Carbon and Biological Molecules

- Carbon plays a central role in biological molecules
- Carbon has 4 valence electrons, readily forms covalent bonds
- Carbon atoms join to form chains, branches, rings, etc.
- Carbon can form double or triple bonds with other atoms

Functional Groups

- Organic compounds often contain functional groups: -OH, -CH₃, -COOH, -NH₂, -PO₄, etc.
- Functional groups affect chemical properties (for example, estradiol vs. testosterone)

Polymers

- Most large biological molecules are polymers
- Formed from repeated similar subunits
- Synthesized by dehydration
- Broken down by hydrolysis

Carbohydrates

- Hydrates of carbon: (CH₂O)_n
- Monosaccharides (simple sugars) are monomers
- Monosaccharides join to form disaccharides, etc.
- Polysaccharides include starch, glycogen, cellulose, chitin

Lipids

- A diverse group of biological molecules
- Nonpolar, hydrophobic, not polymers
- Lipids are less oxidized than carbohydrates, can store more energy in bonds
- Examples include fatty acids, triglycerides, phospholipids, steroids

Saturated vs. Unsaturated Fats

- Saturated fats lack double bonds between carbon atoms of chain → saturated with hydrogen
- Unsaturated fats have double bonds between carbon atoms of chain→ not saturated with hydrogen
- Saturated fats typically solid at room temp, unsaturated fats typically liquid

Phospholipids

- Similar to triglycerides, but a phosphate group substitutes for one fatty acid
- Phosphate group is polar, hydrophilic
- Fatty acid tails are nonpolar, hydrophobic
- Phospholipids therefore amphipathic
- In water, phospholipids form micelles and bilayers

Steroids

- Steroids are lipids formed from 4 fused carbon rings
- Cholesterol is a steroid found in membranes
- Estradiol and testosterone (sex hormones) are steroids

Proteins

- Proteins are polymers of amino acids
- Consist of a central carbon + amine group + carboxyl group + R group (= side chain)
- Amino acids are joined by peptide bonds
- Many functions: structural, enzyme, hormone, transport, contractile

Levels of Protein Structure

Primary: unique sequence of amino acids

<u>Secondary</u>: localized coiling & folding of chain due to hydrogen bonds along backbone

<u>Tertiary</u>: 3-D folding of chain due to interactions between side chains

<u>Quaternary</u>: interaction of multiple polypeptide subunits

Protein Denaturation

- Disruption of tertiary structure
- Caused by heat, change in pH, salts, dehydration, etc.
- Can be reversible or permanent

Nucleotides

- Nitrogenous base (purine or pyrimidine)
- Pentose sugar (ribose or deoxyribose)
- One or more phosphate groups

Nucleic Acids

- Polymers of nucleotides: RNA & DNA
- RNA usually a single polynucleotide chain
- DNA has two polynucleotide chains that form a double helix
- DNA bases are complementary, so one strand can serve as template for other

