Honors Chemistry			PS.29
Name:	Date:	Mod	s:
	Unit 7: Percent Yie	ld .	
	elow to find out how many grams ulfide are reacted with excess o	ygen and the percent	yield is 75%.
	(s) + $3 O_2(g) \rightarrow 2 ZnO(s)$	pro	blem tells your excess of it
1.5 x 1023 molet. ZnS	Imot zns	2 mot 502	64.1gSOz
	6.022×1023 molec. 2ns	2 mot 2ns	1 mat 502
% yield = (act Theor) x	(00	= 15.97 (Theoretic	g SO ₂ cal yield)
75% = (X. 15.97g 50z	-) ×(00	= (0.75)	
0.75 = X 15.97	9	X = (11.98 g	14 produced
aluminum to produce iron and aluminum and excess rust to experiment?	done via the thermite reaction, in solid aluminum oxide. In one sproduce 464 g of iron. What wa	uch reaction, you comes the percent yield of i	bine 258 g of ron for your
1 FezO3 (s) + 3	$2 \text{ Al}(s) \rightarrow 1$	A1203(s)	+ 2 Fe (s)
			-11 a t

258 g At | 1 mot At | 2 mot Fe | 55.9 g Fe | 534.2 g Fe | 27 g At | 2 mot At | 1 mot Fe | (theoretical) yield | 464 g Fe | x 100 | 534.2 g Fe | = (86.86 %)

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

a) How many grams of ammonia are actually produced if 375 g of nitrogen reacts with excess hydrogen and the percent yield is 70%?

$$375 \text{ gHz} | 1 \text{ mot HJz} | 2 \text{ mot HJH3} | 17 \text{ g NH3} = 455.36 \text{ g NH3}$$
 $28 \text{ gHz} | 1 \text{ mot HJz} | 1 \text{ mot HJH3} = 456.36 \text{ g NH3}$
 $40\% = \left(\frac{1}{455.36 \text{ g NH3}} \right) \times 100 \times = \left(\frac{1}{455.36 \text{ g NH3}} \right) \times 100 \times = \left(\frac{1}{455.36 \text{ g NH3}} \right) \times 100 \times 100$

b) You produce 700 g of ammonia during an experiment, what mass of nitrogen did you use to begin your reaction, assuming that the percent yield of your experiment is 80%?

your reaction, assuming that the percent yield of your experiment is
$$80\%$$
?

$$actual yielde$$

$$875gHH_3 | 1 moHHI_2 | 28 gNZ$$

$$17gHH_3 | 2 moHHI_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 1 moHII_2 | 28 gNZ$$

$$17gHH_3 | 2 moHII_3 | 2$$