Chapter 8
Conservation of Linear Momentum

Conceptual Problems

1 . [SSM] Show that if two particles have equal kinetic energies, the
magnitudes of their momenta are equal only if they have the same mass.

Determine the Concept The kinetic energy of a particle, as a function of its
momentum, is given by K = p’ / 2m.

The kinetic energy of the particles is P 5

von b K,=—and K, =——
given by: 2m, 2m,
Equate these kinetic energies to p; _ 5
obtain: 2m,  2m,
Because the magnitudes of their L _ L and m =/ m
momenta are equal: m, m, 1 :

2 Particle A has twice the (magnitude) momentum and four times the
kinetic energy of particle B. A also has four times the kinetic energy of B. What is
the ratio of their masses (the mass of particle A to that of particle B)? Explain
your reasoning.

Determine the Concept The kinetic energy of a particle, as a function of its
momentum, is given by K = p?/2m.

The kinetic energy of particle A is K - p: m = P
given by: A 2m, bO2K,
The kinetic energy of particle B is e o
. KB = B = —
given by: 2m, 2K,
Divide the first of these equations by p:
the second and simplify to obtain: m, 2K, Kypi K, ( P, jz
my Py Kypy KoUpg
2K,
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. - 2
Because particle A has twice thfa m, Ky (2ps) _
(magnitude) momentum of particle B T 4K -

. . . mB B pB
and four times as much kinetic
energy:

3 . Using SI units, show that the units of momentum squared divided by
those of mass is equivalent to the joule.

Determine the Concept The SI units of momentum are kg-m/s.

Express the ratio of the square of the " m)
units of momentum to the units of & 5
mass: kg

Simplify to obtain:

m) 2

2 m’ m
= S —kg-—=|kg-— |'m=N-m=|]
kg kg 8 s (g szj

4 . True or false:

(a) The momentum of a 1.00-kg object is greater than that of a 0.25-kg object
moving at the same speed.

(b) The total linear momentum of a system may be conserved even when the
mechanical energy of the system is not.

(c) For the total linear momentum of a system to be conserved, there must be no
external forces acting on the system.

(d) The velocity of the center of mass of a system changes only when there is a
net external force on the system.

(a) True. The momentum of an object is the product of its mass and velocity.

Therefore, if we are considering just the magnitudes of the momenta, the
momentum of a heavy object is greater than that of a light object moving at the

same speed.

(b) True. Consider the collision of two objects of equal mass traveling in opposite

directions with the same speed. Assume that they collide inelastically. The
mechanical energy of the system is not conserved (it is transformed into other
forms of energy), but the momentum of the system is the same after the collision
as before the collision; that is, zero. Therefore, for any inelastic collision, the

momentum of a system may be conserved even when mechanical energy is not.



Conservation of Linear Momentum 715

(c) False. The net external force must be zero if the linear momentum of the
system is to be conserved.

(d) True. This non-zero net force accelerates the center of mass. Hence its
velocity changes.

5 o If a bullet is fired due west, explain how conservation of linear
momentum enables you to predict that the recoil of the rifle be exactly due east. Is
kinetic energy conserved here?

Determine the Concept The momentum of the bullet-gun system is initially zero.
After firing, the bullet’s momentum is directed west. Momentum conservation
requires that the system’s total momentum does not change, so the gun’s
momentum must be directed east.

6 - A child jumps from a small boat to a dock. Why does she have to jump
with more effort than she would need if she were jumping through an identical
displacement, but from a boulder to a tree stump?

Determine the Concept When she jumps from a boat to a dock, she must, in
order for momentum to be conserved, give the boat a recoil momentum, i.e., her
forward momentum must be the same as the boat’s backward momentum. When
she jumps through an identical displacement from a boulder to a tree stump, the
mass of the boulder plus the Earth is so large that the momentum she imparts to
them is essentially zero.

7 e [SSM] Much early research in rocket motion was done by Robert
Goddard, physics professor at Clark College in Worcester, Massachusetts. A
quotation from a 1920 editorial in the New York Times illustrates the public
opinion of his work: "That Professor Goddard with his 'chair’ at Clark College
and the countenance of the Smithsonian Institution does not know the relation
between action and reaction, and the need to have something better than a vacuum
against which to react—to say that would be absurd. Of course, he only seems to
lack the knowledge ladled out daily in high schools.” The belief that a rocket
needs something to push against was a prevalent misconception before rockets in
space were commonplace. Explain why that belief is wrong.

Determine the Concept In a way, the rocket does need something to push upon.
It pushes the exhaust in one direction, and the exhaust pushes it in the opposite
direction. However, the rocket does not push against the air.
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8 Two identical bowling balls are moving with the same center-of-mass
velocity, but one just slides down the alley without rotating, whereas the other
rolls down the alley. Which ball has more kinetic energy? Which one has more
total momentum (magnitude)? Because of the relationship between kinetic energy
and momentum of a particle (K = p’ / 2m), it would seem there is something

wrong with your answer. Explain why there is nothing wrong with your answer.

Determine the Concept The kinetic energy of the sliding ball istmv’ . The

where K is its kinetic energy

rel »

kinetic energy of the rolling ball istmv2 +K

relative to its center of mass. Because the bowling balls are identical and have
the same velocity, the rolling ball has more energy. There is no problem here
because the relationship K = p?/2m is between the center of mass kinetic

energy of the ball and its linear momentum.

9 A philosopher tells you, "Changing motion of objects is impossible.
Forces always come in equal but pairs. Therefore, all forces cancel out. Since
forces cancel, the momenta of objects can never be changed.” Answer his
argument.

Determine the Concept Think of someone pushing a box across a floor. Her
push on the box is equal but opposite to the push of the box on her, but the action
and reaction forces act on different objects. Newton’s second law is that the sum
of the forces acting on the box equals the rate of change of momentum of the box.
This sum does not include the force of the box on her.

10 - A moving objects collides with an arbitrary. Is it possible for both
objects to be at rest immediately after the collision? (Assume any external forces
acting on this two-object system are negligibly small.) Is it possible for one object
to be at rest immediately after the collision? Explain.

Determine the Concept It’s not possible for both to remain at rest after the
collision, as that wouldn't satisfy the requirement that momentum is conserved. It
is possible for one to remain at rest: This is what happens for a one-dimensional
collision of two identical particles colliding elastically.

11 -«  Several researchers in physics education claim that part of the cause of
physical misconceptions amongst students comes from special effects they
observe in cartoons and movies. Using the conservation of linear momentum,
how would you explain to a class of high school physics students what is
conceptually wrong with a superhero hovering at rest in midair while tossing
massive objects such as cars at villains? Does this action violate conservation of
energy as well? Explain.
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Determine the Concept Hovering in midair while tossing objects violates the
conservation of linear momentum! To throw something forward requires being
pushed backward. Superheroes are not depicted as experiencing this backward
motion that is predicted by conservation of linear momentum. This action also
violates conservation of energy in that, with no change in the superheroes
potential or kinetic energy resulting from the tossing of objects, the mechanical
energy of the hero-object-Earth system is greater after the toss than it was before
the toss.

12 .= A struggling physics student asks "If only external forces can cause the
center of mass of a system of particles to accelerate, how can a car move? Doesn’t
the car’s engine supply the force needed to accelerate the car? " Explain what
external agent produces the force that accelerates the car, and explain how the
engine makes that agent do so.

Determine the Concept There is only one force which can cause the car to move
forward—the friction of the road! The car’s engine causes the tires to rotate, but if
the road were frictionless (as is closely approximated by icy conditions) the
wheels would simply spin without the car moving anywhere. Because of friction,
the car’s tire pushes backwards against the road and the frictional force acting on
the tire pushes it forward. This may seem odd, as we tend to think of friction as
being a retarding force only, but it is true.

13 = When we push on the brake pedal to slow down a car, a brake pad is
pressed against the rotor so that the friction of the pad slows the rotor’s, and thus
the wheel’s rotation. However, the friction of the pad against the rotor can’t be the
force that slows the car down, because it is an internal force—both the rotor and
the wheel are parts of the car, so any forces between them are internal, not
external, forces. What external agent exerts the force that slows down the car?
Give a detailed explanation of how this force operates.

Determine the Concept The frictional force by the road on the tire causes the car
to slow. Normally the wheel is rotating at just the right speed so both the road
and the tread in contact with the road are moving backward at the same speed
relative to the car. By stepping on the brake pedal, you slow the rotation rate of
the wheel. The tread in contact with the road is no longer moving as fast, relative
to the car, as the road. To oppose the tendency to skid, the tread exerts a forward
frictional force on the road and the road exerts an equal and opposite force on the
tread.

14 - Explain why a circus performer falling into a safety net can survive
unharmed, while a circus performer falling from the same height onto the hard
concrete floor suffers serious injury or death. Base your explanation on the
impulse-momentum theorem.
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Determine the Concept Because Ap = FAt is constant, the safety net reduces the
force acting on the performer by increasing the time At during which the slowing
force acts.

15 e [SSM] In Problem 14 for the performer falling from a height of
25 m, estimate the ratio of the collision time with the safety net to the collision
time with the concrete. Hint: Use the procedure outlined in Step 4 of the
Problem-Solving Strategy located in Section 8-3.

Determine the Concept The stopping time for the performer is the ratio of the
distance traveled during stopping to the average speed during stopping.

Letting d,¢ be the distance the net d..
gives on impact, Aeoncrete the distance o At Vi withne )
the concrete gives, and Vay, with net and B At e e

Vav without net the average speeds during
stopping, express the ratio of the
impact times:

av, without net

Assuming constant acceleration, the v = Ve +V

average speed of the performer " 2

during stopping is given by: or, because Vr= 0 in both cases,
Vo =3V

where V is the impact speed.

Substituting in equation (1) and d,.
simplifying yields: (o Vo d..
M dconcrete
Iv
Assuming that the net gives about po_1m o
1 m and concrete about 0.1 mm 0.Imm
yields:

16 <= (a) Why does a drinking glass survive a fall onto a carpet but not onto
a concrete floor? (b) On many race tracks, dangerous curves are surrounded by
massive bails of hay. Explain how this setup reduces the chances of car damage
and driver injury.

Determine the Concept In both (a) and (b), longer impulse times
(Impulse = F,yAt) are the result of collisions with a carpet and bails of hay. The
average force on a drinking glass or a car is reduced (nothing can be done about



Conservation of Linear Momentum 719

the impulse, or change in linear momentum, during a collision but increasing the
impulse time decreases the average force acting on an object) and the likelihood
of breakage, damage or injury is reduced.

17 - True or false:

(a) Following any perfectly inelastic collision, the kinetic energy of the system
is zero after the collision in all inertial reference frames.

(b) For a head-on elastic collision, the relative speed of recession equals the
relative speed of approach.

(c) During a perfectly inelastic head-on collision with one object initially at rest,
only some of the system’s kinetic energy is dissipated.

(d) After a perfectly inelastic head-on collision along the east-west direction, the
two objects are observed to be moving west. The initial total system
momentum was, therefore, to the west.

(a) False. Following a perfectly inelastic collision, the colliding bodies stick
together but may or may not continue moving, depending on the momentum
each brings to the collision.

(b) True. For a head-on elastic collision both kinetic energy and momentum are
conserved and the relative speeds of approach and recession are equal.

() True. This is the definition of an inelastic collision.

(d) True. The linear momentum of the system before the collision must be in the
same direction as the linear momentum of the system after the collision.

18 =  Under what conditions can all the initial kinetic energy of an isolated
system consisting of two colliding objects be lost in a collision? Explain how this
result can be, and yet the momentum of the system can be conserved.

Determine the Concept If the collision is perfectly inelastic, the objects stick
together and neither will be moving after the collision. Therefore the final
kinetic energy will be zero and all of it will have been lost (that is, transformed
into some other form of energy). Momentum is conserved because in an isolated
system the net external force is zero.

19 e+ Consider a perfectly inelastic collision of two objects of equal mass.
(a) Is the loss of kinetic energy greater if the two objects are moving in opposite
directions, each moving with at speed Vv/2, or if one of the two objects is initially
at rest and the other has an initial speed of v? (b) In which of these situations is
the percentage loss in kinetic energy the greatest?
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Determine the Concept We can find the loss of kinetic energy in these two
collisions by finding the initial and final kinetic energies. We’ll use conservation
of momentum to find the final velocities of the two masses in each perfectly

elastic collision.

(a) Letting V represent the velocity
of the masses after their perfectly
inelastic collision, use conservation
of momentum to determine V:

Express the loss of kinetic energy
for the case in which the two
objects have oppositely directed
velocities of magnitude v/2:

Letting V represent the velocity of
the masses after their perfectly
inelastic collision, use conservation
of momentum to determine V:

Express the loss of kinetic energy
for the case in which the one object
is initially at rest and the other has
an initial velocity v:

pbefore = pafter
or
mv—mv=2mV =V =0

pbefore = pafter
or
mv=2mV =V =1v

The loss of kinetic energy is the same in both cases.

(b) Express the percentage loss for
the case in which the two objects
have oppositely directed velocities
of magnitude v/2:

Express the percentage loss for the
case in which the one object is
initially at rest and the other has an
initial velocity Vv:

2

AK  mv

=4 —100%
Kbefore % mv
AK mv’
=4 =50%
Kbefore ; mv

The percentage loss is greatest for the case in which the two objects have
oppositely directed velocities of magnitude v/2.

20 oo

A double-barreled pea shooter is shown in Figure 8-41. Air is blown

into the left end of the pea shooter, and identical peas A and B are positioned
inside the straw as shown. If the shooter is held horizontally while the peas are
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shot off, which pea, A or B, will travel farther after leaving the straw? Explain.
Base your explanation on the impulse-momentum theorem.

Determine the Concept A will travel farther. Both peas are acted on by the same
force, but pea A is acted on by that force for a longer time. By the impulse-
momentum theorem, its momentum (and, hence, speed) will be higher than pea
B’s speed on leaving the shooter.

21 = A particle of mass m; traveling with a speed v makes a head-on elastic
collision with a stationary particle of mass m,. In which scenario will the largest
amount of energy be imparted to the particle of mass m,? (a) m, <<m;,

(b) my =m;y, (¢) my >>m;y, (d) None of the above.

Determine the Concept Refer to the particles as particle 1 and particle 2. Let the
direction particle 1 is moving before the collision be the positive X direction.
We’ll use both conservation of momentum and conservation of mechanical
energy to obtain an expression for the velocity of particle 2 after the collision.
Finally, we’ll examine the ratio of the final kinetic energy of particle 2 to that of
particle 1 to determine the condition under which there is maximum energy
transfer from particle 1 to particle 2.

Use conservation of momentum to MV, =MV, +m,Vv,, (1)
obtain one relation for the final

velocities:

Use conservation of mechanical Vyp =V = —(Vz,i =V, ) =v,; (2@

energy to set the velocity of
recession equal to the negative of
the velocity of approach:

To eliminate v, 1, solve equation (2) Vi =V, +V;
for vy g, and substitute the result in my,, =m, (V2 ) ,)+ m,V, ,

i s i R
equation (1):
Solve for v, ¢ to obtain: V. - 2m, v

2f Li
m, +m,
Express the ratio R of Ky ¢ to K ; 2m, 2 )
1

; . M| —— | V.
in terms of m; and my: . K, 2 m4+m, ) M

Kl,i 2 m1V1 J

2
m, 4m;
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2

Differentiate this ratio with respect m, 120
to m,, set the derivative equal to m12 B
zero, and obtain the quadratic

equation:

Solve this equation for m; to m, =m,

determine its value for maximum
energy transfer:

(b) | is correct because all of particle 1’s kinetic energy is transferred to

particle 2 when m, =m,.

22 e+« Suppose you are in charge of an accident-reconstruction team which
has reconstructed an accident in which a car was "rear-ended” and the two cars
locked bumpers and skidded to a halt. During the trial, you are on the stand as an
expert witness for the prosecution and the defense lawyer claims that you wrongly
neglected friction and the force of gravity during the fraction of a second while
the cars collided. Defend your report. Why were you correct in ignoring these
forces? You did not ignore these two forces in your skid analysis both before and
after the collision. Can you explain to the jury why you did not ignore these two
forces during the pre- and post-collision skids?

Determine the Concept You only used conservation of linear momentum for the
few fractions of a second of actual contact between the cars. Over that short time,
friction and other external forces can be neglected. In the long run, over the
duration of the accident, they cannot.

23 = Nozzles for a garden hose are often made with a right-angle shape as
shown in Figure 8-41. If you open the nozzle and spray water out, you will find
that the nozzle presses against your hand with a pretty strong force—much
stronger than if you used a nozzle not bent into a right angle. Why is this situation
true?

Determine the Concept The water is changing direction when it rounds the
corner in the nozzle. Therefore, the nozzle must exert a force on the stream of
water to change its momentum, and this requires a net force in the direction of the
momentum change.

Conceptual Problems from Optional Sections

24 = Describe a perfectly inelastic head-on collision between two stunt cars
as viewed in the center-of-mass reference frame.

Determine the Concept In the center-of-mass reference frame the two objects
approach with equal but opposite momenta and remain at rest after the collision.
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25 ++  One air-hockey puck is initially at rest. An identical air-hockey puck
collides with it, striking it with a glancing blow. Assume the collision was elastic
and neglect any rotational motion of the pucks. Describe the collision in the
center-of-mass frame of the pucks.

Determine the Concept Before the collision, the center-of-mass is midway
between the two pucks and continues on a straight line throughout the interaction
between the pucks. As viewed from the center of mass, the two pucks approach
each other and then recede in a different direction, but with the same relative
speed before and after the collision.

26 e A baton with one end more massive than the other is tossed at an angle
into the air. (2) Describe the trajectory of the center of mass of the baton in the
reference frame of the ground. (b) Describe the motion of the two ends of the
baton in the center-of-mass frame of the baton.

Determine the Concept
(@) In the center-of-mass frame of the ground, the center of mass moves in a
parabolic arc.

(b) Relative to the center of mass, each end of the baton would describe a circular
path. The more massive end of the baton would travel in the circle with the
smaller radius because it is closer to the location of the center of mass.

27 = Describe the forces acting on a descending Lunar lander as it fires its
retrorockets to slow it down for a safe landing. (Assume its mass loss during the
rocket firing is not negligible.)

Determine the Concept The forces acting on a descending Lunar lander are the
downward force of lunar gravity and the upward thrust provided by the rocket
engines.

28 o A railroad car rolling along by itself is passing by a grain elevator,
which is dumping grain into it at a constant rate. (&) Does momentum
conservation imply that the railroad car should be slowing down as it passes the
grain elevator? Assume that the track is frictionless and perfectly level and that
the grain is falling vertically. (b) If the car is slowing down, this situation implies
that there is some external force acting on the car to slow it down. Where does
this force come from? (C) After passing the elevator, the railroad car springs a
leak, and grain starts leaking out of a vertical hole in its floor at a constant rate.
Should the car speed up as it loses mass?

Determine the Concept We can apply conservation of linear momentum and
Newton’s laws of motion to each of these scenarios.
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(a) Yes, the car should slow down. An easy way of seeing this is to imagine a
"packet" of grain being dumped into the car all at once: This is a completely
inelastic collision, with the packet having an initial horizontal velocity of 0. After
the collision, it is moving with the same horizontal velocity that the car does, so
the car must slow down.

(b) When the packet of grain lands in the car, it initially has a horizontal velocity
of 0, so it must be accelerated to come to the same speed as the car of the train.
Therefore, the train must exert a force on it to accelerate it. By Newton’s 3™ law,
the grain exerts an equal but opposite force on the car, slowing it down. In
general, this is a frictional force which causes the grain to come to the same speed
as the car.

(c) No it doesn’t speed up. Imagine a packet of grain being "dumped" out of the
railroad car. This can be treated as a collision, too. It has the same horizontal
speed as the railroad car when it leaks out, so the train car doesn’t have to speed
up or slow down to conserve momentum.

29 ese  [SSM] To show that even really intelligent people can make
mistakes, consider the following problem which was asked of a freshman class at
Caltech on an exam (paraphrased): A sailboat is sitting in the water on a windless
day. In order to make the boat move, a misguided sailor sets up a fan in the back
of the boat to blow into the sails to make the boat move forward. Explain why the
boat won’t move. The idea was that the net force of the wind pushing the sail
forward would be counteracted by the force pushing the fan back (Newton’s third
law). However, as one of the students pointed out to his professor, the sailboat
could in fact move forward. Why is that?

Determine the Concept Think of the sail facing the fan (like the sail on a square
rigger might), and think of the stream of air molecules hitting the sail. Imagine
that they bounce off the sail elastically—their net change in momentum is then
roughly twice the change in momentum that they experienced going through the
fan. Thus the change in momentum of the air is backward, so to conserve
momentum of the air-fan-boat system the change in momentum of the fan-boat
system will be forward.

Estimation and Approximation

30 e« A 2000-kg car traveling at 90 km/h crashes into an immovable
concrete wall. (a) Estimate the time of collision, assuming that the center of the
car travels halfway to the wall with constant acceleration. (Use any plausible
length for the car.) (b) Estimate the average force exerted by the wall on the car.
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Picture the Problem We can estimate the time of collision from the average
speed of the car and the distance traveled by the center of the car during the
collision. We’ll assume a car length of 6.0 m. We can calculate the average force
exerted by the wall on the car from the car’s change in momentum and its
stopping time.

(a) Relate the stopping time to the At = ,opping _ 0L,) L, (1)
assumption that the center of the car v, v, v,
travels halfway to the wall with

constant deceleration:

Because a is constant, the average v = V., +V;
speed of the car is given by: av 2
Substitute numerical values and km 1h 1000m
0+90——x X
evaluate V,,: v - h 3600s km
av 2
=12.5m/s
Substitute numerical values in % (6.0m)
equation (1) and evaluate At: At= 125m/s 0.120s=] 0.12s

(b) Relate the average force exerted by the wall on the car to the car’s change in
momentum:

(2000kg)(90kinx lh IOOOrn]

X

36005k

L=2P S ) _T42x10°N
At 0.1205

31 <= During hand-pumped railcar races, a speed of 32.0 km/h has been
achieved by teams of four people. A car that has a mass equal to 350 kg is moving
at that speed toward a river when Carlos, the chief pumper, notices that the bridge
ahead is out. All four people (each with a mass of 75.0 kg) simultaneously jump
backward off the car with a velocity that has a horizontal component of 4.00 m/s
relative to the car. The car proceeds off the bank and falls into the water a
horizontal distance of 25.0 m from the bank. (a) Estimate the time of the fall of
the railcar. (b) What is the horizontal component of the velocity of the pumpers
when they hit the ground?
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Picture the Problem Let the direction the railcar is moving be the positive X
direction and the system include the earth, the pumpers, and the railcar. We’ll
also denote the railcar with the letter ¢ and the pumpers with the letter p. We’ll
use conservation of linear momentum to relate the center of mass frame
velocities of the car and the pumpers and then transform to the earth frame of
reference to find the time of fall of the car.

(a) Relate the time of fall of the
railcar to the distance it falls and
its velocity as it leaves the bank:

Use conservation of momentum to
find the speed of the car relative to
the velocity of its center of mass:

Relate U, to U, and solve for U,:

Substitute for U, to obtain:

Solving for U, yields:

Substitute numerical values and
evaluate Uy:

Relate the speed of the car to its
speed relative to the center of mass
of the system:

a

VC
pi = ﬁf
or

mu, +mu, =0

u,—u, =4.00m/s
and
u, =u,—4.00m/s

m.u, +m, (u, —4.00m/s)=0

4.00m/s
u=———

C

m
1+

m,

4.00m/s
4(75.0kg)

V. =U,+V_,

Substitute numerical values and evaluate Vv.:

vC=18791+(3205§1

S

km

U =————
|, 350kg

=1.87m/s

lh (1000mj:10.7m/S
3600s

(1
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Substitute numerical values in At 25.0m _ 2345

equation (1) and evaluate At: 10.7m/s '

(b) The horizontal velocity of vV, =V, —Uu, =10.7m/s —4.00m/s
the pumpers when they hit the —6.7m/s

ground is:

32 e+ A wooden block and a gun are firmly fixed to opposite ends of a long
glider mounted on a frictionless air track (Figure 8-43). The block and gun are a
distance L apart. The system is initially at rest. The gun is fired and the bullet
leaves the gun with a velocity Vv, and impacts the block, becoming imbedded in it.
The mass of the bullet is m;, and the mass of the gun—glider—block system is m,,.
(a) What is the velocity of the glider immediately after the bullet leaves the gun?
(b) What is the velocity of the glider immediately after the bullet comes to rest in
the block? (c) How far does the glider move while the bullet is in transit between
the gun and the block?

Picture the Problem Let the system include the earth, platform, gun, bullet, and
block. Then F

coordinate system in which the +X direction is the direction of the bullet and let b
and p denote the bullet and platform, respectively.

= 0 and momentum is conserved within the system. Choose a

net,ext

(a) Apply conservation of linear Pretore = Pater
momentum to the system just Or
before and just after the bullet 0= Pye + pgh dor

leaves the gun:

Substitute for Py, and Py, t0 0=myV,i+ mv,
obtain:
Solving for V yields: o omy s

V, = =2V,

mP

(b) Apply conservation of Pretore = Pafier
momentum to the system just or
before the dart leaves the gun and _ B v
. . g 0= pglider = Vglider - @
just after it comes to rest in the
block:
(c) Express the distance As traveled As =v At

by the glider:
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Express the velocity of the bullet m,

. , V., =V, -V =V, +—2V
relative to the glider: S |

Relate the time of flight At to L L
and Vi

Substitute and simplify to find the distance As moved by the glider in time At:

m L m L m
As=v At=| v, [—J =| —v, = |
m, Vi m, My +M, m, +m,
b

Conservation of Linear Momentum

33 - [SSM] Tyrone, an 85-kg teenager, runs off the end of a horizontal
pier and lands on a free-floating 150-kg raft that was initially at rest. After he
lands on the raft, the raft, with him on it, moves away from the pier at 2.0 m/s.
What was Tyrone’s speed as he ran off the end of the pier?

Picture the Problem Let the system include the raft, the earth, and Tyrone and
apply conservation of linear momentum to find Tyrone’s speed when he ran off
the end of the pier.

Apply conservation of linear APyyiem = APryrone + APy =0
momentum to the system consisting or, because the motion is one-
of the raft and Tyrone to obtain: dimensional,

pf,Tyrone - pi,Tyrone + pf,raft - pi,raft = O
Because the raft is initially at rest: P ryrone — Pi.tyrone T Prran = 0

Use the definition of linear momentum to obtain:

+ mraftvf,raft = O

Tyronevf,Tyrone - mTyroneVi,Tyrone

Solve for v.

i,Tyrone

to obtain: oMy,
Vi,Tyrone - Vf,raft + Vf,Tyrone
Tyrone
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Letting v represent the common final i,
speed of the raft and Tyrone yields: Vityrone = 1+ ? \
yrone
Substitute nume.rical values and v =1+ 150kg (2' 0 m/s)
evaluate Vi,Tyrone . i, Tyrone 85 kg
=|5.5m/s

34 e A 55-kg woman contestant on a reality television show is at rest at the
south end of a horizontal 150-kg raft that is floating in crocodile-infested waters.
She and the raft are initially at rest. She needs to jump from the raft to a platform
that is several meters off the north end of the raft. She takes a running start. When
she reaches the north end of the raft she is running at 5.0 m/s relative to the raft.
At that instant, what is her velocity relative to the water?

Picture the Problem Let the system include the woman, the canoe, and the
earth. Then the net external force is zero and linear momentum is conserved as
she jumps off the canoe. Let the direction she jumps be the positive X direction.
Apply conservation of linear z mv.=m__ VvV _ +m_.V .=0
momentum to the system:

Solving for V_; yields: 7 = — MomanYwoman

raft mraﬁ
Substitute numerical values and _ (55 kg)(S.Om/S)f ( | 8m/ )r
evaluate V- it = 150kg S emsh

35 - A 5.0-kg object and a 10-kg object are connected by a massless
compressed spring and rest on a frictionless table. The spring is released and the
objects fly off in opposite directions. The 5.0-kg object has a velocity of 8.0 m/s
to the left. What is the velocity of the 10-kg object?

Picture the Problem If we include the earth in our system, then the net external
force is zero and linear momentum is conserved as the spring delivers its energy
to the two objects. Choose a coordinate system in which the +x direction is to the
right.

Apply conservation of linear Z mv, =myv, + mv,, =0
momentum to the system:
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Solving for V,,yields: _ m.V
Vip =~
mlO
Substitute numerical values and - ] =
> 7 :_(S.Okg)( 8.0m/s)l _[(@0ms),
evaluate V,: 10 10kg
or 4.0 m/s to the right.

36 - Figure 8-44 shows the behavior of a projectile just after it has broken
up into three pieces. What was the speed of the projectile the instant before it
broke up? (a) vs. (b) va/3. (C) va/4. (d) 4vs. (€) (Vi +V, +V3)/4.

Picture the Problem This is an explosion-like event in which linear momentum
is conserved. Thus we can equate the initial and final momenta in the X direction
and the initial and final momenta in the y direction. Choose a coordinate system in
the +x direction is to the right and the +y direction is upward.

Equate the momenta in the y Z P, = z p,; =Mmv,—2my,
direction before and after the _ m(2v1 )_ 2my, =0
explosion:

We can conclude that the momentum was entirely in the x direction before the
particle exploded.

Equate the momenta in the X z P = z P,¢
direction before and after the or
explosion: _
p 4mvprojectile - mv3
Solving for Ve yields: Vorojectite =% V5 and (c) |is correct.

37 e A shell of mass m and speed v explodes into two identical fragments.
If the shell was moving horizontally with respect to Earth, and one of the
fragments is subsequently moving vertically with speed v, find the velocity v’ of
the other fragment immediately following the explosion.

Picture the Problem Choose the direction the shell is moving just before the
explosion to be the positive X direction and apply conservation of momentum.

Use conservation of momentum to P, =P,
relate the masses of the fragments to or
their velocities:

mMvi = Imvj+1mv'=V'=| 2vi —Vj
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38 e+« During this week’s physics lab, the experimental setup consists of two
gliders on a horizontal frictionless air track (see Figure 8-45). Each glider
supports a strong magnet centered on top of it, and the magnets are oriented so
they attract each other. The mass of glider 1 and its magnet is 0.100 kg and the
mass of glider 2 and its magnet is 0.200 kg. You and your lab partners take the
origin to be at the left end of the track and to center glider 1 at Xx; = 0.100 m and
glider 2 at X, = 1.600 m. Glider 1 is 10.0 cm long, while glider 2 is 20.0 cm long
and each glider has its center of mass at its geometric center. When the two are
released from rest, they will move toward each other and stick. (a) Predict the
position of the center of each glider when they first touch. (b) Predict the velocity
the two gliders will continue to move with after they stick. Explain the reasoning
behind this prediction for your lab partners.

Picture the Problem Because no external forces act on either glider, the center
of mass of the two-glider system can’t move. We can use the data concerning the
masses and separation of the gliders initially to calculate its location and then
apply the definition of the center of mass a second time to relate the positions X;
and X, of the centers of the carts when they first touch. We can also use the
separation of the centers of the gliders when they touch to obtain a second
equation in X; and X, that we can solve simultaneously with the equation obtained
from the location of the center of mass.

(@) The x coordinate of the center of M X, +m,X,
mass of the 2-glider system is given om m, +m,
by:

Substitute numerical values and evaluate X.p:

(0.100kg)(0.100m)+(0.200kg)(1.600m)

X = =1.10m
0.100kg+0.200kg
from the left end of the air track.
Because the location of the center m, X, +m, X
1.10m=—"1-1—2"2
of mass has not moved when two m, +m,
gliders first touch:
Substitute numerical values and 1.10m =1 X, +3 X,
simplify to obtain:
Also, when they first touch, their X, =X, =4(10.0cm+20.0cm)

1
2
centers are separated by half their —0.150m

combined lengths:
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Thus we have: 11X, +3X,=1.10m

and
X, =X, =0.150m

Solving these equations X =[1.00m | and X. =/ 1.15m
simultaneously yields: 1 ?

(b) Because the momentum of the system was zero initially, it must be zero just
before the collision and after the collision in which the gliders stick together.

Hence their velocity after the collision must be Izl .

39 e Bored, a boy shoots his pellet gun at a piece of cheese that sits,
keeping cool for dinner guests, on a massive block of ice. On one particular shot,
his 1.2 g pellet gets stuck in the cheese, causing it to slide 25 cm before coming to
a stop. If the muzzle velocity of the gun is 65 m/s and the cheese has a mass of
120 g, what is the coefficient of friction between the cheese and ice?

Picture the Problem Let the system consist of the pellet and the cheese. Then we
can apply the conservation of linear momentum and the conservation of energy
with friction to this inelastic collision to find the coefficient of friction between
the cheese and the ice.

Apply conservation of linear APysiem = APpeier T APepeese =0
momentum to the system to obtain: or, because the motion is one-
dimensional,

pf,pellet - pi,pellet + pf,cheese - pi,cheese = 0

Because the cheese is initially at Pt peitet = Pipetier T Preheeser =0
rest:
Letting m represent the mass of the mv—mv, . +Mv=0

pellet, M the mass of the cheese, and
v the common final speed of the
pellet and the cheese, use the
definition of linear momentum to
obtain:

Solving for vyields: V= ﬁvi,peuet (1)
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Apply the conservation of energy W, =AE ., +AE,..
with friction to the system to obtain: or, because Wey = 0,
AK+AU, +AE,,, =0
Because AU, = Ky =0, and ~L(m+M)V? + fAs=0
AE,.., = fAs (where As is the
distance the cheese slides on the
ice):
f is given by: f=u(m+M)g
Substituting for f yields: —%(m +M )v2 + U, (m +M )gAS =0

Substitute for v from equation (1) to obtain:

4w

2
m + M Vi,pelletj + ﬂk (m + M )gAS = O

Solving for g4 yields: 1 (mVi pellet Jz

'ukzngs m+ M

Substitute numerical values and evaluate z4:

H =

1 (0.0012kg)(65m/s) \
=10.084
2(9.81m/s*)(0.25m)\ 0.0012 kg +0.120 kg

40 eee A wedge of mass M, as shown in Figure 8-46, is placed on a
frictionless, horizontal surface, and a block of mass m is placed on the wedge,
whose surface is also frictionless. The center of mass of the block moves
downward a distance h, as the block slides from its initial position to the
horizontal floor. (a) What are the speeds of the block and of the wedge, as they
separate from each other and each go their own way? (b) Check your calculation
plausibility by considering the limiting case when M >>m.

Picture the Problem Let the system include the earth, block, and wedge and
apply conservation of energy and conservation of linear momentum.

(a) Apply conservation of energy W, =AK +AU
with no frictional forces to the or, because Wey = 0,
system to obtain: AK +AU =0
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Substituting for AK and AU yields:
Because K; = U;=0:

Letting "b" refer to the block and "w"
to the wedge yields:

Substitute for Ky ¢, Ky £, and Uy ; to
obtain:

Applying conservation of linear
momentum to the system yields:

Because p,, =p,, =0:

Substituting for P, and P, yields:

Solve for v,, to obtain:

Substituting for vy, in equation (1)
yields:

Solve for v} to obtain:

Substitute for v}, in equation (2) and
simplify to obtain:

(b) Rewriting equation (3) by
dividing the numerator and
denominator of the radicand by M
yields:

K,—K. +U,-U.=0

Kb,f + Kw,f _Ub,i =0

Lmv2 +1 My2 _
smvy +3Mv, —mgh=0

—mv,i+Mv_i=0

or
-mv, +Mv, =0

Conservation of Linear Momentum

(M

(2)

2
m
Imv; +§M(vaj -mgh=0

2ghM
M +m

y =M 2ghM
" MVM+m

2ghm?
M(M +m)

3)

(4)
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When M >>m: Vv, =4+/2gh

Rewriting equation (4) by dividing
the numerator and denominator of
the radicand by M yields: Vy =

When M >>m: v, =0

These results are exactly what we’d expect in this case: the physics is that of a

block sliding down a fixed wedge incline with no movement of the incline.

Kinetic Energy of a System of Particles

41 = [SSM] A 3.0-kg block is traveling to the right (the +X direction) at
5.0 m/s, and a second 3.0-kg block is traveling to the left at 2.0 m/s. (a) Find the
total kinetic energy of the two blocks. (b) Find the velocity of the center of mass
of the two-block system. (C) Find the velocity of each block relative to the center
of mass. (d) Find the kinetic energy of the blocks relative to the center of mass.
(e) Show that your answer for Part () is greater than your answer for Part (d) by
an amount equal to the kinetic energy associated with the motion of the center of
mass.

Picture the Problem Choose a coordinate system in which the positive X direction
is to the right. Use the expression for the total momentum of a system to find the
velocity of the center of mass and the definition of relative velocity to express the
sum of the kinetic energies relative to the center of mass.

(a) The total kinetic energy is the K=K, +K,=imyv}+1im,v;
sum of the kinetic energies of the

blocks:

Substitute numerical values and evaluate K:

K =1(3.0kg)(5.0m/s)’ +1(3.0kg)(2.0m/s) =43.5] =| 447

(b) Relate the velocity of the center MV, , =mV, +m,V,
of mass of the system to its total
momentum:
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Solving for V__ yields: i - myv, + m,v,
Tom+m,

Substitute numerical values and evaluate V :

7 - (3.0kg)(5.0m/s)i +(3.0kg)(2.0m/s)i _ (L5ms)i
3.0kg+3.0kg
(¢) The velocity of an object relative Va=V-V,,
to the center of mass is given by:
Substitute numerical values to V. = (5.0m/s)i —(1.5m/s)i
obtain: =
=| (3.5m/s)i
Vi = (-=2.0m/s)i —(1.5m/s)i
=| (-3.5m/ s)i
(d) Express the sum of the kinetic K = K + Kog =MV +3myvs
energies relative to the center of
mass:

Substitute numerical values and evaluate K :

K, =1(3.0kg)(3.5m/s)’ +1(3.0kg)(~3.5m/s)’ =| 37J

Ie

2

(e) K., 1s given by: Ko =32M Vo

Substitute numerical values and K., =+(6.0kg)(1.5m/s)’

evaluate K, : = 6.75] =43.5]-36.75]
= K - Krel

42 = Repeat Problem 41 with the second 3.0-kg block replaced by a 5.0-kg
block moving to the right at 3.0 m/s.

Picture the Problem Choose a coordinate system in which the positive X direction
is to the right. Use the expression for the total momentum of a system to find the
velocity of the center of mass and the definition of relative velocity to express the
sum of the kinetic energies relative to the center of mass.
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(a) The total kinetic energy is the K=K +K,=Imv}+imy:
sum of the kinetic energies of the
blocks:

Substitute numerical values and evaluate K:

K =1(3.0kg)(5.0m/s) +1(5.0kg)(3.0m/s)’ = 60.0J =| 60J

(b) Relate the velocity of the center MV, =mV, +m,V,

of mass of the system to its total

momentum:

Solving for V_ yields: S _ My, +myV,
o m+m

Substitute numerical values and evaluate V__

_ (3.0kg)(5.0m/s)i +(5.0kg)(3.0m/s)i

om =(3.75m/s)i =| (3.8 m/s)i
3.0kg+5.0kg

(c) The velocity of an object relative V,=V-V_,
to the center of mass is given by:

Substitute numerical values to V., =(5.0m/s)i —(3.75 m/s)f
obtain: -

=| (1.3ms)i

Vs = (3.0m/s)i —(3.75m/s)i

= (-0.75m/s)i

= (- 8m/s)
(d) Express the sum of the kinetic K = K + Kog =3my; o +3myv;
energies relative to the center of
mass:

Substitute numerical values and evaluate K_

K., =1(3.0kg)(1.25m/s)’ +1(5.0kg)(-0.75m/s) =3.75] =| 4]
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2

(e) K., is given by: Kan =3 M Vo
Substitute numerical values and K., = %(8.0 kg)(3.75 m/ S)2
evaluate K : ~56.3]

~| K- Krel

Impulse and Average Force

43 [SSM] You kick a soccer ball whose mass is 0.43 kg. The ball
leaves your foot with an initial speed of 25 m/s. (a) What is the magnitude of the
impulse associated with the force of your foot on the ball? (b) If your foot is in
contact with the ball for 8.0 ms, what is the magnitude of the average force
exerted by your foot on the ball?

Picture the Problem The impulse imparted to the ball by the kicker equals the
change in the ball’s momentum. The impulse is also the product of the average
force exerted on the ball by the kicker and the time during which the average
force acts.

(a) Relate the magnitude of the | = |Af)| =p;— P

impulse delivered to the ball to its or, because V; = 0

change in momentum: I =mv,

Substitute numerical values and | =(0.43kg)(25m/s)=10.8N -s
evaluate I: “[11N-s

(b) The impulse delivered to the ball
as a function of the average force
acting on it is given by:

| =F At=F, =
At

Substitute numerical values and _ 10.8N s _
evaluate F_: ' 0.0080s

av

1.3kN

44 - A 0.30-kg brick is dropped from a height of 8.0 m. It hits the ground
and comes to rest. (2) What is the impulse exerted by the ground on the brick
during the collision? (b) If it takes 0.0013 s from the time the brick first touches
the ground until it comes to rest, what is the average force exerted by the ground
on the brick during impact?
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Picture the Problem The impulse exerted by the ground on the brick equals the
change in momentum of the brick and is also the product of the average force
exerted by the ground on the brick and the time during which the average force
acts.

(a) Express the magnitude of the | = |Apbrick = ‘ Prrick — Pibrick
impulse exerted by the ground on the
brick:
Because Prprick = 0: = Piprick = MpricicV (1)
Use conservation of energy to AK +AU =0
determine the speed of the brick at or
impact: K,-K,+U,-U, =0
Because Ur=K; = 0: K;-U,=0
and

%mbrickvz -m, gh=0=v=,2gh

Substitute in equation (1) to obtain: | =m,../20h
Substitute numerical values and | =(0.30kg) \/ 2(9. 81m/s> )(S.Om)
evaluate I:

=376 N-s=| 3.8N"s

(c) The average force acting on the F - 1

brick is: YAt

Substitute numerical values and - 3.76N-s _H0KkN
evaluate F,: 0.0013s

45 - A meteorite that has a mass equal to 30.8 tonne (1 tonne = 1000 kg) is
exhibited in the American Museum of Natural History in New York City.
Suppose that the kinetic energy of the meteorite as it hit the ground was 617 MJ.
Find the magnitude of the impulse | experienced by the meteorite up to the time
its kinetic energy was halved (which took about t = 3.0 s). Find also the average
force F exerted on the meteorite during this time interval.
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Picture the Problem The impulse exerted by the ground on the meteorite equals
the change in momentum of the meteorite and is also the product of the average
force exerted by the ground on the meteorite and the time during which the
average force acts.

Express the magnitude of the I = |Af)meteorite =
impulse exerted by the ground on the
meteorite:

Pr — B

Relate the kinetic energy of the

meteorite to its initial momentum T om i

and solve for its initial momentum:

Express the ratio of the initial and p’

final kinetic energies of the Ki om _p’_ ysp =P

meteorite: K, B p? B p? B Pe = J2
2m

Substitute in our expression for | P, 1
. . I =L _ pi = pi _ 1
and simplify: 2 \2

o

Because our interest is in its magnitude, substitute numerical values and evaluate
the absolute value of I:

| =[y2(30.8x10° kg )(617x10° J)(L—lj —[1.81MN s
V2
The average force acting on the F - 1
meteorite is: YAt
Substitute numerical values and £ 1.8IMN-s _ 0.60MN

evaluate F,,: o 3.0s
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46 o A 0.15-kg baseball traveling horizontally is hit by a bat and its
direction exactly reversed. Its velocity changes from +20 m/s to —20 m/s.

(a) What is the magnitude of the impulse delivered by the bat to the ball? (b) If
the baseball is in contact with the bat for 1.3 ms, what is the average force exerted
by the bat on the ball?

Picture the Problem The impulse exerted by the bat on the ball equals the
change in momentum of the ball and is also the product of the average force
exerted by the bat on the ball and the time during which the bat and ball were in
contact.

(a) Express the impulse exerted by I = APy = Pr — B
the bat on the ball in terms of the

: =mvff—(—mvif)=2mvf
change in momentum of the ball:

where V=V;=V;

Substitute for m and v and I =2(0.15kg)(20m/s) = 6.00N -s
evaluatem : =| 6.0N-s

(b) The average force acting on the E - 1

ball is: At

Substitute numerical values and Fo- 6.00N-s _[46KkN

evaluate F,: 1.3ms

47 e A 60-g handball moving with a speed of 5.0 m/s strikes the wall at an
angle of 40° with the normal, and then bounces off with the same speed at the
same angle with the normal. It is in contact with the wall for 2.0 ms. What is the
average force exerted by the ball on the wall?

Picture the Problem The figure shows
the  handball just before and Y
immediately after its collision with the Uy
wall. Choose a coordinate system in
which the positive X direction is to the

right. The wall changes the momentum 0 N

of the ball by exerting a force on it N %
during the ball’s collision with it. The ) i
reaction to this force is the force the

ball exerts on the wall. Because these
action and reaction forces are equal in
magnitude, we can find the average
force exerted on the ball by finding the
change in momentum of the ball.
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Using Newton’s 3™ law, relate the S
average force exerted by the ball on and
the wall to the average force exerted F f=F (1)
by the wall on the ball:
Relate the average force exerted by = _Ap _mAvV
the wall on the ball to its change in wonball AL At
momentum:
Express AV in terms of its AV = AV, + AV,
components: or, because
AV, =V, ]V, jandv;, =V, ,.
AV = AV,
Express AV, for the ball: AV, =V, i—V i

or, because V,, =Vcos@ and
Vi, =-Vcosé,

X

AV, =—Vcos@i—Vcosdi =-2vcosfi

Substituting in the expression for E _ MAV __2mvcos 0 :
Ifalv on bt Yi€lds: avonball AL At
The magnitude of F,_ ., is: _ 2mvcosé
avonball —
At
Substitute numerical values and _ 2(0.060kg)(5.0m/s)cos40°
evaluate Fay on bal: avonbal 2.0ms
=0.23kN

Substitute in equation (1) to obtain: 0.23kN

avonwall —

48 = You throw a 150-g ball straight up to a height of 40.0 m. (a) Use a
reasonable value for the displacement of the ball while it is in your hand to
estimate the time the ball is in your hand while you are throwing it. (b) Calculate
the average force exerted by your hand while you are throwing it. (Is it OK to
neglect the gravitational force on the ball while it is being thrown?)



Picture the Problem The pictorial
representation shows the ball during
the interval of time during which you
are exerting a force on it to accelerate
it upward. The average force you exert
can be determined from the change in
momentum of the ball. The change in
the velocity of the ball can be found by
applying conservation of mechanical
energy to the ball-earth system once it
has left your hand.

(a) Relate the time the ball is in your
hand to its average speed while it is
in your hand and the displacement of
your hand:

Letting U, = 0 at the initial elevation
of your hand, use conservation of
mechanical energy to relate the
initial kinetic energy of the ball to its
potential energy when it is at its
highest point:

Substitute for K¢ and U; and solve
for v,:

Because v TV,

av,in yourhand —

Assuming the displacement of your
hand is 0.70 m as you throw the ball
straight up, substitute numerical
values and evaluate At:

(b) Relate the average force exerted
by your hand on the ball to the
change in momentum of the ball:
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t, =t +At
> Oy s
|||| |v2 =9
|
|
Fav
|| [
\F. =mg
|
| t]=
@y
v, =0
A
At=—2
Vav,in your hand
AK +AU =0
or, because K= U; =0,
-K,+U; =0

—imv; +mgh=0=v, =,/2gh

At BY 28y
3V, 4/2gh
At = 2(0'70 m) =50.0ms
V2(0.81m/s% )(40 m)
=| 50 ms
zﬂ — P.— B
YAt At
or, because V| = p; =0,
_my,

av At
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Substitute for v, to obtain:
2 F - m4/2gh
At
Substitute numerical values and (0.15kg) \/ 2(9.8 1m/s> )(4() m)
evaluate F,,: Fo = 50.0 ms
=84.1N=| 84N
Express the ratio of the gravitational F, mg

force on the ball to the average force

acting on it:
Substitute numerical values and F (O. 15 kg)(9.8 1m/s’ )

—£ = <2%
evaluate F,/F,,: F 84.1N

av

Because the gravitational force acting on the ball is less than 2% of the average
force exerted by your hand on the ball, it is reasonable to have neglected the
gravitational force.

49 e A (0.060-kg handball is thrown straight toward a wall with a speed of
10 m/s. It rebounds straight backward at a speed of 8.0 m/s. (&) What impulse is
exerted on the wall? (b) If the ball is in contact with the wall for 3.0 ms, what
average force is exerted on the wall by the ball? (c) The rebounding ball is
caught by a player who brings it to rest. During the process, her hand moves back
0.50 m. What is the impulse received by the player? (d) What average force was
exerted on the player by the ball?

Picture the Problem Choose a coordinate system in which the direction the ball
is moving after its collision with the wall is the +x direction. The impulse
delivered to the wall or received by the player equals the change in the
momentum of the ball during these two collisions. We can find the average
forces from the rate of change in the momentum of the ball.

(a) The impulse delivered to the I =Ap=mv, —-mV,

wall is the change in momentum of

the handball:

Substitute numerical values and I =(0.060kg)(8.0m/s)i
cvaluate 1 : ~[- (0.060kg)(10mss)i]

=(1.08N-s)i =| (I.IN-s)i
or 1.1 N-s directed into the wall.
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(b) Fay is the rate of change of the E - Ap

ball’s momentum: YAt

Substitute numerical values and - LOSN-s _ 5N
evaluate F,: 0.0030s

=1| 0.36kN, into the wall.

(¢) The impulse received by the | =Ap,,, = MAv
player from the change in
momentum of the ball is given by:

Substitute numerical values and I =(0.060kg)(8.0m/s)=0.480N s

evaluate I: =| 0.48 N -s, away from the wall.
(d) Relate F,, to the change in the F - APy

ball’s momentum: YAt

Express the stopping time in terms At = d

of the average speed V,, of the ball v,

and its stopping distance d:

Substitute for At and simplify to E VAP

obtain: av d

Substitute numerical values and E (4.0 m/s)(0.480N . s)
evaluate F_: " 0.50m

=| 3.8 N, away from the wall.

50 e A spherical 0.34-kg orange, 2.0 cm in radius, is dropped from the top
of a 35 m-tall building. After striking the pavement, the shape of the orange is a
0.50 cm thick pancake. Neglect air resistance and assume that the collision is
completely inelastic. (2) How much time did the orange take to completely
"squish” to a stop? (b) What average force did the pavement exert on the orange
during the collision?

Picture the Problem The following pictorial representation shows the orange
moving with velocity V, just before impact, after falling from a height of 35 m.
Let the system be the orange and let the zero of gravitational potential energy be
at the center of mass of the squished orange. The external forces are gravity,
acting on the orange throughout its fall, and the normal force exerted by the
ground that acts on the orange as it is squished. We can find the squishing time
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from the displacement of the center-of-mass of the orange as it stops and its
average speed during this period of (assumed) constant acceleration. We can use
the impulse-momentum theorem to find the average force exerted by the ground
on the orange as it slowed to a stop.

y
|
|
——————— I d
e et
U, =0z - 1--270
SRS S
\"
(a) Express the stopping time for the At = d (1)

orange in terms of its average speed
and the distance traveled by its center
of mass:

av

In order to find V,y, apply the

Ki=K+U,-U,, =0
conservation of mechanical energy to

1

the free-fall portion of the orange’s
motion:

Substituting for Ky, Ug s, and U,

or, because K; =0,
Ke+U,, -U,; =0

0

Imv? +mgd -mg(h-d)
yields:

Solving for v yields: d
V= 2gh(l - 2Fj

or, because d << h,

vV ~,2gh
Assuming constant acceleration as the v, =1v=1,2gh
orange squishes:
Substituting for V,, in equation (1) At = 2d
and simplifying yields: - /2gh
Substitute numerical values and 2(2.25 crn)
evaluate At: At= 2
' J2(0.81m/s% )35 m)
=4.43x10"*s=| 0.44 ms
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(b) Apply the impulse-momentum

theorem to the squishing orange to
obtain: or, because pr= 0,

F, At]=|Ap| =|p, - B

FavAt = pi:Fav :%:%
In Part (a) we showed that
P | - _m2gh
V, =V =~ /2gh . Therefore: av At
Substitute numerical values and (0_3 4 kg)\/2(9.81 m/s> )(3 5 m)
evaluate F_: F. =
av » 443x107* s
~| 54 kN

51 e« The pole-vault landing pad at an Olympic competition contains what is
essentially a bag of air that compresses from its "resting” height of 1.2 m down to
0.20 m as the vaulter is slowed to a stop. (a) What is the time interval during
which a vaulter who has just cleared a height of 6.40 m slows to a stop? (b) What
is the time interval if instead the vaulter is brought to rest by a 20 cm layer of
sawdust that compresses to 5.0 cm when he lands? () Qualitatively discuss the
difference in the average force the vaulter experiences from the two different
landing pads. That is, which landing pad exerts the least force on the vaulter and
why?

Picture the Problem The pictorial representation shows the vaulter moving with
velocityV, just before impact on the landing pad after falling from a height of
6.40 m. In order to determine the time interval during which the vaulter stops, we
have to know his momentum change and the average net force acting on him.
With knowledge of these quantities, we can use the impulse-momentum equation,
F _At=Ap. We can determine the average force by noting that as the vaulter

net

comes to a stop on the landing pad, work is done on him by the airbag.

|| Y
DS
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(a) Use the impulse-momentum
theorem to relate the stopping time to
the average force acting on the
vaulter:

Use the work-kinetic energy
theorem to obtain:

Substituting for F, in equation
(1) yields:

Solve for At to obtain:

2

Use K = p—to obtain:
2m

Rationalizing the denominator of this
expression and simplifying yields:

Kj is equal to the change in the
gravitational potential energy of the
vaulter as he falls a distance Ay
before hitting the airbag:

Substituting for K; in equation (1)
and simplifying yields:

Conservation of Linear Momentum

F At=Ap

net

Wnet = Fnetd = (Fairbag - mg h =AK

where d is the distance the vaulter
moves while being decelerated.

(Fairbag - mg )At = Ap
or
AK
—At=A
q p

At = dAp — d(pf _ pi)

AK K, =K,
or, because K¢ = pr= 0,
At = d(_ pl) :p;d
-K, K,
At — 2m[:2)id _2md _ 2md
pi pi 2mK1
2m
At=d [— 1
K (1)
K, =mgAy

At=d |2
gAy

Substitute numerical values and evaluate At:

2

=0.198s=| 0.20s

At=(1.2m—0.2m)\/(

9.81m/s*)(6.4m—1.2m)
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(b) In this case, d; =20 c¢cm, d; = 5.0 cm. Substitute numerical values and evaluate
At:

=272ms=| 27 ms

>
At =(0.20m -0.05
(020m m)\/(9.81m/s2)(6.4m—0.20m)

The average force exerted on the vaulter by the airbag is much less than the
average force the sawdust exerts on him because the collision time is much
shorter for the sawdust landing.

52 e QGreat limestone caverns have been formed by dripping water. (a) If
water droplets of 0.030 mL fall from a height of 5.0 m at a rate of 10 droplets per
minute, what is the average force exerted on the limestone floor by the droplets of
water during a 1.0-min period? (Assume the water does not accumulate on the
floor.) (b) Compare this force to the weight of one water droplet.

Picture the Problem The average force exerted on the limestone by the droplets
of water equals the rate at which momentum is being delivered to the floor.
We’re given the number of droplets that arrive per minute and can use
conservation of mechanical energy to determine their velocity as they reach the
floor.

(a) Letting N represent the rate at ~ ADyoplers N MAvV

which droplets fall, relate F,, to the w At At

change in the droplet’s momentum: or, because the droplets fall from rest,

N
F =—mv 1
av At ( )

where V is their speed after falling
5.0 m.

The mass of the droplets is the m = pV

product of their density and

volume:

Letting Ug = 0 at the point of AK +AU =0

impact of the droplets, use or

conservation of mechanical energy K,-K +U,-U. =0

to relate their speed at impact to
their fall distance:

Because K; = U= 0: Imv? -mgh=0=v=,2gh
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Substitute for m and Vv in equation N
F,=—pVy2gh
(1) to obtain: YAt p J

Substitute numerical values and F,=495x10"N=| 50 uN
evaluate F,,:

(b) Express the ratio of the weight of w _mg
a droplet to F,,:

Substitute numerical values and W (3 x 107 kg)(9.81m/sz)
evaluate W/F,y: F 495x10°N

av

~| 6

Collisions in One Dimension

53 [SSM] A 2000-kg car traveling to the right at 30 m/s is chasing a
second car of the same mass that is traveling in the same direction at 10 m/s. (a) If
the two cars collide and stick together, what is their speed just after the collision?
(b) What fraction of the initial kinetic energy of the cars is lost during this
collision? Where does it go?

Picture the Problem We can apply conservation of linecar momentum to this
perfectly inelastic collision to find the after-collision speed of the two cars. The
ratio of the transformed kinetic energy to kinetic energy before the collision is
the fraction of kinetic energy lost in the collision.

(a) Letting V be the velocity of the Pinitial = Prinal
two cars after their collision, apply or
conservation of linear momentum V, +V,

: : : L mv, +mv, =(m+m)V =V =
to their perfectly inelastic collision:

i i 30m/s+10m/s
Substitute numerical values and V = —[20m/s
evaluate V: 2
(b) The ratio of the kinetic energy AK _ K finat = Kinital _ K final 1
that is lost to the kinetic energy of Klnitial K initial Klnitial
the two cars before the collision is:
Substitute for the kinetic energies AK  1(2m)v? |

snli - - 2 2
and simplify to obtain: Ko  2Mv;+1my;

2V’
=5 1
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Substitute numerical values and AK 2(20 rn/s)2
evaluate AK/Kiptiar: Kpia  (30m/s)’ +(10m/s)’
=-0.20

20% of the initial kinetic energy is transformed into heat, sound, and the
deformation of the materials from which the car is constructed.

54 . An 85-kg running back moving at 7.0 m/s makes a perfectly inelastic
head-on collision with a 105-kg linebacker who is initially at rest. What is the
speed of the players just after their collision?

Picture the Problem We can apply conservation of linear momentum to this
perfectly inelastic collision to find the after-collision speed of the two players.

Letting the subscript 1 refer to the P, = Ps

running back and the subscript 2 or

refer to th? linebacker, apply ‘ my, = (m1 +m, )V V= m, v,
conservation of momentum to their m, +m,
perfectly inelastic collision:

Substitute numerical values and V = 85kg (7_ 0m. /S) ~[3 1ms
evaluate V: 85kg+105kg

55 e A 5.0-kg object with a speed of 4.0 m/s collides head-on with a 10-kg
object moving toward it with a speed of 3.0 m/s. The 10-kg object stops dead after
the collision. (a) What is the post-collision speed of the 5.0-kg object? (b) Is the
collision elastic?

Picture the Problem We can apply conservation of linear momentum to this
collision to find the post-collision speed of the 5.0-kg object. Let the direction the
5.0-kg object is moving before the collision be the positive direction. We can
decide whether the collision was elastic by examining the initial and final kinetic
energies of the system.

(a) Letting the subscript 5 refer to the P = P

5.0-kg object and the subscript 10 or

refer to th.e 10-kg object, apply . MV, s — MgV, 1y = MV,
conservation of momentum to obtain:

Solve for Vvgs: MV s =MV 4
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Substitute numerical values and
evaluate Vgs:

(b) Evaluate AK for the collision:

Conservation of Linear Momentum

(5.0kg)(4.0m/s)—(10kg)(3.0m/s)
S5kg

—2.0m/s

where the minus sign means that the
5.0-kg object is moving to the left after
the collision.

AK =K, —K, = 1(5.0kg)(2.0m/s)’ —[L(5.0kg)(4.0m/s)*+ 1 (10kg)(3.0m/sY |

=-75]

Because AK # 0, the collision was not elastic.

56 e

A small superball of mass m moves with speed V to the right toward a

much more massive bat that is moving to the left with speed v. Find the speed of
the ball after it makes an elastic head-on collision with the bat.

Picture the Problem The pictorial
representation shows the ball and bat
just before and just after their collision.
Take the direction the bat is moving to
be the positive direction. Because the
collision is elastic, we can equate the
speeds of recession and approach, with
the approximation that Vipy = Vepar tO
find Vepa.

Express the speed of approach of the
bat and ball:

Because the mass of the bat is much
greater than that of the ball:

Substitute to obtain:

Solve for and evaluate Vepan:

Frrnn

Vivat ~ Vipan = _(Vi,bat - Vi,ball)

Vivat = Vepat

Vebat — Vepan = _(Vf,bat - Vi,ball)

Vean = Vepar T (Vf,bat ~ Vibanl )
=Vipan T 2Vf,bat =V+2v

3v
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57 = A proton that has a mass m and is moving at 300 m/s undergoes a
head-on elastic collision with a stationary carbon nucleus of mass 12m. Find the
velocity of the proton and the carbon nucleus after the collision.

Picture the Problem Let the direction the proton is moving before the collision
be the +x direction. We can use both conservation of momentum and conservation
of mechanical energy to obtain an expression for velocities of the proton and the

carbon nucleus after the collision.

Use conservation of linear
momentum to obtain one relation for
the final velocities:

Use conservation of mechanical
energy to set the velocity of
recession equal to the negative of the
velocity of approach:

To eliminate Vyy r, solve equation (2)
for Vnuer, and substitute the result in

equation (1):

Solving for v, r yields:
Substituting for m, and My, and
simplifying yields:

Substitute the numerical value of v, ;
and evaluate V, 1

Solving equation (2) for V. r yields:

Substitute numerical values and
evaluate Vi f:

58 oo

mV,; =MV, . +m,V (D)

p pf nuc ' nuc,f

Vnuc,f - Vp,f = _(Vnuc,i - Vp,i ) = Vp,i (2)

Vnuc,f = Vp,i + Vp,f
and
mpvp,i = mpr’f +M . (iji + ijf)
_ mp - rnnuc
pf p.i
mp +M.
~m-12m 11

V. =———V . =——V .
M m+12m P 13 ™

v =—%(300m/s)= —254m/s

p.f

where the minus sign tells us that the
velocity of the proton was reversed in
the collision.

\' V. .+V

nuc,f = p.i p.f

v =300 m/s—254 m/s

nuc,f

=| 46 m/s, forward

A 3.0-kg block moving at 4.0 m/s makes a head-on elastic collision

with a stationary block of mass 2.0 kg. Use conservation of momentum and the
fact that the relative speed of recession equals the relative speed of approach to
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find the velocity of each block after the collision. Check your answer by
calculating the initial and final kinetic energies of each block.

Picture the Problem We can use conservation of momentum and the definition
of an elastic collision to obtain two equations in V,r and Vi¢ that we can solve
simultaneously.

Use conservation of momentum to m,V;, = MVy + MV, (1)
obtain one relation for the final

velocities:

Use conservation of mechanical Vyp = Vg = —(V2i -V, ) =V,  (2)

energy to set the velocity of
recession equal to the negative of the
velocity of approach:

Solve equation (2) for vs¢, Vo — 2m,v,,
substitute in equation (1) to o m, +m;
eliminate Vs¢, and solve for Vs to
obtain:
Substitute numerical values and v, = 2(3.0kg)(4.0m/s) — 4.80m/s
evaluate Vo5 2.0kg+3.0kg
=1 4.8m/s
Use equation (2) to find v3¢: Vi =V, — V5 =4.8m/s —4.0m/s
=| 0.8m/s

Evaluate K; and K¢

K, = K

1

=1myv2 =1(3.0kg)(4.0m/s) =247J
and
Kf = K3f + K2f = %m3V§f +%m2v22f

=1(3.0kg)(0.8m/s)’ +1(2.0kg)(4.8m/s)’ =247

Because K; = K¢, we can conclude that the values obtained for V,r and V3¢ are
consistent with the collision having been elastic.

59 e A block of mass m; = 2.0 kg slides along a frictionless table with a
speed of 10 m/s. Directly in front of it, and moving in the same direction with a
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speed of 3.0 m/s, is a block of mass m, = 5.0 kg. A massless spring that has a
force constant k = 1120 N/m is attached to the second block as in Figure 8-47.
(a) What is the velocity of the center of mass of the system? (b) During the
collision, the spring is compressed by a maximum amount AX. What is the value
of Ax? (¢) The blocks will eventually separate again. What are the final velocities
of the two blocks measured in the reference frame of the table, after they
separate?

Picture the Problem We can find the velocity of the center of mass from the
definition of the total momentum of the system. We’ll use conservation of
energy to find the maximum compression of the spring and express the initial
(i.e., before collision) and final (i.e., at separation) velocities. Finally, we’ll
transform the velocities from the center-of-mass frame of reference to the table
frame of reference.

(@) Use the definition of the total P = > my, = Mv,,
momentum of a system to relate the i
initial momenta to the velocity of the or

center of mass: m\Vv,; + MV, = (m1 + mz)ch

Solve for Vep: v = m,v,; +m,v,,

. m, +m,
Substitute numerical values and v = (2.0kg)(10m/s)+(5.0kg)(3.0m/s)
evaluate Vep: o 2.0kg+5.0kg

=5.00m/s =| 5.0m/s

(b) Find the kinetic energy of the K=K, =1Mv2

system at maximum compression = %(7.0 kg)(5-00 m/s)2 —875]
(U =u,=0):

Use conservation of mechanical AK +AU, =

energy to relate the kinetic energy of or

the system to the potential energy K,-K +U,-U_, =0

stored in the spring at maximum

compression:

Because K¢ = K, and Ug; = 0: K., — K, +1k(Ax)* =0
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Solving for AX yields:

Conservation of Linear Momentum

AX_ 2 Ki_Kcm)_\/z_émlvlzi-i-;mZV;i_Kcm_ _\/mlvlzi+m2V§i_2Kcm
ok - - k

Substitute numerical values and evaluate AX:

1120 N/m

A= \/ (2.0kg)(10m/sY +(5.0kg)(3.0m/s)’

(C) Find uy;, Up;, and Uy¢ for this
elastic collision:

Use conservation of mechanical
energy to set the velocity of
recession equal to the negative of
the velocity of approach and solve
for Uy

Substitute numerical values and
evaluate Uy

Transform u;r and U,¢ to the table
frame of reference:

60 oo

~ 2(87.57) _[o5m
1120 N/m

u; =V, -V, =10m/s—5m/s =5m/s,

Uy, =V, =V, =3m/s—5m/s = -2m/s,
and

U, =V;—-V,, =0-5m/s=-5m/s

Uy — Uy = _(uzi - uli)
and
Uye = —Uy + U + U

U, =—(—2.0m/s)+5.0m/s—5.0m/s
=2.0m/s

Vi = Uy, +V,, ==5.0m/s+5.0m/s

o

and
Vye = Uy +V,, =2.0m/s+5.0m/s

=|7.0m/s

A bullet of mass m is fired vertically from below into a thin horizontal

sheet of plywood of mass M that is initially at rest, supported by a thin sheet of
paper (Figure 8-48). The bullet punches through the plywood, which rises to a
height H above the paper before falling back down. The bullet continues rising to
a height h above the paper. (@) Express the upward velocity of the bullet and the
plywood immediately after the bullet exits the plywood in terms of h and H.

(b) What is the speed of the bullet? (¢) What is the mechanical energy of the
system before and after the inelastic collision? (d) How much mechanical energy

is dissipated during the collision?
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Picture the Problem Let the system include the earth, the bullet, and the sheet
of plywood. Then Wy = 0. Choose the zero of gravitational potential energy to
be where the bullet enters the plywood. We can apply both conservation of
energy and conservation of momentum to obtain the various physical quantities

called for in this problem.

(a) Use conservation of mechanical
energy after the bullet exits the
sheet of plywood to relate its exit
speed to the height to which it
rises:

Proceed similarly to relate the
initial velocity of the plywood to
the height to which it rises:

(b) Apply conservation of
momentum to the collision of the
bullet and the sheet of plywood:

Substitute for v, and vy and solve
for Vpm;:

(c) Express the initial mechanical
energy of the system (i.e., just
before the collision):

Express the final mechanical
energy of the system (that is, when
the bullet and block have reached
their maximum heights):

(d) Use the work-energy theorem
with Wey = 0 to find the energy
dissipated by friction in the inelastic
collision:

AK +AU =0
or, because K¢=U; =0,

~1mv2 +mgh=0=v, =|,/2gh

Vi =| 420H

E =1lmv?

1
i 2 mi

mg{h +%W+(sz H}

E, =mgh+ MgH =| g(mh+MH)

Ef - Ei +Wfriction =0
and
W, =E -E

friction — i f
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61 = A proton of mass m is moving with initial speed Vv, directly toward the
center of an « particle of mass 4m, which is initially at rest. Both particles carry
positive charge, so they repel each other. (The repulsive forces are sufficient to
prevent the two particles from coming into direct contact.) Find the speed V' of the
a particle (a) when the distance between the two particles is a minimum, and

(b) later when the two particles are far apart.

Picture the Problem We can find the velocity of the center of mass from the
definition of the total momentum of the system. We’ll use conservation of
energy to find the speeds of the particles when their separation is a minimum and
when they are far apart.

(a) Noting that when the distance P= Z my, = MV__
between the two particles is a i
minimum, both move at the same or

use the mpvpi = (mp + ma )ch :
definition of the total momentum

of a system to relate the initial

momenta to the velocity of the

center of mass:

speed, namely v

cm ?

Solve for v__ to obtain: mv.+myv._
cm ch —V'= p ' pi a o
m, +m,
.. . . o mv. 40
Additional simplification yields: v, =vi="o*D _Fooy,
m+4m
(b) Use conservation of linear MV, =MV, + MV, (D
momentum to obtain one relation
for the final velocities:
Use conservation of mechanical Vor =V = —(Vpi -V, ) =-V; (2)
energy to set the velocity of
recession equal to the negative of
the velocity of approach:
Solve equation (2) for V,r, v = 2m.v,
substitute in equation (1) to af m, +m,
eliminate V,r, and solve for Vs
D e o my
Simplifying further yields: v, = 0 _[0.4v,
m+4m
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62 = An electron collides elastically with a hydrogen atom initially at rest.
Assume all the motion occurs along a straight line. What fraction of the electron’s
initial kinetic energy is transferred to the atom? (Take the mass of the hydrogen
atom to be 1840 times the mass of an electron.)

Picture the Problem Let the numeral 1 denote the electron and the numeral 2 the
hydrogen atom. We can find the final velocity of the electron and, hence, the
fraction of its initial kinetic energy that is transferred to the atom, by transforming
to the center-of-mass reference frame, calculating the post-collision velocity of
the electron, and then transforming back to the laboratory frame of reference.

Express f, the fraction of the fo K, -K, _ | K,
electron’s initial kinetic energy that T K. K.
is transferred to the atom: 1 1 , (D)
Imy; (v ]
=1-211f (2L
1 2
2 My Vi
Find the velocity of the center of N
mass: T m, +m,
or, because m, = 1840m;,
v - my\v,, 1 v
" m, +1840m, 1841 "
Find the initial velocity of the B B 1
electron in the center-of-mass Ui = Vi =Vem = Vi = 1841 Vii
reference frame: 1
= =T Vi
1841
Find the post-collision velocity of 1
the electron in the center-of-mass Up=-U; = 1841 —1w
reference frame by reversing its
velocity:
To find the final velocity of the
electron in the original frame, add Vig = Ui + Ve = 1841 —1 vy
Vem to its final velocity in the center-
of-mass reference frame:
Substituting in equation (1) and b 2
simplifying yields: f=1- (@ - J =10.217%

63 e+« [SSM] A16-gbullet is fired into the bob of a 1.5-kg ballistic
pendulum (Figure 8-18). When the bob is at its maximum height, the strings make
an angle of 60° with the vertical. The pendulum strings are 2.3 m long. Find the
speed of the bullet prior to impact.
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Picture the Problem The pictorial
representation shows the bullet about to
imbed itself in the bob of the ballistic
pendulum and then, later, when the bob
plus bullet have risen to their maximum
height. We can use conservation of
momentum during the collision to
relate the speed of the bullet to the
initial speed of the bob plus bullet (V).
The initial kinetic energy of the bob
plus bullet 1is transformed into
gravitational potential energy when
they reach their maximum height.
Hence we apply conservation of
mechanical energy to relate V to the
angle through which the bullet plus bob
swings and then solve the momentum
and energy equations simultaneously
for the speed of the bullet.

Use conservation of momentum to
relate the speed of the bullet just
before impact to the initial speed of
the bob-bullet:

Use conservation of energy to relate
the initial kinetic energy of the bob-

bullet to their final potential energy:

Substitute for K; and Uy to obtain:

Solving for V yields:

Substitute for V in equation (1) to
obtain:

Conservation of Linear Momentum

LcosO \L

\
Y
V -

b —
o[ v |-

myv, = (Mm+M )V =v, =(1+%jv (1)

AK+AU =0
or, because K= U; =0,
-K,+U; =0

(M
+(m+M)gL(1—cos@)=0

V =,/2gL(1-cos@)

Vv, = (1 +%) 2gL(1—cos )

Substitute numerical values and evaluate vy,:

1.5kg
0.016kg

vV, =

-

64

]\/2(9.81m/sz)(2.3m)(1 — c0860°) =

0.45km/s

Show that in a one-dimensional elastic collision, if the mass and

velocity of object 1 are m; and v;, and if the mass and velocity of object 2 are m,



Conservation of Linear Momentum 761

and V»;, then their final velocities V¢ and V,r are given by
. m-m 2m, 2m, m, — m,
Tmm T m +m, m+m, " m+m,

V, and V,; =

Vlf 2i°

Picture the Problem We can apply conservation of linear momentum and the
definition of an elastic collision to obtain equations relating the initial and final

velocities of the colliding objects that we can solve for v and Vyy.

Apply conservation of momentum to
the elastic collision of the particles
to obtain:

Relate the initial and final kinetic
energies of the particles in an elastic

collision:

Rearrange this equation and factor to
obtain:

Rearrange equation (1) to obtain:

Divide equation (2) by equation
(3) to obtain:

Rearrange this equation to obtain
equation (4):

Multiply equation (4) by m, and
add it to equation (1) to obtain:

Solve for vr to obtain:

Multiply equation (4) by m; and
subtract it from equation (1) to
obtain:

Solve for V,r to obtain:

mVie + MV, =MV, + MV, (1)

1 2 1 2 _ 1 2 1 2
Emlvlf +Emzvzf - Emlvli +7mzvzi

2 2 2 2
m, (sz _V2i): m, (Vli _Vlf)

or
m, (sz =V )(sz +Vy )
=m, (Vli — Vi )(Vu Vi )

2

m, (sz _Vzi): ml(vli _Vlf) (3)

Vop Vo = V)i + Vg

Vig =V =Vy

1

—Vy (4)

(ml +m, )Vlf = (ml —-m, )Vli +2m,v,,




762 Conservation of Linear Momentum

Remarks: Note that the velocities satisfy the condition that
V,, —V,, = —(v,; —V,;). This verifies that the speed of recession equals the
speed of approach.

65 <o Investigate the plausibility of the results of Problem 64 by calculating
the final velocities in the following limits: (2) When the two masses are equal,
show that the particles "swap” velocities: vV, =V,;jand v,; =V, (b) If m, >>mj,

and v,, =0, show that v;; = —v;;and v,; = 0. (C) If m; >>m,, and v,, =0, show
that Vi = Vy; and Vo= 2Vj;.

Picture the Problem As in this problem, Problem 74 involves an elastic, one-
dimensional collision between two objects. Both solutions involve using the
conservation of momentum equation m,\V,; + m,v,, =m,v;; + m,v,, and the elastic

collision equationV,, —V,. =V, —V,.. In Part (2) we can simply set the masses

equal to each other and substitute in the equations in Problem 64 to show that the
particles "swap" velocities. In Part (b) we can divide the numerator and
denominator of the equations in Problem 64 by m; and use the condition that

m, >>m; to show that Vi =~ —Vi;+2Vs; and Var=x Va;.

(a) From Problem 64 we have: m, —m, 2m,
Vig = Vit Vyi (1
m1 + m2 m1 + m2
and
2m m,—m
Vo = : Vi + 2 1V21 (2)
m, +m, m, +m,
Set m; = my, = m to obtain: 2m
Vig = Vi = Vi
m+m
and
v, =My =[v
2f m+m 1i 1i
(b) Divide the numerator and m _,
denominator of both terms in rrT2 - 2
equation (1) by m; to obtain: Vie =T Vit Ve
1 1
—1 41 —1 41
m2 m2
If my >>m; and v; = 0: ~
2 ! = Vip ®| V5
Divide the numerator and > M m,
denominator of both terms in rrT2 N nT2
equation (2) by m; to obtain: Vo =1 Vit Vai
1 1
—+1 —+1
m2 m2
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Ifmy>>m;: ~
2 ! V2f ~ V2i
(c) Divide the numerator and m, ) m,
denominator of equation (1) by m; to Wl Hl
obtain: Vie = Vit Vi
I+—=  1+—=
ml ml
Divide the numerator and denominator m,
of equation (2) by m; to obtain: o) H
Vor = Vi t+ m Vi
1+—=2 1+—=2
ml ml
If m; >>m; and vy = 0: ~
1 2 2i sz ~ 2Vli

Remarks: Note that, in both parts of this problem, the velocities satisfy the
condition thatv,, —v,, =—(v,, —v,, ). This verifies that the speed of recession

equals the speed of approach.

66 e A bullet of mass m; is fired horizontally with a speed v, into the bob of
a ballistic pendulum of mass m,. The pendulum consists of a bob attached to one
end of a very light rod of length L. The rod is free to rotate about a horizontal axis
through its other end. The bullet is stopped in the bob. Find the minimum v, such
that the bob will swing through a complete circle.

Picture the Problem Choose U, = 0 at the bob’s equilibrium position.
Momentum is conserved in the collision of the bullet with bob and the initial
kinetic energy of the bob plus bullet is transformed into gravitational potential
energy as it swings up to the top of the circle. If the bullet plus bob just makes it
to the top of the circle with zero speed, it will swing through a complete circle.

Use conservation of momentum to m\v, — (ml + mz)V =0
relate the speed of the bullet just

before impact to the initial speed

of the bob plus bullet:

(1

Solve for the speed of the bullet to m
. 1+—2% |V
obtain:
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Use conservation of mechanical
energy to relate the initial kinetic
energy of the bob plus bullet to
their potential energy at the top of
the circle:

Substitute for K; and Us:
Solving for V yields:

Substitute for V in equation (1) and
simplify to obtain:

Conservation of Linear Momentum

AK +AU =0
or, because K= U; =0,
-K,+U; =0

_%(ml +m2)V2 +(m1 +m2)g(2|-): 0

67 e+« A bullet of mass myis fired horizontally with a speed v into the bob of
a ballistic pendulum of mass m, (Figure 8-19) Find the maximum height h
attained by the bob if the bullet passes through the bob and emerges with a speed

V/3.

Picture the Problem Choose U, = 0 at the equilibrium position of the ballistic
pendulum. Momentum is conserved in the collision of the bullet with the bob
and kinetic energy is transformed into gravitational potential energy as the bob

swings up to its maximum height.

Letting V represent the initial
speed of the bob as it begins its
upward swing, use conservation of
momentum to relate this speed to
the speeds of the bullet just before
and after its collision with the bob:

Use conservation of energy to
relate the initial kinetic energy of
the bob to its potential energy at its
maximum height:

Substitute for K; and Ug:

2m
myv=m(v)+mV =V =""ly
3m,

AK +AU =0
or, because K¢=U; =0,
-K. +U; =0

1 2 V2
—imV- +m,gh=0=>h=—
29
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[Zml ]2
v
he 3m, B

2g_

Substitute for V in the expression
for h and simplify to obtain:

2m/’v?
9m, g

68 e+ A heavy wooden block rests on a flat table and a high-speed bullet is
fired horizontally into the block, the bullet stopping in it. How far will the block
slide before coming to a stop? The mass of the bullet is 10.5 g, the mass of the
block is 10.5 g, the bullet’s impact speed is 750 m/s, and the coefficient of kinetic
friction between the block and the table is 0.220. (Assume that the bullet does not
cause the block to spin.)

Picture the Problem Let the mass of the bullet be m, that of the wooden block M,
the pre-collision velocity of the bullet v, and the post-collision velocity of the
block+bullet be V. We can use conservation of momentum to find the velocity of
the block with the bullet imbedded in it immediately after their perfectly inelastic
collision. We can use Newton’s 2" law to find the acceleration of the sliding
block and a constant-acceleration equation to find the distance the block slides.

‘ Immediately After ‘ ‘ Sometime Later ‘
A F
m — "M m
O—v> M : >¥e _\/> E,!\_/J +m :
f 4 77
k M+m
v (M +m)g
C AX

Using a constant-acceleration
equation, relate the velocity of the
block+bullet just after their collision
to their acceleration and
displacement before stopping:

Use conservation of momentum to
relate the pre-collision velocity of
the bullet to the post-collision
velocity of the block-+bullet:

Substitute for V in the expression for
AX to obtain:

Apply Y F =ma to the block-+bullet

(see the force diagram above):

2

0=V? +2an:>Ax:—V—
2a

because the final velocity of the
block+bullet is zero.

m=(m+MV =V =—"y
m+M
2
el
2a\m+M
ZFX:—fk:(m+M)a (1)
and
Y F=F,-(m+M)g=0 (2
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Use the definition of the coefficient fo=uF =u(m+M)g
of kinetic friction and equation (2) to

obtain:

Substituting for fy in equation (1) — L, (m +M )g = (m +M )a

yields:

Solve for a to obtain: a=-u9

Substituting for a in the expression 1 m 2
; . AX = v

for AX yields: 29 ( Y j

Substitute numerical values and evaluate AX:

1 0.0105kg
AX =
2(0.220)(9.81m/s2)(0.0105 kg +10.5kg

2
(750m/s)J =|13.0cm

69 e [SSM] A 0.425-kg ball with a speed of 1.30 m/s rolls across a level
surface toward an open 0.327-kg box that is resting on its side. The ball enters the
box, and the box (with the ball inside slides across the surface a distance of

X = 0.520 m. What is the coefficient of kinetic friction between the box and the
table?

Picture the Problem The collision of the ball with the box is perfectly inelastic
and we can find the speed of the box-and-ball immediately after their collision by
applying conservation of momentum. If we assume that the kinetic friction force
is constant, we can use a constant-acceleration equation to find the acceleration of
the box and ball combination and the definition of z4 to find its value.

Using its definition, express the f, (M + m)|a| |a|

coefficient of kinetic friction of the == = (1)
F, (M+m)g g

table:

Use conservation of momentum to MV

relate the speed of the ball just MV = (m+MJv=v = m-+M 2)

before the collision to the speed of
the ball+box immediately after the
collision:

Use a constant-acceleration equation
to relate the sliding distance of the
ball+box to its initial and final
velocities and its acceleration:

V; =V} +2aAxX

or, because v¢=0 and v; = v,
2

0=v’+2aAX=>a=-—

2AX



Conservation of Linear Momentum 767

Substitute for a in equation (1) to v2
obtain: e = 29AX

Use equation (2) to eliminate V:

1(Mvj2 ] V
Hy

h 2gAx\ m+M - 2gAX EH
M
Substitute numerical values and evaluate z:
2
1 1.30m/s
U, = =10.0529
2(9.81m/s)(0.520m)| 0.327kg , |
0.425kg

70 e« Tarzan is in the path of a pack of stampeding elephants when Jane
swings in to the rescue on a rope vine, hauling him off to safety. The length of the
vine is 25 m, and Jane starts her swing with the rope horizontal. If Jane’s mass is
54 kg, and Tarzan’s is 82 kg, to what height above the ground will the pair swing
after she rescues him? (Assume that the rope is vertical when she grabs him.)

Picture the Problem Jane’s collision
with Tarzan is a perfectly inelastic
collision. We can find her speed v, just
before she grabs Tarzan from
conservation of energy and their speed
V just after she grabs him from
conservation of momentum. Their
kinetic energy just after their collision
will be transformed into gravitational
potential energy when they have
reached their greatest height h.

Use conservation of energy to relate U, =K,

the potential energy of Jane and or

Tarzan at their highest point (2) to V2

their kinetic energy immediately m,.gh=1im V>*=h=— (1)
after Jane grabbed Tarzan: 29
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Apply conservation of linear
momentum to relate Jane’s velocity
just before she collides with Tarzan
to their velocity just after their
perfectly inelastic collision:

Apply conservation of mechanical
energy to relate Jane’s kinetic
energy at 1 to her potential energy at
0:

Substitute for v; in equation (2) to
obtain:

Substitute for V in equation (1) and
simplify:

Substitute numerical values and
evaluate h:

71 e [SSM]

Conservation of Linear Momentum

my,—m, . V=0=V="01y (2
J+T

K1 :Uo
or

Imyv) =mgL=v, =,/29L

v="U gL

mJ+T
1 2 2
h=—[ m, J 2gL=( M| L
Zg mJ+T mJ+T
sakg )
h=|—226 | (25m)=[3.9m
54kg+82kg

Scientists estimate that the meteorite responsible for the

creation of Barringer Meteorite Crater in Arizona weighed roughly 2.72 x 10°
tonne (1 tonne = 1000 kg) and was traveling at a speed of 17.9 km/s. Take
Earth’s orbital speed to be about 30.0 km/s. (a) What should the direction of
impact be if Earth’s orbital speed is to be changed by the maximum possible
amount? (b) Assuming the condition of collision in Part (@), estimate the
maximum percentage change in Earth’s orbital speed as a result of this collision.
(c) What mass asteroid, having a speed equal to Earth’s orbital speed, would be
necessary to change Earth’s orbital speed by 1.00%?

Picture the Problem Let the system include Earth and the asteroid. Choose a
coordinate system in which the direction of Earth’s orbital speed is the +x
direction. We can apply conservation of linear momentum to the perfectly
inelastic collision of Earth and the asteroid to find the percentage change in
Earth’s orbital speed as well as the mass of an asteroid that would change Earth’s
orbital speed by 1.00%. Note that the following solution neglects the increase in

Earth’s orbital speed due to the gravitational pull of the asteroid during descent.

(a) For maximum slowing of Earth, the collision would have to have taken place
with the meteorite impacting Earth along a line exactly opposite Earth’s orbital
velocity vector. In this case, we have a head-on inelastic collision.
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(b) Express the percentage change in | AV |
the Earth’s orbital speed as a result ‘ ‘

%VEarth_Vf|: 1— Ve | (1)
of the collision:

Earth ‘ VEarth ‘
where Vr is Earth’s orbital speed after
the collision.

Apply the conservation of linear Ap=p;—p =0

momentum to the system to obtain: or, because the asteroid and the earth
are moving horizontally,
Pex — Pix = 0

Because the collision is perfectly inelastic:

(mEarth + masteroid )Vf - (m EarthVEanh - masteroidvasteroid ) = 0

Solving for v yields:

V. = mEarthVEarth B masteroidvasteroid _ mEarthVEarth _ masteroidvasteroid
¢ = =
mEarth + masteroid mEarth + masteroid mEarth + masteroid
masteroid
asteroid
VEarth _ mEanh
1+ masteroid 1+ masteroid
mEarth mEarth
Because Masteroid << MEarth:
masteroid |
asteroid -
V. =V _ mEarth =V _ masteroid v 1+ masteroid
f =~ YEarth m — YEarth asteroid
1+ asteroid Earth mEarth
mEarth

-1 -1
. m . . . m . m )
Expandlng 1+ asteroid blnomlally [1 + asterond] =1- asteroid
m m

Earth Earth Earth
yields: + higher order terms
- m m
. m . . . )
Substitute for | 1+—teid | in the Vi R Vg —— iy [1 - Mj
m Earth m Earth m Earth
expression for V¢ to obtain: N ~ Mygieroia
~ VEarth asteroid

m Earth
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Substitute for V¢ in equation (1) to obtain:

V] _ masteroid v masteroid v
A Earth asteroid m asteroid
v — 1_ Earth — Earth
VEarth VEarth VEarth

Using data found in the appendices of your text or given in the problem statement,

substitute numerical values and evaluate

VEarth

3

(2.72><105 fonnex 2 kg](17.9 km/s)

1 tonne
| Av | 5.98x10% kg (271105
Vears| 30.0 km/s

(c) If the asteroid is to change the

asteroid

s . . asteroid
earth’s orbital speed by 1%: Mean _ 1
Vo 100
Solve for Mygieroid tO Obtain: ~ VeaunMEarm

masteroid - 100v

asteroid

Substitute numerical values and evaluate Magieroid:

_ (30.0 kn/s)(5.98x10* kg)
asteroid 1()()(179 km/S)

=[1.00x10” kg

Remarks: The mass of this asteroid is approximately that of the moon!

72 e« William Tell shoots an apple from his son’s head. The speed of the
125-g arrow just before it strikes the apple is 25.0 m/s, and at the time of impact it
is traveling horizontally. If the arrow sticks in the apple and the arrow/apple
combination strikes the ground 8.50 m behind the son’s feet, how massive was the
apple? Assume the son is 1.85 m tall.
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Picture the Problem Let the system include Earth, the apple, and the arrow.
Choose a coordinate system in which the direction the arrow is traveling before
imbedding itself in the apple is the +X direction. We can apply conservation of
linear momentum to express the mass of the apple in terms of the speed of the
arrow-apple combination just after the collision and then use constant-
acceleration equations to find this post-collision speed.

Ap=p;—p, =0

or, because the arrow and apple are
moving horizontally,

Pex = Pix = 0

Apply conservation of linear
momentum to the system to obtain:

Because the collision is perfectly (marmw M e )VX M owViarow = 0
inelastic (the arrow is imbedded in

the apple):

Solving for Myppe yields:

Using constant-acceleration
equations, express the horizontal and
vertical displacements of the apple-
arrow after their collision:

Substituting for At in equation (2)
yields:

Substitute for vy in equation (1) to
obtain:

Vi,arrow
mapple = marrow[ Vv -1 (1)
X

AX =V At (2)
and
Ay =Lg(At) = At = 28y
g
AX =V, ﬁ:vx —Ax |3
g 24y
mapple = marrow = _1

AX i
2Ay
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Substitute numerical values and evaluate Myppie:

25.0m/s
M, = (0.125 kg ~1]=[101g

9.81m/s>
(8.50 m)\/ 2(1.85m)

Explosions and Radioactive Decay

73 e« [SSM] The beryllium isotope *Be is unstable and decays into two ¢
particles (M, = 6.64 x 10’ kg) and releases 1.5 x 107* J of energy. Determine
the velocities of the two « particles that arise from the decay of a *Be nucleus at
rest, assuming that all the energy appears as kinetic energy of the particles.

Picture the Problem This nuclear reaction is “Be — 2+ 1.5 x 107'* J. In order
to conserve momentum, the alpha particles will have move in opposite directions
with the same velocities. We’ll use conservation of energy to find their speeds.

Letting E represent the ener E
g = b : &y 2K :2(lm v2)=E:v = |—
released in the reaction, express a 2 et a m
conservation of energy for this

process:

Substitute numerical values and 15%10°7 y
evaluate V. Vo = m =|1.5x10°m/s

74 e« The light isotope of lithium, L4, is unstable and breaks up
spontaneously into a proton and an ¢ particle. During this process, 3.15 x 107 J
of energy are released, appearing as the kinetic energy of the two decay products.
Determine the velocities of the proton and a particle that arise from the decay of a
°Li nucleus at rest. (Note: The masses of the proton and alpha particle are

m, = 1.67 x 10*" kg and m, = 6.64 x 10" kg.)

a

Picture the Problem This nuclear reaction is °Li - a + p + 3.15 x 107" J. To
conserve momentum, the alpha particle and proton must move in opposite
directions. We’ll apply both conservation of energy and conservation of
momentum to find the speeds of the proton and alpha particle.
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Use conservation of momentum in p,=p;=0
this process to express the alpha and
particle’s speed in terms of the 0=myv, —m,v,
proton’s:
Solve for v, and substitute for m, v o= m, v = m, v =ly
to obtain: ““m, " 4m p 4%
Letting E represent the energy K,+K,=E
released in the reaction, apply or
conservation of energy to the Imvi+imv:=E
p'p a'a
process:

. ) 2 2
Substitute for v,: 1 myv, + m, (% Vp) =E
Solve for v, and substitute for m, 32E
to obtain: Vo = 16m. +m

p a

Substitute numerical values and evaluate vy

p

-13
32&’7‘15“0 J) —— =[1.74x10" m/s
16(1.67x107" kg )+ 6.64x10™" kg

Use the relationship between v, v, =4v = %(1 74x10 m/s)
and v, to obtain V,:

4.34x10°m/s

75 e A 3.00-kg projectile is fired with an initial speed of 120 m/s at an
angle of 30.0° with the horizontal. At the top of its trajectory, the projectile
explodes into two fragments of masses 1.00 kg and 2.00 kg. At 3.60 s after the
explosion the 2.00-kg fragment lands on the ground directly below the point of
explosion. (&) Determine the velocity of the 1.00-kg fragment immediately after
the explosion. (b) Find the distance between the point of firing and the point at
which the 1.00-kg fragment strikes the ground. () Determine the energy released
in the explosion.

Picture the Problem The pictorial representation shows the projectile at its
maximum elevation and is moving horizontally. It also shows the two fragments
resulting from the explosion. We’ll choose the system to include the projectile
and the earth so that no external forces act to change the momentum of the
system during the explosion. With this choice of system we can also use
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conservation of energy to determine the elevation of the projectile when it
explodes. We’ll also find it useful to use constant-acceleration equations in our
description of the motion of the projectile and its fragments. Neglect air

resistance.

y v, - ~
1 /¢ \
- T \
Ayl _ _ _ _ _ . Vs \
v, ; 2 \
v

D 2 e \ X

0 AX g d =AX+AX'
(a) Use conservation of linear P, = P;

momentum to relate the velocity of
the projectile before its explosion
to the velocities of its two parts
after the explosion:

The only way this equality can hold
is if the X and y components are
equal:

Express V3 in terms of vy and
substitute for the masses to obtain:

Using a constant-acceleration
equation with the downward
direction positive, relate Vy, to the
time it takes the 2.00-kg fragment
to hit the ground:

With U, = 0 at the launch site,
apply conservation of energy to the
climb of the projectile to its
maximum elevation:

Solving for Ay yields:

m,v, =m\yv, + m,v,

m,v,I =myv,1 + mIVyIJ - mzvyzj

m,v; =myv,
and
myv,, =myv,,

V,, =3V, =3v,cosf
=3(120m/s)c0s30.0° = 312m/s

and
Vyl = 2’Vy2 (1)
Ay =V, At + 1 g(At)
_1 2
v, =10t ®)
At
AK+AU =0

Because Ke=U; =0, - K, +U, =0
or
—Lm,vy, +mygAy =0

_ (vysin@)
g 29



Substitute numerical values and
evaluate Ay:

Substitute in equation (2) and
evaluate Vyo:

Substitute in equation (1) and
evaluate Vy;:

Express V, in vector form:

(b) Express the total distance d
traveled by the 1.00-kg fragment:

Relate AX to Vo and the time-to-
explosion:

Using a constant-acceleration
equation, express Ateyp:

Substitute numerical values and
evaluate Atexp:

Substitute in equation (4) and
evaluate AX:

Relate the distance traveled by the
1.00-kg fragment after the
explosion to the time it takes it to
reach the ground:

Using a constant-acceleration
equation, relate the time At' for the
1.00-kg fragment to reach the
ground to its initial speed in the y
direction and the distance to the
ground:
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[(120m/s)sin30.0°]
2(9.81my/s?)

=183.5m

_ 183.5m -4 (9.81m/s*)(3.60s)
2 3.60s

=33.31m/s

v, =2(33.31m/s) = 66.62m/s

V, =V, +Vy1j

=| (312m/s)i +(66.6m/s)]

d = AX + AX' 3)

AX = (VO cos 0)(Atexp) “4)
v V, sin &

At - Vyo _ Vysin
g g

At = (120m/s)sin§0.0° ~6.116s

9.81m/s

Ax = (120m/s)(c0s30.0°)(6.1165)
= 635.6m

AX' =V Al

Ay =v, At —Lg(At' )
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Substitute to obtain the quadratic
equation:

Solve the quadratic equation to
find At':

Substitute in equation (3) and
evaluate d:

(c) Express the energy released
in the explosion:

Find the kinetic energy of the
fragments after the explosion:

Find the kinetic energy of the
projectile before the explosion:

Substitute in equation (5) to
determine the energy released in
the explosion:

Conservation of Linear Momentum

(At') —(13.65)At' —37.45* =0

At'=15945s

d = AX+AX" = AX+V Al
= 635.6m +(312m/s)(15.9455)
=] 5.6km

Eexp = AK = Kf - Ki (5)

K, =K +K,=tmv?+imy2
=1(1.00 kg)[(3 12m/s) +(66.6 m/s)z]

+1(2.00kg)(33.3m/s)’
=52.0kJ

K, =imyv; =1m,(v, cos8)
=1(3.00kg)[(120m/s)cos 30°]*
=16.2kJ

E., = K, — K, =52.0kJ ~16.2kJ
=[35.8kJ

76  ee=  The boron isotope ’B is unstable and disintegrates into a proton and
two «a particles. The total energy released as kinetic energy of the decay products
is 4.4 x 107" J. After one such event, with the °B nucleus at rest prior to decay,
the velocity of the proton is measured as 6.0 x 10° m/s. If the two a particles have
equal energies, find the magnitude and the direction of their velocities with

respect to the direction of the proton.
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Picture the Problem This nuclear y !
reaction is |
B> 2a+p+44x1071. |
Assume that the proton moves in the |
—X direction as shown in the diagram. :
The sum of the kinetic energies of the P 1/ i@\
decay products equals the energy 4_@_ - f\_y T
released in the decay. We’ll use PN
conservation of momentum to find the :
|
|
|
|

angle between the velocities of the
proton and the alpha particles. Note

that v, =V’ . N
Express the energy released to the K, +2K, =E,
kinetic energies of the decay or
products: imyv + 2(% m, v’ ) =E,
Solving for v, yields: E —1my?
vV = rel 2 'p'p
“ m

Substitute numerical values and evaluate v,:

_ | 4ax10y (167107 ke)l6.0x10°misf
* \6.64x107 kg 6.64x107 kg '

= 1.4x10°m/s
Given that the boron isotope was p;=p, =0
at rest prior to the decay, use or, because p,; =0,
conservation of momentum to 2(m_v, cos@)—-m v =0

a'a PP

relate the momenta of the decay
products:
Substituting for m, to obtain: 2(4mpva cos 0)— myv, =0

Solving for fyields: Y
6 =cos n L
Vd
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Substitute numerical values and 4 6.0x10°m/s
i @ =cos c =459°
evaluate 6: 8(1 44x%10 m/s)

Let @' equal the angle the velocities 9" = i(l 80° — 590) =| +121°
of the alpha particles make with that
of the proton:

Coefficient of Restitution

77 e [SSM] During the design of a new alloy of steel, you are in charge
of measuring its coefficient of restitution. You convince your engineering team to
accomplish this task by simply dropping a small ball onto a plate, with both the
ball and the plate made from the experimental alloy. If the ball is dropped from a
height of 3.0 m and rebounds to a height of 2.5 m, what is the coefficient of
restitution?

Picture the Problem The coefficient of restitution is defined as the ratio of the
velocity of recession to the velocity of approach. These velocities can be
determined from the heights from which the ball was dropped and the height to
which it rebounded by using conservation of mechanical energy.

Use its definition to relate the Ve
coefficient of restitution to the
velocities of approach and

app

recession:
Letting U, = 0 at the surface of the AK +AU =0
steel plate, apply conservation of or, because K; = U= 0,
energy to obtain: K:;-U, =0
Substituting for K¢ and U; yields: imv. —mgh, =0
Solving for Vyy, yields: Vi = /20N,
In like manner, show that: v, = 2 gh..
Substitute in the equation for e to 2gh., h

. . e — p— rec
obtain: 2h, oo



Conservation of Linear Momentum 779

Substitute numerical values and 2.5m
. e=_|——=]0091
evaluate e: 3.0m
78 . According to the official rules of racquetball, a ball acceptable for

tournament play must bounce to a height of between 173 and 183 cm when
dropped from a height of 254 cm at room temperature. What is the acceptable
range of values for the coefficient of restitution for the racquetball-floor system?

Picture the Problem The coefficient of restitution is defined as the ratio of the
velocity of recession to the velocity of approach. These velocities can be
determined from the heights from which the ball was dropped and the height to
which it rebounded by using conservation of mechanical energy.

Use its definition to relate the Viee
coefficient of restitution to the
velocities of approach and recession:

Letting U, = 0 at the surface of the AK+AU =0
steel plate, the mechanical energy of or, because K; = U= 0,
the ball-Earth system is: K;-U,=0
Substituting for K¢ and U; yields: Imv? wp —Mgh, =
Solve for Vypp: Ve = /29N,
In like manner, show that: V.. =+/20h .
Substitute in the equation for € to [2gh...
obtain:
T2, \h,

Substitute numerical values and 173cm

. .= = 0825
evaluate epin: e 254cm
Substitute numerical values and 183cm

) € = =0.849
evaluate emay: ™\ 254cm

and | 0.825 <e <0.849

79 = A ball bounces to 80 percent of its original height. (a) What fraction of
its mechanical energy is lost each time it bounces? (b) What is the coefficient of
restitution of the ball-floor system?
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Picture the Problem Because the rebound kinetic energy is proportional to the
rebound height, the percentage of mechanical energy lost in one bounce can be
inferred from knowledge of the rebound height. The coefficient of restitution is
defined as the ratio of the velocity of recession to the velocity of approach. These
velocities can be determined from the heights from which an object was dropped
and the height to which it rebounded by using conservation of mechanical energy.

(a) We know, because the mechanical energy of the ball-earth system is constant,
that the kinetic energy of an object dropped from a given height h is proportional
to h. If, for each bounce of the ball, ;. = 0.80h,p,, 20% of its mechanical energy
is lost.

(b) Use its definition to relate the

e — rec
coefficient of restitution to the app
velocities of approach and recession:
Letting U, = 0 at the surface from AK+AU =0
which the ball is rebounding, the or, because K; = U= 0,
mechanical energy of the ball is: K,-U;=0

Substituting for K¢ and U; yields:
Solve for Vapp:
In like manner, show that:

Substitute in the equation for € to
obtain:

. h )
Substitute for —= to obtain:
app

1 2 _
Fmv, . — mghapp =0

Vapp = 4/ 2 ghapp
Vrec = V 2ghrec

e _ 2 ghrec _ hrec
\/ 29 happ happ

e =+/0.80 =| 0.89

80 e A 2.0-kg object moving to the right at 6.0 m/s collides head-on with a
4.0-kg object that is initially at rest. After the collision, the 2.0-kg object is
moving to the left at 1.0 m/s. (a) Find the velocity of the 4.0-kg object after the
collision. (b) Find the energy lost in the collision. () What is the coefficient of
restitution for these objects?

Picture the Problem Let the numerals 2 and 4 refer, respectively, to the 2.0-kg
object and the 4.0-kg object. Choose a coordinate system in which the direction
the 2.0-kg object is moving before the collision is the positive X direction and let
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the system consist of Earth, the surface on which the objects slide, and the
objects. Then we can use conservation of momentum to find the velocity of the
recoiling 4.0-kg object. We can find the energy transformed in the collision by
calculating the difference between the pre- and post-collision kinetic energies and
find the coefficient of restitution from its definition.

(a) Use conservation of linear
momentum in one dimension to
relate the initial and final momenta

P = Py
or

m,Vy = MyVye —MyVsye

of the participants in the collision:

Solve for the final velocity of the v = m,Vy; + M,V
4.0-kg object: . m,

Substitute numerical values and
evaluate Va5

~ (2.0kg)(6.0m/s +1.0m/s)
. 4.0kg

=3.50m/s=| 3.5m/s

(b) Express the energy lost in terms B =K —K;
of the kinetic energies before and 1
after the collision: 1

2

Substitute numerical values and evaluate Ejyq::

E.. =2[(2.0ke){6.0m/s) — (1.0mss) |)- (4.0kg)(3.50ms) |=[ 117

lost

(c) From the definition of the o— Viee _ Var —Var

coefficient of restitution we have: Vapp V,,

Substitute numerical values and o 3.50m/s —(~1.0m/s)
evaluate e: 6.0m/s

=10.75

81 e A 2.0-kgblock moving to the right with speed of 5.0 m/s collides with
a 3.0-kg block that is moving in the same direction at 2.0 m/s, as in Figure 8-49.
After the collision, the 3.0-kg block moves to the right at 4.2 m/s. Find (a) the
velocity of the 2.0-kg block after the collision and (b) the coefficient of restitution
between the two blocks.
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Picture the Problem Let the numeral 2 refer to the 2.0-kg block and the numeral
3 to the 3.0-kg block. Choose a coordinate system in which the direction the
blocks are moving before the collision is the +x direction and let the system
consist of Earth, the surface on which the blocks move, and the blocks. Then we
can use conservation of momentum to find the velocity of the 2.0-kg block after
the collision. We can find the coefficient of restitution from its definition.

—

(a) Use conservation of linear P, = P,
momentum in one dimension to or
relate the initial and final momenta _
m2v21 + m3v31 - m2v2f + m3V3f

of the participants in the collision:

Solve for the final velocity of the v = MoV + MyVy; = MV,
2.0-kg object: 2 m,

Substitute numerical values and evaluate vy

_ (2.0kg)(5.0m/s)+(3.0kg)(2.0m/s—4.2m/s) _ L70m/s <[ 17 s

o 2.0kg
(b) From the definition of the oo Viee _ Var = Vay
coefficient of restitution we have: Vip  Vai = Vi
Substitute numerical values and o 42m/s—1.7m/s _ 0.83
evaluate e: 5.0m/s—2.0m/s :

82 e« To keep homerun records and distances consistent from year to year,
organized baseball randomly checks the coefficient of restitution between new
baseballs and wooden surfaces similar to that of an average bat. Suppose you are
in charge of making sure that no "juiced” baseballs are produced. (&) In a random
test, you find one that when dropped from 2.0 m rebounds 0.25 m. What is the
coefficient of restitution for this ball? (b) What is the maximum distance home
run shot you would expect from this ball, neglecting any effects due to air
resistance and making reasonable assumption for bat speeds and incoming pitch
speeds? Is this a "juiced” ball, a "normal” ball, or a "dead” ball?

Picture the Problem The coefficient of restitution is defined as the ratio of the
velocity of recession to the velocity of approach. These velocities can be
determined from the heights from which the ball was dropped and the height to
which it rebounded by using conservation of mechanical energy. We can use the
same elevation range equation to find the maximum home run you would expect
from the ball with the experimental coefficient of restitution.



(a) The coefficient of restitution is
the ratio of the speeds of approach
and recession:

Letting U, = 0 at the surface of from
which the ball rebounds, the
mechanical energy of the ball-earth
system is:

Substituting for K¢ and U; yields:

Solve for Vg, to obtain:
In like manner, show that:

Substitute for Vree and Vapp In
equation (1) and simplify to obtain:

Substitute numerical values and
evaluate e:

(b) The "same-elevation” range
equation is:

Vapp 18 the sum of the speed of the
ball and the speed of the bat:

Assuming that the bat travels about
1 min 0.2 s yields:

Assuming that the speed of the
baseball thrown by the pitcher is
close to 100 mi/h yields:

Evaluate v to obtain:
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g = (1)
Vapp
AK +AU =0

Because Ki=U¢=0, K, -U. =0

1y 2 _
smv, . — mghapp =0

Vapp = v 2 ghapp
V.. =4/20h..
e=

V Zghfec _ hrec
2ghapp V happ

o= |92 _ 35361035
2.0m

2 g e’v? sin26
R = Ve SIN 20 €V, @)
g g
Vapp = Vball + Vbat
bat = lm =5m/s
0.2s
Vi = 45m/s

Vo =45m/s+5m/s =50 m/s
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Assuming a 45° launch angle, R - (0,3536)2 (50 m/s)2 sin 2(45°)
substitute numerical values in B 9.81m/s>

equation (2) and evaluate R: 30 m

Q

Because home runs must travel at least 100 m in modern major league ballparks,
this is a "dead” ball and should be tossed out.

83 e [SSM] To make puck handling easy, hockey pucks are kept frozen
until they are used in the game. (a) Explain why room temperature pucks would
be more difficult to handle on the end of a stick than a frozen puck. (Hint: Hockey
pucks are made of rubber.) (b) A room-temperature puck rebounds 15 cm when
dropped onto a wooden surface from 100 cm. If a frozen puck has only half the
coefficient of restitution of a room-temperature one, predict how high the frozen
puck would rebound under the same conditions.

Picture the Problem The coefficient of restitution is defined as the ratio of the
velocity of recession to the velocity of approach. These velocities can be
determined from the heights from which the ball was dropped and the height to
which it rebounded by using conservation of mechanical energy.

(a) At room-temperature rubber will bounce more when it hits a stick than it will
at freezing temperatures.

(b) The mechanical energy of the AK +AU =0
rebounding puck is constant: or, because K¢= U; =0,
-K,+U,; =0
If the puck’s speed of recession is N V2,
Viee and it rebounds to a height h, —7MV, +Mgh=0=h= E
then:
. e v
Th'e coefficient of restitution is the e=tm oy —ev, 1)
ratio of the speeds of approach and app
recession:
Substitute for V... to obtain: ezvf
h=—™="" (2)

29



Letting U, = 0 at the surface of from
which the puck rebounds, the
mechanical energy of the puck-Earth
system is:

Substituting for K¢ and U; yields:

Solve for Vg, to obtain:

In like manner, show that:

Substitute for Viee and Vqpp In
equation (1) and simplify to obtain:

Substitute numerical values and
evaluate €room temp:

For the falling puck, V., is given
by:

Substituting for V,p, in equation
(2) and simplifying yields:
For the room-temperature puck:

Substituting for e in equation (3)
yields:

Substitute numerical values and
evaluate h:
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AK +AU =0
Because K;=U;=0,
K;-U, =0

2
ymv, —mgh, =0

Vapp = 4 2 ghapp

VI’BC = V Zghrec

e=
h

V 2ghr60 _ hrec

'\[ 2g app haPP
15cm

100cm

=0.387

eroom temp =

Varp =,/2gH

where H is the height from which the
puck was dropped.

2

ho280H ooy 3)
29

efrozen = %eroom temp

h= %erzoom temp H

h=1(0.387)(100cm)=| 3.8cm

Remarks: The puck that rebounds only 3.8 cm is a much "deader” and,

therefore, much better puck.
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Collisions in More Than One Dimension

84 e+« In Section 8-3 it was proven by using geometry that when a particle
elastically collides with another particle of equal mass that is initially at rest, the
two post-collision velocities are perpendicular. Here we examine another way of
proving this result that illustrates the power of vector notation. (a) Given that
A=B+C , square both sides of this equation (obtain the scalar product of each
side with itself) to show that A> = B> + C* + 2 B-C. (b) Let the momentum of

the initially moving particle be P and the momenta of the particles after the
collision be p; and p,. Write the vector equation for the conservation of linear

momentum and square both sides (obtain the dot product of each side with itself).
Compare it to the equation gotten from the elastic-collision condition (kinetic
energy is conserved) and finally show that these two equations imply that

pi- p2=0.

Picture the Problem We can use the definition of the magnitude of a vector and
the definition of the scalar product to establish the result called for in (a). In Part
(b) we can use the result of Part (a), the conservation of momentum, and the
definition of an elastic collision (kinetic energy is conserved) to show that the
particles separate at right angles.

(a) Find the dot product of B+C B+C)-(B+C)=B*+C*+2B-C
p
with itself:
Because A=B+C: AZ:‘B+6‘2=(I§+6)-(I§+6)
Substitute for (é+é)-(l§+é)to A?=B>+C?+2B-C
obtain:
(b) Apply conservation of p,+pP,=p
momentum to the collision of the
particles:
Form the scalar product of each (P +1,)-(B,+P,)=PP
side of this equation with itself to or
obtain: P 2B =P (D)
Use the definition of an elastic pi  p>  p?
=+ =

collision to obtain: om 2m 2m

or

pi+p;=p’ 2)
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Subtract equation (1) from

2p,-p,=0o0r
equation (2) to obtain: P Py

PP, =0
i.e., the particles move apart along
paths that are at right angles to each
other.

85 e During a pool game, the cue ball, which has an initial speed of 5.0 m/s,
makes an elastic collision with the eight ball, which is initially at rest. After the
collision, the eight ball moves at an angle of 30° to the right of the original
direction of the cue ball. Assume that the balls have equal masses. (a) Find the
direction of motion of the cue ball immediately after the collision. (b) Find the
speed of each ball immediately after the collision.

Picture the Problem Let the initial direction of motion of the cue ball be the +x
direction. We can apply conservation of energy to determine the angle the cue
ball makes with the +x direction and the conservation of momentum to find the

final velocities of the cue ball and the eight ball.

(a) Use conservation of energy to
relate the velocities of the collision
participants before and after the
collision:

This Pythagorean relationship
tells us that V ;, V;, and V,form a

ci> “cf?

right triangle. Hence:

(b) Use conservation of momentum
in the X direction to relate the
velocities of the collision participants
before and after the collision:

Use conservation of momentum in
the y direction to obtain a second
equation relating the velocities of the
collision participants before and after
the collision:

Solve these equations simultaneously
to obtain:

1 2 _ 1 2 1 2
7 MV =7 MV + 5 MV
or
2 2 2
Vci - ch + VS
6., + 6, =90°
and
6., =| 60°
pxi = pr
or

mv, = mv, cosé . +mv, cosb,

or

0=mv, sin@,; + my, sin &,

V,=|2.50m/s |and vy =| 4.33m/s
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86 e Object A that has a mass m and a velocity Vo i collides head-on with
object B that has a mass 2m and a velocity %VOiA. Following the collision, object B

has a velocity of %VOiA. (a) Determine the velocity of object A after the collision.

(b) Is the collision elastic? If not, express the change in the kinetic energy in terms
of m and v,.

Picture the Problem We can find the final velocity of the object whose mass is
m by using the conservation of momentum. Whether the collision was elastic can
be decided by examining the difference between the initial and final kinetic
energy of the interacting objects.

(a) Use conservation of linear P, = P

momentum to relate the initial and or

final velocities of the two objects: mv,i + 2m(%Vo j): Zm(%VOiA)Jr mv,,
Simplify to obtain: Vol +V, ] = 1v,i +V,

Solving for V,; yields: V, =1 Vof +V, i

(b) Express the difference between AE =K, - K, =K, + K, —(K,, + K, )

the kinetic energy of the system
before the collision and its kinetic
energy after the collision:

Substituting for the kinetic energies AE = %(mv T+2mvy —mv; —2my jf)
yields:

Substitute for speeds and simplify to ~ AE =1m [vg + 2(% v, )—%Vé - 2(%v§ )]

obtain:

_| 1 2
=116 MV,

Because AE # 0, the collision is inelastic.

87 e« [SSM] A puck of mass 5.0 kg moving at 2.0 m/s approaches an
identical puck that is stationary on frictionless ice. After the collision, the first
puck leaves with a speed v, at 30° to the original line of motion; the second puck
leaves with speed Vv, at 60°, as in Figure 8-50. (a) Calculate v; and v,. (b) Was the
collision elastic?
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Picture the Problem Let the direction of motion of the puck that is moving
before the collision be the +x direction. Applying conservation of momentum to
the collision in both the X and y directions will lead us to two equations in the
unknowns V; and Vv, that we can solve simultaneously. We can decide whether the
collision was elastic by either calculating the system’s kinetic energy before and
after the collision or by determining whether the angle between the final velocities
is 90°.

(a) Use conservation of linear Py = Py

momentum in the X direction to or

obtain: mv =mv, cos30°+mv, cos 60°
Simplify further to obtain: V=V, cos30°+V, cos60° (1)
Use conservation of momentum in Py = Pyr

the y direction to obtain a second or

equation relating the velocities of the 0 = mv, sin 30°—mv, sin 60°

collision participants before and
after the collision:

Simplifying further yields: 0=v,sin30°-Vv, sin 60° (2)

Solve equations (1) and (2) v,=|1.7m/s | and v, =| 1.0m/s
simultaneously to obtain:

(b) Because the angle between V, and V, is 90°, the collision was elastic.

88 e« Figure 8-51 shows the result of a collision between two objects of
unequal mass. (a) Find the speed Vv, of the larger mass after the collision and the
angle 6. (b) Show that the collision is elastic.

Picture the Problem Let the direction of motion of the object that is moving
before the collision be the +x direction. Applying conservation of momentum to
the motion in both the x and y directions will lead us to two equations in the
unknowns v, and 6 that we can solve simultaneously. We can show that the
collision was elastic by showing that the system’s kinetic energy before and after
the collision is the same.
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(a) Use conservation of linear
momentum in the X direction to
relate the velocities of the collision
participants before and after the
collision:

Use conservation of linear
momentum in the y direction to
obtain a second equation relating the
velocities of the collision participants
before and after the collision:

Simplifying further yields:

Note that if tan&, = 2, then:

Substitute in the X-direction
momentum equation and simplify
to obtain:

Substitute in the y-direction
momentum equation and simplify
to obtain:

Solve equations (1) and (2)
simultaneously for 6 :

Substitute in equation (1) to find
V>

(b) To show that the collision was
elastic, find the before-collision and
after-collision kinetic energies:

Conservation of Linear Momentum

pxi = pr

or
3mv, = \/gmvo cos g, +2mv, cos b,
or

3v, = \/gvo cos 6, +2v, cos 6,

pyi = pyf
or
0= \/gmvo sin@, —2mv, sin @,

0= \/gvo sin@, —2v, sin 4,

and sin @, =

1 2
7 =5

cos b,

\/_v +2Vv, cos b,
\/_
or
V, =V, cosb, (1)
0= \/_v \/_ —2V,siné6,
or
0=v,—-V,sind, (2)

6, =tan"'(1)=| 45.0°

VO V0
= = =2
" cos@, cos45° \/_VO
K, =1m(3v,) =4.5mv}
and
%m(\/_v)z+ 2m( v)Z
=4.5mv;

Because K;= K¢, the collision is elastic.
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89 e A 2.0-kgball moving at 10 m/s makes an off-center collision with a
3.0-kg ball that is initially at rest. After the collision, the 2.0-kg ball is deflected at
an angle of 30° from its original direction of motion and the 3.0-kg ball is moving
at 4.0 m/s. Find the speed of the 2.0-kg ball and the direction of the 3.0-kg ball

after the collision. Hint: sin>a@ +cos’a =1.

Picture the Problem Let the direction of motion of the ball that is moving before
the collision be the +x direction and use the subscripts 2 and 3 to designate the
2.0-kg and 3.0-kg balls, respectively. Applying conservation of momentum to the
collision in both the X and y directions will lead us to two equations in the
unknowns V,, and @that we can solve simultaneously.

y
| a0
| \13&/ , /m‘ "~
v, =10m/s Vy!=0 /{/;\ 3/1
——@____@/_Q_\L___ X
< 30°
LA
' \\\,mz)\
e o O
So
Use conservation of momentum in m,Vv,, = m,V,.cos30°+m,v,,sin@
the X and y directions to relate the and
speeds and directions of the balls 0 =m,v,;sin@—-m,v,,sin30°
before and after the collision:
Solve the first of these equations for cosd = m,Vv,, —m,V,, cos30° (1)
cos@to obtain: m,Vs,
Solv‘e the secon‘d of these equations sind = m,v,, sin30° @)
for sin@to obtain: m,v;,

Using the hint given in the problem statement, square and add equations (1)
and (2) and simplify the result to obtain the quadratic equation:

24,2
m:v
V3 sin” 30° + (VZi —Vor COS?,OO)2 = ri]z}f
2
Substituting numerical values and vio+ (10 m/s —0.866V,, )2 — 144 m2 /s>

simplifying yields:
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Use the quadratic formula or your V,, =5.344m/sor11.977 m/s
graphing calculator to obtain:

Because the larger of these values vV, =|5.3m/s
corresponds to there being more
kinetic energy in the system after the
collision than there was before the

collision:
Solving equation (2) for @yields: 0 — sin”’ i m,V,, sin 30?
m3v3f
Substitute numerical values and 0 — sin- (2.0 kg)(5.344 m/s)sin 30°
evaluate & | (3.0kg)(4.0ms)
=|26°

90 = A particle has initial speed V. It collides with a second particle with
the same mass that is initially at rest, and is deflected through an angle ¢. Its
speed after the collision is V. The second particle recoils, and its velocity makes an
angle @with the initial direction of the first particle. (a) Show that

tan 6 = __vsing . (b) Show that if the collision is elastic, then v = v, cos ¢.
(VO —Vcos ¢)
Picture the Problem Choose the coordinate system shown in the following
diagram with the +X direction the direction of the initial approach of the projectile
particle. Call V the speed of the target particle after the collision. In Part (a) we
can apply conservation of momentum in the X and y directions to obtain two
equations that we can solve simultaneously for tané. In Part (b) we can use
conservation of momentum in vector form and the elastic-collision equation to
show that v = vycos¢.

y \Y
|
| —~ /\/
| /,\1)
. -
v, -\

(a) Apply conservation of linear V, =Vcosg+V cosd (1)
momentum in the X direction to
obtain:
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Apply conservation of linear vsing =V sin 8 (2)
momentum in the y direction to
obtain:
Solve equation (1) for Vcos@': V cos@ =v, —Vvcosg 3)
Divide equation (2) by equation (3) Vsind  Vsing
to obtain: Vcos@ Vv,—Vcosg

or

tan 0 = M

V, —Vcos¢

(b) Noting that the masses of the V,=V+V

particles are equal, apply
conservation of linear momentum
to obtain:

Draw the vector diagram
representing this equation:

Use the definition of an elastic Vo =Vvi+V?
collision to obtain:

If this Pythagorean condition is to v=[v,cosg
hold, the third angle of the triangle
must be a right angle and, using the
definition of the cosine function:

*Center-of-Mass Reference Frame

91 oo In the center-of-mass reference frame a particle with mass m; and
momentum P; makes an elastic head-on collision with a second particle of mass
m, and momentum P, = —P;. After the collision its momentum is p; . Write the
total kinetic energy in terms of m;, m,, and p; and the total final energy in terms
of m;, my, and p;, and show that p/ =+p,. If p =—p,, the particle is merely
turned around by the collision and leaves with the speed it had initially. What is
the situation for the p, = + p, solution?

Picture the Problem The total kinetic energy of a system of particles is the sum
of the kinetic energy of the center of mass and the kinetic energy relative to the
center of mass. The kinetic energy of a particle of mass m is related to its
momentum according to K = p?/2m.
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Express the total kinetic energy K=K, +K_, (1)
of the system:

Relate the kinetic energy relative K - p; N p; _ pZ(m, +m,)
to the center of mass to the rel 2m,  2m, 2mm,
momenta of the two particles:

Express the kinetic energy of the K - 2p)  2p}

center of mass of the two T 2(m +m,) B m, +m,

particles:

Substitute in equation (1) and K pi(m +m,) 2p;

. . . = +
simplify to obtain: 2m,m, m, +m,
_pimi+6mm, +m;

2| m!m, +mm;

In an elastic collision: K, =K;

2 2 2

P, {ml +6m1m2+m2}
2 2

2| mm,+mm,

p'’ {mf +6mm, + mj}
2 2
2 m;m, + m,m,

Simplify to obtain: (p1 )2 =(p,)’ =[ p =+p,

and if p; =+p,, the particles do not
collide.

92 = A 3.0-kg block is traveling in the —X direction at 5.0 m/s, and a 1.0-kg
block is traveling in the +X direction at 3.0 m/s. (a) Find the velocity V.y, of the
center of mass. (b) Subtract v, from the velocity of each block to find the
velocity of each block in the center-of-mass reference frame. (C) After they make
a head-on elastic collision, the velocity of each block is reversed (in the center-of-
mass frame). Find the velocity of each block in the center-of-mass frame after the
collision. (d) Transform back into the original frame by adding V., to the velocity
of each block. (e) Check your result by finding the initial and final kinetic
energies of the blocks in the original frame and comparing them.
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Picture the Problem Let the numerals 3 and 1 denote the blocks whose masses
are 3.0 kg and 1.0 kg respectively. We can use Zmivi =Mv_, to find the

velocity of the center-of-mass of the system and simply follow the directions in
the problem step by step.

(a) Express the total momentum of P=mv = myv, + m,v,
this two-particle system in terms of i

the velocity of its center of mass:

Solve for v, : 7 m,V, + my,

Substitute numerical values and evaluate V_, :

J = (3.0kg)(=5.0m/s)i +(1.0kg)(3.0m/s)i _ C3.0ms)i
3.0kg+1.0kg
(b) Find the velocity of the 3-kg U, =V, -V,
block in the center of mass reference —(=5.0 m/s)f _ (_ 3.0m. /s)l
frame: _
=| (-2.0m/s)i
Find the velocity of the 1-kg block in U =V, -V,
the center of mass reference frame: _ (3.0 m /s)f _ (_ 30m /s)f
=1 (6.0m/s)i
(c) Express the after-collision T (2.0m/s)f
velocities of both blocks in the
and
center of mass reference frame: . _
0, =| (- 6.0m/s)i
(d) Transform the after-collision V,=U,+V__
velocity of the 3-kg block from the _ (2 0 m/s) P (_ 30 m/s)f

center of mass reference frame to the _
original reference frame: =| (-L.omss)i
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Transform the after-collision V,=U +V,,

velocity of the 1-kg block from the _ (_ 6 Om/s)f N (_ 3 Om/s)f
center of mass reference frame to the -

original reference frame: =| (-9.0mss)i

(e) Express K, in the original frame K, =imyv; +imyv]

of reference:

Substitute numerical values and evaluate K, :

K, = 1[(3.0kg)(5.0mss) +(1.0kg)(3.0mss) |=[ 421

1

Express K, in the original frame of K, =imyVv'y+imv'}

reference:

Substitute numerical values and evaluate K,:

K, =1[3.0kg)(1.0m/s) +(1.0kg)(©.0mss) |=[ 421

93 e« [SSM] Repeat Problem 92 with the second block having a mass of
5.0 kg and moving to the right at 3.0 m/s.

Picture the Problem Let the numerals 3 and 5 denote the blocks whose masses
are 3.0 kg and 5.0 kg respectively. We can use Z:mi\7i =Mv_, to find the

velocity of the center-of-mass of the system and simply follow the directions in
the problem step by step.

(a) Express the total momentum of P= mV, = m,V, + m,V,
this two-particle system in terms of i
the velocity of its center of mass: = MY, =(m, +m,)V,,
Solve for V, : i M,V + M,V

. m, + m,

Substitute numerical values and evaluate V_ :

. (3.0kg)(-5.0m/s)i +(5.0kg)(3.0m/s)i _@
o 3.0kg+5.0kg -



(b) Find the velocity of the 3.0-kg
block in the center of mass reference
frame:

Find the velocity of the 5.0-kg block
in the center of mass reference
frame:

(c) Express the after-collision
velocities of both blocks in the
center of mass reference frame:

(d) Transform the after-collision
velocity of the 3.0-kg block from
the center of mass reference frame
to the original reference frame:

Transform the after-collision
velocity of the 5.0-kg block from
the center of mass reference frame
to the original reference frame:

(e) Express K. in the original

frame of reference:
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= (3.0m/s)
a, =| (5.0m/s)i
and
ug =| 0.75m/s

Vy =0, +V, =(5.0m/s)i +0
i

V, =0, +V,, =(-3.0m/s)i +0
(- 30m/s)

_1 2 1 2
Ki _5m3v3 +7msV5

Substitute numerical values and evaluate K. :

1

Express K, in the original frame

of reference:

K, = 2[(3.0kg)(5.0m/s)’ +(5.0kg)(3.0m/s)*|=[ 607

1 12 1 12
Kf _Em3v3 +7m5V5

Substitute numerical values and evaluate K, :

K_

L
2

[(3.0kg)(5.0mis) + (5.0kg) (3.0mss) |=[ 607

797
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*Systems With Continuously Varying Mass: Rocket Propulsion

94 - A rocket burns fuel at a rate of 200 kg/s and exhausts the gas at a
relative speed of 6.00 km/s relative to the rocket. Find the magnitude of the thrust
of the rocket.

Picture the Problem The thrust of a rocket Fy, depends on the burn rate of its
fuel dm/dt and the relative speed of its exhaust gases U. according to

Fy, = |dm/dt]u,, .

Using its definition, relate the B d_m

rocket’s thrust to the relative speed gt

of its exhaust gases:

Substitute numerical values and F,, =(200kg/s)(6.00km/s)
evaluate Fth: = 1.20MN

95 e» A rocket has an initial mass of 30,000 kg, of which 80 percent is the
fuel. It burns fuel at a rate of 200 kg/s and exhausts its gas at a relative speed of
1.80 km/s. Find (@) the thrust of the rocket, (b) the time until burnout, and (C) its
speed at burnout assuming it moves straight upward near the surface of Earth.
Assume that ¢ is constant and neglect any effects of air resistance.

Picture the Problem The thrust of a rocket Fy, depends on the burn rate of its
fuel dm/dt and the relative speed of its exhaust gases Uex according to
F, = |dm/ dtju,, . The final velocity Vv of a rocket depends on the relative speed of

its exhaust gases Uey, its payload to initial mass ratio mgm, and its burn time
according tov, =-u__In(m, /m,)-gt, .

(a) Using its definition, relate the B d_m U

rocket’s thrust to the relative speed ot [

of its exhaust gases:

Substitute numerical values and F,, =(200kg/s)(1.80km/s)
evaluate Fy: —[360KkN

(b) Relate the time to burnout to My 0.8m,

the mass of the fuel and its burn ® dm/dt dm/dt

rate:
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Substitute numerical values and t = (0-80)(30,000 kg) _[120s
evaluate t, : ° 200kg/s

(c) Relate the final velocity of a B 1l M

rocket to its initial mass, exhaust Ve =l 0 . — gt

velocity, and burn time:

Substitute numerical values and evaluate Vg

:—(1.8Okm/s)ln(%j—(9.81m/52)(120s): 1.72km/s

96 =  The specific impulse of a rocket propellant is defined as I, = Fw/(RQ),
where Fy, is the thrust of the propellant, g the magnitude of free-fall acceleration,
and R the rate at which the propellant is burned. The rate depends predominantly
on the type and exact mixture of the propellant. (&) Show that the specific impulse
has the dimension of time. (b) Show that U = gl,, where Uy is the relative speed
of the exhaust. (C) What is the specific impulse (in seconds) of the propellant used
in the Saturn V rocket of Example 8-16.

Picture the Problem We can use the dimensions of thrust, burn rate, and
acceleration to show that the dimension of specific impulse is time. Combining
the definitions of rocket thrust and specific impulse will lead us tou,, = gl .

(a) Express the dimension of specific M- L
impulse in terms of the dimensions [ ] Fth] _IT
of F, R, and g: sp [R [g M L -
T T’

(b) From the definition of rocket F. = Ru,,
thrust we have:
Solve for Uey: u = i

ex R
Substitute for Fg, to obtain: Ral,,

ex T = glsp (1)

(c) Solve equation (1) for s, and
substitute for Ue to obtain: sp R_g

From Example 8-21 we have: R =1.384x10" kg/s
and
Fan=3.4x10°N
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Substitute numerical values and | 34%10°N
cvaluate l,: * ~ (1.384x10" kg/s)(9.81m/s?)
=|25s

97 e« [SSM] The initial thrust-to-weight ratio 7y of a rocket is

7 = Fw/(Mo g), where Fy, is the rocket’s thrust and my the initial mass of the
rocket, including the propellant. (a) For a rocket launched straight up from the
earth’s surface, show that 7y = 1 + (a¢/g), where @y is the initial acceleration of the
rocket. For manned rocket flight, 7y cannot be made much larger than 4 for the
comfort and safety of the astronauts. (The astronauts will feel that their weight as
the rocket lifts off is equal to 7 times their normal weight.) (b) Show that the final
velocity of a rocket launched from the earth’s surface, in terms of 7y and I, (see
Problem 96) can be written as

m 1 m
v, = gls{ln(ﬁij —?O(I—H;H

where My is the mass of the rocket (not including the spent propellant). (€) Using a
spreadsheet program or graphing calculator, graph v¢ as a function of the mass
ratio my/mg for Iy, = 250 s and 7y = 2 for values of the mass ratio from 2 to 10.
(Note that the mass ratio cannot be less than 1.) (d) To lift a rocket into orbit, a
final velocity after burnout of v¢ = 7.0 km/s is needed. Calculate the mass ratio
required of a single stage rocket to do this, using the values of specific impulse
and thrust ratio given in Part (b). For engineering reasons, it is difficult to make a
rocket with a mass ratio much greater than 10. Can you see why multistage
rockets are usually used to put payloads into orbit around the earth?

Picture the Problem We can use the rocket equation and the definition of rocket
thrust to show thatz, =1+a,/g . In Part (b) we can express the burn time t, in
terms of the initial and final masses of the rocket and the rate at which the fuel
burns, and then use this equation to express the rocket’s final velocity in terms of
lsp, 7, and the mass ratio my/me. In Part (d) we’ll need to use trial-and-error
methods or a graphing calculator to solve the transcendental equation giving V¢ as
a function of mo/ms.

(a) Express the rocket equation: —-mg+Ru, =ma

From the definition of rocket thrust F, =Ru
we have:

€x

Substitute for Ru,, to obtain: -mg+F, =ma

Solve for F, at takeoff: F, =m,g+m,a,



Divide both sides of this equation
by mog to obtain:

Because 7, = F, /(m,9):

(b) Use Equation 8-39 to express
the final speed of a rocket that
starts from rest with mass mo:

Express the burn time in terms of
the burn rate R (assumed
constant):

Multiply t, by one in the form

9Fy and simplify to obtain:

th

Substitute in equation (1):

From Problem 96 we have:

Substitute for u_, and factor to

obtain:

Conservation of Linear Momentum 801

Fu —1+2
m,g g
a,
T, =1+
’ g
Vf :uex ln(ﬂj_gtbi (1)
mf

where t, is the burn time.

uex = gl sp ?
where U_, is the exhaust velocity of the

propellant.
I
v =gl ln(&]_h(l_&j
m; To My
= glsp|:1n[%] _L[ _ﬂ]:|
me ) 7, My

(c) A spreadsheet program to calculate the final velocity of the rocket as a
function of the mass ratio mg/m; is shown below. The constants used in the
velocity function and the formulas used to calculate the final velocity are as

follows:
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Cell Content/Formula Algebraic Form
Bl 250 lsp
B2 9.81 g
B3 2 I
D9 D8 +0.25 Mo/M¢
E8 $B$2*$B$1*(LOG(DS) — m,)| 1 m,
(1/$BS$3)*(1/D8)) g|s{1n(rmj_%(1_%ﬂ
A B C D E
1 [ l,=1]250 |s
2 | g=19.81ms’
3 0= 2
4
5
6
7 mass ratio A
8 2.00 1.252E+02
9 2.25 3.187E+02
10 2.50 4.854E+02
11 2.75 6.316E+02
12 3.00 7.614E+02
36 9.00 2.204E+03
37 9.25 2.237E+03
38 9.50 2.269E+03
39 9.75 2.300E+03
40 10.00 2.330E+03
41 725.00 | 7.013E+03
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A graph of final velocity as a function of mass ratio follows.

25

1.0 /

0.5 /

2 3 4 5 6 7 8 9 10
m/m ¢

Vf(km/s)

0.0

(d) Substitute the data given in part () in the equation derived in Part (b) to

obtain:

7.00km/s = (9.81m/s> )(250s)| 1n| Mo |- L[ Me

me ) 2 m,
or
0.5
2.854 =InXx—0.5+—— where X = my/m;.
X

Use trial-and-error methods or a x ~| 28 |, a value considerably larger

graphing calculator to solve this
transcendental equation for the root
greater than 1:

than the practical limit of 10 for single-
stage rockets.

98 e The height that a model rocket launched from Earth’s surface can
reach can be estimated by assuming that the burn time is short compared to the
total flight time, so for most of the flight the rocket is in free-fall. (This estimate
neglects the burn time in calculations of both time and displacement.) For a model
rocket with specific impulse Ig, = 100 s, mass ratio mo/my = 1.20, and initial
thrust-to-weight ratio zp = 5.00 (these parameters are defined in Problems 96 and
97), estimate (@) the height the rocket can reach, and (b) the total flight time. (C)
Justify the assumption used in the estimates by comparing the flight time from
Part (b) to the time it takes for the fuel to be spent.

Picture the Problem We can use the velocity-at-burnout equation from Problem
96 to find V¢ and constant-acceleration equations to approximate the maximum
height the rocket will reach and its total flight time.
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(a) Assuming constant acceleration, h=1 gtfop (1)
relate the maximum height reached

by the model rocket to its time-to-

top-of-trajectory:

From Problem 96 we have: m 1 m
m.) z{ m,

Evaluate the velocity at burnout v¢for Iy, = 100 s, mo/mg= 1.2, and 7= 5:

v, = (9.81m/s%)(100s) {ln(l .2)-%(1-%)} ~146m/s

Assuming that the time for the fuel £V l46m/s 14.9

to burn up is short compared to the top E T 981m/s? S

total flight time, find the time to the

top of the trajectory:

Substitute in equation (1) and h= %(9.81m/s2 )(14.95)2 —[1.09km

evaluate h:

(b) Fi‘nd the total flight time frqm the tosan = 2ty = 2(1 4.9s) —[29385
time it took the rocket to reach its
maximum height:

(c) The fuel burn time t, is: ) s 1_& _ 100s 1_L
7 m, 5 1.2
=3.33s

Because this burn time is approximately 1/5 of the total flight time, we can’t
expect the answer we obtain in Part (b) to be very accurate. It should, however, be
good to about 30% accuracy, as the maximum distance the model rocket could
possibly move in this time is vt, =244 m, assuming constant acceleration until

burnout.
General Problems

99 « [SSM] A 250-g model-train car traveling at 0.50 m/s links up with a
400-g car that is initially at rest. What is the speed of the cars immediately after
they link up? Find the pre- and post-collision kinetic energies of the two-car
system.
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Picture the Problem Let the direction the 250-g car is moving before the
collision be the +x direction. Let the numeral 1 refer to the 250-kg car, the
numeral 2 refer to the 400-kg car, and V represent the velocity of the linked cars.
Let the system include Earth and the cars. We can use conservation of momentum
to find their speed after they have linked together and the definition of kinetic
energy to find their pre- and post-collision kinetic energies.

Use conservation of momentum to P, = Py
relate the speeds of the cars or
%mmed%ately before agd N my, = (m1 im, )V IRV m,v,
immediately after their collision: m, +m,
Substitute numerical values and V = (0.250 kg)(O.SO m/s) 0192 m/s
evaluate V: 0.250kg +0.400kg

=|0.19m/s
Find the pre-collision kinetic K, =+my; =1(0.250kg)(0.50m/s)’

energy of the cars:

_[31mJ
Find the post-collision kinetic Koo =2 (M, +m, V>
energy of the coupled cars: — 1(0.250kg + 0.400kg)(0.192 m/s )’

12m]

100 = A 250-g model train car traveling at 0.50 m/s heads toward a 400-g car
that is initially at rest. (2) Find the kinetic energy of the two-car system. (b) Find
the velocity of each car in the center-of-mass reference frame, and use these
velocities to calculate the kinetic energy of the two-car system in the center-of-
mass reference. (C) Find the kinetic energy associated with the motion of the
center of mass of the system. (d) Compare your answer for Part (a) with the sum
of your answers for Parts (b) and ().

Picture the Problem Let the direction the 250-g car is moving before the
collision be the +x direction. Let the numeral 1 refer to the 250-kg car and the
numeral 2 refer to the 400-g car and the system include Earth and the cars. We
can use conservation of momentum to find their speed after they have linked
together and the definition of kinetic energy to find their pre- and post-collision
kinetic energies.



806

(a) The pre-collision kinetic energy
of the two-car system is:

(b) Relate the velocity of the center
of mass to the total momentum of
the system:

Solve for v :

Substitute numerical values and
evaluate v__ :

Find the initial velocity of the 250-g
car relative to the velocity of the
center of mass:

Find the initial velocity of the
400-g car relative to the velocity
of the center of mass:

Express the pre-collision kinetic
energy of the system relative to the
center of mass:

Substitute numerical values and
evaluate K

pre,rel *

(c) Express the kinetic energy of the
center of mass:

Substitute numerical values and
evaluate Kgp:
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K

pre

1myv? =1(0.250kg)(0.50m/s)’

=313mJ=|31mJ

O
Il
3
<
Il
3
<

_ My, +m,v,
cm
m, +m,

_ (0.250kg)(0.50m/s)

= =0.192m/s
0.250kg +0.400kg

u =v,-v, =0.50m/s-0.192m/s
=10.31m/s

u,=v,—-Vv,, =0m/s-0.192m/s
=| -0.19m/s

_ 1 2.1 2
K MU, +3m,u;

pre;rel — 2

K. o =4(0.250kg)(0.308 m/s)’
+1(0.400kg)(—0.192m/s )’

=|19mJ

pre,rel

K., =%(0.650kg)(0.192m/s)’
= 12mJ
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(d) Relate the pre-collision kinetic Ki =K+ Ke
energy of the system to its pre- =192mJ+12.0mJ
collision kinetic energy relative to —312ml]
the center of mass and the kinetic

and
energy of the center of mass:

Ki = Ki,rel + Kcm

101 = A 1500-kg car traveling north at 70 km/h collides at an intersection

with a 2000-kg car traveling west at 55 km/h. The two cars stick together.

(2) What is the total momentum of the system before the collision? (b) Find the
magnitude and direction of the velocity of the wreckage just after the collision.

Picture the Problem Let east be the positive X direction and north the positive y
direction. Include both cars and the earth in the system and let the numeral 1
denote the 1500-kg car and the numeral 2 the 2000-kg car. Because the net
external force acting on the system is zero, momentum is conserved in this
perfectly inelastic collision.

(a) Express the total momentum of p=p+p,=mV,+my,
the system: =myV, j—myV,i

Substitute numerical values and evaluate p:

S

P = (1500kg)(70km/h)j —(2000kg)(55 km/h)i
= —(1.10x10° kg -km/h) i +(1.05x10° kg - knv/h )
= —(1.1x10° kg -km/h) § +(1.1x10° kg - km/h )}

(b) The velocity of the wreckage in i
terms of the total momentum of the
system is given by:

Substitute numerical values and evaluate V., :

o _—(110x10 kg knvh) © (1.05x10° kg - kmvh)]

f 1500kg+2000kg 1500kg + 2000 kg

=—(31.4km/h) I +(30.0km/h)]

Find the magnitude of the velocity of v, = \/(3 1.4 km/h)2 n (30.0 km/h)z
the wreckage:
=| 43km/h
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Find the direction the wreckage 4| 30.0km/h
) f=tan | ——— | =-43.7°
moves: —31.4km/h

The direction of the wreckage is 46° west of north.

102 = A 60-kg woman stands on the back of a 6.0-m-long, 120-kg raft that is
floating at rest in still water. The raft is 0.50 m from a fixed pier, as shown in
Figure 8-52. (a) The woman walks to the front of the raft and stops. How far is
the raft from the pier now? (b) While the woman walks, she maintains a constant
speed of 3.0 m/s relative to the raft. Find the total kinetic energy of the system
(woman plus raft), and compare with the kinetic energy if the woman walked at
3.0 m/s on a raft tied to the pier. (C) Where does these kinetic energies come from,
and where do they go when the woman stops at the front of the raft? (d) On land,
the woman puts a lead shot 6.0 m. She stands at the back of the raft, aims forward,
and puts the shot so that just after it leaves her hand, it has the same velocity
relative to her as it did when she threw it from the ground. Approximately, where
does her shot land?

Picture the Problem Take the origin to be at the initial position of the right-hand
end of raft and let the positive X direction be to the left. Let "w” denote the woman
and "r" the raft, d be the distance of the end of the raft from the pier after the
woman has walked to its front. The raft moves to the left as the woman moves to
the right; with the center of mass of the woman-raft system remaining fixed
(because Fexinet = 0). The diagram shows the initial (Xy ;) and final (X.f) positions
of the woman as well as the initial (X; ¢m;) and final (X; cm ) positions of the center
of mass of the raft both before and after the woman has walked to the front of the

raft.
H CM
/
X | X _ o
E |<_ Xrﬁcm,i —10
E Xwi =6m
AT IO
: sm |1
: H G
LM R
[ 0 X |
X Xricm,f 0
Xrﬁcmﬂi — 1 Xy £
—— § —
(a) Express the distance of the raft d=0.50m+Xx,; (1)

from the pier after the woman has
walked to the front of the raft:



Express X.m before the woman has
walked to the front of the raft:

Express X after the woman has
walked to the front of the raft:

Because Fexinet = 0, the center of
mass remains fixed and we can
equate these two expressions for Xem
to obtain:

Solve for X, ;

From the figure it can be seen that
X X emi = Xy 5 - Substitute

r_cm,f r_cm,i

X, for X to obtain:

remf r cm,i

Substitute numerical values and
evaluate X,

Substitute in equation (1) to obtain:

(b) Express the total kinetic energy of
the system:

Noting that the elapsed time is 2.0 s,
find vy, and v;:
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mwXW1 +mrxr cm, i
em
m, +m,
_ mwaf + mrxr cm,f
Xcm -
m, +m,
m X +mrxr cmi mwxwf +mrxr cm,f

e )
Xw,f = XW,i - m Xr_cm,f - Xr_cm,i

m,X

w Mw,i

m, +m,

_ (60kg)(6.0m) _
“ T 60kg +120kg

d=2.0m+0.50m=| 2.5m

Ktot :%mwv\i +%mrvr2
X —X
VW — w,f A
At
_ 2.0m-6.0m — 5 0m/s
2.0s
relative to the dock, and
er - Xri
v =——5
At
_ 2.50m-0.50m 1.0m/s
2.0s

also relative to the dock.
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Substitute numerical values and K
evaluate Ky

=1(60kg)(~2.0m/s)’
+1(120kg)(1.0m/s)’
0.18kJ

tot

Evaluate K with the raft tied to K
the pier:

Im vy =1(60kg)3.0m/s)’
=|0.27kJ

(c) All the kinetic energy derives from the chemical energy of the woman and,
assuming she stops via static friction, the kinetic energy is transformed into her
internal energy.

(d) After the shot leaves the woman’s hand, the raft-woman system constitutes an
inertial reference frame. In that frame, the shot has the same initial velocity as did
the shot that had a range of 6.0 m in the reference frame of the land. Thus, in the
raft-woman frame, the shot also has a range of 6.0 m and lands at the front of the
raft.

103 +» A 1.0-kg steel ball and a 2.0-m cord of negligible mass make up a
simple pendulum that can pivot without friction about the point O, as in Figure 8-
53. This pendulum is released from rest in a horizontal position and when the ball
is at its lowest point it strikes a 1.0-kg block sitting at rest on a shelf. Assume that
the collision is perfectly elastic and take the coefficient of kinetic friction between
the block and shelf to be 0.10. () What is the velocity of the block just after
impact? (b) How far does the block slide before coming to rest (assuming the
shelf is long enough)?

Picture the Problem Let the zero of gravitational potential energy be at the
elevation of the 1.0-kg block. We can use conservation of energy to find the
speed of the bob just before its perfectly elastic collision with the block and
conservation of momentum to find the speed of the block immediately after the
collision. We’ll apply Newton’s 2™ law to find the acceleration of the sliding
block and use a constant-acceleration equation to find how far it slides before
coming to rest.

(a) Use conservation of energy to AK +AU =0
find the speed of the bob just before or
its collision with the block: K,—K +U,-U, =0



Because K; = U= 0:

Substitute numerical values and
evaluate Vpg:

Because the collision is perfectly
elastic and the ball and block have
the same mass:

(b) Using a constant-acceleration
equation, relate the displacement of
the block to its acceleration and
initial speed:

Solving for AX yields:

Apply Z F =ma to the sliding
block:

Using the definition of fi (=z4F,)
eliminate f, and F, between the
two equations and solve for apjock:

Substitute for apock to obtain:

Substitute numerical values and
evaluate AX:
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1 2 _
2 My Voan + mballgAh =0

and

Vear = /294N

Vour =+/2(9.81m/5%)(2.0m) = 6.26 m/s

Votock = Vi =| 6.3m/s

v; =V} +2a,,,AX
or, because vy =0,
0=V +2a,,,AX

2 2
AX = — Vi __ Vblock
2ablock 2ablock

z Fx == fk = May;,«
and

Z I:y = Fn _mblockg = O

Apock — M9

2 2
AX = ~ Vhlock — Vblock

- 2149 2419

(6.26m/s)’

20.10)0.81ms7) 20

104 <=  Figure 8-54 shows a World War I cannon mounted on a railcar so that
it will project a shell at an angle of 30°. With the car initially at rest, the cannon
fires a 200-kg projectile at 125 m/s. (All values are for the frame of reference of
the track.) Now consider a system composed of a cannon, shell, and railcar, all on
the frictionless track. (a) Will the total vector momentum of that system be the
same just before and just after the shell is fired? Explain your answer. (b) If the
mass of the railcar plus cannon is 5000 kg, what will be the recoil velocity of the
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car along the track after the firing? (C) The shell is observed to rise to a maximum
height of 180 m as it moves through its trajectory. At this point, its speed is 80.0
m/s. On the basis of this information, calculate the amount of thermal energy
produced by air friction on the shell on its way from firing to this maximum
height.

Picture the Problem We can use conservation of momentum in the horizontal
direction to find the recoil velocity of the car along the track after the firing.
Because the shell will neither rise as high nor be moving as fast at the top of its
trajectory as it would be in the absence of air friction, we can apply the work-
energy theorem to find the amount of thermal energy produced by the air friction.

(a) No. The vertical reaction force of the rails is an external force and so the
momentum of the system will not be conserved.

(b) Use conservation of momentum Ap, =0

in the horizontal (X) direction to
obtain:

Solving for v, ; yields:

Substitute numerical values and
evaluate v

recoil *

(c) Using the work-energy theorem,
relate the thermal energy produced
by air friction to the change in the
energy of the system:

Substitute for AU and AK to obtain:

or

mvcos30°~Mv_ ., =0
mvcos30°

Vrecoil = M

_ (200 kg)(125 m/s)cos30°
recoil 5000 kg

=|4.3m/s

W, =W, = AE, = AU +AK

W, = mgy, —mgy,; +<mv; —imv;
= mg(yf - yi)+%m(vf2 _Viz)

Substitute numerical values and evaluate Wey;:

W, =(200kg)(9.81m/s”)(180m)+ 1 (200kg)|(80.0m/s)* — (125 m/s)’ |

=| —=569kJ
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105 ee [SSM] One popular, if dangerous, classroom demonstration involves
holding a baseball an inch or so directly above a basketball, holding the basketball
a few feet above a hard floor, and dropping the two balls simultaneously. The two
balls will collide just after the basketball bounces from the floor; the baseball will
then rocket off into the ceiling tiles with a hard "thud” while the basketball will
stop in midair. (The author of this problem once broke a light doing this.)

(a) Assuming that the collision of the basketball with the floor is elastic, what is
the relation between the velocities of the balls just before they collide?

(b) Assuming the collision between the two balls is elastic, use the result of Part
(a) and the conservation of momentum and energy to show that, if the basketball
is three times as heavy as the baseball, the final velocity of the basketball will be
zero. (This is approximately the true mass ratio, which is why the demonstration
is so dramatic.) (C) If the speed of the baseball is v just before the collision, what
is its speed just after the collision?

Picture the Problem Let the numeral 1

refer to the basketball and the numeral v,
2 to the baseball. The left-hand side of

the diagram shows the balls after the Vai

basketball’s elastic collision with the

floor and just before they collide. The

right-hand side of the diagram shows
the balls just after their collision. We
can apply conservation of momentum
and the definition of an elastic collision
to obtain equations relating the initial

and final velocities of the masses of the
colliding objects that we can solve for
Vir and Vor.

(a) Because both balls are in free-fall, and both are in the air for the same amount
of time, they have the same velocity just before the basketball rebounds. After the
basketball rebounds elastically, its velocity will have the same magnitude, but the
opposite direction than just before it hit the ground. The velocity of the basketball
will be equal in magnitude but opposite in direction to the velocity of the baseball.

(b) Apply conservatiop pf linear mV, + MV, =mv, +myv, (1)
momentum to the collision of the
balls to obtain:

Relate the initial and final kinetic Imvy +imy;, =Imy, +1imv;,
energies of the balls in their elastic
collision:
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Rearrange this equation and
factor to obtain:

Rearrange equation (1) to obtain:

Divide equation (2) by equation
(3) to obtain:

Rearrange this equation to obtain
equation (4):

Multiply equation (4) by m; and
add it to equation (1) to obtain:

Solve for Vir to obtain:

For m; =3m; and v;; = v:

(C) Multiply equation (4) by m;
and subtract it from equation (1)
to obtain:

Solve for V,r to obtain:

Form;=3myand vi; = V:

Conservation of Linear Momentum

m, (szf - V; ) =m, (Vlzl - V12f )
or
M, (Vo = Vo, ) (Vo +V5)

2

=V 2
=m (Vli _Vlf)(vli +V1f)
m, (sz _Vzi): ml(vli _Vlf) (3)

Vop £V = V) + Vg
Vig =Vop = Vo =V “4)

(ml +m, )Vlf = (ml -m, )Vn +2m,v,,

m, +m, m, +m,

or, because Vy; = —Vyj,

m,—m, 2m,
Vip = Vi— Vi
m, +m, m, +m,
m, —3m
— 1 2 V1i
m, +m,

(ml +m, )sz = (mz -m )Vzi + 2mlvli

_ 2m1 mz - m1
Voyr = Vi + Vai
ml + m2 ml + mZ
or, because V,; = —Vy;,
2m1 mz - ml
Vor = Vi = Vi
m, +m, m, +m,
3m, —m,
=—V;;
m, +m,
3(3m, )—m
b = ¢V =|2v

3m, +m,
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(a) Referring to Problem 105, if we held a third ball above the baseball

and basketball, and wanted both the basketball and baseball to stop in mid-air,
what should the ratio of the mass of the top ball to the mass of the baseball be?
(b) If the speed of the top ball is Vv just before the collision, what is its speed just

after the collision?

Picture the Problem In Problem 105
only two balls are dropped. They
collide head on, each moving at
speed Vv, and the collision is elastic.
In this problem, as it did in Problem
105, the solution involves using the
conservation of momentum equation
mV,, +m,v,, =m\V,, + m,v,. and the
elastic collision equation
Vi; =V, =V,; —V,; where the numeral
1 refers to the baseball, and the
numeral 2 to the top ball. The
diagram shows the balls just before
and just after their collision. From
Problem 105 we know that vi; = 2v
and Vy; = —V.

(a) Express the final speed v;¢ of the
baseball as a function of its initial
speed vy and the initial speed of the
top ball v; (see Problem 64):

Substitute for vi; and , V»; to obtain:

Divide the numerator and
denominator of each term by m; to
introduce the mass ratio of the upper
ball to the lower ball:

Set the final speed of the baseball v;¢
equal to zero and let X represent the
mass ratio m;/m, to obtain:

Solving for X yields:

V2f
V2i

S/ S S S S

m1+m2 m1+m2
My

Ve = (2y) 2 (-v)
m 1 L+1
m2 m2
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(b) Apply the second of the two . 2m, m, —m,
equations in Problem 64 to the Var = m, +m, Vi m, +m, Vai
collision between the top ball and

the baseball:

Subs:tltute Vi; =2V and Vo;= -V to v — 2m, (2V)+ m, —m, (_ V)
obtain: = m, +m, m, +m,

In part (a) we showed that m, =2m;. . 2(2m,) ) 2m, —m, v
Substitute and simplify to obtain: T m, +2m, m, +2m,

107 e« [SSM] In the "slingshot effect,” the transfer of energy in an elastic
collision is used to boost the energy of a space probe so that it can escape from
the solar system. All speeds are relative to an inertial frame in which the center of
the sun remains at rest. Figure 8-55 shows a space probe moving at 10.4 km/s
toward Saturn, which is moving at 9.6 km/s toward the probe. Because of the
gravitational attraction between Saturn and the probe, the probe swings around
Saturn and heads back in the opposite direction with speed Vy. (&) Assuming this
collision to be a one-dimensional elastic collision with the mass of Saturn much
greater than that of the probe, find v¢. (b) By what factor is the kinetic energy of
the probe increased? Where does this energy come from?

Picture the Problem Let the direction the probe is moving after its elastic
collision with Saturn be the positive direction. The probe gains kinetic energy at
the expense of the kinetic energy of Saturn. We’ll relate the velocity of approach
relative to the center of mass to U, and then to v. Let the +X direction be in the
direction of the motion of Saturn.

(a) Relate the velocity of recession V=u_ +V,_, (1)
to the velocity of recession relative
to the center of mass:

Find the velocity of approach: U, =—9.6km/s —10.4km/s
=-20.0km/s
Relate the relative velocity of Uy =—U,, =20.0km/s

approach to the relative velocity of
recession for an elastic collision:

Because Saturn is so much more V., = Veuum = 9-6 km/s
massive than the space probe:
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Substitute numerical values in
equation (1) and evaluate v:

v =20km/s+9.6km/s =| 30km/s

(b) Express the ratio of the final K, 1MV [ ]2
Kineti e e = | —rec.

Inetic energy to j[he initial kinetic K, 1MV v
energy and simplify:

Substitute numerical values and
evaluate K¢/K;:

10.4km/s

2
%:(29.6@1/5} 81

The energy comes from an immeasurably small slowing of Saturn.

108 <= A 13-kgblock is at rest on a level floor. A 400-g glob of putty is
thrown at the block so that the putty travels horizontally, hits the block, and sticks
to it. The block and putty slide 15 cm along the floor. If the coefficient of kinetic
friction is 0.40, what is the initial speed of the putty?

Picture the Problem Let the system include the block, the putty, and the earth.
Then Fexinet = 0 and momentum is conserved in this perfectly inelastic collision.
We’ll use conservation of momentum to relate the after-collision velocity of the
block plus blob and conservation of energy to find their after-collision velocity.

Noting that, because this is a P = Ps

perfectly elastic collision, the final
velocity of the block plus blob is the
velocity of the center of mass, use
conservation of momentum to relate
the velocity of the center of mass to
the velocity of the glob before the
collision:

Use conservation of energy to find

the initial energy of the block plus
glob:

Because fx = 1Mg:

Solve for v to obtain:

Substitute numerical values and
evaluate v__ :

or

M
m,Vvy = Mvcmjvgl :_ch (1)

gl el
m ol

where M =m_ +m,,.

AK +AU +W; =0
Because AU = K¢=0,
—IMV2 + fAX=0

—LIMVZ + 1, MgAX =0

Vom = /244, 9AX

V. =+/2(0.40)(9.81m/s% )(0.15m)
=1.08m/s
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i i i 13k 400k
Subst}tute numerical values in v, = 3kg+0.400kg (l.OSm/S)
equation (1) and evaluate v, : £ 0.400kg
=|36m/s

109 eee [SSM] Your accident reconstruction team has been hired by the local
police to analyze the following accident. A careless driver rear-ended a car that
was halted at a stop sign. Just before impact, the driver slammed on his brakes,
locking the wheels. The driver of the struck car had his foot solidly on the brake
pedal, locking his brakes. The mass of the struck car was 900 kg, and that of the
initially moving vehicle was 1200 kg. On collision, the bumpers of the two cars
meshed. Police determine from the skid marks that after the collision the two cars
moved 0.76 m together. Tests revealed that the coefficient of kinetic friction
between the tires and pavement was 0.92. The driver of the moving car claims
that he was traveling at less than 15 km/h as he approached the intersection. Is he
telling the truth?

Picture the Problem Let the direction the moving car was traveling before the
collision be the +x direction. Let the numeral 1 denote this car and the numeral 2
the car that is stopped at the stop sign and the system include both cars and Earth.
We can use conservation of momentum to relate the speed of the initially-moving
car to the speed of the meshed cars immediately after their perfectly inelastic
collision and conservation of energy to find the initial speed of the meshed cars.

Using conservation of momentum, P = Ps
relate the before-collision velocity to or
the after-collision velocity of the m,y, = (m1 +m, )V

meshed cars:

Solving for v; and simplifyin

AR prine vy =My _fy My
yields: m, m,
Using conservation of energy, relate AK+AE, ... =0
the initial kinetic energy of the or, because K¢ = 0 and AE germal = fAS,
meshed cars to the work done by K, + f,As=0

friction in bringing them to a stop:

Substitute for K; and, using —LMV? + 14, MgAX =0
fi = wFy = Mg, eliminate fy to
obtain:

Solving for V yields: V =21, gAX
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Substitute for V in equation (1) to
a ) v, :(1+&}/2ukgAx
m

obtain: 1

Substitute numerical values and evaluate vi:

900k
v, = {1 H s k‘i }/2(0.92)(9.81111/52 )(0.76 m) = 6.48 m/s = 23km/h

The driver was not telling the truth. He was traveling at 23 km/h.

110 = A pendulum consists of a compact 0.40-kg bob attached to a string of
length 1.6 m. A block of mass m rests on a horizontal frictionless surface. The
pendulum is released from rest at an angle of 53° with the vertical. The bob
collides elastically with the block at the lowest point in its arc. Following the
collision, the maximum angle of the pendulum with the vertical is 5.73°.
Determine the mass m.

Picture the Problem Let the zero of gravitational potential energy be at the
lowest point of the bob’s swing and note that the bob can swing either forward or
backward after the collision. We’ll use both conservation of momentum and
conservation of energy to relate the velocities of the bob and the block before
and after their collision. Choose the positive X direction to be in the direction of
the motion of the block.

Express the kinetic energy of the K - pZ P 1
block in terms of its after-collision ™ om 2K, (M
momentum:

Use conservation of energy to AK +AU =0

relate Ky, to the change in the or, because K; =0,

potential energy of the bob: Ky+U;-U,=0

Solve for Ky, substitute for Ur and K,=-U;+U.

U; and simplify to obtain: =m,,,g[L(1-cos® )-L(1-cosb,)]

=m,,gL[cos 6, —cos @]

Substitute numerical values and evaluate K,:

K., =(0.40kg)(9.81m/s* )(1.6m)[cos5.73° — c0s53°] = 2.47 ]
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Use conservation of energy to find
the velocity of the bob just before its
collision with the block:

Substitute for K¢ and U; to obtain:

Solving for Vv yields:

Substitute numerical values and
evaluate V:

Use conservation of energy to find
the velocity of the bob just after its
collision with the block:

Substitute for K; and Uy to obtain:

Solve for V';

Substitute numerical values and
evaluate V';

Use conservation of momentum to
relate pp, after the collision to the
momentum of the bob just before
and just after the collision:

Solve for and evaluate py,:

Find the larger value for py,:

Find the smaller value for pp,:

Conservation of Linear Momentum

AK +AU =0
or, because K; = U¢= 0,
K;-U,=0

3 mbobV2 - mbobgL(l —cosé, ) =0

Vv =1/29Lil—cos6’i )

v =4/2(9.81m/s?)(1.6m)(1 - cos53°)
=3.536m/s

AK +AU =0
or, because K¢=U; =0,
-K, +U; =0

—m, v2+m, . gL(1-cosé,)=0

v'=/2gL(1-cos 0, )

v'=/2(9.81m/s? )(1.6m)(1-cos5.73°)
=0.396m/s

P = Pr

or

_ '
rnbobV - imbobv + pm

Py = MygpV £ My, V'
=(0.40kg)(3.536 m/s +0.396m/s)
=1.414kg-m/s*+0.158kg-m/s

P, =1.414kg-m/s+0.158kg-m/s
=1.573kg-m/s

P, =1.414kg-m/s—0.158kg-m/s
=1.256kg-m/s
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Substitute numerical values in

B (1.573kg-m/s)’ B
equation (1) to determine the m= 2(2. 47 J) =| 0.50kg
two values for m:

or
2
m = (l.256kg-m/s) _[032kg

2(2.477)

111 e [SSM] A 1.00-kg block and a second block of mass M are both
initially at rest on a frictionless inclined plane (Figure 8-56) Mass M rests against
a spring that has a force constant of 11.0 kN/m. The distance along the plane
between the two blocks is 4.00 m. The 1.00-kg block is released, making an
elastic collision with the unknown block. The 1.00-kg block then rebounds a
distance of 2.56 m back up the inclined plane. The block of mass M comes
momentarily comes to rest 4.00 cm from its initial position. Find M.

Picture the Problem Choose the zero of gravitational potential energy at the
location of the spring’s maximum compression. Let the system include the
spring, the blocks, and Earth. Then the net external force is zero as is work done
against friction. We can use conservation of energy to relate the energy
transformations taking place during the evolution of this system.

Apply conservation of energy to the AK +AU, +AU =0
system:

Because AK = 0: AU, +AU_ =0

Express the change in the AU, = —-mgAh — Mgxsin &

gravitational potential energy:

Express the change in the potential AU, = 1kx?
energy of the spring:

Substitute to obtain: —mgAh — Mgxsin@ +1kx* =0

Solving for M and simplifying
yields:

Relate Ah to the initial and
rebound positions of the block
whose mass is m:

. 1kx*—mgAh _ kx  2mAh
gxsin 30° g X

Ah = (4.00m —2.56m)sin 30°
=0.72m



822 Conservation of Linear Momentum

Substitute numerical values and evaluate M:

v - 11.0x10° N/m) (?.0400m)_2(1.00kg)(0.72m) 59k
9.81m/s 0.0400m

112 ee= A neutron of mass m makes an elastic head-on collision with a
stationary nucleus of mass M. (&) Show that the kinetic energy of the nucleus after
the collision is given by Kyycleus = [4MM/(m + M)z] K., where K, is the initial
kinetic energy of the neutron. (b) Show that the fractional change in the kinetic
energy of the neutron is given by

AK,  4m/Mm)

K, (+[m/Mm]}

(c) Show that this expression gives plausible results both if m << M and m = M.
What is the best stationary nucleus for the neutron to collide head-on with if the
objective is to produce a maximum loss in the kinetic energy of the neutron?

Picture the Problem In this elastic head-on collision, the kinetic energy of
recoiling nucleus is the difference between the initial and final kinetic energies of
the neutron. We can derive the indicated results by using both conservation of
energy and conservation of momentum and writing the kinetic energies in terms
of the momenta of the particles before and after the collision.

2 2 2

(a) Use conservation of energy to Pr P Pi
) ) . i _ Pof | Mnucleus (1)
relate the kinetic energies of the om  2m M
particles before and after the
collision:
Apply conservation of momentum Poi = Por T+ Pructeus 2)

to obtain a second relationship
between the initial and final

momenta:

Eliminate p,¢ in equation (1) using Puucteus , Pructens _ Poi _ ¢ 3)
equation (2): 2M 2m m
Use equation (3) to write P2 _K = pjudeus(M + m)z 4
pZ /2min terms of Poucieus: m_ " &M *m “)
Use equation (4) to express 4Mm

Knucleus = plfucleus/zM il’l terms Of KHuCleUS B Kn (M + m)2 (5)

Ka:
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(b) Relate the change in the kinetic AK, ==K, eus
energy of the neutron to the after-
collision kinetic energy of the

nucleus:
Using equation (5), express the AK, ___4Mm
fraction of the energy lost in the K, (M + m)2
collision: nl 4(m/M)
(1+(m/M))’
() Ifm << M: AKK“ — | 0 |as expected.
Ifm=M: AK, 4 ~=| —1 |as expected.
K,  (1+1)

113 e The mass of a carbon nucleus is approximately 12 times the mass of a
neutron. () Use the results of Problem 112 to show that after N head-on
collisions of a neutron with carbon nuclei at rest, the kinetic energy of the neutron
is approximately 0.716" Ko, where K is its initial kinetic energy. (b) Neutrons
emitted during the fission of a uranium nucleus have kinetic energies of about

2.0 MeV. For such a neutron to cause the fission of another uranium nucleus in a
reactor, its kinetic energy must be reduced to about 0.020 eV. How many head-on
collisions are needed to reduce the kinetic energy of a neutron from 2.0 MeV to
0.020 eV, assuming elastic head-on collisions with stationary carbon nuclei?

Picture the Problem Problem 112 (b) provides an expression for the fractional
loss of kinetic energy per collision.

(a) Using the result of Problem 112 K, K,-AK, (M-m}
(b), express the fractional loss of K _ E, (M +m)
energy per collision:

Evaluate this fraction to obtain: K (12m — m)

Express the kinetic energy of one K., = 0.716" E,
neutron after N collisions:

(b) Substitute for K, and E, to 0.716" =107*
obtain:
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Take the logarithm of both sides
of the equation and solve for N:

Conservation of Linear Momentum

-8

=——~|55
log0.716

114 <= On average, a neutron actually loses only 63 percent of its energy in an
elastic collision with a hydrogen atom (not 100 percent) and 11 percent of its
energy during an elastic collision with a carbon atom (not 18 percent). (These
numbers are an average over all types of collisions, not just head-on ones. Thus
the results are lower than the ones determined from analyses like that in Problem
113 because most collisions are not head-on.) Calculate the actual number of
collisions, on average, needed to reduce the energy of a neutron from 2.0 MeV to
0.020 eV if the neutron collides with stationary (a) hydrogen atoms and

(b) carbon atoms.

Picture the Problem We can relate the number of collisions needed to reduce
the energy of a neutron from 2 MeV to 0.02 eV to the fractional energy loss per
collision and solve the resulting exponential equation for N.

(a) Using the result of Problem 113
(b), express the fractional loss of
energy per collision:

Express the kinetic energy of one
neutron after N collisions:

Substitute for K, and K to obtain:

Take the logarithm of both sides
of the equation and solve for N:

(b) Proceed as in (a) to obtain:

Express the kinetic energy of one
neutron after N collisions:

Substitute for K,r and K to obtain:

Take the logarithm of both sides of
the equation and solve for N:

K, K,-AK, K, -0.63K,
Kni EO Kni
=0.37
K,=037"K,
037V =107
N = _8 ~ 19
log0.37
K, K,-AK, K_,-0.11K,
Kni EO Kni
=0.89
K, =0.89"K,
089" =107
N = -8 . 158
log0.89
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115 e« [SSM] Two astronauts at rest face each other in space. One, with
mass my, throws a ball of mass m, to the other, whose mass is m,. She catches the
ball and throws it back to the first astronaut. Following each throw the ball has a
speed of v relative to the thrower. After each has made one throw and one catch,
(a) How fast are the astronauts moving? (b) How much has the two-astronaut
system’s kinetic energy changed and where did this energy come from?

Picture the Problem Let the direction that astronaut 1 first throws the ball be the
positive direction and let vy, be the initial speed of the ball in the laboratory frame.
Note that each collision is perfectly inelastic. We can apply conservation of
momentum and the definition of the speed of the ball relative to the thrower to
each of the perfectly inelastic collisions to express the final speeds of each
astronaut after one throw and one catch.

(a) Use conservation of linear myv, +myv, =0 (1)
momentum to relate the speeds of

astronaut 1 and the ball after the first

throw:

Relate the speed of the ball in the V=V, -V, (2)
laboratory frame to its speed relative

to astronaut 1:

Eliminate vy, between equations (1) m,

vV =——>—V 3
and (2) and solve for v;: : m, +m, )
Substitute equation (3) in equation v = m, v )
(2) and solve for vy: ° m, + m,

Apply conservation of linear 0=myy, = (m2 +m, )Vz (5)
momentum to express the speed of
astronaut 2 and the ball after the first
catch:
. o m
Solving for v, yields: v, = by, ©6)
m, +m,
Express V; in terms of vV by L m_

substituting equation (4) in equation : m,+m, m, +m,

| (7
"’ Jleerite]’

m, +m, )(m, +m,
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Use conservation of momentum to
express the speed of astronaut 2 and
the ball after she throws the ball:

Relate the speed of the ball in the
laboratory frame to its speed relative
to astronaut 2:

Eliminate vyr between equations (8)
and (9) and solve for vy

Substitute equation (10) in equation
(9) and solve for Vps:

Apply conservation of momentum to
express the speed of astronaut 1 and
the ball after she catches the ball:
Using equations (3) and (11),
eliminate Vi,r and V; in equation (12)

and solve for Vi¢:

(b) The change in the kinetic energy
of the system is:

Substitute for Vs and Vor to obtain:

mZmb (2m1 + mb)

AK =1im | -
: ( (m, +m, )*(m, +m,)

Simplify to obtain:

Conservation of Linear Momentum

(mz +m, )Vz = MV + MV, (8)

V=V = Ve )

v2f=( M, ](H m, Jv (10)
m, +m, m, +m,

vbsz—l}[H m, }v (11)
_m2+mb m, +m,

(m1 +m, )Vlf = MyVye + MV, (12)

v = m,m,(2m, +m,)
oL (m+my f(my+m,)
AK =K, — K.

or, because K; =0,
AK =K, =K, + K,

_1 2 1 2
=5 MV +5MVy

AK =

m2m§ (2ml + mb )2

1 1 m1m2 2
“(my+m, ) (m+m, L (m,+m, )’

This additional energy came from chemical energy in the astronaut’s bodies.
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116 ee= A stream of elastic glass beads, each with a mass of 0.50 g, comes out
of a horizontal tube at a rate of 100 per second (see Figure 8-57). The beads fall a
distance of 0.50 m to a balance pan and bounce back to their original height. How
much mass must be placed in the other pan of the balance to keep the pointer at
zero?

Picture the Problem Take the zero of gravitational potential energy to be at the
elevation of the pan and let the system include the balance, the beads, and the
earth. We can use conservation of energy to find the vertical component of the
velocity of the beads as they hit the pan and then calculate the net downward force
on the pan from Newton’s 2™ law. Let the positive y direction be upward.

Use conservation of energy to relate AK+AU =0

the y component of the bead’s or, because K; = U¢= 0,
velocity as it hits the pan to its height %mvj —mgh=0=v, =,/2gh
of fall:

Substitute numerical values and v, = \/2(9.8 1m/s> )(0_50 m)=3.13m/s
evaluate Vy:

Express the change in momentum in Apy = Py — Py =MV, — (— mvy): 2my,
the y direction per bead:

Use Newton’s 2" law to express E - Ap,
the net force in the y direction ey At
exerted on the pan by the beads:

Letting M represent the mass to be Ap,
: -Mg=-N—-=

placed on the other pan, equate its At
weight to the net force exerted by the and
beads, substitute for Apy, and solve N (2mv

. M=— z
for M: Atl g
Substitute numerical values and _ \[2(0.00050 kg)(3.13m/s)|

M =(100/s) -
evaluate M: 9.81m/s
=|32g

117 ee= A dumbbell, consisting of two balls of mass m connected by a
massless 1.00-m-long rod, rests on a frictionless floor against a frictionless wall
until it begins to slide down the wall as in Figure 8-58. Find the speed of the
bottom ball at the moment when it equals the speed of the top ball.



828 Conservation of Linear Momentum

Picture the Problem Assume that the connecting rod goes halfway through both
balls, i.e., the centers of mass of the balls are separated by 1.00 m. Let the system
include the dumbbell, the wall and floor, and the earth. Let the zero of
gravitational potential be at the center of mass of the lower ball and use
conservation of energy to relate the speeds of the balls to the potential energy of
the system. By symmetry, the speeds will be equal when the angle with the
vertical is 45°.

Use conservation of energy to E.=E,
express the relationship between the
initial and final energies of the

system:
Express the initial energy of the E. =mgL
system: where L is the length of the rod.
Express the energy of the system E; =mgLsin45° +%(2m)v2
when the angle with the vertical is
45°:
Substitute to obtain: oL = QL(LJ 2
2

Solving for v yields: 1

v=_[gL| 1—-—

V2

Substitute numerical values and 5 1
valuato V- v=_[(0.81m/s*)(1.00m -7

=| 4.53 m/s




