MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the given value of \(x \), does the function appear to be differentiable, continuous but not differentiable, or neither continuous nor differentiable?

1. \(x=0 \)
 - A. Differentiable
 - B. Continuous but not differentiable
 - C. Neither continuous nor differentiable

2. \(x=0 \)
 - A. Differentiable
 - B. Continuous but not differentiable
 - C. Neither continuous nor differentiable

3. \(x=-1 \)
 - A. Differentiable
 - B. Continuous but not differentiable
 - C. Neither continuous nor differentiable

4. \(x=1 \)
 - A. Differentiable
 - B. Continuous but not differentiable
 - C. Neither continuous nor differentiable
If the function is not differentiable at the given value of x, tell whether the problem is a corner, cusp, vertical tangent, or a discontinuity.

5. $y = -3|x| - 9$, at $x = 0$
 A. vertical tangent
 B. cusp
 C. corner
 D. function is differentiable at $x=0$

6. $y = \frac{8}{x+2}$, at $x = -2$
 A. vertical tangent
 B. cusp
 C. corner
 D. function is differentiable at $x=2$

7. $y = 3 - \sqrt[3]{x}$, at $x = 0$
 A. vertical tangent
 B. cusp
 C. corner
 D. function is differentiable at $x=0$

8. $y = \sqrt[3]{|x|+12}$, at $x = -12$
 A. vertical tangent
 B. cusp
 C. corner
 D. function is differentiable at $x=-12$

Determine the values of x for which the function is differentiable.

9) $y = 6x - 1$
 A) All reals except 0.16666667
 B) All reals
 C) All reals except -1
 D) All reals except 6

10) $y = \frac{1}{x-7}$
 A) All reals except 1
 B) All reals
 C) All reals except 7
 D) All reals except -7

11) $y = \frac{1}{x^2-121}$
 A) All reals
 B) All reals except 11
 C) All reals except 121
 D) All reals except -11 and 11

12) $y = x^2 - 49$
 A) All reals except 7
 B) All reals except 49
 C) All reals
 D) All reals except -7 and 7

13) $y = \frac{1}{x^2+64}$
 A) All reals except 64
 B) All reals
 C) All reals except -8 and 8
 D) All reals except 8

14) $y = \sqrt{x-5}$
 A) All reals greater than -5
 B) All reals greater than or equal to 5
 C) All reals except 5
 D) All reals greater than 5

15) $y = \sqrt{x^2+9}$
 A) All reals except 3
 B) All reals except 9
 C) All reals
 D) All reals except -3 and 3
Solve the problem.
16) The graph shows the yearly average interest rates for 30-year mortgages for years since 1988 (Year 0 corresponds to 1988). Sketch a graph of the rate of change of interest rates with respect to time.

A)

B)

C)

D)
Sketch a graph of the derivative of the given function.

17.

18.

19.

20. (7, -12) (-2, -6) (-7, 12) (2, 6)
21.

22.

23.

-2\pi \leq x \leq 2\pi \quad x\text{-scale} = \frac{\pi}{2}
-4 \leq y \leq 4 \quad y\text{-scale} = 1
1. The graph of f is given below. State the numbers at which f is not differentiable and why. Your reason should be based on the definition of differentiability at a number.

![Graph of f]

- f is not differentiable at $x = -2$ because $f'(-2)$ does not exist.
- f is not differentiable at $x = 2$ because $f'(2) = f'(2)$ does not exist.
- f is not differentiable at $x = 5$ because $f'(5) = f'(5)$ does not exist.
- f is not differentiable at $x = 7$ because $f'(7) = f'(7)$ does not exist.

2. The graph of f is given below. State the numbers at which f is not differentiable and why. Your reason should be based on the definition of differentiability at a number. Also state where f is not continuous and tell why. Your reason should be based on the definition of continuity at a number.

![Graph of f]

- f is not differentiable at $x = 3$ because f is not continuous at $x = 3$.
- f is not differentiable at $x = 4$ because $f'(4) = f'(4)$ does not exist.
- f is not differentiable at $x = 6$ because $f'(6) = f'(6)$ does not exist.
3. Show that \(f(x) = |x - 6| \) is not differentiable at \(x = 6 \).

\[
f(x) = \begin{cases}
 x - 6 & \text{if } x \geq 6 \\
 6 - x & \text{if } x < 6
\end{cases}
\]

\[
f'(x) = \begin{cases}
 1 & \text{if } x > 6 \\
 -1 & \text{if } x < 6
\end{cases}
\]

Now, since \(f'(6) = 1 \) and \(f'(6) = -1 \), then \(f'(x) \neq f'(6) \). \(f'(6) \) does not exist and \(f \) is not differentiable at \(x = 6 \).

4. Where is the greatest integer function \(f(x) = \lceil x \rceil \) not differentiable?

\(f \) is not differentiable at any integer because \(f \) is not continuous at any integer.

5. Where and why is the following function not continuous? Where and why is it not differentiable?

\[
f(x) = \begin{cases}
 \frac{x^3 - x}{x^2 + x} & \text{if } x < 1 \text{ but } x \neq 0 \\
 0 & \text{if } x = 0 \\
 1 - x & \text{if } x \geq 1
\end{cases}
\]

Continuity test at \(x = 0 \)

i) \(f(0) = 0 \)

ii) \(\lim_{x \to 0} f(x) = \lim_{x \to 0} (x - 1) = -1 \)

Since \(f(0) \neq \lim_{x \to 0} f(x) \), \(f \) is not continuous at \(x = 0 \) and therefore \(f \) is not differentiable at \(x = 0 \).

Continuity test at \(x = 1 \)

i) \(f(1) = 0 \)

ii) \(\lim_{x \to 1} f(x) = 0 \)

\(\lim_{x \to 1^+} f(x) = 0 \)

\(\lim_{x \to 1^-} f(x) = 1 \)

Since \(\lim_{x \to 1} f(x) \), \(f \) is continuous at \(x = 1 \).

Differentiability test at \(x = 1 \)

Since \(f'(1) = -1 \) and \(f'(1) = 1 \), \(f'(1) \) and \(f'(1) \) does not exist. \(f \) is not differentiable at \(x = 1 \).

6. If \(f(x) = \begin{cases}
 x^2 & \text{if } x \leq 0 \\
 x - 4 & \text{if } x > 0
\end{cases} \), find \(f'(x) \) and tell where (if anywhere) the derivative does not exist.

\[
f'(x) = \begin{cases}
 2x & \text{if } x < 0 \\
 1 & \text{if } x > 0
\end{cases}
\]

Since \(f'(0) = 1 \) and \(f'(0) = 0 \), then \(f'(0) \neq f'(0) \). \(f'(0) \) does not exist and \(f \) is not differentiable at \(x = 0 \).