\qquad Class \qquad Date \qquad

Reteaching
 The Tangent Function

Like the sine and cosine functions, the standard form of a tangent function is $y=a$ $\tan b \theta$, where $a \neq 0, b>0$, and θ is measured in radians. However, the graph of a tangent function is different in several important ways.

- The amplitude is undefined.
- The period is $\frac{\pi}{b}$.
- One cycle occurs between vertical asymptotes at $\theta=-\frac{\pi}{2 b}$ and $\theta=\frac{\pi}{2 b}$.
- This cycle also passes through $\left(-\frac{\pi}{4 b},-a\right)$ and $\left(\frac{\pi}{4 b}, a\right)$.
- Vertical asymptotes occur at the end of each cycle.

Problem

What are the period and asymptotes of the graph of $y=-2 \tan (3 \theta)$ in the interval $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad$? Find two points on the graph that are not on the x-axis.

$$
\begin{array}{cll}
a=-2, b & =3 & \text { Compare } y=-2 \tan (3 \theta) \text { to } y=a \tan b \theta . \\
\frac{\pi}{b} & =\frac{\pi}{3} & \text { Calculate the period. } \\
\theta=-\frac{\pi}{2 b}=-\frac{\pi}{2(3)}=-\frac{\pi}{6} & \text { Find one asymptote. } \\
\theta=\frac{\pi}{2 b}=\frac{\pi}{2(3)}=\frac{\pi}{6} & \text { Find another asymptote. } \\
\left(-\frac{\pi}{4 b},-a\right)=\left(-\frac{\pi}{4(3)},-(-2)\right)=\left(-\frac{\pi}{12}, 2\right) & \text { Find one point on the graph. } \\
\left(\frac{\pi}{4 b, a)=\left(\frac{\pi}{4(3)},-2\right)=\left(\frac{\pi}{12},-2\right)}\right. & \text { Find another point on the graph. }
\end{array}
$$

Exercises

Find the period and two asymptotes of the graph of each tangent function. Then find two points on each graph that are not on the \boldsymbol{x}-axis.

1. $y=4 \tan \theta$
2. $y=-\tan 2 \theta$
3. $y=\tan \frac{1}{2} \theta$
\qquad Class \qquad Date \qquad

13-6

Reteaching (continued)
The Tangent Function

The tangent function is a discontinuous periodic function. Each cycle of the graph occurs between vertical asymptotes. To graph a tangent function:

- Find the period, asymptotes, and two points on one cycle of the graph.
- Graph this cycle.
- Find additional asymptotes by adding positive and negative multiples of the period to the first two asymptotes.
- Find additional points on the graph by adding positive and negative multiples of the period to the x-coordinates of the first two points you found.

Problem

Sketch four cycles of the graph of $y=-2 \tan (3 \theta)$.

Step 1

Step 2
Find the period, asymptotes, Graph the first cycle. and two points on one cycle.
The period is $\frac{\pi}{3}$, asymptotes are at $\theta=-\frac{\pi}{6}$ and $\theta=\frac{\pi}{6}$, and two points on the graph are
$\left(-\frac{\pi}{12}, 2\right)$ and $\left(\frac{\pi}{12},-2\right)$.

$\left(\frac{\pi}{12},-2\right)$

Step 3

Graph additional cycles.

Exercises

Graph at least three cycles of each tangent function.

4. $y=-2 \tan 4 \theta$
5. $y=3 \tan \theta$
6. $y=\tan \theta$

Prentice Hall Algebra 2 • Teaching Resources

