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Chapter 28 
Magnetic Induction 
 
Conceptual Problems 
 
1 • [SSM] (a) The magnetic equator is a line on the surface of 
Earth on which Earth’s magnetic field is horizontal.  At the magnetic 
equator, how would you orient a flat sheet of paper so as to create the 
maximum magnitude of magnetic flux through it? (b) How about the 
minimum magnitude of magnetic flux? 
 
Determine the Concept 
(a) Orient the sheet so the normal to the sheet is both horizontal and 
perpendicular to the local tangent to the magnetic equator.   
 
(b) Orient the sheet of paper so the normal to the sheet is perpendicular to the 
direction of the normal described in the answer to Part (a). 
 
2 •  At one of Earth’s magnetic poles, how would you orient a flat 
sheet of paper so as to create the maximum magnitude of magnetic flux 
through it? 
 
Determine the Concept 
(a) Orient the sheet so the normal to the sheet is vertical. 
 
(b) Any orientation as long as the paper’s plane is perpendicular to Earth’s surface 
at that location. 
 
3 • [SSM] Show that the following combination of SI units is 
equivalent to the volt:  T ⋅m

2 s . 
 
Determine the Concept Because a volt is a joule per coulomb, we can show that 

the SI units 
s
mT 2⋅  are equivalent to a volt by making a series of substitutions and 

simplifications that reduces these units to a joule per coulomb. 
 

The units of a tesla are 
mA

N
⋅

: 

 s
A

mN

s

m
mA

N

s
mT

2
2

⋅

=
⋅

⋅=
⋅  

 
Substitute the units of an ampere 
(C/s), replace mN ⋅ with J, and 
simplify to obtain: 

C
J

s
s
C
J

s
mT 2

==
⋅  
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Finally, because a joule per coulomb 
is a volt: V

s
mT 2

=
⋅  

 
4 • Show that the following combination of SI units is equivalent to the 

ohm: 
Wb
A ⋅s

. 

 
Determine the Concept Because a weber is a newton⋅meter per ampere, we can 

show that the SI units 
Wb
A ⋅s

 are equivalent to an ohm by making a series of 

substitutions and simplifications that reduces these units to a volt per ampere. 
 

Because a weber is a 
A

mN ⋅ : 

 sA
J

sA
A

mN

sA
Wb

2 ⋅
=

⋅

⋅

=
⋅

 

 
Substitute the units of an ampere and 
simplify to obtain: CA

J

s
s
CA

J
sA

Wb
⋅

=
⋅⋅

=
⋅

 

 
Finally, because a joule per coulomb 
is a volt: 

Ω
A
V

sA
Wb

==
⋅

 

 
5 • [SSM]  A current is induced in a conducting loop that lies in a 
horizontal plane and the induced current is clockwise when viewed from above. 
Which of the following statements could be true? (a) A constant magnetic field is 
directed vertically downward. (b) A constant magnetic field is directed vertically 
upward. (c) A magnetic field whose magnitude is increasing is directed vertically 
downward. (d) A magnetic field whose magnitude is decreasing is directed 
vertically downward. (e) A magnetic field whose magnitude is decreasing is 
directed vertically upward. 
 
Determine the Concept We know that the magnetic flux (in this case the 
magnetic field because the area of the conducting loop is constant and its 
orientation is fixed) must be changing so the only issues are whether the field is 
increasing or decreasing and in which direction. Because the direction of the 
magnetic field associated with the clockwise current is vertically downward, the 
changing field that is responsible for it must be either increasing vertically upward 
(not included in the list of possible answers) or a decreasing field directed into the 
page. )(d is correct. 
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6 • Give the direction of the induced current in the circuit, shown on the 
right in Figure 28- 37, when the resistance in the circuit on the left is suddenly  
(a) increased and (b) decreased. Explain your answer.  
 
Determine the Concept The induced emf and induced current in the circuit on 
the right are in such a direction as to oppose the change that produces them 
(Lenz’s Law). We can determine the direction of the induced current in the 
circuit. Note that when R is constant, B in the circuit to the right points out of the 
paper. 
 
(a) If R increases, I decreases and B in the circuit to the right decreases. Lenz’s 
law tells us that the induced current is counterclockwise. 
 
(b) If R decreases, I increases and B in the circuit to the right increases. Lenz’s 
law tells us that the induced current is clockwise. 
 
7 • [SSM] The planes of the two circular loops in Figure 28-38, are 
parallel. As viewed from the left, a counterclockwise current exists in loop A. If 
the magnitude of the current in loop A is increasing, what is the direction of the 
current induced in loop B? Do the loops attract or repel each other? Explain your 
answer. 
  
Determine the Concept Clockwise as viewed from the left.  The loops repel each 
other. 
 
8 • A bar magnet moves with constant velocity along the axis of a loop, as 
shown in Figure 28-39, (a) Make a graph of the magnetic flux through the loop as 
a function of time. Indicate on the graph when the magnet is halfway through the 
loop by designating this time t1. Choose the direction of the normal to the flat 
surface bounded by the flat surface to be to the right. (b) Make a graph of the 
induced current in the loop as a function of time. Choose the positive direction for 
the current to be clockwise as viewed from the left. 
 
Determine the Concept We know that, as the magnet moves to the right, the flux 
through the loop first increases until the magnet is half way through the loop and 
then decreases. Because the flux first increases and then decreases, the current will 
change directions, having its maximum values when the flux is changing most 
rapidly. 
 
(a) and (b) The following graph shows the flux and the induced current as a 
function of time as the bar magnet passes through the coil. When the center of the 
magnet passes through the plane of the coil dφm /dt = 0 and the current is zero.  
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flux
current

time1t

 
 
9 • A bar magnet is mounted on the end of a coiled spring and is 
oscillating in simple harmonic motion along the axis of a loop, as shown in Figure 
28-40.  The magnet is in its equilibrium position when its midpoint is in the plane 
of the loop.   (a) Make a graph of the magnetic flux through the loop as a function 
of time.  Indicate when the magnet is halfway through the loop by designating 
these times t1 and t2. (b) Make a graph of the induced current in the loop as a 
function of time, choosing the current to be positive when it is clockwise as 
viewed from above. 
  
Determine the Concept Because the magnet moves with simple harmonic 
motion, the flux and the induced current will vary sinusoidally. The current will be 
a maximum wherever the flux is changing most rapidly and will be zero wherever 
the flux is momentarily constant. (a), (b) The following graph shows the flux, φm , 
and the induced current (proportional to −dφm/dt) in the loop as a function of time. 

time
t1

f lux

current

Time
t t1 2

0
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10 • A pendulum is fabricated from a thin, flat piece of aluminum. At the 
bottom of its arc, it passes between the poles of a strong permanent magnet. In 
Figure 28-41a, the metal sheet is continuous, whereas in Figure 28-41b, there are 
slots in the sheet. When released from the same angle, the pendulum that has slots 
swings back and forth many times, but the pendulum that does not have slots 
stops swinging after no more than one complete oscillation. Explain why. 
 
Determine the Concept In the configuration shown in (a), energy is dissipated 
by eddy currents from the emf induced by the pendulum movement.  In the 
configuration shown in (b), the slits inhibit the eddy currents and the braking 
effect is greatly reduced. 
 
11 • A bar magnet is dropped inside a long vertical tube. If the tube is made 
of metal, the magnet quickly approaches a terminal speed, but if the tube is made 
of cardboard, the magnet falls with constant acceleration. Explain why the magnet 
falls differently in the metal tube than it does in the cardboard tube. 
 
Determine the Concept The magnetic field of the falling magnet sets up eddy 
currents in the metal tube. The eddy currents establish a magnetic field that exerts 
a force on the magnet opposing its motion; thus the magnet is slowed down. If the 
tube is made of a nonconducting material, there are no eddy currents. 
 
12 • A small square wire loop lies in the plane of this page, and a constant 
magnetic field is directed into the page. The loop is moving to the right, which is 
the +x direction. Find the direction of the induced current, if any, in the loop if  
(a) the magnetic field is uniform, (b) the magnetic field strength increases as x 
increases, and (c) the magnetic field strength decreases as x increases. 
 
Determine the Concept The direction of the induced current is in such a 
direction as to oppose, or tend to oppose, the change that produces it (Lenz’s 
Law).  
 
(a) Because the applied field is constant and uniform, there is no change in flux 
through the loop and, in accord with Faraday’s law, no induced current in the 
loop.  
 
(b) Let the positive normal direction on the flat surface bounded by the loop be 
into the page.  Because the strength of the applied field increases to the right, the 
flux through the loop increases as it moves to the right. In accord with Lenz’s law, 
the direction of the induced current will be such that the flux through the loop due 
to its magnetic field will be opposite in sign the change in flux of the applied 
field. Thus, on the flat surface bounded by the loop the magnetic field due to the 
induced current is out of the page. Using the right-hand rule, the induced current 
must be counterclockwise.   
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(c) Let the positive normal direction on the flat surface bounded by the loop be 
into the page.  Because the strength of the applied field increases to the right, the 
flux through the loop decreases as it moves to the right. In accord with Lenz’s 
law, the direction of the induced current will be such that the flux through the 
loop due to its magnetic field will be opposite in sign the change in flux of the 
applied field. Thus, on the flat surface bounded by the loop the magnetic field due 
to the induced current is into the page. Using the right-hand rule, the induced 
current must be clockwise. 
 
13 • If the current in an inductor doubles, the energy stored in the inductor 
will (a) remain the same, (b) double, (c) quadruple, (d) halve. 
 
Determine the Concept The magnetic energy stored in an inductor is given by 

2
2
1

m LIU = . Doubling I quadruples Um. )(c  is correct. 

 
14 • Two solenoids are equal in length and radius, and the cores of both are 
identical cylinders of iron. However, solenoid A has three times the number of 
turns per unit length as solenoid B. (a) Which solenoid has the larger self-
inductance? (b) What is the ratio of the self-inductance of solenoid A to the self-
inductance of solenoid B? 
  
Determine the Concept The self-inductance of a coil is given by AnL 2

0μ= , 

where n is the number of turns per unit length and  is the length of the coil.   
 
(a) Because the two solenoids are equal in length and radius and have identical 
cores, their self-inductances are proportional to the square of their number of 
turns per unit length. Hence A has the larger self-inductance. 
 
(b) The self-inductances of the two 
coils are given by: 
 

AA
2
A0A AnL μ=  

and 
BB

2
B0B AnL μ=  

 
Divide the self-inductance of coil A 
by the self-inductance of coil B and 
simplify to obtain: 
 

BB
2
B

AA
2
A

BB
2
B0

AA
2
A0

B

A

An
An

An
An

L
L

==
μ
μ  

or, because the coils have the same 
lengths and radii (hence, the same 
cross-sectional areas), 

2

B

A
2
B

2
A

B

A
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

n
n

n
n

L
L  
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If n increases by a factor of 3,  will 
decrease by the same factor, because 
the inductors are made from the 
same length of wire.  Hence: 

93
2

B

B

B

A =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
n

L
L  

 
15 • [SSM] True or false: 
 
(a) The induced emf in a circuit is equal to the negative of the magnetic flux 
through the circuit. 
(b) There can be a non-zero induced emf at an instant when the flux through the 
circuit is equal to zero. 
(c) The self inductance of a solenoid is proportional to the rate of change of the 
current in the solenoid. 
(d) The magnetic energy density at some point in space is proportional to the 
square of the magnitude of the magnetic field at that point. 
(e) The inductance of a solenoid is proportional to the current in it. 
  
(a) False. The induced emf in a circuit is equal to the rate of change of the 
magnetic flux through the circuit. 
 
(b) True. The rate of change of the magnetic flux can be non-zero when the flux 
through the circuit is momentarily zero  
 
(c) False. The self inductance of a solenoid is determined by its length, cross-
sectional area, number of turns per unit length, and the permeability of the matter 
in its core. 
 
(d) True. The magnetic energy density at some point in space is given by 

Equation 28-20: 
0

2

m 2μ
Bu = . 

(e) False. The inductance of a solenoid is determined by its length, cross-sectional 
area, number of turns per unit length, and the permeability of the matter in its 
core. 
 
Estimation and Approximation  
 
16 • Your baseball teammates, having just studied this chapter, are 
concerned about generating enough voltage to shock them while swinging 
aluminum bats at fast balls. Estimate the maximum possible motional emf 
measured between the ends of an aluminum baseball bat during a swing. Do you 
think your team should switch to wooden bats to avoid electrocution? 
 
Picture the Problem The bat is swung in Earth’s magnetic field.  We’ll assume 
that the batter swings such that the maximum linear velocity of the bat occurs at 
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an angle such that it is moving perpendicular to Earth’s field (i.e. when the bat is 
aligned north-south and moving east-west). The induced emf in the bat is given by 

vB=ε . A bat is roughly 1 m long, and at most its center is probably moving at 
75 mph, or about 33 m/s.  Earth’s magnetic field is about 0.3 G. 
 
The emf induced in the bat is given 
by: 
 

vB=ε  

Under the conditions resulting in a 
maximum induced emf outlined 
above:  

( ) ( )

mV 1

m 1
G 10

T 1G 3.0m/s 33 4

≈

⎟
⎠
⎞

⎜
⎝
⎛ ×=ε

 

 
Because 1 mV is so low, there is no danger of being shocked and no reason to 
switch to wooden bats. 
 
17 • Compare the energy density stored in Earth’s electric field near its 
surface to that stored in Earth’s magnetic field near its surface.  
  
Picture the Problem We can compare the energy density stored in Earth’s 
electric field to that of Earth's magnetic field by finding their ratio. We’ll take 
Earth’s magnetic field to be 0.3 G and its electric field to be 100 V/m. 
 
The energy density in an electric 
field E is given by: 
 

2
02

1
e Eu ∈=  

The energy density in a magnetic 
field B is given by: 
 

0

2

m 2μ
Bu =  

 
Express the ratio of um to ue to 
obtain: 
 2

00

2

2
02

1
0

2

e

m 2
E

B
E

B

u
u

∈μ∈
μ

==  

 
Substitute numerical values and evaluate um/ ue: 
 

( )( )( )
3

2221227

2

4

e

m 1009.8
V/m100mN/C10854.8N/A104

G 10
T1G 3.0

×=
⋅××

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
−−πu

u  

or  
( ) e

3
m 108 uu ×≈  
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18 •• A physics teacher does the following emf demonstration. She has two 
students hold a long wire connected to a voltmeter. The wire is held slack, so that 
it sags with a large arc in it. When she says ″start, ″the students begin rotating the 
wire as if they were playing jump rope. The students stand 3.0 m apart, and the 
sag in the wire is about 1.5 m. The motional emf from the ″jump rope″ is then 
measured on the voltmeter. (a) Estimate a reasonable value for the maximum 
angular speed that the students can rotate the wire. (b) From this, estimate the 
maximum motional emf in the wire. HINT: What field is involved in creating the 
induced emf? 
 
Picture the Problem We can use Faraday’s law to relate the motional emf in the 
wire to the angular speed with which the students turn the jump rope. Assume that 
Earth’s magnetic field is 0.3 G. 
 
(a) It seems unlikely that the students could turn the ″jump rope″ wire faster 
than rev/s 0.5 .  
 
(b) The magnetic flux φm through the 
rotating circular loop of wire varies 
sinusoidally with time according to: 
 

tBA ωφ sinm = ⇒ tBA
dt

d ωωφ cosm =  

 

Because the average value of the 
cosine function, over one revolution, 
is ½, the average rate at which the 
flux changes through the circular 
loop is: 
 

ωπωφ BrBA
dt

d 2
2
1

2
1

av

m ==  

From Faraday’s law, the magnitude 
of the average motional emf in the 
loop is: 
 

ωπφε Br
dt

d 2
2
1m ==  

 

Substitute numerical values and evaluate ε: 
 

( ) mV8.0rad/s4.31
G10

T1G3.0
2
m5.1

4

2

2
1 ≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟

⎠
⎞

⎜
⎝
⎛= πε  

 
19 •• (a) Estimate the maximum possible motional emf between the 
wingtips of a typical commercial airliner in flight. (b) Estimate the magnitude of 
the electric field between the wingtips.  
 
Picture the Problem The motional emf between the wingtips of an airliner is 
given by vB=ε . Assume a speed, relative to Earth’s magnetic field, of 500 mi/h 
or about 220 m/s and a wingspan of 70 m. Assume that Earth’s magnetic field is 
0.3 G. 
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(a) The motional emf between the 
wingtips is given by: 
 

vB=ε  

Substitute numerical values and 
evaluate ε:  ( ) ( )

V 5.0

m 07
G 10

T 1G 3.0m/s 202 4

≈

⎟
⎠
⎞

⎜
⎝
⎛ ×=ε

 

 
(b) The magnitude of the electric 
field between the wingtips is the 
ratio of the potential difference 
between them and their separation: 

mV/m 7
m70
V 5.0
≈==

d
VE  

 
Magnetic Flux 
 
20 • A uniform magnetic field of magnitude 0.200 T is in the +x direction. 
A square coil that has 5.00-cm long sides has a single turn and makes an angle θ 
with the z axis, as shown in Figure 28-42.  Find the magnetic flux through the coil 
when θ  is (a) 0º, (b) 30º, (c) 60º, and (d) 90º. 
 
Picture the Problem Because the surface is a plane with area A and B is constant 
in magnitude and direction over the surface and makes an angle θ  with the unit 
normal vector, we can use θφ cosm BA= to find the magnetic flux through the 
coil. 
 
The magnetic flux through the coil is 
given by: 
 

θφ cosm BA=  

Substitute for B and A to obtain: 
 

( ) ( ) θθφ cosWb1000.5cosm105.00
G10

T1G2000 422
4m

−− ×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=  

 
(a) For θ  = 0°: 
 

( )
mWb50.0Wb1000.5

0cosWb1000.5
4

4
m

=×=

°×=
−

−φ
 

 
(b) For θ  = 30°: 
 

( )
mWb43.0Wb1033.4

cos30Wb1000.5
4

4
m

=×=

°×=
−

−φ
 

 
(c) For θ  = 60°: 
 

( )
mWb25.0Wb1050.2

cos60Wb1000.5
4

4
m

=×=

°×=
−

−φ
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(d) For θ  = 90°: ( ) 0cos90Wb1000.5 4
m =°×= −φ  

 
21 • [SSM] A circular coil has 25 turns and a radius of 5.0 cm. It is at the 
equator, where Earth’s magnetic field is 0.70 G, north. The axis of the coil is the 
line that passes through the center of the coil and is perpendicular to the plane of 
the coil. Find the magnetic flux through the coil when the axis of the coil is  
(a) vertical, (b) horizontal with the axis pointing north, (c) horizontal with the axis 
pointing east, and (d) horizontal with the axis making an angle of 30º with north. 
  
Picture the Problem Because the coil defines a plane with area A and B is 
constant in magnitude and direction over the surface and makes an angle θ  with 
the unit normal vector, we can use θφ cosm NBA= to find the magnetic flux 
through the coil. 
 
The magnetic flux through the 
coil is given by: 
 

θπθφ coscos 2
m rNBNBA ==  

Substitute for numerical values to obtain: 
 

( ) ( ) θμθπφ cosWb7.13cosm105.0
G10

T1G70.025 22
4m =×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅= −  

 
(a) When the plane of the coil is 
horizontal, θ  = 90°: 
 

( ) 090cosWb7.13m =°= μφ  

 

(b) When the plane of the coil is 
vertical with its axis pointing 
north, θ  = 0°: 
 

( ) Wb140cosWb7.13m μμφ =°=  

(c) When the plane of the coil is 
vertical with its axis pointing 
east, θ  = 90°: 
 

( ) 090cosWb7.13m =°= μφ  

(d) When the plane of the coil is 
vertical with its axis making an angle 
of 30° with north, θ  = 30°: 

( ) Wb1230cosWb7.13m μμφ =°=  

 
22 • A magnetic field of 1.2 T is perpendicular to the plane of a14 turn 
square coil with sides 5.0-cm long. (a) Find the magnetic flux through the coil.  
(b) Find the magnetic flux through the coil if the magnetic field makes an angle of 
60º with the normal to the plane of the coil. 
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Picture the Problem Because the square coil defines a plane with area A and 
B is constant in magnitude and direction over the surface and makes an angle θ 
with the unit normal vector, we can use θφ cosm NBA= to find the magnetic flux 
through the coil. 
 
The magnetic flux through the coil 
is given by: 
 

θφ cosm NBA=  
 

Substitute numerical values for N, B, 
and A to obtain: 
 

( )( )
( ) θ

θφ
cosmWb0.42

cosm105.0T2.114 22
m

=
×= −

 

 
(a) For θ  = 0°: ( ) mWb420cosmWb0.42m =°=φ  

 
(b) For θ  = 60°: ( ) mWb2160cosmWb0.42m =°=φ  
 
23 • A uniform magnetic field    B  is perpendicular to the base of a 
hemisphere of radius R. Calculate the magnetic flux (in terms of B and R) through 
the spherical surface of the hemisphere. 
 
Picture the Problem Noting that the flux through the base must also penetrate 
the spherical surface (the ± in the answer below), we can apply its definition to 
express φm. 
 
Apply the definition of magnetic 
flux to obtain: 

BRAB 2
m πφ ±=±=  

 
24 • Find the magnetic flux through a 400-turn solenoid that has a  length 
equal to 25.0 cm, has a radius equal to 1.00 cm, and carries a current of 3.00 A. 
  
Picture the Problem We can use θφ cosm NBA= to express the magnetic flux 
through the solenoid and nIB 0μ= to relate the magnetic field in the solenoid to 
the current in its coils. Assume that the magnetic field in the solenoid is constant. 
 
Express the magnetic flux through a 
coil with N turns: 
 

θφ cosm NBA=  

Express the magnetic field inside a 
long solenoid: 
 

nIB 0μ=  
where n is the number of turns per unit 
length. 
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Substitute to obtain: θμφ cos0m nIAN=  
or, because n = N/L and θ = 0°, 

L
rIN

L
IAN 2

0
2

0
2

m
πμμφ ==  

 
Substitute numerical values and evaluate φm: 
 

( ) ( )( ) ( ) Wb758
m250.0

m0.0100πA3.00N/A104400 2272

m μπφ =
×

=
−

 

 
25 • Find the magnetic flux through a 800-turn solenoid that has a  length 
equal to 30.0 cm, has a radius equal to 1.00 cm, and carries a current of 2.00 A. 
 
Picture the Problem We can use θφ cosm NBA= to express the magnetic flux 
through the solenoid and nIB 0μ= to relate the magnetic field in the solenoid to 
the current in its coils. Assume that the magnetic field in the solenoid is constant. 
 
Express the magnetic flux through a 
coil with N turns: 
 

θφ cosm NBA=  

Express the magnetic field inside 
a long solenoid: 
 

nIB 0μ=  
where n is the number of turns per unit 
length. 
 

Substitute for B to obtain: θμφ cos0m nIAN=  
or, because n = N/L and θ = 0°, 

L
rIN

L
IAN 2

0
2

0
2

m
πμμφ ==  

 
Substitute numerical values and evaluate φm: 
 

( ) ( )( ) ( ) mWb74.6
m300.0

m0.0200A2.00N/A104800 2272

m =
×

=
− ππφ  

 
26 •• A circular coil has 15.0 turns, has a radius 4.00 cm, and is in a uniform 
magnetic field of 4.00 kG in the +x direction. Find the flux through the coil when 
the unit normal to the plane of the coil is (a) î , (b) ĵ , (c) ( ) 2ˆˆ ji + , (d)  k̂ , and 

(e)   0.60î + 0.80 ĵ . 
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Picture the Problem We can apply the definitions of magnet flux and of the dot 
product to find the flux for the given unit vectors. 
 
Apply the definition of magnetic flux 
to the coil to obtain: 
 

∫ ⋅=
S

dAN nB ˆmφ  

Because B is constant:  ( )
( ) 2

m

ˆ

ˆˆ

rN

ANdAN
S

π

φ

nB

nBnB

⋅=

⋅=⋅= ∫
 

 
Evaluate B : 
 

( )iTB ˆ400.0=  
 

Substitute numerical values and 
simplify to obtain: 
 

( ) ( )[ ] ( )
( ) ni ˆˆmT03016.0

m0400.0T400.00.15
2

2
m

⋅⋅=

= πφ
 

 
(a) Evaluate φm for in ˆˆ = : ( ) mWb2.30ˆˆmT03016.0 2

m =⋅⋅= iiφ  

 
(b) Evaluate φm for jn ˆˆ = : 
 

( ) 0ˆˆmT03016.0 2
m =⋅⋅= jiφ  

 
(c) Evaluate φm for ( ) 2ˆˆˆ jin += : 
 

( ) ( )

mWb3.21
2

mT03016.0
2

ˆˆˆmT03016.0

2

2
m

=
⋅

=

+
⋅⋅=

jiiφ
 

 
(d) Evaluate φm for kn ˆˆ = : 
 

( ) 0ˆˆmT03016.0 2
m =⋅⋅= kiφ  

 
(e) Evaluate φm for jin ˆ80.0ˆ60.0ˆ += : 
 

 

( ) ( ) mWb18ˆ80.0ˆ60.0ˆmT03016.0 2
m =+⋅⋅= ji iφ  

 
27 •• [SSM] A long solenoid has n turns per unit length, has a radius R1, 
and carries a current I. A circular coil with radius R2 and with N total turns is 
coaxial with the solenoid and equidistant from its ends. (a) Find the magnetic flux 
through the coil if R2 > R1. (b) Find the magnetic flux through the coil if R2 < R1. 
  
Picture the Problem The magnetic field outside the solenoid is, to a good 
approximation, zero. Hence, the flux through the coil is the flux in the core of the 
solenoid. The magnetic field inside the solenoid is uniform. Hence, the flux 
through the circular coil is given by the same expression with R2 replacing R1: 
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(a) The flux through the large 
circular loop outside the solenoid is 
given by: 
 

NBA=mφ  
 

Substituting for B and A and 
simplifying yields: 
 

( )( ) 2
10

2
10m RnINRnIN πμπμφ ==  

(b) The flux through the coil when  
R2 < R1 is given by: 

( )( ) 2
20

2
20m RnINRnIN πμπμφ ==  

 
28 ••• (a) Compute the magnetic flux through the rectangular loop shown in 
Figure 28-45. (b) Evaluate your answer for a = 5.0 cm, b = 10 cm, d = 2.0 cm, and 
I = 20 A.  
 
Picture the Problem We can use the hint to set up the element of area dA and 
express the flux dφm through it and then carry out the details of the integration to 
express φm. 
 
(a) The flux through the strip of area 
dA is given by: 

BdAd =mφ  
where dA = bdx. 
 

Express B at a distance x  from a 
long, straight wire: 
 

x
I

x
IB

π
μ

π
μ

2
2

4
00 ==  

Substitute to obtain: 
x

dxIbbdx
x
Id

π
μ

π
μφ

22
00

m ==  

 
Integrate from x = d to x = d + a: 
 ⎟

⎠
⎞

⎜
⎝
⎛ +

== ∫
+

d
adIb

x
dxIb ad

d

ln
22
00

m π
μ

π
μφ  

 
(b) Substitute numerical values and evaluate φm: 
 

( )( )( ) Wb0.50
cm2.0
cm7.0ln

2
m0.10A20N/A104 27

m μ
π

πφ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛×
=

−

 

 
29 ••• A long cylindrical conductor with a radius R and a length L carries a 
current I. Find the magnetic flux per unit length through the area indicated in 
Figure 28-44. 
 
Picture the Problem Consider an element of area dA = Ldr where r ≤ R. We can 
use its definition to express dφm through this area in terms of B and Ampere’s law 
to express B as a function of I. The fact that the current is uniformly distributed 



   Chapter 28    
 

2678 

over the cross-sectional area of the conductor allows us to set up a proportion 
from which we can obtain I as a function of r. With these substitutions in place 
we can integrate dφm to obtain φm/L. 
 
Noting that B is parallel to n̂  
over the entire area, express the 
flux dφm through an area Ldr: 
 

BLdrBdAd ==mφ                   (1) 

Apply Ampere’s law to the current 
contained inside a cylindrical region 
of radius r < R: 
 

CC
IrBd 02 μπ ==⋅∫ B   

 

Solving for B yields: 
 r

IB C

π
μ
2

0=                                  (2) 

 
Using the fact that the current I is 
uniformly distributed over the cross-
sectional area of the conductor, 
express its variation with distance r 
from the center of the conductor: 
 

2

2)(
R
r

I
rI

π
π

= ⇒ ( ) 2

2

R
rIIrI C ==  

 

Substitute for IC in equation (2) and 
simplify to obtain: r

R
I

R
r

r
IB 2

0
2

2
0

22 π
μ

π
μ

==  

 
Substituting for B in equation (1) 
yields: 

rdr
R
LI

d 2
0

m 2π
μ

φ =  

 
Integrate dφm from r = 0 to r  = R 
to obtain: π

μ
π
μφ

42
0

0
2

0
m

LIrdr
R
LI R

== ∫  

 
Divide both sides of this equation by 
L to express the magnetic flux per 
unit length: 

π
μφ
4

0m I
L

=  

 
Induced EMF and Faraday’s Law 
 
30 • The flux through a loop is given by φm = 0.10t2 – 0.40t, where φm  is in 
webers and t is in seconds. (a) Find the induced emf as a function of time.  
(b) Find both φm and ε  at t = 0, t = 2.0 s, t = 4.0 s, and t = 6.0 s. 
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Picture the Problem Given φm as a function of time, we can use Faraday’s law to 
express ε as a function of time. 
 
(a) Apply Faraday’s law to express 
the induced emf in the loop in terms 
of the rate of change of the magnetic 
flux: 

( ) ( )[ ]

( )

( )V40.020.0
s

Wb40.020.0

40.010.0 2m

−−=

−−=

−−=−=

t

t

tt
dt
d

dt
dt φε

 

 where ε  is in volts and t is in seconds. 
 

(b) Evaluate φm at t = 0: 
 

( ) ( ) ( )( ) 0040.0010.0s0 2
m =−=φ  

 
Evaluate ε  at t = 0: ( ) ( )[ ] V40.0V40.0020.0s0 =−−=ε  

 
Proceed as above to complete the 
table to the right: 

t φm ε  
(s) (Wb) (V) 
0 0 0.40 

2.0 −0.40 0.00 
4.0 0.0 −0.40 
6.0 1.2 −0.80  

 
31 • The flux through a loop is given by φm = 0.10t2 – 0.40t, where φm  is in 
webers and t is in seconds. (a) Sketch graphs of magnetic flux and induced emf as 
a function of time. (b) At what time(s) is the flux minimum? What is the induced 
emf at that (those) time(s)? (c) At what time(s) is the flux zero? What is (are) the 
induced emf(s) at those time(s)? 
 
Picture the Problem We can find the time at which the flux is a minimum by 
looking for the lowest point on the graph of ε versus t and the emf at this time by 
determining the value of V at this time from the graph. We can interpret the 
graphs to find the times at which the flux is zero and the corresponding values of 
the emf. 
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(a) The flux, φm, and the induced emf,ε , are shown as functions of t in the 
following graph. The solid curve represents φm, the dashed curve represents .ε  
 

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.0 1.0 2.0 3.0 4.0 5.0 6.0

t  (s)

flux
emf

-1.00

-0.50

0.00

0.50

1.00

flu
x 

(W
b)

em
f (

V
)

 
 

(b) Referring to the graph, we see that the flux is a minimum when t = 2.0 s and 
that V(2.0 s) = 0. 
 
(c) The flux is zero when t = 0 and t = 4.0 s. ε(0) = 0.40 V and  
ε(4.0 s) =  −0.40 V. 
 
32 • A solenoid that has a length equal to 25.0 cm, a radius equal to  
0.800 cm, and 400 turns is in a region where a magnetic field of 600 G exists and 
makes an angle of 50º with the axis of the solenoid. (a) Find the magnetic flux 
through the solenoid. (b) Find the magnitude of the average emf induced in the 
solenoid if the magnetic field is reduced to zero in 1.40 s. 
  
Picture the Problem We can use its definition to find the magnetic flux through 
the solenoid and Faraday’s law to find the emf induced in the solenoid when the 
external field is reduced to zero in 1.4 s. 
 
(a) Express the magnetic flux 
through the solenoid in terms of 
N, B, A, and θ : 
 

θπ

θφ

cos

cos
2

m

RNB

NBA

=

=
 

Substitute numerical values 
and evaluate φm: 

( )( ) ( )
mWb1.3mWb10.3

50cosm00800.0mT0.60400 2
m

==

°= πφ

 



                                                                              Magnetic Induction 
 

 

2681

(b) Apply Faraday’s law to 
obtain: 

mV2.2

s1.40
mWb3.100m

=

−
−=

Δ
Δ

−=
t
φε

 

 
33 •• [SSM] A 100-turn circular coil has a diameter of 2.00 cm, a 
resistance of 50.0 Ω, and the two ends of the coil are connected together. The 
plane of the coil is perpendicular to a uniform magnetic field of magnitude 1.00 T. 
The direction of the field is reversed. (a) Find the total charge that passes through 
a cross section of the wire. If the reversal takes 0.100 s, find (b) the average 
current and (c) the average emf during the reversal. 
 
Picture the Problem We can use the definition of average current to express the 
total charge passing through the coil as a function of Iav. Because the induced 
current is proportional to the induced emf and the induced emf, in turn, is given 
by Faraday’s law, we can express ΔQ as a function of the number of turns of the 
coil, the magnetic field, the resistance of the coil, and the area of the coil. 
Knowing the reversal time, we can find the average current from its definition and 
the average emf from Ohm’s law.   
 
(a) Express the total charge that 
passes through the coil in terms 
of the induced current: 
 

tIQ Δ=Δ av                                (1) 

Relate the induced current to the 
induced emf: 
 

R
II ε

== av  

 
Using Faraday’s law, express the 
induced emf in terms of φm: tΔ

Δ
−= mφε  

 
Substitute in equation (1) and 
simplify to obtain: 
 

R
dNB

R

dNB

R
NBA

R
t

R
tt

R
Q

2

4
2

2

2

2

2

m

m

π

π

φ
φ

ε

=

⎟
⎠
⎞

⎜
⎝
⎛

==

=ΔΔ
Δ

=Δ=Δ

 

where d is the diameter of the coil. 
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Substitute numerical values and 
evaluate ΔQ: 

( )( ) ( )
( )

mC26.1mC257.1

Ω0.502
m0200.0T00.1100Δ

2

==

=
πQ

 

 
(b) Apply the definition of average 
current to obtain: 
 mA12.6

mA12.57
s0.100

mC1.257
Δ
Δ

av

=

===
t
QI

 

 
(c) Using Ohm’s law, relate the 
average emf in the coil to the 
average current: 

( )( )
mV628

Ω50.0mA12.57avav

=

== RIε
 

 
34 •• At the equator, a 1000-turn coil that has a cross-sectional area of  
300 cm2 and a resistance of 15.0 Ω is aligned so that its plane is perpendicular to  
Earth’s magnetic field of 0.700 G.  (a) If the coil is flipped over in 0.350 s, what 
is the average induced current in it during the 0.350 s? (b) How much charge 
flows through a cross section of the coil wire during the 0.350 s? 
 
Picture the Problem (a) Because the average induced current is proportional to 
the induced emf and the induced emf, in turn, is given by Faraday’s law, we can 
find Iav from the change in the magnetic flux through the coil, the resistance of the 
coil, and the time required for the flipping of the coil. (b) Knowing the average 
current, we can use its definition to find the charge flowing in the coil. 
 
(a) The average induced current is 
given by: R

I ε
=av                 

                    
The induced emf in the coil is the 
rate at which the magnetic flux is 
changing: 
 

t
NBA

tt Δ
2

Δ
2

Δ
Δ mm ===

φφε  

Substituting for ε yields: 
 tR

NBAI
Δ

2
av =  

 
Substitute numerical values and evaluate avI : 
 

( )

( )( ) A 800
s 350.0Ω 0.15

cm 10
m 1cm 300

G 10
T 1G 700.010002

2

2
2

4

av μ=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛ ×

=I  
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(b) The average current is also given 
by: 
 

t
QI
Δ
Δ

av = ⇒ tIQ ΔΔ av=  

 
Substitute numerical values and 
evaluate ΔQ: 
 

( )( )
C 280

s 350.0mA 800.0Δ

μ=

=Q
 

 
35 •• A current integrator measures the current as a function of time and 
integrates (adds) the current to find the total charge passing through it. (Because  
I = dq/dt, the integrator calculates the integral of the current or Q = Idt∫ .) A 
circular coil that has 300 turns and a radius equal to 5.00 cm is connected to such 
an instrument. The total resistance of the circuit is 20.0 Ω. The plane of the coil is 
originally aligned perpendicular to Earth’s magnetic field at some point. When the 
coil is rotated through 90º about an axis that is in the plane of the coil, a charge of 
9.40 μC passes through the current integrator is measured to be 9.40 μC. 
Calculate the magnitude of Earth’s magnetic field at that point. 
  
Picture the Problem We can use Faraday’s law to express Earth’s magnetic field 
at this location in terms of the induced emf and Ohm’s law to relate the induced 
emf to the charge that passes through the current integrator.  
 
Using Faraday’s law, express the 
induced emf in terms of the change 
in the magnetic flux as the coil is 
rotated through 90°: 
 

t
rNB

t
NBA

t Δ
=

Δ
=

Δ
Δ

−=
2

m πφε  

 
 

Solving for B yields: 
 2rN

tB
π
εΔ

=  

 
Using Ohm’s law, relate the induced 
emf to the induced current: 
 

R
t
QIR
Δ
Δ

==ε  

where ΔQ is the charge that passes 
through the current integrator. 
 

Substitute for ε and simplify to 
obtain: 
 

22 rN
QR

rN

tR
t
Q

B
ππ
Δ

=
Δ

Δ
Δ

=  

 
Substitute numerical values and 
evaluate B: 

( )( )
( ) ( )

T8.79
m0500.0300
Ω20.0μC40.9

2 μ
π

==B  
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Motional EMF 
 
36 •• A 30.0-cm long rod moves steadily at 8.00 m/s in a plane that is 
perpendicular to a magnetic field of 500 G. The velocity of the rod is 
perpendicular to its length. Find (a) the magnetic force on an electron in the rod, 
(b) the electrostatic field in the rod, and (c) the potential difference between the 
ends of the rod. 
 
Picture the Problem We can apply the equation for the force on a charged 
particle moving in a magnetic field to find the magnetic force acting on an 
electron in the rod. We can use BvE ×=  to find E and EV = , where  is the 
length of the rod, to find the potential difference between its ends. 
 
(a) Relate the magnetic force on an 
electron in the rod to the speed of the 
rod, the electronic charge, and the 
magnetic field in which the rod is 
moving: 
 

BvF ×= q  
and 

θsinqvBF =  

Substitute numerical values and 
evaluate F: 
 

( )( )
( )

N106.4

sin90T0.0500
m/s8.00C101.602

20

19

−

−

×=

°×
×=F

 

 
(b) Express the electrostatic field 
E in the rod in terms of the magnetic 
field B : 
 

BvE ×= and θsinvBE =  where θ  is 
the angle between v  and B . 
 

Substitute numerical values and 
evaluate B: 

( )( )
V/m0.40V/m0.400

sin90T0.0500m/s8.00

==

°=E
 

 
(c) Relate the potential difference 
between the ends of the rod to its 
length and the electric field E: 
 

EV =  

Substitute numerical values and 
evaluate V: 

( )( ) V0.12m0.300V/m0.400 ==V  

 
37 •• A 30.0-cm long rod moves in a plane that is perpendicular to a 
magnetic field of 500 G. The velocity of the rod is perpendicular to its length.  
Find the speed of the rod if the potential difference between the ends is 6.00 V. 
 



                                                                              Magnetic Induction 
 

 

2685

Picture the Problem We can use BvE ×= to relate the speed of the rod to the 
electric field in the rod and magnetic field in which it is moving and EV = to 
relate the electric field in the rod to the potential difference between its ends. 
 
Express the electrostatic field E in 
the rod in terms of the magnetic field 
B and solve for v: 
 

BvE ×= and 
θsinB

Ev =  where θ  is 

the angle between v  and B . 

Relate the potential difference 
between the ends of the rod to its 
length and the electric field E and 
solve for E: 
 

EV = ⇒ VE =  

Substitute for E to obtain: 
θsinB

Vv =  

 
Substitute numerical values and 
evaluate v: ( )( ) m/s400

m0.300T0.0500
V6.00

==v  

 
38 •• In Figure 28-45, let the magnetic field strength be 0.80 T, the rod 
speed be 10 m/s, the rod length be 20 cm, and the resistance of the resistor be  
2.0 Ω. (The resistance of the rod and rails are negligible.) Find (a) the induced 
emf in the circuit, (b) the induced current in the circuit (including direction), and 
(c) the force needed to move the rod with constant speed (assuming negligible 
friction). Find (d) the power delivered by the force found in Part (c) and (e) the 
rate of Joule heating in the resistor. 
  
Picture the Problem Because the speed of the rod is constant, an external force 
must act on the rod to counter the magnetic force acting on the induced current. 
We can use the motional-emf equation vB=ε to evaluate the induced emf, 
Ohm’s law to find the current in the circuit, Newton’s 2nd law to find the force 
needed to move the rod with constant speed, and P = Fv to find the power input 
by the force.  
 
(a) Relate the induced emf in the 
circuit to the speed of the rod, the 
magnetic field, and the length of 
the rod: 
 

( )( )( )
V1.6V1.60

m0.20T0.80m/s10

==

== vBε
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(b) Using Ohm’s law, relate the 
current in the circuit to the induced 
emf and the resistance of the circuit: 
 

A0.80
Ω2.0
V1.60
===

R
I ε  

Note that, because the rod is moving to 
the right, the flux in the region defined 
by the rod, the rails, and the resistor is 
increasing. Hence, in accord with 
Lenz’s law, the current must be 
counterclockwise if its magnetic field is 
to counter this increase in flux. 
 

(c) Because the rod is moving with 
constant speed in a straight line, the 
net force acting on it must be zero. 
Apply Newton’s 2nd law to relate F 
to the magnetic force Fm: 
 

∑ =−= 0mFFFx  

 
 

Solving for F and substituting for Fm 
yields: 
 

BIFF == m  

Substitute numerical values and 
evaluate F: 

( )( )( )
N0.13

N0.128m0.20A0.80T0.80

=

==F
 

 
(d) Express the power input by the 
force in terms of the force and the 
velocity of the rod: 
 

( )( ) W1.3m/s10N0.128 === FvP  

 

(e) The rate of Joule heat production 
is given by: 

( ) ( ) W1.3Ω2.0A0.80 22 === RIP  

 
39 •• A 10-cm by 5.0-cm rectangular loop (Figure 28-46) that has a 
resistance equal to 2.5 Ω moves at a constant speed of 2.4 cm/s through a region 
that has a uniform 1.7-T magnetic field directed out of the page as shown. The 
front of the loop enters the field region at time t = 0.  (a) Graph the flux through 
the loop as a function of time. (b) Graph the induced emf and the current in the 
loop as functions of time. Neglect any self-inductance of the loop and construct 
your graphs to include the interval 0 ≤ t ≤ 16 s. 
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Picture the Problem We’ll need to determine how long it takes for the loop to 
completely enter the region in which there is a magnetic field, how long it is in the 
region, and how long it takes to leave the region. Once we know these times, we 
can use its definition to express the magnetic flux as a function of time. We can 
use Faraday’s law to find the induced emf as a function of time. 
 
(a) Find the time required for the 
loop to enter the region where there 
is a uniform magnetic field: 
 

s4.17
cm/s2.4
cm10loopofside ===

v
t  

 

Letting w represent the width of the 
loop, express and evaluate φm for 

s17.40 << t : 
( )( )( )
( )t

t
NBwvtNBA

mWb/s04.2
m/s0.024m0.050T1.7

m

=
=

==φ
 

 
Find the time during which the loop 
is fully in the region where there is a 
uniform magnetic field: 
 

s4.17
cm/s2.4
cm10loopofside ===

v
t  

i.e., the loop will begin to exit the 
region when t = 8.33 s. 
 

Express φm for s33.8s17.4 << t : 
 ( )( )( )

mWb50.8
m0.050m10.0T1.7

m

=
=

== wNBNBAφ
 

 
The left-end of the loop will exit 
the field when t = 12.5 s. Express 
φm for s5.12s33.8 << t : 
 

bmt +=mφ  
where m is the slope of the line and b is 
the φm-intercept. 

For t = 8.33 s and φm = 8.50 mWb: 
 

( ) bm += s33.8mWb50.8          (1) 
 

For t = 12.5 s and φm = 0: ( ) bm += s5.120                         (2) 
 

Solve equations (1) and (2) 
simultaneously to obtain: 
 

( ) mWb5.25mWb/s04.2m +−= tφ  

The loop will be completely out of 
the magnetic field when t > 12.5 s 
and: 
 

0m =φ  
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The following graph of ( )tmφ  was plotted using a spreadsheet program. 
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(b) Using Faraday’s law, relate the 
induced emf to the magnetic flux: 
 

dt
d mφε −=  

During the interval s17.40 << t : ( )[ ] mV04.2mWb/s04.2 −=−= t
dt
dε  

 
During the interval s33.8s17.4 << t : 
 

[ ] 0mWb50.8 =−=
dt
dε  

 
During the interval s5.12s33.8 << t : 
 

( )[ ]
mV04.2

mWb5.25mWb/s2.04

=

+−−= t
dt
dε

 

 
For t > 12.5 s: 0=ε  

 
The current in each of these intervals 
is given by Ohm’s law: 
 

R
I ε
=  
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The following graph of ε(t) was plotted using a spreadsheet program. 
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The following graph of I(t) was plotted using a spreadsheet program. 
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40 •• A uniform 1.2-T magnetic field is in the +z direction. A conducting rod 
of length 15 cm lies parallel to the y axis and oscillates in the x direction with 
displacement given by x = (2.0 cm) cos (120πt), where 120π  has units of rad/s . 
(a) Find an expression for the potential difference between the ends the rod as a 
function of time? (b) What is the maximum potential difference between the ends 
the rod? 
 
Picture the Problem The rod is executing simple harmonic motion in the xy 
plane, i.e., in a plane perpendicular to the magnetic field. The emf induced in the 
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rod is a consequence of its motion in this magnetic field and is given by vB=ε . 

Because we’re given the position of the oscillator as a function of time, we can 
differentiate this expression to obtain v. 
 
(a) The potential difference between 
the ends of the rod is given by: dt

dxBvB ==ε  

 
Evaluate dx/dt: ( )[ ]

( )( )
( ) t

t

t
dt
d

dt
dx

π
ππ

π

120sinm/s54.7
120sins120cm0.2

120coscm0.2

1

−=
−=

=

−  

 
Substitute numerical values and evaluate ε : 
 

( )( )( ) ( ) tt ππε 120sinV4.1120sinm/s54.7m0.15T1.2 −=−=  

 
(b) The maximum potential 
difference between the ends the rod 
is the amplitude of the expression for 
ε  derived in Part (a): 

V 4.1max =ε  

 
41 •• [SSM] In Figure 28-47, the rod has a mass m and a resistance R. The 
rails are horizontal, frictionless and have negligible resistances. The distance 
between the rails is . An ideal battery that has an emf ε is connected between 
points a and b so that the current in the rod is downward. The rod released from 
rest at t = 0. (a) Derive an expression for the force on the rod as a function of the 
speed. (b) Show that the speed of the rod approaches a terminal speed and find an 
expression for the terminal speed. (c) What is the current when the rod is moving 
at its terminal speed? 
 
Picture the Problem (a) The net force acting on the rod is the magnetic force it 
experiences as a consequence of carrying a current and being in a magnetic field. 
The net emf that drives I in this circuit is the difference between the emf of the 
battery and the emf induced in the rod as a result of its motion. Applying a right-
hand rule to the rod reveals that the direction of this magnetic force is to the right. 
Hence the rod will accelerate to the right when it is released. (b) We can obtain 
the equation of motion of the rod by applying Newton’s 2nd law to relate its 
acceleration to ε, B, I, R and . (c) Letting tvv = in the equation for the current in 
the circuit will yield current when the rod is at its terminal speed. 
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(a) Express the magnetic force on the 
current-carrying rod: 
  

BIF =m  

The current in the rod is given by: 
 R

vBI −
=
ε                               (1) 

 
Substituting for I yields: 
 ( )vB

R
BB

R
vBF −=⎟
⎠
⎞

⎜
⎝
⎛ −

= εε
m  

 
(b) Letting the direction of motion of 
the rod be the positive x direction, 
apply 

xx maF∑ = to the rod: 

 

( )
dt
dvmvB

R
B

=−ε          

 

Solving for dtdv yields: ( )vB
mR
B

dt
dv

−= ε  

 
Note that as v increases, 

0→− vBε , 0→dtdv  and the 
rod approaches its terminal speed tv . 
Set 0=dtdv to obtain: 
 

( ) 0t =− vB
mR
B ε ⇒

B
v

ε
=t  

(c) Substitute tv  for v  in equation 
(1) to obtain: 0=

−
=

R
B

B
I

εε
 

 
42 • A uniform magnetic field is established perpendicular to the plane of a 
loop that has a radius equal to 5.00 cm and a resistance equal to 0.400 Ω. The 
magnitude of the field is increasing at a rate of 40.0 mT/s. Find (a) the magnitude 
of the induced emf in the loop, (b) the induced current in the loop, and (c) the rate 
of Joule heating in the loop. 
 
Picture the Problem (a) We can find the magnitude of the induced emf by 
applying Faraday’s law to the loop. (b) and (c) The application of Ohm’s law will 
yield the induced current in the loop and we can find the rate of Joule heating 
using RIP 2= . 
 
(a) Apply Faraday’s law to express 
the induced emf in the loop in terms 
of the rate of change of the magnetic 
field: 

( )
dt
dBR

dt
dBAAB

dt
d

dt
d 2m πφε ====  
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Substitute numerical values and 
evaluate :ε  

 

( ) ( )
mV314.0mV3142.0

mT/s40.0m0.0500 2

==

= πε
 

 
(b) Using Ohm’s law, relate the 
induced current to the induced 
voltage and the resistance of the 
loop and evaluate I: 
 

mA0.785

mA0.7854
Ω0.400
mV0.3142

=

===
R

I ε
 

 

(c) Express the rate at which power 
is dissipated in a conductor in terms 
of the induced current and the 
resistance of the loop and evaluate 
P: 

( ) ( )
W0.247

Ω0.400mA0.7854 22

μ

RIP

=

==
 

 
43 •• In Figure 28-48, a conducting rod that has a mass m and a negligible 
resistance is free to slide without friction along two parallel frictionless rails that 
have negligible resistances separated by a distance   and connected by a 
resistance R.  The rails are attached to a long inclined plane that makes an angle θ 
with the horizontal. There is a magnetic field directed upward as shown. (a) Show 
that there is a retarding force directed up the incline given by 

        F= B2 2v cos2 θ( )/ R . (b) Show that the terminal speed of the rod is 

        vt = mgR sin θ( ) / B2 2 cos2 θ( ). 
 
Picture the Problem The free-body diagram shows the forces acting on the rod 
as it slides down the inclined plane. The retarding force is the component of Fm 
acting up the incline, i.e., in the −x direction. We can express Fm using the 
expression for the force acting on a conductor moving in a magnetic field. 
Recognizing that only the horizontal component of the rod’s velocity v produces 
an induced emf, we can apply the expression for a motional emf in conjunction 
with Ohm’s law to find the induced current in the rod. In Part (b) we can apply 
Newton’s 2nd law to obtain an expression for dv/dt and set this expression equal to 
zero to obtain vt. 

y

x

θ

θ

n
F
r

gm
r

m
F
r

 



                                                                              Magnetic Induction 
 

 

2693

 
(a) Express the retarding force 
acting on the rod: 
 

θcosmFF =                             (1) 
where 

BIF =m                         
and I is the current induced in the rod 
as a consequence of its motion in the 
magnetic field. 
 

Express the induced emf due to the 
motion of the rod in the magnetic 
field: 
  

θε cosvB=  

Using Ohm’s law, relate the current 
I in the circuit to the induced emf: 
 

R
vB

R
I θε cos

==  

 
Substitute in equation (1) to obtain: 

θ

θθ

2
22

cos

coscos

R
vB

B
R

vBF

=

⎟
⎠
⎞

⎜
⎝
⎛=

 

 
(b) Apply ∑ = xx maF to the rod: 

dt
dvm

R
vBmg =− θθ 2

22

cossin  

and 

θθ 2
22

cossin
mR

vBg
dt
dv

−=  

 
When the rod reaches its terminal 
speed tv , 0=dtdv : 
 

θθ 2t
22

cossin0
mR

vBg −=  

Solve for tv  to obtain: 
θ
θ
222t cos

sin
B
mgRv =  

 
44 ••• A conducting rod of length   rotates at constant angular speed ω about 
one end, in a plane perpendicular to a uniform magnetic field B (Figure 28-49). 
(a) Show that the potential difference between the ends of the rod is θ22

1 . (b) Let 
the angle θ between the rotating rod and the dashed line be given byθ = ωt. Show 
that the area of the pie-shaped region swept out by the rod during time t is θ22

1 . 

(c) Compute the flux φm through this area, and apply ε = –dφm/dt (Faraday’s law) 
to show that the motional emf is given by 2

2
1 ωB .  
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Picture the Problem We can use BvF ×= q to express the magnetic force acting 
on the moving charged body. Expressing the emf induced in a segment of the rod 
of length dr and integrating this expression over the length of the rod will lead us 
to an expression for the induced emf. 
 

(a) Use the motional emf equation to 
express the emf induced in a 
segment of the rod of length dr and 
at a distance r from the pivot: 
 

drBr
Brdvd
ω

ε
=
=  

Integrate this expression from  
r = 0 to r = to obtain: 
 

drrBd ∫∫ =
00

ω
ε
ε ⇒ 2

2
1 ωε B=  

 
(b) Using Faraday’s law, relate the 
induced emf to the rate at which the 
flux changes: 
 

dt
d mφε =  

Express the area dA, for any value of 
θ, between r and r + dr: 
 

drrdA θ=  

Integrate from r = 0 to r = to 
obtain: 
 

2
2
1

0

θθ == ∫ drrA  

 
(c) Using its definition, express the 
magnetic flux through this area: 
 

θφ 2
2
1

m BBA ==  

 

Differentiate φm with respect to time 
to obtain: 

[ ] ωθθε 2
2
12

2
12

2
1 B

dt
dBB

dt
d

===  

 
45 • [SSM] A 2.00-cm by 1.50-cm rectangular coil has 300 turns and 
rotates in a region that has a magnetic field of 0.400 T. (a) What is the maximum 
emf generated when the coil rotates at 60 rev/s? (b) What must its angular speed 
be to generate a maximum emf of 110 V? 
  
Picture the Problem We can use the relationship NBAfπε 2max = to relate the 
maximum emf generated to the area of the coil, the number of turns of the coil, 
the magnetic field in which the coil is rotating, and the angular speed at which it 
rotates. 
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(a) Relate the induced emf to the 
magnetic field in which the coil 
is rotating: 
 

NBAfNBA πωε 2max ==          (1) 
 

Substitute numerical values and evaluate εmax: 
 

( )( )( )( )( ) V14s60m1050.1m1000.2T400.03002 122
max =××= −−−πε  

 
(b) Solve equation (1) for f: 

NBA
f

π
ε

2
max=  

 
Substitute numerical values and evaluate f: 
 

( )( )( )( ) rev/s486
m1050.1m1000.2T400.03002

V110
22 =

××
= −−π

f  

 
46 • The coil of Problem 45 rotates at 60 rev/s in a magnetic field. If the 
maximum emf generated by the coil is 24 V, what is the magnitude of the 
magnetic field? 
 
Picture the Problem We can use the relationship ωε NBA=max to relate the 
maximum emf generated to the area of the coil, the number of turns of the coil, 
the magnitude of the magnetic field in which the coil is rotating, and the angular 
speed at which it rotates. 
 
Relate the induced emf to the 
magnetic field in which the coil 
is rotating: 
 

ωε NBA=max ⇒
ω

ε
NA

B max=  

 

Substitute numerical values and evaluate B: 
 

( )( )( )( ) T71.0
rev/s60m1050.1m1000.23002

V42
22 =

××
= −−π

B  

 
Inductance 
 
47 • When the current in an 8.00-H coil is equal to 3.00 A and is increasing 
at 200 A/s, find (a) the magnetic flux through the coil and (b) the induced emf in 
the coil. 
 
Picture the Problem We can use LI=mφ to find the magnetic flux through the 
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coil. We can apply Faraday’s law to find the induced emf in the coil. 
(a) The magnetic flux through 
the coil is the product of the self-
inductance of the coil and the 
current it is carrying: 
 

LI=mφ  
 

When the current is 3.00 A: 
 

( )( ) Wb24.0A3.00H00.8m ==φ  

(b) Use Faraday’s law to relate ε, 
L, and dtdI : 
 

dt
dIL−=ε  

Substitute numerical values and 
evaluate ε : 

( )( ) kV1.60A/s200H8.00 −=−=ε  

 
48 •• A 300-turn solenoid has a radius equal to 2.00 cm; a length equal to 
25.0 cm, and a 1000-turn solenoid has a radius equal to 5.00 cm and is also  
25.0-cm long. The two solenoids are coaxial, with one nested completely inside 
the other. What is their mutual inductance? 
 
Picture the Problem We can find the mutual inductance of the two coaxial 

solenoids using 2
1120

1

m2
1,2 rnn

I
M πμφ

== . 

 
Substitute numerical values and evaluate M2,1: 
 

( ) ( ) ( ) mH89.1m0200.0m250.0
m0.250

1000
m0.250

300N/A104 227
1,2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= − ππM  

 
49 •• [SSM]  An insulated wire that has a resistance of 18.0 Ω/m and a 
length of 9.00 m will be used to construct a resistor. First, the wire is bent in half 
and then the doubled wire is wound on a cylindrical form ( Figure 28-50) to create 
a 25.0-cm-long helix that has a diameter equal to 2.00 cm. Find both the 
resistance and the inductance of this wire-wound resistor. 
 
Picture the Problem Note that the current in the two parts of the wire is in 
opposite directions. Consequently, the total flux in the coil is zero. We can find 
the resistance of the wire-wound resistor from the length of wire used and the 
resistance per unit length. 
 
Because the total flux in the coil is 
zero: 

0=L  
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Express the total resistance of the 
wire: 

LR ⎟
⎠
⎞

⎜
⎝
⎛=

m
Ω0.18  

 
Substitute numerical values and 
evaluate R: 

( ) Ω162m00.9
m
Ω0.18 =⎟
⎠
⎞

⎜
⎝
⎛=R  

 
50 •• You are given a length  of wire that has radius a and are told to 
wind it into an inductor in the shape of a helix that has a circular cross section of 
radius r. The windings are to be as close together as possible without overlapping. 
Show that the self-inductance of this inductor is arL 04

1 μ= . 
 
Picture the Problem The wire of length  and radius a is shown in the diagram, 
as is the inductor constructed with this wire and whose inductance L is to be 
found. We can use the equation for the self-inductance of a cylindrical inductor to 
derive an expression for L.  

2r

. . .

. . .
2a

2a

l

d  
 

 
The self-inductance of an inductor 
with length d, cross-sectional area A, 
and number of turns per unit length n  
is: 
 

AdnL 2
0μ=                              (1)       

The number of turns N is given by: 
 a

dN
2

= ⇒
ad

Nn
2
1

==  

 
Assuming that a << r, the length of 
the wire  is related to N and r: 
 

( ) d
a
rr

a
drN πππ =⎟
⎠
⎞

⎜
⎝
⎛== 2

2
2  

 
Solving for d yields: 
 r

ad
π

=  
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Substitute for d, A, and n in equation 
(1) to obtain: 
 

( ) ar
r

ar
a

L 04
12

2

0 2
1 μ

π
πμ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=  

 
51 • Using the result of Problem 50, calculate the self-inductance of an 
inductor wound from 10 cm of wire that has a diameter of 1.0 mm into a coil that 
has a radius of 0.25 cm. 
 
Picture the Problem We can substitute numerical values in the expression 
derived in Problem 50to find the self-inductance of the inductor. 
 
From Problem 50 we have: 
 a

rdL
4
0μ=  

 
Substitute numerical values and evaluate L: 
 

( )( )( )
( ) H16.0

mm50.04
cm10cm25.0N/A104 27

μπ
=

×
=

−

L  

 
52 ••• In Figure 28-51, circuit 2 has a total resistance of 300 Ω. After switch 
S is closed, the current in circuit 1 increases⎯reaching a value of 5.00 A after a 
long time. A charge of 200 μC passes through the galvanometer in circuit 2 
during the time that the current in circuit 1 is increasing. What is the mutual 
inductance between the two coils? 
  

Picture the Problem We can apply Kirchhoff’s loop rule to the galvanometer 
circuit to relate the potential difference across L2 to the potential difference across 
R2. Integration of this equation over time will yield an equation that relates the 
mutual inductance between the two coils to the steady-state current in circuit 1 and 
the charge that flows through the galvanometer. 
 
Apply Kirchhoff’s loop rule to 
the galvanometer circuit: 
  

022
2

2
1 =−+ IR

dt
dIL

dt
dIM  

or 
022221 =−+ dtIRdILMdI  

 
Integrate each term from t = 0 to 
t = ∞: 0

0
22

0
22

0
1 =−+ ∫∫∫

∞∞∞

dtIRdILdIM  

and 
02221 =−+ ∞∞ QRILMI  

 
Because I2∞ = 0: 021 =−∞ QRMI ⇒

∞

=
1

2

I
QRM  
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Substitute numerical values and 
evaluate M: 

( )( )

mH12.0

A5.00
C102.00Ω300 4

=

×
=

−

M
 

 
53 ••• [SSM] Show that the inductance of a toroid of rectangular cross 

section, as shown in Figure 28-52 is given by L =
μoN2H ln b / a( )

2π
 where N is the 

total number of turns, a is the inside radius, b is the outside radius, and H is the 
height of the toroid.  
 

Picture the Problem We can use Ampere’s law to express the magnetic field 
inside the rectangular toroid and the definition of magnetic flux to express φm 
through the toroid. We can then use the definition of self-inductance of a solenoid 
to express L. 
 

Using the definition of the self-
inductance of a solenoid, express 
L in terms of φm, N, and I: 
 

I
NL mφ=                                  (1) 

Apply Ampere’s law to a closed path 
of radius a < r < b: 
 

C0C
2 IrBd μπ ==⋅∫ B  

or, because IC = NI, 

NIrB 02 μπ = ⇒
r

NIB
π

μ
2
0=  

 
Express the flux in a strip of height 
H and width dr : 
 

BHdrd =mφ  

Substituting for B yields: dr
r

NIHd
π

μ
φ

2
0

m =  

 
Integrate dφm from r = a to r = b to 
obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛== ∫ a

bNIH
r

drNIH b

a

ln
22

00
m π

μ
π

μ
φ  

 
Substitute for mφ in equation (1) and 
simplify to obtain: ⎟

⎠
⎞

⎜
⎝
⎛=

a
bHNL ln

2

2
0

π
μ  

 
Magnetic Energy 
 
54 • A coil that has a self-inductance of 2.00 H and a resistance of 12.0 Ω 
is connected to an ideal 24.0-V battery. (a) What is the steady-state current?  
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(b) How much energy is stored in the inductor when the steady-state current is 
established? 
  
Picture the Problem The current in an LR circuit, as a function of time, is given 
by ( )τteII −−= 1f , where If = ε0/R and τ = L/R. The energy stored in the inductor 
under steady-state conditions is stored in its magnetic field and is given by 

2
f2

1
m LIU = . 

 
(a) The final current is the quotient of 
the emf of the battery and the resistance 
of the coil: 
 

A2.00
Ω12.0
V24.00

f ===
R

I ε  

(b) The energy stored in the inductor 
is: 

( )( )
J4.00

A2.00H2.00 2
2
12

f2
1

m

=

== LIU
 

 
55 • [SSM] In a plane electromagnetic wave, the magnitudes of the 
electric fields and magnetic fields are related by E = cB, where 001 μ∈=c  is 
the speed of light. Show that when E = cB the electric and the magnetic energy 
densities are equal.  
  
Picture the Problem We can examine the ratio of um to uE with E = cB and 

001 μ∈=c to show that the electric and magnetic energy densities are equal. 

 
Express the ratio of the energy 
density in the magnetic field to the 
energy density in the electric field: 
 

2
00

2

2
02

1
0

2

E

m 2
E

B
E

B

u
u

∈μ∈
μ

==  

 
Because E = cB: 
 2

00
22

00

2

E

m 1
cBc

B
u
u

∈μ∈μ
==  

 
Substituting for c2 and simplifying 
yields: 

1
00

00

E

m ==
∈μ
∈μ

u
u  ⇒ Em uu =  

 
56 •• A 2000-turn solenoid has a cross-sectional area equal to 4.0 cm2 and  
length equal to 30 cm. The solenoid carries a current of 4.0 A. (a) Calculate the 
magnetic energy stored in the solenoid using U = 1

2 LI 2 , where L = μ0n2A  .  
(b) Divide your answer in Part (a) by the volume of the region inside the solenoid 
to find the magnetic energy per unit volume in the solenoid. (c) Check your Part 
(b) result by computing the magnetic energy density from    μm = B2 / 2μ0  where  
B = μ0nI.  
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Picture the Problem We can use AnL 2
0μ= to find the inductance of the 

solenoid and nIB 0μ= to find the magnetic field inside it. 
 
(a) Express the magnetic energy 
stored in the solenoid: 
 

2
2
1

m LIU =  

Relate the inductance of the solenoid 
to its dimensions and properties: 
 

AnL 2
0μ=  

Substitute for L to obtain: 22
02

1
m IAnU μ=  

 
Substitute numerical values and 
evaluate Um: ( )

( )( )( )
mJ54mJ53.6

A4.0m0.30m104.0

m30.0
2000N/A104

224

2
27

2
1

m

==

××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

−

−πU

 

 
(b) The magnetic energy per unit 
volume in the solenoid is: ( )( )

3

24
mm

kJ/m45.0

m0.30m104.0
mJ6.53

=

×
== −A

U
V

U

 

 
(c) The magnetic energy density in 
the solenoid is given by: 

0

2

m 2μ
Bu =  

 
Substituting for B and simplifying 
yields: ( )

2

22
0

0

2

0

0

2
0

m

2

22

IN

IN
nIu

μ

μ

μ

μ
μ

=

⎟
⎠
⎞

⎜
⎝
⎛

==
 

 
Substitute numerical values and 
evaluate um: 

( )( ) ( )
( )

3

2

2227

m

kJ/m 45.0

m 30.02
A 0.42000N/A104

=

×
=

−πu
 

 
57 •• A long cylindrical wire has a radius equal to 2.0 cm and carries a 
current of 80 A uniformly distributed over its cross-sectional area. Find the 
magnetic energy per unit length within the wire. 
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Picture the Problem Consider a cylindrical annulus of thickness dr at a radius  
r < a. We can use its definition to express the total magnetic energy mdU inside 
the cylindrical annulus and divide both sides of this expression by the length of 
the wire to express the magnetic energy per unit length mdU' . Integration of this 
expression will give us the magnetic energy per unit length within the wire. 

r

dr

a

 
 
Express the magnetic energy 
within the cylindrical annulus: 
 

drrB

drrBVBdU

π
μ

π
μμ

0

2
0

2

annulus
0

2

m 2
22

=

==

 

 
Divide both sides of the equation 
by to express the magnetic 
energy per unit length mdU' : 
 

rdrBdU'm π
μ0

2

=                          (1) 

Use Ampere’s law to express the 
magnetic field inside the wire at a 
distance r < a from its center: 
 

C02 IrB μπ = ⇒
r
IB
π

μ
2

C0=  

where IC is the current inside the 
cylinder of radius r. 
 

Because the current is uniformly 
distributed over the cross-
sectional area of the wire: 
 

2

2
C

a
r

I
I

π
π

=  ⇒ I
a
rI 2

2

C =  

 

Substitute for CI to obtain: 
 2

0

2 a
rIB

π
μ

=  
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Substituting for B in equation (1) 
and simplifying yields: 
 drr

a
Irdra

rI

dU m
3

4

2
0

0

2

2
0

4
2'

π
μπ

μ
π
μ

=
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Integrate mdU' from r = 0 to r = a: 

π
μ

π
μ

π
μ

16444

2
0

4

4

2
0

0

3
4

2
0 Ia

a
Idrr

a
IU'

a

m =⋅== ∫
 

Remarks: Note that the magnetic energy per unit length is independent of the 
radius of the cylinder and depends only on the total current. 
 
58 •• A toroid that has a mean radius equal to 25.0 cm and a circular loops 
with radii equal to 2.00 cm is wound with a superconducting wire. The wire has a 
length equal to 1000 m and carries a current of 400 A. (a) What is the number of 
turns of the wire? (b) What is the magnetic field strength and magnetic energy 
density at the mean radius? (c) Estimate the total energy stored in this toroid by 
assuming that the energy density is uniformly distributed in the region inside the 
toroid. 
 
Picture the Problem We can find the number of turns on the coil from the length 
of the superconducting wire and the cross-sectional radius of the coil. We can use 

( ) ( )mean0 2 rNIB πμ= to find the magnetic field at the mean radius. We can find 
the energy density in the magnetic field from ( )0

2
m 2μBu =  and the total energy 

stored in the toroid by multiplying mu by the volume of the toroid. 
 
(a) Express the number of turns in 
terms of the length of the wire L 
and length required per turn 2πr: 

 

r
LN
π2

=  

 

Substitute numerical values and 
evaluate N: ( )

31096.7

7958
m0200.02

m0010

×=

===
π

N
 

 
(b) B inside a tightly wound 
toroid or radius r is given by: 
 

r
NIB
π

μ
2

0=  

Substitute numerical values 
and evaluate the magnetic field 
at the mean radius: 
 

( )( )( )
( )

T55.2T 547.2

m250.02
A4007958N/A104 27

==

×
=

−

π
πB
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The energy density in the 
magnetic field is given by: 
 

0

2

m 2μ
Bu =  

 
Substitute numerical values and 
evaluate um: 

( )
( )

3

3
27

2

m

MJ/m58.2

MJ/m 580.2
N/A1042

T547.2

=

=
×

= −π
u

 

 
(c) Relate the total energy stored 
in the toroid to the energy density 
in its magnetic field and the 
volume of the toroid: 
 

toroidmm VuU =  

Think of the toroid as a cylinder of 
radius r and height 2πrmean to 
obtain: 
 

( ) mean
22

mean
2

toroid 22 rrrrV πππ ==  

Substitute for toroidV   to obtain: 
 

mmean
22

m 2 urrU π=  

Substitute numerical values and evaluate Um: 
 

( ) ( )( ) kJ09.5MJ/m580.2m250.0m0200.02 322
m == πU  

 
RL Circuits 
 
59 • [SSM] A circuit consists of a coil that has a resistance equal to  
8.00 Ω and a self-inductance equal to 4.00 mH, an open switch and an ideal  
100-V battery—all connected in series. At t = 0 the switch is closed.  Find the 
current and its rate of change at times (a) t = 0, (b) t = 0.100 ms, (c) t = 0.500 ms, 
and (d) t = 1.00 ms. 
 
Picture the Problem We can find the current using ( )τteII −−= 1f  where  

If = ε0/R and τ = L/R and its rate of change by differentiating this expression with 
respect to time. 
 
Express the dependence of the 
current on If and τ: 
 

( )τteII −−= 1f  
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Evaluating If and τ  yields: A12.5

Ω8.00
V1000

f ===
R

I ε  

and 

ms0.500
Ω8.00

mH4.00
===

R
Lτ  

 
Substitute for If and τ  to obtain: ( )( )ms500.01A5.12 teI −−=  

 
Express dI/dt: 
 

( )( )( )
( ) ms500.0

1ms500.0

kA/s0.25

s2000A5.12

t

t

e

e
dt
dI

−

−−

=

−−=
 

 
(a) Evaluate I and dI/dt at t = 0: ( ) ( )( ) 01A5.120 0 =−= eI  

and 

( ) kA/s0.25kA/s0.25 0

0

==
=

e
dt
dI

t

 

 
(b) Evaluating I and dI/dt at  
t = 0.100 ms yields: 

( ) ( )( )
A27.2

1A5.12ms 100.0 ms 500.0ms 100.0

=

−= −eI

and 

( )

kA/s5.20

kA/s0.25 ms 500.0ms 100.0

ms 500.0

=

= −

=

e
dt
dI

t  

 
(c) Evaluate I and dI/dt at  
t = 0.500 ms to obtain: 

( ) ( )( )
A90.7

1A5.12ms 500.0 ms 500.0ms 500.0

=

−= −eI

and 

( )

kA/s20.9

kA/s0.25 ms 500.0ms 500.0

ms 500.0

=

= −

=

e
dt
dI

t  

 
(d) Evaluating I and dI/dt at  
t = 1.00 ms yields: 

( ) ( )( )
A8.10

1A5.12ms 00.1 ms 500.0ms 00.1

=

−= −eI
 

and 



   Chapter 28    
 

2706 

( )

kA/s38.3

kA/s0.25 ms 500.0ms 00.1

ms 00.1

=

= −

=

e
dt
dI

t  

 
60 • In the circuit shown in Figure 28-53, the throw of the make-before-
break switch has been at contact a for a long time and the current in the 1.00 mH 
coil is equal to 2.00 A.  At t = 0 the throw is quickly moved to contact b. The total 
resistance R + r of the coil and the resistor is 10.0 Ω. Find the current when  
(a) t = 0.500 ms, and (b) t = 100 ms. 
  
Picture the Problem We can find the current using ( ) ,0

τteItI −=  where I0 is the 
current at time t = 0 and τ = L/R. 
 
Express the current as a function of 
time: 

( ) ( ) ττ tt eeItI −− == A00.20  
 

Evaluating τ  yields: ms100.0
Ω0.10

mH00.1
===

R
Lτ  

 
Substitute for τ  to obtain: 
 

( ) ( ) tetI ms 100.0A00.2 −=  
 

(a) When t = 0.500 ms: ( ) ( )
mA13.5

A00.2ms 500.0 ms 100.0ms 500.0

=

= −eI
 

 
(b) When t = 10.0 ms: ( ) ( )

( )
0

A1044.7A00.2
A2ms 0.10

44100

ms 100.0ms 0.10

≈

×==

=
−−

−

e
eI

 
61 •• [SSM] In the circuit shown in Figure 28-54, let ε0 = 12.0 V,  
R = 3.00 Ω, and L = 0.600 H. The switch, which was initially open, is closed at 
time t = 0. At time t = 0.500 s, find (a) the rate at which the battery supplies 
energy, (b) the rate of Joule heating in the resistor, and (c) the rate at which 
energy is being stored in the inductor. 
 
Picture the Problem We can find the current using ( ),1f

τteII −−=  where  

If = ε0/R,and τ = L/R, and its rate of change by differentiating this expression with 
respect to time. 
 
Express the dependence of the 
current on If and τ : 

( ) ( )τteItI −−= 1f  
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Evaluating If and τ  yields: A4.00
Ω3.00
V0.210

f ===
R

I ε  

and 

s0.200
Ω3.00
H600.0
===

R
Lτ  

 
Substitute for If and τ  to obtain: ( ) ( )( )s200.01A00.4 tetI −−=  

 
Express dI/dt: 
 

( )( )( )
( ) s 200.0

1s 200.0

A/s0.20

s00.5A00.4

t

t

e

e
dt
dI

−

−−

=

−−=
 

 
(a) The rate at which the battery 
supplies energy is given by: 
 

0εIP =  

Substituting for I and ε0 yields: 
 

( ) ( )( )( )
( )( )s200.0

s200.0

1W0.48
V 0.121A00.4

t

t

e
etP

−

−

−=

−=
 

 
The rate at which the battery 
supplies energy at t = 0.500 s is: 

( ) ( )( )
 W1.44

1W0.48s 500.0 s200.0500.0

=

−= −eP
 

 
(b) The rate of Joule heating is: RIP 2

J =  
 

Substitute for I and R and simplify to 
obtain: 
 

( )( )[ ] ( )
( )( )2s200.0

2s200.0
J

1 W8.04

Ω 00.31A00.4
t

t

e

eP
−

−

−=

−=
 

The rate of Joule heating at  
t = 0.500 s is: 
 

( ) ( )( )
 W4.40

1 W8.04s 500.0 2s200.0s 500.0
J

=

−= −eP
 

 
(c) Use the expression for the 
magnetic energy stored in an 
inductor to express the rate at which 
energy is being stored: 
 

[ ]
dt
dILILI

dt
d

dt
dU

== 2
2
1L  
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Substitute for L, I, and dI/dt to obtain: 
 

( )( )( )( )

( )( ) s200.0s200.0

s200.0s200.0L

1W0.48

A/s0.201A00.4H600.0

tt

tt

ee

ee
dt

dU

−−

−−

−=

−=
 

 
Evaluate this expression for t = 0.500 s: 
 

( )( )  W62.31W0.48 s200.0s 500.0s200.0s 500.0

s 500.0

L =−=⎥⎦
⎤ −−

=

ee
dt

dU

t

 

 
Remarks: Note that, to a good approximation, dUL/dt = P − PJ. 
 
62 •• How many time constants must elapse before the current in an RL 
circuit (Figure 28-54) that is initially zero reaches (a) 90 percent, (b) 99 percent, 
and (c) 99.9 percent of its steady-state value? 
 
Picture the Problem If the current is initially zero in an LR circuit, its value at 
some later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ = L/R is the 
time constant for the circuit. We can find the number of time constants that must 
elapse before the current reaches any given fraction of its final value by solving 
this equation for t/τ . 
 
Express the fraction of its final value 
to which the current has risen as a 
function of time: 
 

τte
I
I −−= 1
f

⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

f

1ln
I
It

τ
 

(a) Evaluate t/τ for I/If = 0.90: 
 

( ) 3.290.01ln
%90

=−−=
τ
t  

 
(b) Evaluate t/τ for I/If = 0.99: 
 

( ) 6.499.01ln
%99

=−−=
τ
t  

 
(c) Evaluate t/τ for I/If = 0.999: ( ) 91.6999.01ln

%9.99

=−−=
τ
t  

 
 
63 •• [SSM] A circuit consists of a 4.00-mH coil, a 150-Ω resistor, a  
12.0-V ideal battery and an open switch—all connected in series. After the switch 
is closed: (a) What is the initial rate of increase of the current? (b) What is the rate 
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of increase of the current when the current is equal to half its steady-state value? 
(c) What is the steady-state value of the current? (d) How long does it take for the 
current to reach 99 percent of its steady state value? 
  
Picture the Problem If the current is initially zero in an LR circuit, its value at 
some later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ  = L/R is the 
time constant for the circuit. We can find the rate of increase of the current by 
differentiating I with respect to time and the time for the current to reach any 
given fraction of its initial value by solving for t. 
 
(a) Express the current in the circuit 
as a function of time: 

( )τε te
R

I −−= 10  

 
Express the initial rate of increase of 
the current by differentiating this 
expression with respect to time: 
 

( )

( )
t

L
R

t
L
R

t

t

e
L

e
R

e
R

e
dt
d

Rdt
dI

−

−−

−

=

=⎟
⎠
⎞

⎜
⎝
⎛−−=

−=

0

00

0

1

1

ε

εε

ε

ττ
τ

τ

 

 
Evaluate dI/dt at t = 0 to obtain: 
 

kA/s3.00
mH4.00
V12.000

0

===
=

e
Ldt

dI

t

ε  

 
(b) When I = 0.5If: τte−−=15.0  ⇒ 5.0=− τte  

 
Evaluate dI/dt with 5.0=− τte  to 
obtain: 
 

kA/s1.50

mH4.00
V12.05.05.0 0

5.0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

=− Ldt
dI

te

ε
τ  

 
(c) Calculate If from ε0 and R: mA 80.0

Ω150
V12.00

f ===
R

I ε  

 
(d) When I = 0.99If: τte−−= 199.0 ⇒ 01.0=− τte  

 
Solving for t and substituting for τ 
yields: 

( ) ( )01.0ln01.0ln
R
Lt −=−= τ  

 
Substitute numerical values and 
evaluate t: 

( ) ms123.001.0ln
Ω150
mH4.00

=−=t  
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64 •• A circuit consists of a large electromagnet that has an inductance of 
50.0 H and a resistance of 8.00 Ω, a dc 250-V power source and an open switch—
all connected in series. How long after the switch is closed is the current equal to 
(a) 10 A, and (b) 30 A. 
  
Picture the Problem If the current is initially zero in an LR circuit, its value at 
some later time t is given by ( )τteII −−= 1f , where If = ε0/R and τ = L/R is the 
time constant for the circuit. We can find the time for the current to reach any 
given value by solving this equation for t. 
 
Evaluate If and τ : 
 

A31.25
Ω8.00
V2500

f ===
R

I ε  

and 

s6.25
Ω8.00
H50.0
===

R
Lτ  

 
Solve ( )τteII −−= 1f  for t: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

f

1ln
I
It τ  

 
Substituting for τ and If yields: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

A25.31
1lns25.6 It  

 
(a) Evaluate t for I = 10 A: ( )

s4.2

A25.31
A101lns25.6

A10

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=t

 

 
(b) Evaluate t for I = 30 A: ( )

s20

A25.31
A301lns25.6

A30

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=t

 

 
65 •• [SSM] Given the circuit shown in Figure 28-55, assume that the 
inductor has negligible internal resistance and that the switch S has been closed 
for a long time so that a steady current exists in the inductor. (a) Find the battery 
current, the current in the 100 Ω resistor, and the current in the inductor.  
(b) Find the potential drop across the inductor immediately after the switch S is 
opened. (c) Using a spreadsheet program, make graphs of the current in the 
inductor and the potential drop across the inductor as functions of time for the 
period during which the switch is open.    
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Picture the Problem The self-induced emf in the inductor is proportional to the 
rate at which the current through it is changing. Under steady-state conditions, 
dI/dt = 0 and so the self-induced emf in the inductor is zero. We can use 
Kirchhoff’s loop rule to obtain the current through and the voltage across the 
inductor as a function of time. 
 
(a) Because, under steady-state 
conditions, the self-induced emf in 
the inductor is zero and because the 
inductor has negligible resistance, 
we can apply Kirchhoff’s loop rule 
to the loop that includes the source, 
the 10-Ω resistor, and the 2-H 
inductor to find the current drawn 
from the battery and flowing through 
the inductor and the 10-Ω resistor: 
 

( ) 010V10 10 =Ω− Ω−I  
 
 
 

Solving for Ω−10I  yields: 
 

A0.1H210 == −Ω− II  

By applying Kirchhoff’s junction 
rule at the junction between the 
resistors, we can conclude that: 
 

0H-2battery -100 =−=Ω III  

(b)  When the switch is opened, the current cannot immediately go to zero in the 
circuit because of the inductor.  For a time, a current will circulate in the circuit 
loop between the inductor and the 100-Ω resistor.  Because the current flowing 
through this circuit is initially 1 A, the voltage drop across the 100-Ω resistor is 
initially V.100  Conservation of energy (Kirchhoff’s loop rule) requires that the 

voltage drop across the 2-H inductor is V.100H-2 =V    

 
(c) Apply Kirchhoff’s loop rule to 
the RL circuit to obtain: 

0=+ IR
dt
dIL  

 
The solution to this differential 
equation is: 
 

( ) τ
tt

L
R

eIeItI
−−

== 00  

where s020.0
100

H0.2
=

Ω
==

R
Lτ  
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A spreadsheet program to generate the data for graphs of the current and the 
voltage across the inductor as functions of time is shown below. The formulas 
used to calculate the quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 2.0 L 
B2 100 R 
B3 1 I0 
A6 0 t0 
B6 $B$3*EXP((−$B$2/$B$1)*A6) t

L
R

eI
−

0   
 

 A B C 
1 L= 2 H 
2 R= 100 ohms 
3 I0= 1 A 
4    
5 t I(t) V(t) 
6 0.000 1.00E+00 100.00
7 0.005 7.79E−01 77.88 
8 0.010 6.07E−01 60.65 
9 0.015 4.72E−01 47.24 
10 0.020 3.68E−01 36.79 
11 0.025 2.87E−01 28.65 
12 0.030 2.23E−01 22.31 
    

32 0.130 1.50E−03 0.15 
33 0.135 1.17E−03 0.12 
34 0.140 9.12E−04 0.09 
35 0.145 7.10E−04 0.07 
36 0.150 5.53E−04 0.06  
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The following graph of the current in the inductor as a function of time was 
plotted using the data in columns A and B of the spreadsheet program. 

0.0
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)

 
The following graph of the voltage across the inductor as a function of time was 
plotted using the data in columns A and C of the spreadsheet program. 
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66 •• Given the circuit shown in Figure 28-56, the inductor has negligible 
internal resistance and the switch S has been open for a long time. The switch is 
then closed. (a) Find the current in the battery, the current in the 100-Ω resistor, 
and the current in the inductor immediately after the switch is closed.  (b) Find the 
current in the battery, the current in the 100-Ω resistor, and the current in the 
inductor a long time after the switch is closed.  After being closed for a long time 
the switch is now opened. (c) Find the current in the battery, the current in the 
100-Ω resistor, and the current in the inductor immediately after the switch is 
opened. (d) Find the current in the battery, the current in the 100-Ω resistor, and 
the current in the inductor after the switch is opened for a long time.  
  
Picture the Problem Let the current supplied by the battery be Ibattery, the current 
through the inductor be IL, and the current in the 100-Ω resistor be I100-Ω. (a) We 
simplify our calculations by using the fact that the current in an inductor cannot 
change abruptly. Thus, the current in the inductor must be zero just after the 
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switch is closed, because the current is zero before the switch is closed. (b) When 
the current reaches its final value, dI/dt equals zero, and there is no potential drop 
across the inductor. The inductor thus acts like a short circuit; that is, the inductor 
acts like a wire with zero resistance. (c) Immediately after the switch is opened, 
the current in the inductor is the same as it was before. (d) A long time after the 
switch is opened, all the currents must be zero. 
 
(a) The switch is just opened. The 
current through the inductor is zero, 
just as it was before the switch was 
closed. Apply the junction rule to 
relate Ibattery and I100-Ω: 
 

0=LI  

LIII += Ω−100battery ⇒ Ω−= 100battery II  

Apply Kirchhoff’s loop rule to 
the loop on the right to obtain: 
 

( )
( ) 0 100

 0.10V 0.10

-100

battery

=Ω−

Ω−

ΩI

I
 

or, because Ω−= 100battery II , 
( )

( ) 0 100

 0.10V 0.10

battery

battery

=Ω−

Ω−

I

I
 

 
Solving for batteryI  yields: 

mA 9.90
 100 0.10

V 0.10
-100battery

=
Ω+Ω

== ΩII
 

 
(b) After a long time, the currents are 
steady and the inductor acts like a 
short circuit, so the potential drop 
across the 100-Ω resistor is zero. 
Apply the loop rule to the loop to the 
right to obtain: 
 

( ) ( ) 0 100H 00.2 100
L =Ω+− Ω−I

dt
dI  

Because 0L =
dt

dI : 

 

( ) 0 100100 =ΩΩ−I  
and 

0100 =Ω−I  

 
Apply the loop rule to the loop to the 
right to obtain: 
 

( )
( ) 0 100

V 0.10V 0.10

100

battery

=Ω−

−

Ω−I

I
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Because Ω−100I = 0: 
 

( ) 0V 0.10V 0.10 battery =− I  

and 
A 00.1battery =I  

 
Apply the junction rule to the three 
currents to obtain: 
 

Ω−+= 100battery III L ⇒ 0A 00.1 += LI  

and so A 00.1=LI  

 
(c) When the switch is reopened, I1 
instantly becomes zero. The current 
IL in the inductor changes 
continuously, so at that instant  
IL = 1.00 A. Apply the junction rule 
to obtain: 
 

A 00.1=LI , 

LIII += Ω−100battery , 

and 
LIII −=Ω− battery100  

Substitute numerical values for Ibattery 
and IL and evaluate I100-Ω: 
 

A 00.1A 00.10100 −=−=Ω−I  

(d) A long time after the switch is 
opened, all the currents must be zero: 

0100battery === Ω−III L  

 
67 •• An inductor, two resistors, a make-before-break switch an a battery are 
connected as shown in Figure 28-57. The switch throw has been at contact e for a 
long time and the current in the inductor is 2.5 A.  Then, at t = 0, the throw is 
quickly moved to contact f. During the next 45 ms the current in the inductor 
drops to 1.5 A. (a) What is the time constant for this circuit? (b) If the resistance 
R is equal to 0.40 Ω, what is the value of the inductance L? 
 
Picture the Problem The current in an initially energized but source-free RL 
circuit is given by τteII −= 0 . We can find τ from this equation and then use its 
definition to evaluate L. 
 
(a) Express the current in the RL 
circuit as a function of time: 
 

τteII −= 0 ⇒

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

0

ln
I
I

tτ  

 
Substitute numerical values and 
evaluate τ : 

ms88ms1.88

A2.5
A1.5ln

ms45
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=τ  
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(b) Using the definition of the 
inductive time constant, relate L to 
R: 
 

RL τ=  

Substitute numerical values and 
evaluate L: 

( )( ) mH35Ω40.0ms1.88 ==L  

 
68 •• A circuit consists of a coil that has a self-inductance equal to 5.00 mH 
and an internal resistance equal to 15.0 Ω, an ideal 12.0-V battery and an open 
switch—all connected in series (Figure 28-58), At t = 0 the switch is closed.  Find 
the time at which the rate at which energy is dissipated in the coil equals the rate 
at which magnetic energy is stored in the coil. 
 
Picture the Problem If the current is initially zero in an LR circuit, its value at 
some later time t is given by ( ),1f

τteII −−=  where If = ε0/R and τ = L/R is the 
time constant for the circuit. We can find the time at which the power dissipation 
in the resistor equals the rate at which magnetic energy is stored in the inductor 
by equating expressions for these rates and using the expression for I and its rate 
of change. 
 
Express the rate at which magnetic 
energy is stored in the inductor: 
 

[ ]
dt
dILILI

dt
d

dt
dUL == 2

2
1  

 
Express the rate at which power is 
dissipated in the resistor: 
 

RIP 2=  

Equate these expressions to obtain: 
dt
dILIRI =2 ⇒

dt
dII τ=            (1) 

 
Express the current and its rate of 
change: 
 

( )τteII −−= 1f  
and 

( )
τ

ττ

τ

τ

t

tt

eI

eIe
dt
dI

dt
dI

−

−−

=

⎟
⎠
⎞

⎜
⎝
⎛−−=−=

f

ff
11

 

 
Substitute for dI/dt in equation (1) 
and simplify to obtain: 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=− −− ττ

τ
τ tt eIeI f

f 1  

or 
ττ tt ee −− =−1 ⇒ τte−= 21  

 



                                                                              Magnetic Induction 
 

 

2717

Solving for t and substituting for 
τ  yields: 2

1
2
1 lnln

R
Lt −=−= τ  

 
Substitute numerical values and 
evaluate t: 

s231ln
15.0

mH 00.5
2
1 μt =

Ω
−=  

 
69 ••• [SSM] In the circuit shown in Figure 28-54, let ε0 = 12.0 V,  
R = 3.00 Ω, and L = 0.600 H. The switch is closed at time t = 0. During the time 
from t = 0 to t = L/R, find (a) the amount of energy supplied by the battery, (b) the 
amount of energy dissipated in the resistor, and (c) the amount of energy 
delivered to the inductor. Hint: Find the energy transfer rates as functions of time 
and integrate. 
 
Picture the Problem We can integrate I,dtdE 0ε= where ( )τteII −−= 1f , to 
find the energy supplied by the battery, RIdtdE 2

J =  to find the energy 

dissipated in the resistor, and ( ) ( )( )22
1 ττ ILU L = to express the energy that has 

been stored in the inductor when t = L/R. 
 
(a) Express the rate at which energy 
is supplied by the battery: 
 

I
dt
dE

0ε=  

Express the current in the circuit 
as a function of time: 
 

( )τε te
R

I −−= 10  

Substitute for I to obtain: ( )τε te
Rdt

dE −−= 1
2
0  

 
Separate variables and integrate 
from t = 0 to t = τ to obtain: 
 

( )

( )[ ]

eR
L

eR

e
R

dte
R

E t

2

2
0

2
0

1
2
0

0

2
0 1

εε

ε

ε

τ

τττ

τ
τ

==

+−−=

−=

−

−∫

 

 
Substitute numerical values and 
evaluate E: 

( ) ( )
( )

J53.3
Ω00.3

H600.0V0.12
2

2

==
e

E  
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(b) Express the rate at which energy 
is being dissipated in the resistor: 
 

( )

( )ττ

τ

ε

ε

tt

t

ee
R

Re
R

RI
dt

dE

2
2
0

2
02J

21

1

−−

−

+−=

⎥⎦
⎤

⎢⎣
⎡ −==

 

 
Separate variables and integrate 
from t = 0 to t = L/R to obtain: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−=

+−= ∫ −−

22

2
0

2

2
0

0

2
2
0

J

2
1

2
12

22

2

21

eeR
L

e
R
L

R
L

e
R
L

R

dtee
R

E
RL

tt

ε

ε

ε ττ

 

 
Substitute numerical values and 
evaluate EJ: 

( ) ( )
( )
J61.1

2
1

2
12

Ω3.00
H0.600V12.0

22

2

J

=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

ee
E

 

 
(c) Express the energy stored in the 

inductor when t = 
R
L  : 

 ( )

( )21
2

2
0

2
10

2
1

2
1

1
2

1

−

−

−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

e
R

L

e
R

L

R
LIL

R
LU L

ε

ε

 
 

Substitute numerical values and 
evaluate UL: 

( )( )
( )

( )

J92.1

1
Ω3.002

V12.0H0.600 21
2

2

=

−=⎟
⎠
⎞

⎜
⎝
⎛ −e

R
LU L

 

 
Remarks: Note that, as we would expect from energy conservation,  
E = EJ + EL. 
 
General Problems 
 
70 • A 100-turn coil has a radius of 4.00 cm and a resistance of 25.0 Ω.  
(a) The coil is in a uniform magnetic field that is perpendicular to the plane of the 
coil.  What rate of change of the magnetic field strength will induce a current of 
4.00 A in the coil? (b) What rate of change of the magnetic field strength is 
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required if the magnetic field makes an angle of 20o with the normal to the plane 
of the coil? 
 
Picture the Problem We can apply Faraday’s and Ohm’s laws to obtain 
expressions for the induced emf that we can equate and solve for the rate at which 
the perpendicular magnetic field must change to induce a current of 4.00 A in the 
coil. 
 
(a) Using Faraday’s law, relate the 
induced emf in the coil to the 
changing magnetic flux:  
 

dt
dBNA

dt
d

== mφε  

 
 

Using Ohm’s law, relate the induced 
emf to the resistance of the coil and 
the current in it: 
 

IR=ε  

Equate these expressions and solve 
for dB/dt: 
 

IR
dt
dBNA =  ⇒ 2rN

IR
NA
IR

dt
dB

π
==  

Substitute numerical values and 
evaluate dB/dt: 

( )( )
( ) ( )

T/s199
m0.0400100
Ω25.0A4.00

2 ==
πdt

dB  

 
(b) Using Faraday’s law, relate the 
induced emf in the coil to the 
changing magnetic flux when the 
field makes an angle θ with respect 
to the normal to the coil area: 
 

( )

dt
dBNA

nBNA
dt
d

dt
d

θ

φε

cos

ˆm

=

⋅==
 

 

Proceed as in (a) to obtain: 
θπ cos2rN

IR
dt
dB

=  

 
Substitute numerical values and 
evaluate dB/dt: 

( )( )
( ) ( )

T/s212

20cosm0.0400100
Ω25.0A4.00

2

=

°
=

πdt
dB

 

 
71 •• [SSM] Figure 28-59 shows a schematic drawing of an ac generator. 
The basic generator consists of a rectangular loop of dimensions a and b and has 
N turns connected to slip rings. The loop rotates (driven by a gasoline engine) at 
an angular speed of ω in a uniform magnetic field    B . (a) Show that the induced 
potential difference between the two slip rings is given by ε  = NBabω sin ωt.   
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(b) If  a = 2.00 cm, b = 4.00 cm, N = 250, and B = 0.200 T, at what angular 
frequency ω must the coil rotate to generate an emf whose maximum value is 
100V? 
  
Picture the Problem (a) We can apply Faraday’s law and the definition of 
magnetic flux to derive an expression for the induced emf in the coil (potential 
difference between the slip rings). In Part (b) we can solve the equation derived in 
Part (a) for ω and evaluate this expression under the given conditions.  
 
(a) Use Faraday’s law to express the 
induced emf: 
 

( )
dt

td mφε −=  

Using the definition of magnetic 
flux, relate the magnetic flux through 
the loop to its angular velocity: 
 

( ) tNBAt ωφ cosm =  

Substitute for ( )tmφ  to obtain: 
 

[ ]
( )

tNBab

tNBab

tNBA
dt
d

ωω

ωω

ωε

sin

sin

cos

=

−−=

−=

 

 
(b) Express the condition under 
which ε = εmax: 
 

1sin =tω  
and 

ωε NBab=max ⇒
NBab

maxεω =  

 
Substitute numerical values and evaluate ω: 
 

( )( )( )( ) krad/s2.50
m0.0400m0.0200T0.200250

V100
==ω  

 
72 •• Prior to 1960, magnetic field strengths were usually measured by a 
rotating coil gaussmeter.  This device used a small multi-turn coil rotating at a 
high speed on an axis perpendicular to the magnetic field. This coil was connected 
to an ac voltmeter by means of slip rings, like those shown in Figure 28-61. In one 
specific design, the rotating coil has 400 turns and an area of 1.40 cm2. The coil 
rotates at 180 rev/min. If the magnetic field strength is 0.450 T, find the 
maximum induced emf in the coil and the orientation of the normal to the plane of 
the coil relative to the field for which this maximum induced emf occurs. 
 
Picture the Problem We can apply Faraday’s law and the definition of magnetic 
flux to derive an expression for the induced emf in the rotating coil gaussmeter.  
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Use Faraday’s law to express the 
induced emf: 
 

dt
d mφε −=  

Using the definition of magnetic 
flux, relate the magnetic flux through 
the loop to its angular velocity: 
 

( ) tNBAt ωφ cosm =  

Substitute for ( )tmφ  and simplify 

to obtain: 
 

[ ]
( )

ttNBA
tNBA

tNBA
dt
d

ωωω
ωω

ω

ε

ε

sinsin
sin

cos

max==
−−=

−=

 

where 
ωε NBA=max  

 
Substitute numerical values and evaluate εmax: 
 

( )( )( ) V475.0
s60

min1
rev

rad2
min
rev180m101.40T0.450400 24

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××= − πε  

 
The maximum induced emf occurs at the instant the normal to the plane of the 
coil is perpendicular to the magnetic field B . At this instant, mφ is zero, but ε  is 
a maximum. 
 
73 •• Show that the equivalent self-inductance for two inductors that have 
self-inductances L1 and L2, and are connected in series is given by Leq = L1 + L2 if 
there is no flux linkage between the two inductors.  (Saying there is no flux 
linkage between them is equivalent to saying that the mutual inductance between 
them is zero.)  
 
Picture the Problem We can use the equality of the currents in the inductors 
connected in series and the additive nature of the total induced emf across the 
inductors to show that the self-inductances are additive. 
 
Relate the total induced emf ε to the 
effective self-inductance Leq and the 
rate at which the current is changing 
in the inductors: 
 

dt
dILeq=ε  

Because the inductors L1 and L2 are 
in series: 
 

III == 21 ⇒ 
dt
dI

dt
dI

dt
dI

== 21  
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Express the total induced emf: 

( )
dt
dILL

dt
dIL

dt
dIL

21

2121

+=

+=+= εεε
 

 
Substitute in equation (1) and 
simplify to obtain: 

21eq LLL +=  

 
74 •• Show that the equivalent self-inductance for two inductors that have 
self-inductances L1 and L2, and are connected in parallel is given by 

   

1
Leq

=
1
L1

+
1
L2

 if there is no flux linkage between the two inductors.  (Saying there 

is no flux linkage between them is equivalent to saying that the mutual inductance 
between them is equal to zero.) 
 
Picture the Problem We can use the common potential difference across the 
parallel combination of inductors and the fact that the current into the parallel 
combination is the sum of the currents through each inductor to find an expression 
of the equivalent self-inductance. 
 
Define Leq by: 
 dtdI

L ε
=eq  ⇒ 

eq

1
Ldt

dI ε=      (1) 

 
Relate the common potential 
difference across the inductors to 
their self-inductances and the rate 
at which the current is changing 
in each: 
 

dt
dIL 1

11 =ε                                (2) 

and 

dt
dIL 2

22 =ε                               (3) 

Because the current divides at the 
parallel junction: 
 

21 III += ⇒ 
dt
dI

dt
dI

dt
dI 21 +=  

 
Solve equations (2) and (3) for 
dI1/dt and dI2/dt and substitute to 
obtain: 
 

2

2

1

1

LLdt
dI εε

+=  

Express the relationship between an 
emf ε applied across the parallel 
combination of inductors and the 
emfs ε1 and ε2 across the individual 
inductors: 

21 εεε ==  
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Substituting yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

2121

11
LLLLdt

dI εεε  

 
Substitute in equation (1) and solve 
for 1/ Leq: 21eq

111
LLL

+=  

 
75 •• A circuit consists of a 12V battery, a switch, and a light bulb—all 
connected in series.  It is known that the light bulb requires a minimum current of 
0.10 A in order to produce a visible glow.   In this circuit, this particular bulb 
draws 2.0 W when the switch has been closed for a long time.  Now, an inductor 
is put in series with the bulb and the rest of the circuit.  If the light bulb begins to 
glow 3.5 ms after the switch is closed, how large is the self-inductance of the 
inductor? Ignore any heating time of the filament and assume the glow is 
observed as soon as the current in the filament reaches the 0.10 A threshold. 
 
Picture the Problem We can use Equation 28-25 to express the current in the 
circuit as a function of time and the expression RP 2ε= for the rate at which 
energy is dissipated in the light bulb to express the resistance of the circuit. 
 
Use Equation 28-25 to express the  
current in the RL circuit: 
 

( ) ( ) ( )LRtt e
R

eItI −− −=−= 110
ετ  

The resistance of the light bulb is 
related to the rate at which it 
dissipates energy: 
 

R
P

2ε
= ⇒

P
R

2ε
=  

Substitute for R and simplify to 
obtain: ( ) ( )PLtVLt

P
V

ePe

P

tI
2

2

112
−−

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= εε

ε  

or, for ( ) minItI = , 

( )PLtVePI
2

1min
−−= ε  

 
Solving for L yields: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

P
IP

tL
min

2

1ln ε
ε  

 
Substitute numerical values and 
evaluate L: 

( ) ( )
( ) ( )( )

H 28.0

 W0.2
A 10.0V 121ln W0.2

ms 5.3V 12 2

=

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=L
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76 •• Your friend decides to generate electrical power by rotating a 100 000-
turn coil of wire around an axis in the plane of the coil and through its center   
The coil is perpendicular to Earth’ magnetic field in a region where the field 
strength is equal to 0.300 G.  The loops of the coil have a radius 25.0 cm, and the 
coil has negligible resistance.  (a) If your friend turns the coil at a rate of  
150 rev/s, what peak current will exist in a 1500-Ω resistor that is connected 
across the terminals the coil?  (b) The average of the square of the current will 
equal half of the square of the peak current.  What will be the average power 
delivered to the resistor? Is this an economical way to generate power? HINT: 
Energy has to be expended to keep the coil rotating. 
 
Picture the Problem We can use Ohm’s law to express the peak current in terms 
of the peak induced emf in the coil and the resistance of the resistor attached to 
the coil and Faraday’s law to find the peak induced emf in the coil.  
 
(a) Apply Ohm’s law to the coil and 
external resistor to obtain: R

I max
peak

ε
=  

 
Appling Faraday’s law yields: ( )

ttNBA

tNBA
dt
d

dt
d

ωωω

ωφ

ε
ε

sinsin

cos

max

m

==

−=−=
 

where ωε NBA=max . 
 

Substitute for maxε to obtain:  ( )

R
fNBr

R
frNB

R
NBAI

22

2

peak

2

2

π

ππω

=

==
 

 
Substitute numerical values and evaluate Ipeak: 
 

( ) ( )

mA 370

mA 11.370
Ω 1500

s
rev 150m 250.0

G 10
T 1G 300.0102 2
4

52

peak

=

=
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
π

I  

 
(b) The average power supplied is 
the power dissipated in Joule heat in 
the resistor: 
 

( ) RIRIP 2
peak2

1
av

2
av ==  

Substitute numerical values and 
evaluate Pav: 

( ) ( )
 W103

Ω 1500mA 11.370 2
2
1

av

=

=P
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A power of 103 W is equal to 0.137 hp.  Your friend is likely to tire.  This is 
probably not an efficient way to generate power. 
 
77 •• [SSM] Figure 28-60a  shows an experiment designed to measure the 
acceleration due to gravity. A large plastic tube is encircled by a wire, which is 
arranged in single loops separated by a distance of 10 cm. A strong magnet is 
dropped through the top of the loop. As the magnet falls through each loop the 
voltage rises and then the voltage rapidly falls through zero to a large negative 
value and then returns to zero. The shape of the voltage signal is shown in Figure 
28-62b. (a) Explain the basic physics behind the generation of this voltage pulse. 
(b) Explain why the tube cannot be made of a conductive material.  
(c) Qualitatively explain the shape of the voltage signal in Figure 28-60b. (d) The 
times at which the voltage crosses zero as the magnet falls through each loop in 
succession are given in the table in the next column. Use these data to calculate a 
value for g.   
 
Picture the Problem 
(a) As the magnet passes through a loop it induces an emf because of the 
changing flux through the loop. This allows the coil to ″sense″ when the magnet 
is passing through it.  
 
(b) One cannot use a cylinder made of conductive material because eddy currents 
induced in it by a falling magnet would slow the magnet. 
 
(c) As the magnet approaches the loop the flux increases, resulting in the negative 
voltage signal of increasing magnitude. When the magnet is passing a loop, the 
flux reaches a maximum value and then decreases, so the induced emf becomes 
zero and then positive. The instant at which the induced emf is zero is the instant 
at which the magnet is at the center of the loop.  
 
(d)  Each time represents a point when the distance has increased by 10 cm.  The 
following graph of distance versus time was plotted using a spreadsheet program. 
The regression curve, obtained using Excel’s ″Add Trendline″ feature, is shown 
as a dashed line. 
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y  = 4.9257t 2 + 1.3931t  + 0.0883

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.00 0.10 0.20 0.30 0.40

t  (s)

y 
(m

)

 
The coefficient of the second-degree term is .2

1 g  Consequently, 

( ) 22 m/s85.9m/s9257.42 ==g  

 
78 •• The rectangular coil shown in Figure 28-61 has 80 turns, is 25 cm 
wide, is 30 cm long, and is located in a magnetic field of 0.14 T directed out of 
the page, as shown.  Only half of the coil is in the region of the magnetic field. 
The resistance of the coil is 24 Ω. Find the magnitude and the direction of the 
induced current if the coil is moved with a speed of 2.0 m/s (a) to the right, (b) up 
the page, (c) to the left, and (d) down the page. 
 
Picture the Problem The current equals the induced emf divided by the 
resistance. We can calculate the emf induced in the circuit as the coil moves by 
calculating the rate of change of the flux through the coil. The flux is proportional 
to the area of the coil in the magnetic field. We can find the direction of the 
current from Lenz’s law. 
 
(a) and (c) Express the magnitude of 
the induced current: 
 

R
I

ε
=                                       (1) 

Using Faraday’s law, express the 
magnitude of the induced emf: 
 

dt
d mφε =  

When the coil is moving to the right 
(or to the left), the flux does not 
change (until the coil leaves the 
region of magnetic field). Thus: 
 

0m ==
dt

dφε ⇒ 0==
R

I
ε
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(b) Letting x represent the length of 
the side of the rectangular coil that is 
in the magnetic field, express the 
magnetic flux through the coil: 
 

NBwx=mφ  

Compute the rate of change of the 
flux when the coil is moving up or 
down: 
 

( )( )( )( )
V5.60

m/s2.0m0.25T0.1480

m

=
=

=
dt
dxNBw

dt
dφ

 

 
Substitute in equation (1) to obtain: 
 

clockwiseA 0.23
Ω24
V5.60
==I  

 
(d) When the coil is moving downward, the outward flux decreases and the 
induced current will be in such a direction as to produce outward flux. The 
magnitude of the current is the same as in Part (b) and  

ckwisecountercloA 0.23=I . 

 
79 •• [SSM] A long solenoid has n turns per unit length and carries a 
current that varies with time according to I = I0 sin ωt.  The solenoid has a circular 
cross section of radius R. Find the induced electric field, at points near the plane 
equidistant from the ends of the solenoid, as a function of both the time t and the 
perpendicular distance r from the axis of the solenoid for (a) r < R and (b) r > R. 
 
Picture the Problem We can apply Faraday’s law to relate the induced electric 
field E to the rates at which the magnetic flux is changing at distances r < R and  
r  > R from the axis of the solenoid. 
 
(a) Apply Faraday’s law to relate the 
induced electric field to the magnetic 
flux in the solenoid within a 
cylindrical region of radius r < R: 
 

dt
dd m

C

φ
−=⋅∫ E  

or 

( )
dt

drE m2 φπ −=                         (1) 

 
Express the field within the solenoid: 
 

nIB 0μ=  

Express the magnetic flux through 
an area for which r < R: 

nIrBA 0
2

m μπφ ==  
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Substitute in equation (1) to obtain: ( ) [ ]

dt
dInr

nIr
dt
drE

0
2

0
22

μπ

μππ

−=

−=
 

 
Because tII ωsin0= : [ ]

tnIr

tI
dt
dnrE Rr

ωωμ

ωμ

cos

sin

002
1

002
1

−=

−=<
 

 
(b) Proceed as in (a) with r > R to 
obtain: 
 

( ) [ ]

tnIR
dt
dInR

nIR
dt
drE

ωωμπ

μπ

μππ

cos

2

00
2

0
2

0
2

−=

−=

−=

 

Solving for RrE >  yields: 
t

r
InRE Rr ω
ωμ cos

2
0

2
0−=>  

 
80 ••• A coaxial cable consists of two very thin-walled conducting cylinders 
of radii r1 and r2 (Figure 28-62). The currents in the inner and outer cylinders are 
equal in magnitude but opposite in direction. (a) Use Ampère’s law to find the 
magnetic field as a function of the perpendicular distance r from the central axis 
of the cable for (1) 0 < r < r1  (2) r1 < r < r2 and (3) r > r2. (b) Show that the 
magnetic energy density in the region between the cylinders is given 
by ( ) ( )22

02
1

m 4 rI ππμμ = . (c) Show that the total magnetic energy in a cable 
volume of length   is given by ( ) ( )12

2
0m ln4 rrIU πμ= . (d) Use the result in 

Part (c) and the relationship between magnetic energy, current and inductance to 
show that the self-inductance per unit length of this cable arrangement is given 
by ( ) ( )120 ln2 rrL πμ= . 
 
Picture the Problem The system exhibits cylindrical symmetry, so one can use 
Ampère’s law to determine B inside the inner cylinder, between the cylinders, and 
outside the outer cylinder. We can use 0

2
m 2μBu = and the expression for B from 

Part (a) to express the magnetic energy density in the region between the 
cylinders. We can integrate this expression for um over the volume between the 
cylinders to find the total magnetic energy in a volume of length . Finally, we 
can use our result in Part (c) and 2

2
1

m LIU = to find the self-inductance of the 
cylinders per unit length. 
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(a) For r  < r1 and for r  > r2 the net 
enclosed current is zero; 
consequently, in these regions: 
 

( ) 01 =< rrB  

and 
( ) 02 => rrB  

 
For r1 < r < r2: 

C02 IrB μπ = ⇒ ( )
r
IrrrB

π
μ
2

0
21 =<<  

 
(b) Express the magnetic energy 
density in the region between the 
cylinders: 
 

0

2

m 2μ
Bu =  

Substitute for B and simplify to 
obtain: 
 22

2
0

0

2
0

m 82
2

r
Ir

I

u
π
μ

μ
π
μ

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=  

 
(c) Express the magnetic energy 
dUm in the cylindrical element of 
volume dV: 
 

( )

r
drI

rdr
r
IdVudU

⋅=

==

π
μ

π
π
μ

4

2
8

2
0

22

2
0

mm

 

 
Integrate this expression from  
r = r1 to r = r2 to obtain:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
== ∫

1

220
2

0
m ln

44

2

1
r
rI

r
drI

U
r

r π
μ

π
μ

 

 
(d) Express the energy in the 
magnetic field in terms of L and 
I: 
 

2
2
1

m LIU = ⇒ 2
m2

I
UL =  

From our result in (c): 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

20
2
m ln

4 r
r

I
U

π
μ  

 
Substitute to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

20

1

20 ln
2

ln
4

2
r
r

r
rL

π
μ

π
μ  

 
Express the ratio L/ : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

20 ln
2 r

rL
π
μ  
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81 ••• A coaxial cable consists of two very thin-walled conducting cylinders 
of radii r1 and r2 (Figure 28-63). The currents in the inner and outer cylinders are 
equal in magnitude but opposite in direction.  Compute the flux through a 
rectangular area of sides   and r2 – r1 between the conductors shown in Figure 
28-P95. Use the relationship between flux and current (φm = LI) to show the self-
inductance per unit length of the cable by is given by ( ) ( )120 ln2 rrL πμ= . 
  
Picture the Problem We can use its definition to express the magnetic flux 
through a rectangular element of area dA and then integrate from r = r1 to r = r2 to 
express the total flux through the region. Substituting in L = φm/I will yield the 
same result found in Part (d) of Problem 80. 
 
Use the definition of self-inductance 
to relate the magnetic flux through 
the region of interest to the current I: 
 

I
L mφ=                                       (1) 

Consider a strip of unit length and 
width dr at a distance r from the 
axis. The flux through this area is 
given by: 
 

drBBdAd ==mφ  
 

Apply Ampere’s law to express the 
magnetic field at a distance r from 
the axis: 
 

IrB 02 μπ =  ⇒ 
r
IB
π
μ
2

0=  

 

Substituting for B yields: 
 r

drId
π

μ
φ

2
0

m =  

 
Integrate from r = r1 to r = r2 to 
obtain: 
 

∫=
2

1
2

0
m

r

r r
drI

π
μ

φ ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

20
m ln

2 r
rI

π
μφ  

 
Substituting for φm  in equation (1) 
and dividing both sides by  yields: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1

20 ln
2 r

rL
π
μ  

 
82 ••• Figure 28-64 shows a rectangular loop of wire that is 0.300 m wide, is 
1.50 m long, and lies in the vertical plane which is perpendicular to a region that 
has a uniform magnetic field.  The magnitude of the uniform magnetic field is 
0.400 T and the direction of the magnetic field is into the page. The portion of the 
loop not in the magnetic field is 0.100 m long. The resistance of the loop is  
0.200 Ω and its mass is 50.0 g. The loop is released from rest at t = 0. (a) What is 
the magnitude and direction of the induced current when the loop has a downward 
speed v? (b) What is the force that acts on the loop as a result of this current?  
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(c) What is the net force acting on the loop? (d) Write out Newton’s second law 
for the loop. (e) Obtain an expression for the speed of the loop as a function of 
time. (f) Integrate the expression obtained in Part (e) to find the distance the loop 
falls as a function of time. (g) Using a spreadsheet program, make a graph of the 
position of the loop as a function of time (letting t = 0 at the start) for values of y 
between 0 and 1.40 m (i.e., when the loop leaves the magnetic field). (h) At what 
time does the loop completely leave the field region? Compare this to the time it 
would have taken if there were no field. 
 
Picture the Problem We can use I = ε/R and ε = Bv  to find the current induced 
in the loop and Lenz’s law to determine its direction. We can apply the equation 
for the force on a current-carrying wire to find the net magnetic force acting on 
the loop and then sum the forces to find the net force on the loop. Separating the 
variables in the differential equation and integrating will lead us to an expression 
for v(t) and a second integration to an expression for y(t). We can solve the latter 
equation for y = 1.40 m to find the time it takes the loop to exit the magnetic field 
and our expression for v(t) to find its exit speed. Finally, we can use a constant-
acceleration equation to find its exit speed in the absence of the magnetic field. 
 
(a) Relate the magnitude of the 
induced current to the induced emf 
and the resistance of the loop: 
  

R
I ε
=  

Relate the induced emf ε to the 
motion of the loop: 

Bv=ε  
where  is the length of the horizontal 
portion of the loop. 
 

Substitute for ε to obtain: v
R
BI =  

 
As the loop falls, the flux into it (the loop) decreases. The direction of the induced 
current is such that its magnetic field opposes this decrease; i.e., clockwise. 
 
(b) Express the velocity-dependent 
force that acts on the loop in terms 
of the current in the loop: 
 

BIFv =  

Substitute for I to obtain: 
 v

R
Bv

R
BBFv

22

=⎟
⎠
⎞

⎜
⎝
⎛=  
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Apply BIdFd ×= to the horizontal portion of the loop that is in the magnetic 
field to conclude that the net magnetic force is upward. Note that the magnetic 
force on the left side of the loop is to the left and the magnetic force on the right 
side of the loop is to the right. 
 
(c) The net force acting on the loop is 
the difference between the downward 
gravitational force and the upward 
magnetic force: 
 

v
R

Bmg

FmgF v

22

net

−=

−=

 

 

(d) Apply Newton’s 2nd law of 
motion to the loop to obtain its 
equation of motion: 
 

dt
dvmv

R
Bmg =−

22

⇒ v
mR

Bg
dt
dv 22

−=  

 

Factor g to obtain an alternate form 
of the equation of motion: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

t

22

11
v
vgv

mgR
Bg

dt
dv  

where 22t B
mgRv =  

 
(e) Separating the variables yields: dt

v
mR

Bg

dv
=

−
22 or dt

bva
dv

=
−

 

where ga = and 
mR

Bb
22

=  

 
Integrate v from 0 to v and t from 0 
to t: 
 

∫∫ =
−

tv

dt
bva

dv

00

 ⇒ t
a
bva

b
=⎟

⎠
⎞

⎜
⎝
⎛ −

− ln1  

 
Transforming from logarithmic to 
exponential form and solving for v 
yields: 
 

( ) ( )bte
b
atv −−= 1  

Noting that 
b
av =t , we have: 

 

( ) ( )τtevtv −−= 1t  

where 22t B
mgRv = and

g
v

a
v tt ==τ . 

 
(f) Write v as dy/dt and separate 
variables to obtain: 
 

( )dtevdy t τ−−= 1t  
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Integrate y from 0 to y and t from 
0 to t: 
 

( )∫∫ −−=
t

t
y

dtevdy
0

t
0

1 τ  

and 
( ) [ ( )]ττ tetvty −−−= 1t  

 
(g) A spreadsheet program to generate the data for graphs of position y as a 
function of time t is shown below. The formulas used to calculate the quantities in 
the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
B1 0.0500 m 
B2 0.200 R 
B3 0.400 B 
B4 0.300 L 
B5 $B$1*$B$7*$B$2/($B$3^2*$B$4^2) tv  
B6 $B$5/$B$7 τ 
B7 9.81 g 

A10 0.00 t 
B10 $B$5*(A10−$B$6*(1−EXP(−A10/$B$6))) y 
C10 0.5*$B$7*A10^2 2

2
1 gt   

 
 A B C 
1 m= 0.0500 kg 
2 R= 0.200 ohms 
3 B= 0.400 T 
4 L= 0.300 m 
5 vt= 6.813 m/s 
6 τ= 0.694 s 
7 g= 9.81 m/s2 
8   
9 t y  y (no B) 
10 0.00 0.000 0.000 
11 0.01 0.000 0.000 
12 0.02 0.002 0.002 
13 0.03 0.004 0.004 
14 0.04 0.008 0.008 
15 0.05 0.012 0.012 
    

62 0.52 1.049 1.326 
63 0.53 1.085 1.378 
64 0.54 1.122 1.430 
65 0.55 1.159 1.484 
66 0.56 1.196 1.538 
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67 0.57 1.234 1.594 
68 0.58 1.273 1.650 
69 0.59 1.311 1.707 
70 0.60 1.351 1.766 
71 0.61 1.390 1.825 
72 0.62 1.430 1.885 
73 0.63 1.471 1.947 
74 0.64 1.511 2.009 
     

 
Examination of either the table or the following graph shows that, when the loop 
falls in the magnetic field, y = 1.4 m when s.61.0≈t  In the absence of the 

magnetic field, y = 1.4 m when s.53.0≈t  

 
The following graph shows y as a function of t for B ≠ 0 (solid curve) and B = 0 
(dashed curve). 

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t  (s)

y 
(m

) B > 0
B = 0

 
 

In the absence of the magnetic field, the loop fall a distance of 1.40 m in about 
0.08 s less time than it takes to fall the same distance in the presence of the 
magnetic field. 
 
83 ••• A coil of N turns and area A suspended from the ceiling by a wire that 
provides a linear restoring torque with torsion constant κ. The two ends of the coil 
are connected to each other, the coil has resistance R, and the moment of inertia of 
the coil is I. The plane of the coil is vertical, and parallel to a uniform horizontal 
magnetic field B  when the wire is not twisted (i.e., θ = 0). The coil is rotated 
about a vertical axis through its center by a small angle θ0 and released. The coil 
then undergoes damped harmonic oscillation. Show that its angle with its 
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equilibrium position will vary with time according to ( ) tet t 'cos2
0 ωθθ τ−= , where 

( )2NBARI=τ , Iκω =0  and ( ) 2
00 21' −−= τωωω . 

 
Picture the Problem Picture the Problem If the coil is rotated through an angle 
θ, the wire exerts a restoring torque equal to –κθ acts on it returning it to its 
equilibrium position.  However, when it rotates with angular speed  dθ dt,  there 
will be an emf induced in the coil. The direction of the current resulting from this 
induced emf will be such that its magnetic field will oppose the change in flux 
resulting from the rotation of the coil. The net effect is that the magnetic field 
exerts a torque on the coil in a direction opposite to the direction of the angular 
velocity of the coil. We can show that θ will vary with time according to 
( ) tet t 'cos2

0 ωθθ τ−= ,where ( )2NBARI=τ , Iκω =0 and ( ) 2
00 21' −−= τωωω  

by demonstrating that ( ) tet t 'cos2
0 ωθθ τ−=  satisfies the differential equation 

obtained in our solution for Part (a). 
 
Apply ατ I=∑ to the rotating coil 

to obtain: 
 

2

2

retardingrestoring dt
dI θττ =−  

The magnitude of the retarding 
(damping) torque is given by: 
 

θτ cosretarding NiBA=  

where i is the current induced in the 
coil whose cross-sectional area is A. 
 

Substitute for τrestoring and 
τretarding to obtain: 
 

2

2

cos
dt
dINiBA θθκθ =−−         (1) 

 
Apply Faraday’s law to express the 
emf induced in the coil: 

( ) ( )
dt
dNBANBA

dt
d θθθε cossin −=−=  

 
From Ohm’s law, the magnitude of 
the induced current i in the coil is: 
 

dt
d

R
NBA

R
i θθε cos

==  

Substitute for the induced current i 
in equation (1) to obtain: 
 

( )
2

222 cos
dt
dI

dt
d

R
NBA θθθκθ =−−  

For small displacements from 
equilibrium, cosθ ≈ 1 and: 

( )
2

22

dt
dI

dt
d

R
NBA θθκθ ≈−−  
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Rearrange to express the differential 
equation in standard form, then 
substitute using Iκω =0  and 

( )2NBARI=τ : 
 

( ) 0
2

2

2

≈++ θκθθ
Idt

d
RI

NBA
dt
d  

or 

01 2
02

2

=++ θωθ
τ

θ
dt
d

dt
d               (2) 

 
Assume that the solution to equation (2) is given by ( ) tet t 'cos2

0 ωθθ τ−=  and 
evaluate its first and second derivatives with respect to time: 
 

[ ] ( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎥⎦
⎤

⎢⎣
⎡ +==

−

−−

−−−

tte

tete

e
dt
dtt

dt
dete

dt
d

dt
d

t

tt

ttt

'cos
2
1'sin'

'cos
2
1'sin'

'cos'cos'cos

2
0

0
22

0

22
0

2
0

ω
τ

ωωθ

ωθ
τ

ωωθ

ωωθωθθ

τ

ττ

τττ

 

and  

⎟
⎠
⎞

⎜
⎝
⎛ −−−=

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎠
⎞

⎜
⎝
⎛ +−

⎟
⎠
⎞

⎜
⎝
⎛ +−=

⎥⎦
⎤

⎢⎣
⎡ −−=

−

−

−

−

−

−−

ttte

ett

tte

e
dt
dtt

tt
dt
de

tete
dt
d

dt
d

t

t

t

t

t

tt

'cos
4
1'sin''cos'

'cos
2
1'sin'

2
1

'sin
2

''cos'

'cos
2
1'sin'

'cos
2
1'sin'

'cos
2
1'sin'

2
22

0

2
0

22
0

2
0

2
0

2
0

2
02

2

ω
τ

ω
τ
ωωωθ

ω
τ

ωω
τ

θ

ω
τ
ωωωθ

ω
τ

ωωθ

ω
τ

ωωθ

ω
τ

θωωθθ

τ

τ

τ

τ

τ

ττ

 

 
Substitute these derivatives in equation (2) to obtain: 
 

0'cos'cos
2
1'sin'1

'cos
4
1'sin''cos'

2
0

2
0

2
0

2
22

0

=+⎟
⎠
⎞

⎜
⎝
⎛ +−

⎟
⎠
⎞

⎜
⎝
⎛ −−−

−−

−

tette

ttte

tt

t

ωθωω
τ

ωωθ
τ

ω
τ

ω
τ
ωωωθ

ττ

τ
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Because θ0 and τte− are never zero, we can divide them out of the equation and 
simplify to obtain:  

 

0'cos'cos
4
1'cos' 2

02
2 =+−− ttt ωωω

τ
ωω  

or 

0'cos
4
1' 2

02
2 =⎟

⎠
⎞

⎜
⎝
⎛ +−− tωω

τ
ω                            

 
This equation is satisfied provided: 
 0

4
1' 2

02
2 =+−− ω

τ
ω  

 
Solving for 'ω yields: ( ) 2

00 21' −−= τωωω  
 

Thus we’ve shown that the angular position of the oscillating coil, relative to its 
equilibrium position, varies with time according to ( ) tet t 'cos2

0 ωθθ τ−= , where 

( )2NBARI=τ , Iκω =0  and ( ) 2
00 21' −−= τωωω . 
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