Graph each function.

 $5.f(x) = 16x^4$

SOLUTION:

The graph of $f(x) = 16x^4$ is the graph of $y = x^4$ stretched vertically by a factor of 16.

		-	N		
		-4	f	(x) =	16x ⁴
-8	-4	0		4	8 x
		-8			

$$10. f(x) = \frac{1}{8}x^3 + 8$$

SOLUTION:

The graph of $f(x) = \frac{1}{8}x^3 + 8$ is the graph of $y = x^3$ compressed vertically by a factor of $\frac{1}{8}$ and translated 8 units up.

		Ц	-16	y		\square
f(x) =	$\frac{1}{8}x^{3}$	+ 8	1	4	-	
	16	-8	0		8	16x
			-8		-	
		+	16	+		

Describe the end behavior of the graph of each polynomial function using limits. Explain your reasoning using the leading term test.

15. $g(x) = -7x^3 + 8x^4 - 6x^6$

SOLUTION:

 $g(x) = -7x^3 + 8x^4 - 6x^6 = -6x^6 + 8x^4 - 7x^3$ The degree is 6, and the leading coefficient is -6. Because the degree is even and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

$$20.f(x) = -x(x-4)(x+5)$$

SOLUTION:

$$-x(x-4)(x+5) = (-x^{2}+4x)(x+5)$$

$$= -x^{3}-5x^{2}+4x^{2}+20x$$

$$= -x^{3}-x^{2}+20x$$

The degree is 3, and the leading coefficient is -1. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

State the number of possible real zeros and turning points of each function. Then determine all of the real zeros by factoring.

$$25.f(x) = x^4 + 4x^2 - 21$$

SOLUTION:

The degree of f(x) is 4, so it will have at most four real zeros and three turning points. Let $u = x^2$.

$$0 = (x^{2})^{2} + 4(x^{2}) - 21$$

$$0 = u^{2} + 4u - 21$$

$$0 = (u + 7)(u - 3)$$

$$0 = (x^{2} + 7)(x^{2} - 3)$$

$$x^{2} + 7 = 0 \quad \text{or} \quad x^{2} - 3 = 0$$

$$x^{2} = -7 \qquad x^{2} = 3$$

$$x = \pm \sqrt{-7} \qquad x = \pm \sqrt{3}$$

Because $\pm \sqrt{-7}$ are not real zeros, f has two distinct real zeros, $\pm \sqrt{3}$.

$30.f(x) = 6x^5 - 150x^3$

SOLUTION:

The degree of f(x) is 5, so it will have at most five real zeros and four turning points. $0 = 6x^5 - 150x^3$

 $0 = 6x^3(x^2 - 25)$

 $0 = 6x^3(x-5)(x+5)$

So, the zeros are 0, 5, and -5.

For each function, (a) apply the leading-term test, (b) determine the zeros and state the multiplicity of any repeated zeros, (c) find a few additional points, and then (d) graph the function.

35.
$$f(x) = -x(x+3)^{2}(x-5)$$
SOLUTION:
a.

$$-x(x+3)^{2}(x-5)$$

$$= (x^{2}+6x+9)(-x^{2}+5x)$$

$$= -x^{4}+5x^{3}-6x^{3}+30x^{2}-9x^{2}+45x$$

$$= -x^{4}-x^{3}+21x^{2}+45x$$
The degree is 4, and the leading coefficient is -1. Because the degree is even and the leading coefficient is negative,

$$\lim_{x \to \infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = -\infty.$$

b. The zeros are 0, -3, and 5. The zero -3 has multiplicity 2 since (x + 3) is a factor of the polynomial twice.

-

c. Sample answer: Evaluate the function for a few *x*-values in its domain.

Choose *x*-values that fall in the intervals determined by the zeros of the function.

Interval	X	f(x)
(–∞, – 3)	-4	-36
(-3, 0)	-1	-24
(0, 5)	2	150
$(5,\infty)$	6	-486

d. Evaluate the function for several *x*-values in its domain.

X	f(x)			
-5	-200			
-3	0			
-2	-14			
0	0			
1	64			
3	216			
4	196			

Use these points to construct a graph.

 $40.f(x) = -2x^3 - 4x^2 + 6x$

SOLUTION:

a. The degree is 3, and the leading coefficient is -2. Because the degree is odd and the leading coefficient is negative, $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$.

b. $0 = -2x^{3} - 4x^{2} + 6x$ $0 = -2x(x^{2} + 2x - 3)$ 0 = -2x(x + 3)(x - 1)The zeros are 0, -3, and 1.

c. Sample answer: Evaluate the function for a few *x*-values in its domain.

Choose *x*-values that fall in the intervals determined by the zeros of the function.

Interval	X	f(x)
(–∞ <u>,</u> –3)	-4	40
(-3, 0)	-2	-12
(0, 1)	0.5	1.75
$(0,\infty)$	2	-20

d. Evaluate the function for several *x*-values in its domain.

X	f(x)			
-3	0			
-1	-8			
0	0			
1	0			
3	-72			
4	-168			

Use these points to construct a graph.

Use a graphing calculator to write a polynomial function to model each set of data.

45.

X	f(x)
5	2
7	5
8	6
10	4
11	-1
12	-3
15	5
16	9

SOLUTION:

Sample answer: Since the data shows two possible turning points, a third-degree polynomial may be the best model to represent the data. Use the cubic regression function on the graphing calculator.

Cub	icRe9
25	3X3+bX2+cX+d
b=	-2.700943798
G=0	24.62995292
d=	-65.20500922

$$f(x) = 0.09x^3 - 2.70x^2 + 24.63x - 65.21$$

Determine whether each graph could show a polynomial function. Write yes or no. If not, explain why not.

	Ħ	8	Í	+		t
	Ħ	4	1	X		t
		10		4	X	x
	1	4		+		
0	F	8	-	Ŧ		F

SOLUTION:

The graph is not a polynomial function. There is a sharp turn at x = 2. Polynomials have smooth turns. This is most likely an absolute value function.

Find a polynomial function of degree n with only the following real zeros. More than one answer is possible.

55. 3; *n* = 3

SOLUTION:

Sample answer: If 3 is a zero of the polynomial function, then (x - 3) is a factor. For the function to have a degree of 3, raise (x - 3) to the third power.

$$f(x) = (x-3)^{3}$$

= $x^{3} + 3(-3)x^{2} + 3(-3)^{2}x + (-3)^{3}$
= $x^{3} - 9x^{2} + 27x - 27$

Determine whether the degree *n* of the polynomial for each graph is *even* or *odd* and whether its leading coefficient a_n is *positive* or *negative*.

SOLUTION:

Since $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = \infty$, *n* is even and a_n is positive.

	H	T		-	y		1	
	-	t	1	9			1	X
	H		$\left \right $		ł		+	
	H		E		ł		ł	
55	H	+	-	-		М	_	+

SOLUTION:

Since $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$, *n* is odd and a_n is positive.

SOLUTION:

Since $\lim_{x \to -\infty} f(x) = \infty$ and $\lim_{x \to \infty} f(x) = -\infty$, *n* is odd and a_n is negative.

67. L

SOLUTION:

Since $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = -\infty$, *n* is even and a_n is negative.