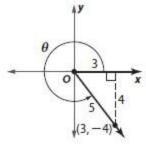
Find the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$ for the given value and interval.

1.
$$\cos \theta = \frac{3}{5}, (270^{\circ}, 360^{\circ})$$

SOLUTION:

Since $\cos \theta = \frac{3}{5}$ on the interval (270°, 360°), one point on the terminal side of θ has x-coordinate 3 and a distance of 5 units from the origin as shown. The y-coordinate of this point is therefore $-\sqrt{5^2 - 3^2}$ or -4.



Using this point, we find that $\sin \theta = \frac{y}{r}$ or $-\frac{4}{5}$ and $\tan \theta = \frac{y}{x}$ or $-\frac{4}{3}$. Now use the double-angle identities for sine, cosine, and tangent to find $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$.

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$=2\left(-\frac{4}{5}\right)\left(\frac{3}{5}\right)$$

$$=-\frac{24}{25}$$

$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$=2\left(\frac{3}{5}\right)^2-1$$

$$=2\left(\frac{9}{25}\right)-1$$

$$=\frac{18}{25}-\frac{25}{25}$$

$$=-\frac{7}{25}$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$= \frac{2\left(-\frac{4}{3}\right)}{1 - \left(-\frac{4}{3}\right)^2}$$

$$= \frac{-\frac{8}{3}}{1 - \frac{16}{9}}$$

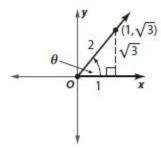
$$= \frac{-\frac{8}{3}}{-\frac{7}{9}}$$

$$= \frac{24}{7}$$

6.
$$\tan \theta = \sqrt{3}$$
, $\left(0, \frac{\pi}{2}\right)$

SOLUTION:

If $\tan \theta = \sqrt{3}$, then $\tan \theta = \frac{\sqrt{3}}{1}$. Since $\tan \theta = \frac{\sqrt{3}}{1}$ on the interval $\left(0, \frac{\pi}{2}\right)$, one point on the terminal side of θ has x-coordinate 1 and y-coordinate $\sqrt{3}$ as shown. The distance from the point to the origin is $\sqrt{(\sqrt{3})^2 + 1^2}$ or 2.



Using this point, we find that $\sin \theta = \frac{y}{r}$ or $\frac{\sqrt{3}}{2}$ and $\cos \theta = \frac{x}{r}$ or $\frac{1}{2}$. Now use the double-angle identities for sine, cosine, and tangent to find $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$. $\sin 2\theta = 2\sin \theta \cos \theta$

$$= 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)$$
$$= \frac{\sqrt{3}}{2}$$

$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$= 2\left(\frac{1}{2}\right)^2 - 1$$
$$= 2\left(\frac{1}{4}\right) - 1$$

$$=\frac{1}{2}-\frac{2}{2}$$

$$=-\frac{1}{2}$$

$$= -\frac{1}{2}$$

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$=\frac{2\left(\sqrt{3}\right)}{1-\left(\sqrt{3}\right)^2}$$

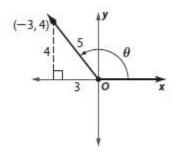
$$=\frac{2\sqrt{3}}{-2}$$

$$=-\sqrt{3}$$

7.
$$\sin \theta = \frac{4}{5}, \left(\frac{\pi}{2}, \pi\right)$$

SOLUTION:

Since $\sin \theta = \frac{4}{5}$ on the interval $\left(\frac{\pi}{2}, \pi\right)$, one point on the terminal side of θ has y-coordinate 4 and a distance of 5 units from the origin as shown. The x-coordinate of this point is therefore $-\sqrt{5^2-4^2}$ or -3.



Using this point, we find that $\cos \theta = \frac{x}{r}$ or $-\frac{3}{5}$ and $\tan \theta = \frac{y}{x}$ or $-\frac{4}{3}$. Now use the double-angle identities for sine and cosine to find $\sin 2\theta$ and $\cos 2\theta$.

 $\sin 2\theta = 2\sin\theta\cos\theta$

$$=2\left(\frac{4}{5}\right)\left(-\frac{3}{5}\right)$$

$$=-\frac{24}{25}$$

 $\cos 2\theta = 2\cos^2 \theta - 1$

$$=2\left(-\frac{3}{5}\right)^2-1$$

$$=2\left(\frac{9}{25}\right)-1$$

$$=\frac{18}{25}-\frac{25}{25}$$

$$=-\frac{7}{25}$$

Use the definition of tangent to find $\tan 2\theta$.

$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$= \frac{2\left(-\frac{4}{3}\right)}{1 - \left(-\frac{4}{3}\right)^2}$$

$$= \frac{-\frac{8}{3}}{1 - \left(\frac{16}{9}\right)}$$

$$= \frac{-\frac{8}{3}}{-\frac{7}{9}}$$

$$= \frac{24}{7}$$

Solve each equation on the interval $[0, 2\pi]$.

9.
$$\sin 2\theta = \cos \theta$$

SOLUTION:

$$\sin 2\theta = \cos \theta$$

$$2\sin \theta \cos \theta = \cos \theta$$

$$2\sin \theta \cos \theta - \cos \theta = 0$$

$$\cos \theta (2\sin \theta - 1) = 0$$

$$2\sin \theta - 1 = 0$$

$$\cos \theta = 0 \text{ or }$$

$$\sin \theta = \frac{1}{2}$$

On the interval $[0, 2\pi)$, $\cos \theta = 0$ when $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$ and $\sin \theta = \frac{1}{2}$ when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

10.
$$\cos 2\theta = \cos \theta$$

SOLUTION:

$$\cos 2\theta = \cos \theta$$

$$2\cos^2 \theta - 1 = \cos \theta$$

$$2\cos^2 \theta - \cos \theta - 1 = 0$$

$$(2\cos \theta + 1)(\cos \theta - 1) = 0$$

$$2\cos \theta + 1 = 0$$

$$\cos \theta = -\frac{1}{2} \text{ or } \cos \theta - 1 = 0$$

$$\cos \theta = 1$$

On the interval $[0, 2\pi)$, $\cos \theta = -\frac{1}{2}$ when $\theta = \frac{2\pi}{3}$ and $\theta = \frac{4\pi}{3}$ and $\cos \theta = 1$ when $\theta = 0$.

11.
$$\cos 2\theta - \sin \theta = 0$$

SOLUTION:

$$\cos 2\theta - \sin \theta = 0$$

$$1 - 2\sin^2\theta - \sin\theta = 0$$

$$2\sin^2\theta + \sin\theta - 1 = 0$$

$$(\sin\theta + 1)(2\sin\theta - 1) = 0$$

$$\sin \theta + 1 = 0$$

 $\sin \theta = -1$ or $\sin \theta = \frac{1}{2}$

On the interval $[0, 2\pi)$, $\sin \theta = -1$ when $\theta = \frac{3\pi}{2}$ and $\sin \theta = \frac{1}{2}$ when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

12.
$$\tan 2\theta - \tan 2\theta \tan^2 \theta = 2$$

SOLUTION:

$$\tan 2\theta - \tan 2\theta \tan^2 \theta = 2$$

$$\tan 2\theta (1 - \tan^2 \theta) = 2$$

$$\frac{2\tan\theta}{1-\tan^2\theta}(1-\tan^2\theta)=2$$

$$2 \tan \theta = 2$$

$$\tan \theta = 1$$

On the interval $[0, 2\pi)$, $\tan \theta = 1$ when $\theta = \frac{\pi}{4}$ and $\theta = \frac{5\pi}{4}$.

Both of these are extraneous solutions since $1 - \tan^2 \frac{\pi}{4} = 0$ and $1 - \tan^2 \frac{5\pi}{4} = 0$.

Thus, there are no values on the interval $[0, 2\pi)$ for which the equation will be true. So, the solution is \emptyset .

13. $\sin 2\theta \csc \theta = 1$

SOLUTION:

$$\sin 2\theta \csc \theta = 1$$

$$2\sin\theta\cos\theta\csc\theta = 1$$

$$2\sin\theta\cos\theta\cdot\frac{1}{\sin\theta}=1$$

$$2\cos\theta = 1$$

$$\cos\theta = \frac{1}{2}$$

On the interval $[0, 2\pi)$, $\cos \theta = \frac{1}{2}$ when $\theta = \frac{\pi}{3}$ and $\theta = \frac{5\pi}{3}$.