2-2 Polynomial Functions

Graph each function.

5. $f(x)=16 x^{4}$

SOLUTION:
The graph of $f(x)=16 x^{4}$ is the graph of $y=x^{4}$ stretched vertically by a factor of 16 .

10. $f(x)=\frac{1}{8} x^{3}+8$

SOLUTION:

The graph of $f(x)=\frac{1}{8} x^{3}+8$ is the graph of $y=x^{3}$ compressed vertically by a factor of $\frac{1}{8}$ and translated 8 units up.

Describe the end behavior of the graph of each polynomial function using limits. Explain your reasoning using the leading term test.
15. $g(x)=-7 x^{3}+8 x^{4}-6 x^{6}$

SOLUTION:
$g(x)=-7 x^{3}+8 x^{4}-6 x^{6}=-6 x^{6}+8 x^{4}-7 x^{3}$
The degree is 6 , and the leading coefficient is -6 . Because the degree is even and the leading coefficient is negative, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow x} f(x)=-\infty$.

2-2 Polynomial Functions

20. $f(x)=-x(x-4)(x+5)$

SOLUTION:

$$
\begin{aligned}
-x(x-4)(x+5) & =\left(-x^{2}+4 x\right)(x+5) \\
& =-x^{3}-5 x^{2}+4 x^{2}+20 x \\
& =-x^{3}-x^{2}+20 x
\end{aligned}
$$

The degree is 3 , and the leading coefficient is -1 . Because the degree is odd and the leading coefficient is negative, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow x} f(x)=-\infty$.

State the number of possible real zeros and turning points of each function. Then determine all of the real zeros by factoring.
25. $f(x)=x^{4}+4 x^{2}-21$

SOLUTION:
The degree of $f(x)$ is 4 , so it will have at most four real zeros and three turning points.
Let $u=x^{2}$.
$0=\left(x^{2}\right)^{2}+4\left(x^{2}\right)-21$
$0=u^{2}+4 u-21$
$0=(u+7)(u-3)$
$0=\left(x^{2}+7\right)\left(x^{2}-3\right)$

$$
\begin{aligned}
x^{2}+7 & =0 & \text { or } & x^{2}-3 & =0 \\
x^{2} & =-7 & & x^{2} & =3 \\
x & = \pm \sqrt{-7} & & x & = \pm \sqrt{3}
\end{aligned}
$$

Because $\pm \sqrt{-7}$ are not real zeros, f has two distinct real zeros, $\pm \sqrt{3}$.
30. $f(x)=6 x^{5}-150 x^{3}$

SOLUTION:

The degree of $f(x)$ is 5 , so it will have at most five real zeros and four turning points.

$$
\begin{aligned}
& 0=6 x^{5}-150 x^{3} \\
& 0=6 x^{3}\left(x^{2}-25\right) \\
& 0=6 x^{3}(x-5)(x+5)
\end{aligned}
$$

So, the zeros are 0,5 , and -5 .
For each function, (a) apply the leading-term test, (b) determine the zeros and state the multiplicity of any repeated zeros, (c) find a few additional points, and then (d) graph the function.

2-2 Polynomial Functions

35. $f(x)=-x(x+3)^{2}(x-5)$

SOLUTION:
a.
$-x(x+3)^{2}(x-5)$
$=\left(x^{2}+6 x+9\right)\left(-x^{2}+5 x\right)$
$=-x^{4}+5 x^{3}-6 x^{3}+30 x^{2}-9 x^{2}+45 x$
$=-x^{4}-x^{3}+21 x^{2}+45 x$
The degree is 4 , and the leading coefficient is -1 . Because the degree is even and the leading coefficient is negative, $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow x} f(x)=-\infty$.
b. The zeros are $0,-3$, and 5 . The zero -3 has multiplicity 2 since $(x+3)$ is a factor of the polynomial twice.
c. Sample answer: Evaluate the function for a few x-values in its domain.

Choose x-values that fall in the intervals determined by the zeros of the function.

Interval	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$(-\infty,-3)$	-4	-36
$(-3,0)$	-1	-24
$(0,5)$	2	150
$(5, \infty)$	6	-486

d. Evaluate the function for several x-values in its domain.

\boldsymbol{x}	$\boldsymbol{f}(\mathbf{x})$
-5	-200
-3	0
-2	-14
0	0
1	64
3	216
4	196

Use these points to construct a graph.

2-2 Polynomial Functions

40. $f(x)=-2 x^{3}-4 x^{2}+6 x$

SOLUTION:
a. The degree is 3 , and the leading coefficient is -2 . Because the degree is odd and the leading coefficient is negative, $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty$.
b.
$0=-2 x^{3}-4 x^{2}+6 x$
$0=-2 x\left(x^{2}+2 x-3\right)$
$0=-2 x(x+3)(x-1)$
The zeros are $0,-3$, and 1 .
c. Sample answer: Evaluate the function for a few x-values in its domain.

Choose x-values that fall in the intervals determined by the zeros of the function.

Interval	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$(-\infty,-3)$	-4	40
$(-3,0)$	-2	-12
$(0,1)$	0.5	1.75
$(0, \infty)$	2	-20

d. Evaluate the function for several x-values in its domain.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-3	0
-1	-8
0	0
1	0
3	-72
4	-168

Use these points to construct a graph.

2-2 Polynomial Functions

Use a graphing calculator to write a polynomial function to model each set of data.
45.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
5	2
7	5
8	6
10	4
11	-1
12	-3
15	5
16	9

SOLUTION:
Sample answer: Since the data shows two possible turning points, a third-degree polynomial may be the best model to represent the data. Use the cubic regression function on the graphing calculator.

$f(x)=0.09 x^{3}-2.70 x^{2}+24.63 x-65.21$

Determine whether each graph could show a polynomial function. Write yes or no. If not, explain why not.
50.

SOLUTION:
The graph is not a polynomial function. There is a sharp turn at $x=2$. Polynomials have smooth turns. This is most likely an absolute value function.

Find a polynomial function of degree \boldsymbol{n} with only the following real zeros. More than one answer is possible.
55. $3 ; n=3$

SOLUTION:
Sample answer: If 3 is a zero of the polynomial function, then $(x-3)$ is a factor. For the function to have a degree of 3 , raise $(x-3)$ to the third power.

$$
\begin{aligned}
f(x) & =(x-3)^{3} \\
& =x^{3}+3(-3) x^{2}+3(-3)^{2} x+(-3)^{3} \\
& =x^{3}-9 x^{2}+27 x-27
\end{aligned}
$$

2-2 Polynomial Functions

Determine whether the degree \boldsymbol{n} of the polynomial for each graph is even or odd and whether its leading coefficient $\boldsymbol{a}_{\boldsymbol{n}}$ ispositive or negative.
64.

SOLUTION:
Since $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty, n$ is even and a_{n} is positive.
65.

SOLUTION:
Since $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty, n$ is odd and a_{n} is positive.
66.

SOLUTION:
Since $\lim _{x \rightarrow-\infty} f(x)=\infty$ and $\lim _{x \rightarrow x} f(x)=-\infty, n$ is odd and a_{n} is negative.
67.

SOLUTION:
Since $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=-\infty, n$ is even and a_{n} is negative.

