\qquad
\qquad Date \qquad

13-4 Reteaching
 The Sine Function

A sine curve is the graph of a sine function. You can identify a sine curve by its amplitude and period. Amplitude is one-half the vertical distance between the maximum and minimum values. The period is the horizontal length of one cycle.

Problem

Use the graph of $y=-3 \sin 2 x$, where x is measured in radians, at the right.
What are the amplitude and period of the sine curve?

Amplitude

The maximum value of the sine curve is 3 .

The minimum value of the sine curve is -3 .

One-half the difference of these values is

$$
\frac{(3-(-3))}{2}=\frac{6}{2}=3 .
$$

The amplitude of the curve is 3 .

Period

Between 0 and 2π, the graph cycles 2 times.
To get the length of one cycle, divide 2π by the number of cycles between 0 and 2π.

The amplitude equals the absolute value of the coefficient of the function.

The number of cycles between 0 and 2π equals the coefficient of x in the function.

The period of the curve is $\frac{2 \pi}{2}=\pi$.

Summary

For all sine functions written in the form $y=a \sin b \theta$, where $a \neq 0, b>0$, and θ is measured in radians:

$$
\text { amplitude }=|a| \quad \quad \text { period }=\frac{2 \pi}{b}
$$

Exercises

Find the amplitude and period of each sine function.

1. $y=\frac{1}{2} \sin 3 \theta$
2. $y=\sin 5 \theta$
3. $y=4 \sin \frac{4}{3} \pi \theta$
4. $y=\frac{3}{2} \sin \theta$
5. $y=-2 \sin \frac{3}{4} \theta$
6. $y=\pi \sin 2 \theta$
\qquad Class \qquad Date \qquad
$13-4$
Reteaching (continued)
The Sine Function

Problem

What is the graph of two cycles of $y=2 \sin \frac{1}{2} \theta$?

Step 1 Compare the function to $y=a \sin b \theta$.

$$
a=2 \text { and } b=\frac{1}{2}
$$

Find the amplitude.
$|a|=|2|=2$
Find the period of the curve.

$$
\frac{2 \pi}{b}=\frac{2 \pi}{\frac{1}{2}}=4 \pi s
$$

Step 2 Find the minimum and maximum of the curve.
Because the amplitude is 2, the maximum is 2 and the minimum is -2 .
Step 3 Make a table of values. Choose θ-values at intervals of one-fourth the period: $\frac{4 \pi}{4}=\pi$. The y-values cycle through the pattern zero-max-zero-min-zero.

$\boldsymbol{\theta}$	0	π	2π	3π	4π	5π	6π	7π	8π
\boldsymbol{y}	0	2	0	-2	0	2	0	-2	0

Step 4 Plot the points from the table.

Step 5 Draw a smooth curve through the points.

Exercises

Graph each function.

7. $y=2 \sin 2 \theta$
8. $y=\sin \frac{1}{3} \theta$
9. $y=\frac{1}{2} \sin \theta$
10. $y=-2 \sin \frac{1}{2} \theta$
11. $y=-\sin 3 \theta$
12. $y=-\frac{1}{4} \sin \theta$
