.) For a model 
rocket with specific impulse Isp = 100 s, mass ratio m0/mf = 1.20, and initial 
thrust-to-weight ratio τ0 = 5.00 (these parameters are defined in Problems 96 and 
97), estimate (a) the height the rocket can reach, and (b) the total flight time. (c) 
Justify the assumption used in the estimates by comparing the flight time from 
Part (b) to the time it takes for the fuel to be spent. 
   
Picture the Problem We can use the velocity-at-burnout equation from Problem 
96 to find vf and constant-acceleration equations to approximate the maximum 
height the rocket will reach and its total flight time. 
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(a) Assuming constant acceleration, 
relate the maximum height reached 
by the model rocket to its time-to-
top-of-trajectory: 
 

2
top2

1 gth =                                  (1) 

From Problem 96 we have: 
 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

f

f

0
spf 11ln

m
m

m
mgIv

τ
 

 
Evaluate the velocity at burnout vf for Isp = 100 s, m0/mf = 1.2, and τ = 5: 
 

( )( ) ( ) m/s146
2.1

11
5
12.1lns100m/s9.81 2

f =⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−=v  

 
Assuming that the time for the fuel 
to burn up is short compared to the 
total flight time, find the time to the 
top of the trajectory: 
 

s14.9
m/s9.81
m/s146

2
f

top ===
g
vt  

Substitute in equation (1) and 
evaluate h: 
 

( )( ) km1.09s14.9m/s9.81 22
2
1 ==h  

 
(b) Find the total flight time from the 
time it took the rocket to reach its 
maximum height: 
 

( ) s29.8s14.922 topflight === tt  

(c) The fuel burn time bt is: 

s3.33
1.2
11

5
s1001

0
b

=

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

m
mI

t fsp

τ  

 
Because this burn time is approximately 1/5 of the total flight time, we can’t 
expect the answer we obtain in Part (b) to be very accurate. It should, however, be 
good to about 30% accuracy, as the maximum distance the model rocket could 
possibly move in this time is m 244  b2

1 =vt , assuming constant acceleration until 
burnout. 
 
General Problems 
 
99 •    [SSM] A 250-g model-train car traveling at 0.50 m/s links up with a 
400-g car that is initially at rest. What is the speed of the cars immediately after 
they link up? Find the pre- and post-collision kinetic energies of the two-car 
system. 
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Picture the Problem Let the direction the 250-g car is moving before the 
collision be the +x direction. Let the numeral 1 refer to the 250-kg car, the 
numeral 2 refer to the 400-kg car, and V represent the velocity of the linked cars. 
Let the system include Earth and the cars. We can use conservation of momentum 
to find their speed after they have linked together and the definition of kinetic 
energy to find their pre- and post-collision kinetic energies. 
 
Use conservation of momentum to 
relate the speeds of the cars 
immediately before and 
immediately after their collision: 
 

fxix pp =  
or 

( )Vmmvm 2111 += ⇒
21

11

mm
vmV

+
=  

Substitute numerical values and 
evaluate V: 

( )( )

m/s19.0

m/s192.0
kg0.400kg0.250

m/s0.50kg0.250

=

=
+

=V
 

 
Find the pre-collision kinetic 
energy of the cars: 

( )( )
mJ31

m/s0.50kg0.250 2
2
12

112
1

pre

=

== vmK
 

 
Find the post-collision kinetic 
energy of the coupled cars: 

( )
( )( )

mJ12

m/s0.192kg0.400kg0.250 2
2
1

2
212

1
post

=

+=

+= VmmK

 
100 • A 250-g model train car traveling at 0.50 m/s heads toward a 400-g car 
that is initially at rest. (a) Find the kinetic energy of the two-car system. (b) Find 
the velocity of each car in the center-of-mass reference frame, and use these 
velocities to calculate the kinetic energy of the two-car system in the center-of-
mass reference. (c) Find the kinetic energy associated with the motion of the 
center of mass of the system. (d) Compare your answer for Part (a) with the sum 
of your answers for Parts (b) and (c). 
 
Picture the Problem Let the direction the 250-g car is moving before the 
collision be the +x direction. Let the numeral 1 refer to the 250-kg car and the 
numeral 2 refer to the 400-g car and the system include Earth and the cars. We 
can use conservation of momentum to find their speed after they have linked 
together and the definition of kinetic energy to find their pre- and post-collision 
kinetic energies. 
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(a) The pre-collision kinetic energy 
of the two-car system is: 

( )( )
mJ31mJ3.31

m/s0.50kg0.250 2
2
12

112
1

pre

==

== vmK
 

 
(b) Relate the velocity of the center 
of mass to the total momentum of 
the system: 
 

cm
i

ii vvP
GGG

mm == ∑  

 

Solve for cmv : 
21

2211
cm mm

vmvmv
+
+

=  

 
Substitute numerical values and 
evaluate cmv : 

( )( ) m/s192.0
kg0.400kg0.250

m/s0.50kg0.250
cm =

+
=v  

 
Find the initial velocity of the 250-g 
car relative to the velocity of the 
center of mass: 

m/s0.31

m/s0.192m/s.500cm11

=

−=−= vvu
 

 
Find the initial velocity of the 
400-g car relative to the velocity 
of the center of mass: 

m/s19.0

m/s0.192m/s0cm22

−=

−=−= vvu
 

 
Express the pre-collision kinetic 
energy of the system relative to the 
center of mass: 
 

2
222

12
112

1
relpre, umumK +=  

 

Substitute numerical values and 
evaluate relpre,K : 

( )( )
( )( )
mJ19

m/s0.192kg0.400

m/s0.308kg0.250
2

2
1

2
2
1

relpre,

=

−+

=K

 

 
(c) Express the kinetic energy of the 
center of mass: 
 

2
cm2

1
cm MvK =  

 

Substitute numerical values and 
evaluate Kcm: 

( )( )
mJ12

m/s0.192kg0.650 2
2
1

cm

=

=K
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(d) Relate the pre-collision kinetic 
energy of the system to its pre-
collision kinetic energy relative to 
the center of mass and the kinetic 
energy of the center of mass: 

mJ31.2
mJ12.0mJ9.21

cmreli,i

=
+=

+= KKK
 

and 

cmreli,i KKK +=  

 
101 •• A 1500-kg car traveling north at 70 km/h collides at an intersection 
with a 2000-kg car traveling west at 55 km/h. The two cars stick together.  
(a) What is the total momentum of the system before the collision? (b) Find the 
magnitude and direction of the velocity of the wreckage just after the collision. 
 
Picture the Problem Let east be the positive x direction and north the positive y 
direction. Include both cars and the earth in the system and let the numeral 1 
denote the 1500-kg car and the numeral 2 the 2000-kg car. Because the net 
external force acting on the system is zero, momentum is conserved in this 
perfectly inelastic collision. 
 
(a) Express the total momentum of 
the system: ij

vvppp
ˆˆ

2211

221121

vmvm

mm

−=

+=+=
GGGGG

 

 
Substitute numerical values and evaluate p

G
: 

 
( )( ) ( )( )

( ) ( )
( ) ( )ji

ji

ijp

ˆkm/hkg101.1ˆkm/hkg101.1

ˆkm/hkg1005.1ˆkm/hkg1010.1

ˆkm/h55kg2000ˆkm/h70kg1500

55

55

⋅×+⋅×−=

⋅×+⋅×−=

−=
G

 

 
(b) The velocity of the wreckage in 
terms of the total momentum of the 
system is given by: 
 

M
pvv
GGG

== cmf  

 

Substitute numerical values and evaluate fvG : 
 

( ) ( )

( ) ( ) ji

jiv

ˆkm/h0.30ˆkm/h4.31

kg2000kg1500

ˆkm/hkg101.05
kg2000kg1500

ˆkm/hkg101.10 55

f

+−=

+
⋅×

+
+

⋅×−
=

G
 

 
Find the magnitude of the velocity of 
the wreckage: 

( ) ( )
km/h43

km/h30.0km/h31.4 22
f

=

+=v
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Find the direction the wreckage 
moves: °−=⎥

⎦

⎤
⎢
⎣

⎡
−

= − 7.43
km/h31.4

km/h30.0tan 1θ  

 
The direction of the wreckage is 46° west of north. 

 
102 •• A 60-kg woman stands on the back of a 6.0-m-long, 120-kg raft that is 
floating at rest in still water. The raft is 0.50 m from a fixed pier, as shown in 
Figure 8-52. (a) The woman walks to the front of the raft and stops. How far is 
the raft from the pier now? (b) While the woman walks, she maintains a constant 
speed of 3.0 m/s relative to the raft. Find the total kinetic energy of the system 
(woman plus raft), and compare with the kinetic energy if the woman walked at 
3.0 m/s on a raft tied to the pier. (c) Where does these kinetic energies come from, 
and where do they go when the woman stops at the front of the raft? (d) On land, 
the woman puts a lead shot 6.0 m. She stands at the back of the raft, aims forward, 
and puts the shot so that just after it leaves her hand, it has the same velocity 
relative to her as it did when she threw it from the ground. Approximately, where 
does her shot land? 
 
Picture the Problem Take the origin to be at the initial position of the right-hand 
end of raft and let the positive x direction be to the left. Let ″w″ denote the woman 
and ″r″ the raft, d be the distance of the end of the raft from the pier after the 
woman has walked to its front. The raft moves to the left as the woman moves to 
the right; with the center of mass of the woman-raft system remaining fixed 
(because Fext,net = 0). The diagram shows the initial (xw,i) and final (xw,f) positions 
of the woman as well as the initial (xr_cm,i) and final (xr_cm,f) positions of the center 
of mass of the raft both before and after the woman has walked to the front of the 
raft. 
 

x

x

xw
,

f

    
xr_cm,i

xr_cm,f

xw
,

i =6 m

    
xr_cm,i

0

0
×

×

CM

CM

xC
M

d

0.5 m
P 
I 
E 
R

 
 

 
(a) Express the distance of the raft 
from the pier after the woman has 
walked to the front of the raft: 
 

f w,m50.0 xd +=                       (1) 
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Express  xcm before the woman has 
walked to the front of the raft:   

rw

i r_cm,riw,w
cm mm

xmxm
x

+

+
=  

 
Express  xcm after the woman has 
walked to the front of the raft: 
   

rw

fr_cm,rfw,w
cm mm

xmxm
x

+

+
=    

Because Fext,net = 0, the center of 
mass remains fixed and we can 
equate these two expressions for xcm 
to obtain: 
 

fr_cm,rfw,wir_cm,ri,ww xmxmxmxm +=+  

Solve for fw,x : ( )ir_cm,fr_cm,
w

r
iw,fw, xx

m
mxx −−=  

 
From the figure it can be seen that 

fw,ir_cm,fr_cm, xxx =− . Substitute 

fw,x for ir_cm,fr_cm, xx −  to obtain: 

  

rw

iw,w
fw, mm

xm
x

+
=

 

Substitute numerical values and 
evaluate fw,x : 

 

( )( ) m0.2
kg120kg60
m6.0kg60

fw, =
+

=x
 

Substitute in equation (1) to obtain: m5.2m50.0m0.2 =+=d  

 
(b) Express the total kinetic energy of 
the system: 
 

2
rr2

12
ww2

1
tot vmvmK +=  

 

Noting that the elapsed time is 2.0 s, 
find vw and vr: 

m/s0.2
s2.0

m6.0m0.2
Δ

iw,fw,
w

−=
−

=

−
=

t
xx

v
 

 relative to the dock, and 

m/s0.1
s2.0

m0.50m50.2
Δ

ir,fr,
r

=
−

=

−
=

t
xx

v
 

also relative to the dock. 
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Substitute numerical values and 
evaluate Ktot: 

( )( )
( )( )

kJ18.0

m/s1.0kg120

m/s0.2kg60
2

2
1

2
2
1

tot

=

+

−=K

 

 
Evaluate K with the raft tied to 
the pier: 

( )( )
kJ27.0

m/s3.0kg60 2
2
12

ww2
1

tot

=

== vmK
 

 
(c) All the kinetic energy derives from the chemical energy of the woman and, 
assuming she stops via static friction, the kinetic energy is transformed into her 
internal energy.  
 
(d) After the shot leaves the woman’s hand, the raft-woman system constitutes an 
inertial reference frame. In that frame, the shot has the same initial velocity as did 
the shot that had a range of 6.0 m in the reference frame of the land. Thus, in the 
raft-woman frame, the shot also has a range of 6.0 m and lands at the front of the 
raft. 
 
103 •• A 1.0-kg steel ball and a 2.0-m cord of negligible mass make up a 
simple pendulum that can pivot without friction about the point O, as in Figure 8-
53. This pendulum is released from rest in a horizontal position and when the ball 
is at its lowest point it strikes a 1.0-kg block sitting at rest on a shelf. Assume that 
the collision is perfectly elastic and take the coefficient of kinetic friction between 
the block and shelf to be 0.10. (a) What is the velocity of the block just after 
impact? (b) How far does the block slide before coming to rest (assuming the 
shelf is long enough)? 
 
Picture the Problem Let the zero of gravitational potential energy be at the 
elevation of the 1.0-kg block. We can use conservation of energy to find the 
speed of the bob just before its perfectly elastic collision with the block and 
conservation of momentum to find the speed of the block immediately after the 
collision. We’ll apply Newton’s 2nd law to find the acceleration of the sliding 
block and use a constant-acceleration equation to find how far it slides before 
coming to rest. 
 
(a) Use conservation of energy to 
find the speed of the bob just before 
its collision with the block: 0

or
0

ifif =−+−

=Δ+Δ

UUKK

UK
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Because Ki = Uf = 0: 

hgv

hgmvm

Δ=

=Δ+

2

and
0

ball

ball
2
ballball2

1

 

 
Substitute numerical values and 
evaluate vball: 
 

( )( ) m/s6.26m2.0m/s9.812 2
ball ==v  

Because the collision is perfectly 
elastic and the ball and block have 
the same mass:  
 

m/s3.6ballblock == vv  

 

(b) Using a constant-acceleration 
equation, relate the displacement of 
the block to its acceleration and 
initial speed: 
 

xavv Δ2 block
2
i

2
f +=  

or, because vf = 0, 
xav Δ20 block

2
i +=  

 

Solving for Δx yields: 

block

2
block

block

2
i

22
Δ

a
v

a
vx −

=
−

=  

 
Apply ∑ = aF GG

m to the sliding 

block:  

∑

∑

=−=

=−=

0
and

blockn

blockk

gmFF

mafF

y

x

 

 
Using the definition of fk (=μkFn) 
eliminate fk and Fn between the 
two equations and solve for ablock: 
 

ga kblock μ−=  

Substitute for ablock to obtain: 
g

v
g

vx
k

2
block

k

2
block

22 μμ
=

−
−

=Δ  

 
Substitute numerical values and 
evaluate Δx: 

( )
( )( ) m20

m/s9.810.102
m/s6.26Δ 2

2

==x  

 
104  •• Figure 8-54 shows a World War I cannon mounted on a railcar so that 
it will project a shell at an angle of 30º. With the car initially at rest, the cannon 
fires a 200-kg projectile at 125 m/s. (All values are for the frame of reference of 
the track.) Now consider a system composed of a cannon, shell, and railcar, all on 
the frictionless track. (a) Will the total vector momentum of that system be the 
same just before and just after the shell is fired? Explain your answer. (b) If the 
mass of the railcar plus cannon is 5000 kg, what will be the recoil velocity of the 
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car along the track after the firing? (c) The shell is observed to rise to a maximum 
height of 180 m as it moves through its trajectory. At this point, its speed is 80.0 
m/s. On the basis of this information, calculate the amount of thermal energy 
produced by air friction on the shell on its way from firing to this maximum 
height. 
 
Picture the Problem We can use conservation of momentum in the horizontal 
direction to find the recoil velocity of the car along the track after the firing. 
Because the shell will neither rise as high nor be moving as fast at the top of its 
trajectory as it would be in the absence of air friction, we can apply the work-
energy theorem to find the amount of thermal energy produced by the air friction. 
 
(a) No. The vertical reaction force of the rails is an external force and so the 
momentum of the system will not be conserved. 
 
(b) Use conservation of momentum 
in the horizontal (x) direction to 
obtain: 
 

0=Δ xp  
or 

030cos recoil =−° Mvmv  
 

Solving for recoilv  yields: 
M

mvv °
=

30cos
recoil  

 
Substitute numerical values and 
evaluate recoilv : 
 

( )( )

m/s3.4

kg5000
cos30m/s125kg200

recoil

=

°
=v

 

 
(c) Using the work-energy theorem, 
relate the thermal energy produced 
by air friction to the change in the 
energy of the system: 
 

KUEWW Δ+Δ=Δ== sysfext  

Substitute for ΔU and ΔK to obtain: 

( ) ( )22
f2

1
if

2
2
12

f2
1

ifext

i

i

vvmyymg

mvmvmgymgyW

−+−=

−+−=
 

 
Substitute numerical values and evaluate Wext: 
 

( )( )( ) ( ) ( ) ( )[ ]
kJ569

m/s125m/s0.80kg200m180m/s81.9kg200 22
2
12

ext

−=

−+=W
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105 ••• [SSM] One popular, if dangerous, classroom demonstration involves 
holding a baseball an inch or so directly above a basketball, holding the basketball 
a few feet above a hard floor, and dropping the two balls simultaneously. The two 
balls will collide just after the basketball bounces from the floor; the baseball will 
then rocket off into the ceiling tiles with a hard ″thud″ while the basketball will 
stop in midair. (The author of this problem once broke a light doing this.)  
(a) Assuming that the collision of the basketball with the floor is elastic, what is 
the relation between the velocities of the balls just before they collide?  
(b) Assuming the collision between the two balls is elastic, use the result of Part 
(a) and the conservation of momentum and energy to show that, if the basketball 
is three times as heavy as the baseball, the final velocity of the basketball will be 
zero. (This is approximately the true mass ratio, which is why the demonstration 
is so dramatic.) (c) If the speed of the baseball is v just before the collision, what 
is its speed just after the collision? 
 
Picture the Problem Let the numeral 1 
refer to the basketball and the numeral 
2 to the baseball. The left-hand side of 
the diagram shows the balls after the 
basketball’s elastic collision with the 
floor and just before they collide. The 
right-hand side of the diagram shows 
the balls just after their collision. We 
can apply conservation of momentum 
and the definition of an elastic collision 
to obtain equations relating the initial 
and final velocities of the masses of the 
colliding objects that we can solve for 
v1f and v2f. 

1m

2m

2m

1m

2iv
r

1ivr 1fv
r

2fv
r

 
 
(a) Because both balls are in free-fall, and both are in the air for the same amount 
of time, they have the same velocity just before the basketball rebounds.  After the 
basketball rebounds elastically, its velocity will have the same magnitude, but the 
opposite direction than just before it hit the ground. The velocity of the basketball 
will be equal in magnitude but opposite in direction to the velocity of the baseball. 
 
(b) Apply conservation of linear 
momentum to the collision of the 
balls to obtain: 
 

2i21i1f22f11 vmvmvmvm +=+      (1) 

Relate the initial and final kinetic 
energies of the balls in their elastic 
collision: 
 

2
i222

12
i112

12
f222

12
f112

1 vmvmvmvm +=+  
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Rearrange this equation and 
factor to obtain: 

( ) ( )2
f1

2
i11

2
i2

2
f22 vvmvvm −=−  

or 
( )( )

( )( )1fi11fi11

2if22if22

vvvvm
vvvvm

+−=
+−

      (2) 

 
Rearrange equation (1) to obtain: 
 

( ) ( )1f1i12i2f2 vvmvvm −=−        (3) 
 

Divide equation (2) by equation 
(3) to obtain: 
 

1fi12if2 vvvv +=+  

Rearrange this equation to obtain 
equation (4): 
 

1ii2f2f1 vvvv −=−                     (4) 
 

Multiply equation (4) by m2 and 
add it to equation (1) to obtain: 
 

( ) ( ) 2i21i211f21 2 vmvmmvmm +−=+  

Solve for v1f to obtain: 
i2

21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=  

or, because v2i = −v1i, 

i1
21

21

i1
21

2
i1

21

21
f1

3

2

v
mm
mm

v
mm

mv
mm
mmv

+
−

=

+
−

+
−

=

 

 
For m1 = 3m2 and v1i = v: 
 0

3
33

22

22
f1 =

+
−

= v
mm
mmv  

 
(c) Multiply equation (4) by m1 
and subtract it from equation (1) 
to obtain: 
 

( ) ( ) 1i1i212f221 2 vmvmmvmm +−=+  

Solve for v2f to obtain: 
i2

21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  

or, because v2i = −v1i, 

i1
21

21

i1
21

12
i1

21

1
f2

3

2

v
mm
mm

v
mm
mmv

mm
mv

+
−

=

+
−

−
+

=

 

 
For m1 = 3m2 and v1i = v: 
 

( ) vv
mm

mmv 2
3
33

22

22
f2 =

+
−

=  
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106 ••• (a) Referring to Problem 105, if we held a third ball above the baseball 
and basketball, and wanted both the basketball and baseball to stop in mid-air, 
what should the ratio of the mass of the top ball to the mass of the baseball be?  
(b) If the speed of the top ball is v just before the collision, what is its speed just 
after the collision? 
 
Picture the Problem In Problem 105 
only two balls are dropped. They 
collide head on, each moving at 
speed v, and the collision is elastic. 
In this problem, as it did in Problem 
105, the solution involves using the 
conservation of momentum equation  

2i21i1f22f11 vmvmvmvm +=+  and the 
elastic collision equation 

1ii2f2f1 vvvv −=− where the numeral 
1 refers to the baseball, and the 
numeral 2 to the top ball. The 
diagram shows the balls just before 
and just after their collision. From 
Problem 105 we know that v1i = 2v 
and v2i = −v. 

1m

2m

2m

1m

2iv
r

1ivr

2fv
r

01f =vr

 

 
(a) Express the final speed v1f of the 
baseball as a function of its initial 
speed v1i and the initial speed of the 
top ball v2i (see Problem 64): 
 

i2
21

2
i1

21

21
f1

2 v
mm

mv
mm
mmv

+
+

+
−

=          

Substitute for v1i and , v2i to obtain: 
 ( ) ( )v

mm
mv

mm
mmv −

+
+

+
−

=
21

2

21

21
f1

22  

 
Divide the numerator and 
denominator of each term by m2 to 
introduce the mass ratio of the upper 
ball to the lower ball: 

( ) ( )v

m
mv

m
m
m
m

v −
+

+
+

−
=

1

22
1

1

2

1

2

1

2

1

f1  

 
Set the final speed of the baseball v1f 
equal to zero and let x represent the 
mass ratio m1/m2 to obtain:  

( ) ( )v
x

v
x
x

−
+

+
+
−

=
1

22
1
10      

 
 

Solving for x yields: 
2
1

2

1 ==
m
mx  

 



Conservation of Linear Momentum 
 

 

816 

(b) Apply the second of the two 
equations in Problem 64 to the 
collision between the top ball and 
the baseball: 
 

2i
21

12
i1

21

1
f2

2 v
mm
mmv

mm
mv

+
−

+
+

=  

Substitute v1i = 2v and v2i = −v  to 
obtain: ( ) ( )v

mm
mmv

mm
mv −

+
−

+
+

=
21

12

21

1
f2 22  

 
In part (a) we showed that m2 = 2m1. 
Substitute and simplify to obtain: 
 

( ) ( )

v

v
mm
mmv

mm
mv

3
7

11

11

11

1
3f 2

22
2

22

=

+
−

−
+

=
 

 
107 •••   [SSM]  In the ″slingshot effect,″ the transfer of energy in an elastic 
collision is used to boost the energy of a space probe so that it can escape from 
the solar system. All speeds are relative to an inertial frame in which the center of 
the sun remains at rest. Figure 8-55 shows a space probe moving at 10.4 km/s 
toward Saturn, which is moving at 9.6 km/s toward the probe. Because of the 
gravitational attraction between Saturn and the probe, the probe swings around 
Saturn and heads back in the opposite direction with speed vf. (a) Assuming this 
collision to be a one-dimensional elastic collision with the mass of Saturn much 
greater than that of the probe, find vf. (b) By what factor is the kinetic energy of 
the probe increased? Where does this energy come from? 
 
Picture the Problem Let the direction the probe is moving after its elastic 
collision with Saturn be the positive direction. The probe gains kinetic energy at 
the expense of the kinetic energy of Saturn. We’ll relate the velocity of approach 
relative to the center of mass to urec and then to v. Let the +x direction be in the 
direction of the motion of Saturn. 
 
(a) Relate the velocity of recession 
to the velocity of recession relative 
to the center of mass: 
 

cmrec vuv +=                                (1) 

Find the velocity of approach: 
 km/s0.20

km/s0.41km/s9.6app

−=

−−=u
 

 
Relate the relative velocity of 
approach to the relative velocity of 
recession for an elastic collision: 
 

km/s0.20apprec =−= uu  

Because Saturn is so much more 
massive than the space probe:  

km/s6.9Saturncm == vv  
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Substitute numerical values in 
equation (1) and evaluate v: 
 

km/s03km/s9.6km/s02 =+=v  

(b) Express the ratio of the final 
kinetic energy to the initial kinetic 
energy and simplify: 

2

i

rec
2
i2

1

2
rec2

1

i

f
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

v
v

Mv
Mv

K
K  

 
Substitute numerical values and 
evaluate Kf/Ki: 1.8

km/s10.4
km/s29.6

2

i

f =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

K
K  

 
The energy comes from an immeasurably small slowing of Saturn. 

 
108 •• A 13-kg block is at rest on a level floor. A 400-g glob of putty is 
thrown at the block so that the putty travels horizontally, hits the block, and sticks 
to it. The block and putty slide 15 cm along the floor. If the coefficient of kinetic 
friction is 0.40, what is the initial speed of the putty? 
  
Picture the Problem Let the system include the block, the putty, and the earth. 
Then Fext,net = 0 and momentum is conserved in this perfectly inelastic collision. 
We’ll use conservation of momentum to relate the after-collision velocity of the 
block plus blob and conservation of energy to find their after-collision velocity.  
 
Noting that, because this is a 
perfectly elastic collision, the final 
velocity of the block plus blob is the 
velocity of the center of mass, use 
conservation of momentum to relate 
the velocity of the center of mass to 
the velocity of the glob before the 
collision: 
 

fi pp =  
or 

cmglgl Mvvm = ⇒ cm
gl

gl v
m
Mv =    (1) 

where blgl mmM += . 

Use conservation of energy to find 
the initial energy of the block plus 
glob: 

0f =+Δ+Δ WUK  
Because ΔU = Kf = 0, 

0k
2
cm2

1 =Δ+− xfMv  
 

Because fk = μkMg: 0Δk
2
cm2

1 =+− xMgMv μ  
 

Solve for cmv  to obtain: 
 

xgv Δ= kcm 2μ  
 

Substitute numerical values and 
evaluate cmv : 

( )( )( )
m/s1.08

m0.15m/s9.810.402 2
cm

=

=v  
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Substitute numerical values in 
equation (1) and evaluate glv : 

( )

m/s36

m/s1.08
kg0.400

kg0.400kg13
gl

=

+
=v

 

 
109 ••• [SSM] Your accident reconstruction team has been hired by the local 
police to analyze the following accident.  A careless driver rear-ended a car that 
was halted at a stop sign. Just before impact, the driver slammed on his brakes, 
locking the wheels. The driver of the struck car had his foot solidly on the brake 
pedal, locking his brakes. The mass of the struck car was 900 kg, and that of the 
initially moving vehicle was 1200 kg. On collision, the bumpers of the two cars 
meshed. Police determine from the skid marks that after the collision the two cars 
moved 0.76 m together. Tests revealed that the coefficient of kinetic friction 
between the tires and pavement was 0.92. The driver of the moving car claims 
that he was traveling at less than 15 km/h as he approached the intersection. Is he 
telling the truth? 
  
Picture the Problem Let the direction the moving car was traveling before the 
collision be the +x direction. Let the numeral 1 denote this car and the numeral 2 
the car that is stopped at the stop sign and the system include both cars and Earth. 
We can use conservation of momentum to relate the speed of the initially-moving 
car to the speed of the meshed cars immediately after their perfectly inelastic 
collision and conservation of energy to find the initial speed of the meshed cars. 
 
Using conservation of momentum, 
relate the before-collision velocity to 
the after-collision velocity of the 
meshed cars: 
 

( )Vmmvm

pp

2111

fi

or
+=

=
 

Solving for v1 and simplifying 
yields: V

m
mV

m
mmv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

+
=

1

2

1

21
1 1       (1) 

 
Using conservation of energy, relate 
the initial kinetic energy of the 
meshed cars to the work done by 
friction in bringing them to a stop: 
 

0thermal =Δ+Δ EK  
or, because Kf = 0 and ΔEthermal = fΔs, 

0ki =Δ+− sfK  

Substitute for Ki and, using  
fk = μkFn = μkMg, eliminate fk to 
obtain: 
 

0k
2

2
1 =Δ+− xMgMV μ                

 
 

Solving for V yields: xgV Δ2 kμ=  
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Substitute for V in equation (1) to 
obtain: xg

m
mv Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= k

1

2
1 21 μ  

 
Substitute numerical values and evaluate v1: 
 

( )( )( ) km/h23m/s48.6m0.76m/s9.810.922
kg1200
kg9001 2

1 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=v  

 
The driver was not telling the truth. He was traveling at 23 km/h.  

 
110 •• A pendulum consists of a compact 0.40-kg bob attached to a string of 
length 1.6 m. A block of mass m rests on a horizontal frictionless surface. The 
pendulum is released from rest at an angle of 53º with the vertical. The bob 
collides elastically with the block at the lowest point in its arc. Following the 
collision, the maximum angle of the pendulum with the vertical is 5.73º. 
Determine the mass m. 
 
Picture the Problem Let the zero of gravitational potential energy be at the 
lowest point of the bob’s swing and note that the bob can swing either forward or 
backward after the collision. We’ll use both conservation of momentum and 
conservation of energy to relate the velocities of the bob and the block before 
and after their collision. Choose the positive x direction to be in the direction of 
the motion of the block. 
 
Express the kinetic energy of the 
block in terms of its after-collision 
momentum: 
 

m
pK m

2

2

m = ⇒
m

m

K
pm

2

2

=              (1) 

                 

Use conservation of energy to 
relate Km to the change in the 
potential energy of the bob: 

0=Δ+Δ UK  
or, because Ki = 0, 

0if =−+ UUKm  
 

Solve for Km, substitute for Uf and 
Ui and simplify to obtain: ( ) ( )[ ]

[ ]ifbob

fibob

if

coscos
cos1cos1

θθ
θθ

−=
−−−=

+−=

gLm
LLgm

UUKm

 

 
Substitute numerical values and evaluate Km: 
 

( )( )( )[ ] J2.47cos53cos5.73m1.6m/s9.81kg0.40 2 =°−°=mK  
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Use conservation of energy to find 
the velocity of the bob just before its 
collision with the block: 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

0if =−UK  
 

Substitute for Kf and Ui to obtain: ( ) 0cos1 ibob
2

bob2
1 =−− θgLmvm  
 

Solving for v yields: 
 

( )icos12 θ−= gLv  

Substitute numerical values and 
evaluate v: 
 

( )( )( )
m/s3.536

cos531m1.6m/s9.812 2

=

°−=v  

 
Use conservation of energy to find 
the velocity of the bob just after its 
collision with the block: 
 

0=Δ+Δ UK  
or, because Kf = Ui = 0, 

0fi =+− UK  

Substitute for Ki and Uf to obtain: ( ) 0cos1' fbob
2

bob2
1 =−+− θgLmvm  

 
Solve for v′: ( )fcos12' θ−= gLv  

 
Substitute numerical values and 
evaluate v′: 

( )( )( )
m/s396.0

cos5.731m1.6m/s9.812' 2

=

°−=v  

 
Use conservation of momentum to 
relate pm after the collision to the 
momentum of the bob just before 
and just after the collision: 
 

mpvmvm

pp

+±=

=

'
or

bobbob

fi

 

 

Solve for and evaluate pm: 
( )( )

m/skg0.158m/skg.4141
m/s0.396m/s3.536kg0.40

'bobbob

⋅±⋅=
±=

±= vmvmpm

 

 
Find the larger value for pm: 

m/skg1.573
m/skg0.158m/skg.4141

⋅=
⋅+⋅=mp

 

 
Find the smaller value for pm: 

m/skg1.256
m/skg0.158m/skg.4141

⋅=
⋅−⋅=mp
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Substitute numerical values in 
equation (1) to determine the 
two values for m: 

( )
( ) kg50.0

J47.22
m/skg573.1 2

=
⋅

=m  

or 
( )

( ) kg32.0
J47.22
m/skg256.1 2

=
⋅

=m  

 
111 ••• [SSM] A 1.00-kg block and a second block of mass M are both 
initially at rest on a frictionless inclined plane (Figure 8-56)  Mass M rests against 
a spring that has a force constant of 11.0 kN/m.  The distance along the plane 
between the two blocks is 4.00 m. The 1.00-kg block is released, making an 
elastic collision with the unknown block. The 1.00-kg block then rebounds a 
distance of 2.56 m back up the inclined plane. The block of mass M comes 
momentarily comes to rest 4.00 cm from its initial position. Find M. 
  
Picture the Problem Choose the zero of gravitational potential energy at the 
location of the spring’s maximum compression. Let the system include the 
spring, the blocks, and Earth. Then the net external force is zero as is work done 
against friction. We can use conservation of energy to relate the energy 
transformations taking place during the evolution of this system. 
 
Apply conservation of energy to the 
system: 
 

0sg =Δ+Δ+Δ UUK  

 

Because ΔK = 0: 
 

0sg =Δ+Δ UU  

Express the change in the 
gravitational potential energy: 
 

θsing MgxhmgU −Δ−=Δ  

Express the change in the potential 
energy of the spring: 
 

2
2
1

s kxU =Δ  

Substitute to obtain: 0sin 2
2
1 =+−Δ− kxMgxhmg θ       

     
Solving for M and simplifying 
yields: x

hm
g
kx

gx
hmgkxM Δ

−=
°
Δ−

=
2

30sin

2
2
1

 

 
Relate Δh to the initial and 
rebound positions of the block 
whose mass is m: 
 

( )
m72.0

30sinm56.2m00.4Δ
=

°−=h
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Substitute numerical values and evaluate M: 
 

( ) ( ) ( )( ) kg8.9
m0.0400

m0.72kg1.002
m/s9.81

m0.0400N/m1011.0
2

3

=−
×

=M  

 
112 ••• A neutron of mass m makes an elastic head-on collision with a 
stationary nucleus of mass M. (a) Show that the kinetic energy of the nucleus after 
the collision is given by Knucleus = [4mM/(m + M)2]Kn, where Kn is the initial 
kinetic energy of the neutron. (b) Show that the fractional change in the kinetic 
energy of the neutron is given by  

( )
[ ]( )2

n

n

1
4Δ

Mm
Mm

K
K

+
−= . 

(c) Show that this expression gives plausible results both if m << M and m = M. 
What is the best stationary nucleus for the neutron to collide head-on with if the 
objective is to produce a maximum loss in the kinetic energy of the neutron? 
  
Picture the Problem In this elastic head-on collision, the kinetic energy of 
recoiling nucleus is the difference between the initial and final kinetic energies of 
the neutron. We can derive the indicated results by using both conservation of 
energy and conservation of momentum and writing the kinetic energies in terms 
of the momenta of the particles before and after the collision. 
 
(a) Use conservation of energy to 
relate the kinetic energies of the 
particles before and after the 
collision: 
 

M
p

m
p

m
p

222

2
nucleus

2
nf

2
ni +=                    (1) 

Apply conservation of momentum 
to obtain a second relationship 
between the initial and final 
momenta: 
 

nucleusnfni ppp +=                       (2) 

Eliminate pnf in equation (1) using 
equation (2): 

0
22

ninucleusnucleus =−+
m
p

m
p

M
p          (3) 

 
Use equation (3) to write 

mp 22
ni in terms of pnucleus: 

 

( )
mM

mMpK
m

p
2

22
nucleus

n

2
ni

82
+

==      (4) 

Use equation (4) to express 
MpK 22

nucleusnucleus = in terms of 
Kn: 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡

+
= 2nnucleus

4
mM

MmKK        (5) 
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(b) Relate the change in the kinetic 
energy of the neutron to the after-
collision kinetic energy of the 
nucleus: 
 

nucleusn KK −=Δ  

Using equation (5), express the 
fraction of the energy lost in the 
collision:  

( )
( )
( )( )2

2
n

n

1
4

4Δ

Mm
Mm

mM
Mm

K
K

+
−=

+
−=

 

 
(c) If m << M: 
 

expected. as 0Δ

n

n →
K
K  

 
If m = M: 
 ( )

expected. as 1
11

4Δ
2

n

n −=
+

−=
K
K  

 
113 ••• The mass of a carbon nucleus is approximately 12 times the mass of a 
neutron. (a) Use the results of Problem 112 to show that after N head-on 
collisions of a neutron with carbon nuclei at rest, the kinetic energy of the neutron 
is approximately 0.716N K0, where K0 is its initial kinetic energy. (b) Neutrons 
emitted during the fission of a uranium nucleus have kinetic energies of about  
2.0 MeV. For such a neutron to cause the fission of another uranium nucleus in a 
reactor, its kinetic energy must be reduced to about 0.020 eV. How many head-on 
collisions are needed to reduce the kinetic energy of a neutron from 2.0 MeV to 
0.020 eV, assuming elastic head-on collisions with stationary carbon nuclei? 
  
Picture the Problem Problem 112 (b) provides an expression for the fractional 
loss of kinetic energy per collision. 
 
(a) Using the result of Problem 112 
(b), express the fractional loss of 
energy per collision: 
 

( )
( )2

2

0

nni

ni

nf

mM
mM

E
KK

K
K

+
−

=
Δ−

=  

 

Evaluate this fraction to obtain: ( )
( )

716.0
12
12

2

2

0

nf =
+
−

=
mm
mm

E
K  

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 716.0 EK N=  

(b) Substitute for Knf and E0 to 
obtain: 
 

810716.0 −=N  
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Take the logarithm of both sides 
of the equation and solve for N: 

55
0.716log

8N ≈
−

=  

 
114 ••• On average, a neutron actually loses only 63 percent of its energy in an 
elastic collision with a hydrogen atom (not 100 percent) and 11 percent of its 
energy during an elastic collision with a carbon atom (not 18 percent). (These 
numbers are an average over all types of collisions, not just head-on ones. Thus 
the results are lower than the ones determined from analyses like that in Problem 
113 because most collisions are not head-on.) Calculate the actual number of 
collisions, on average, needed to reduce the energy of a neutron from 2.0 MeV to 
0.020 eV if the neutron collides with stationary (a) hydrogen atoms and  
(b) carbon atoms. 
  
Picture the Problem We can relate the number of collisions needed to reduce 
the energy of a neutron from 2 MeV to 0.02 eV to the fractional energy loss per 
collision and solve the resulting exponential equation for N. 
 
(a) Using the result of Problem 113 
(b), express the fractional loss of 
energy per collision: 37.0

63.0

ni

nini

0

nni

ni

nf

=

−
=

Δ−
=

K
KK

E
KK

K
K

 

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 37.0 KK N=  

Substitute for Knf and K0 to obtain: 
 

81037.0 −=N  

Take the logarithm of both sides 
of the equation and solve for N: 

19
0.37log
8

≈
−

=N  

 
(b) Proceed as in (a) to obtain: 

89.0

11.0

ni

nini

0

nni

ni

nf

=

−
=

Δ−
=

K
KK

E
KK

K
K

 

 
Express the kinetic energy of one 
neutron after N collisions: 
 

0nf 89.0 KK N=  

Substitute for Knf and K0 to obtain: 
 

81089.0 −=N  

Take the logarithm of both sides of 
the equation and solve for N: 

158
0.89log
8

≈
−

=N  
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115 ••• [SSM] Two astronauts at rest face each other in space. One, with 
mass m1, throws a ball of mass mb to the other, whose mass is m2. She catches the 
ball and throws it back to the first astronaut. Following each throw the ball has a 
speed of v relative to the thrower. After each has made one throw and one catch, 
(a) How fast are the astronauts moving? (b) How much has the two-astronaut 
system’s kinetic energy changed and where did this energy come from? 
     
Picture the Problem Let the direction that astronaut 1 first throws the ball be the 
positive direction and let vb be the initial speed of the ball in the laboratory frame. 
Note that each collision is perfectly inelastic. We can apply conservation of 
momentum and the definition of the speed of the ball relative to the thrower to 
each of the perfectly inelastic collisions to express the final speeds of each 
astronaut after one throw and one catch. 
 
(a) Use conservation of linear 
momentum to relate the speeds of 
astronaut 1 and the ball after the first 
throw: 
 

0bb11 =+ vmvm                         (1) 

Relate the speed of the ball in the 
laboratory frame to its speed relative 
to astronaut 1: 
 

1b vvv −=                                  (2) 

Eliminate vb between equations (1) 
and (2) and solve for v1: 
 

v
mm

m
v

b1

b
1 +

−=                        (3) 

Substitute equation (3) in equation 
(2) and solve for vb: 

v
mm

mv
b1

1
b +

=                           (4) 

 
Apply conservation of linear 
momentum to express the speed of 
astronaut 2 and the ball after the first 
catch: 
 

( ) 2b2bb0 vmmvm +==             (5) 

Solving for v2 yields: 
b

b2

b
2 v

mm
m

v
+

=                         (6) 

 
Express v2 in terms of v by 
substituting equation (4) in equation 
(6): 

( )( ) v
mmmm

mm

v
mm

m
mm

mv

⎥
⎦

⎤
⎢
⎣

⎡
++

=

++
=

b1b2

1b

b1

1

b2

b
2

      (7) 
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Use conservation of momentum to 
express the speed of astronaut 2 and 
the ball after she throws the ball: 
 

( ) 2f2bfb2b2 vmvmvmm +=+       (8) 

Relate the speed of the ball in the 
laboratory frame to its speed relative 
to astronaut 2: 
 

bf2f vvv −=                                (9) 

Eliminate vbf between equations (8) 
and (9) and solve for v2f: v

mm
m

mm
mv ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
b1

1

b2

b
f2 1  (10) 

 
Substitute equation (10) in equation 
(9) and solve for vbf: 
 

v
mm

m
mm

mv ⎥
⎦

⎤
⎢
⎣

⎡
+

+⎥
⎦

⎤
⎢
⎣

⎡
−

+
=

b1

1

b2

b
bf 11  (11) 

Apply conservation of momentum to 
express the speed of astronaut 1 and 
the ball after she catches the ball: 
 

( ) 11bfb1fb1 vmvmvmm +=+               (12) 
 

Using equations (3) and (11), 
eliminate vbf and v1 in equation (12) 
and solve for v1f: 
 

( )
( ) ( )

v
mmmm

mmmmv
b2

2
b1

b1b2
1f

2
++

+
−=  

(b) The change in the kinetic energy 
of the system is: 

ifΔ KKK −=  
or, because Ki = 0, 

2
2f22

12
1f12

1

2f1ffΔ

vmvm

KKKK

+=

+==
 

 
Substitute for v1f and v2f to obtain: 
 

( )
( ) ( )

2
2

b1

1

2

b2

b
22

12

2

b2
2

b1

b1b2
12

1 12Δ v
mm

m
mm

mmv
mmmm

mmmmmK ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
+

−=  

 
Simplify to obtain: 
 

( )
( ) ( ) ( )

2
2

b1

21
2

b1
2

b2

2
b1

2
b2

2
1 12Δ v

mm
mm

mmmm
mmmmK ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
+

++
+

=  

 
This additional energy came from chemical energy in the astronaut’s bodies.  
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116 ••• A stream of elastic glass beads, each with a mass of 0.50 g, comes out 
of a horizontal tube at a rate of 100 per second (see Figure 8-57). The beads fall a 
distance of 0.50 m to a balance pan and bounce back to their original height. How 
much mass must be placed in the other pan of the balance to keep the pointer at 
zero? 
 
Picture the Problem Take the zero of gravitational potential energy to be at the 
elevation of the pan and let the system include the balance, the beads, and the 
earth. We can use conservation of energy to find the vertical component of the 
velocity of the beads as they hit the pan and then calculate the net downward force 
on the pan from Newton’s 2nd law. Let the positive y direction be upward. 
 
Use conservation of energy to relate 
the y component of the bead’s 
velocity as it hits the pan to its height 
of fall: 
 

0=Δ+Δ UK  
or, because Ki = Uf = 0, 

02
2
1 =− mghmvy ⇒ ghvy 2=  

Substitute numerical values and 
evaluate vy: 
 

( )( ) m/s3.13m0.50m/s9.812 2 ==yv  

 

Express the change in momentum in 
the y direction per bead: 
 

( ) yyyyyy mvmvmvppp 2if =−−=−=Δ  

 

Use Newton’s 2nd law to express 
the net force in the y direction 
exerted on the pan by the beads: 
 

t
p

NF y
y Δ

Δ
net, −=  

 

Letting M represent the mass to be 
placed on the other pan, equate its 
weight to the net force exerted by the 
beads, substitute for Δpy,  and solve 
for M: 

t
p

NMg y

Δ
Δ

−=−  

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

=
g

mv
t

NM y2
 

 
Substitute numerical values and 
evaluate M: 

( ) ( )( )[ ]

g32

m/s9.81
m/s3.13kg0.000502s/100 2

=

=M
 

 
117 ••• A dumbbell, consisting of two balls of mass m connected by a 
massless 1.00-m-long rod, rests on a frictionless floor against a frictionless wall 
until it begins to slide down the wall as in Figure 8-58.   Find the speed of the 
bottom ball at the moment when it equals the speed of the top ball. 
 



Conservation of Linear Momentum 
 

 

828 

Picture the Problem Assume that the connecting rod goes halfway through both 
balls, i.e., the centers of mass of the balls are separated by 1.00 m. Let the system 
include the dumbbell, the wall and floor, and the earth. Let the zero of 
gravitational potential be at the center of mass of the lower ball and use 
conservation of energy to relate the speeds of the balls to the potential energy of 
the system. By symmetry, the speeds will be equal when the angle with the 
vertical is 45°. 
 
Use conservation of energy to 
express the relationship between the 
initial and final energies of the 
system: 
 

fi EE =  

Express the initial energy of the 
system: 
 

mgLE =i  
where L is the length of the rod. 
 

Express the energy of the system 
when the angle with the vertical is 
45°: 
 

( ) 2
2
1

f 245sin vmmgLE +°=  

Substitute to obtain: 2

2
1 vgLgL +⎟

⎠

⎞
⎜
⎝

⎛=  

 
Solving for v yields: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
11gLv  

 
Substitute numerical values and 
evaluate v: ( )( )

m/s53.4

2
11m 00.1m/s81.9 2

=

⎟
⎠
⎞

⎜
⎝
⎛ −=v

 

 
 


