
Chapter 27 
Sources of the Magnetic Field 
 
Conceptual Problems 
 
1 • Sketch the field lines for the electric dipole and the magnetic dipole 
shown in Figure 27-47.  How do the field lines differ in appearance close to the 
center of each dipole? 
 
Picture the Problem Note that, while the two far fields (the fields far from the 
dipoles) are the same, the   two near fields (the fields near to the dipoles) are not. 
At the center of the electric dipole, the electric field is antiparallel to the direction 
of the far field above and below the dipole, and at the center of the magnetic 
dipole, the magnetic field is parallel to the direction of the far field above and 
below the dipole.  It is especially important to note that while the electric field 
lines begin and terminate on electric charges, the magnetic field lines are 
continuous, i.e., they form closed loops. 

  
 
2 • Two wires lie in the plane of the page and carry equal currents in 
opposite directions, as shown in Figure 27- 48.  At a point midway between the 
wires, the magnetic field is (a) zero, (b) into the page, (c) out of the page,  
(d) toward the top or bottom of the page, (e) toward one of the two wires. 
 
Determine the Concept Applying the right-hand rule to the wire to the left we 
see that the magnetic field due to its current is out of the page at the midpoint. 
Applying the right-hand rule to the wire to the right we see that the magnetic field 
due to its current is also out of the page at the midpoint. Hence, the sum of the 
magnetic fields is out of the page as well. 1is correct. 
 
3 • Parallel wires 1 and 2 carry currents I1 and I2, respectively, where  
I2 = 2I1. The two currents are in the same direction. The magnitudes of the 
magnetic force by current 1 on wire 2 and by current 2 on wire 1 are F12 and F21, 
respectively.  These magnitudes are related by (a) F21 = F21, (b) F21 = 2F12,  
(c) 2F21 = F12, (d) F21 = 4F12, (e) 4F21 = F12. 
  
 
Determine the Concept While we could express the force wire 1 exerts on wire 2 
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and compare it to the force wire 2 exerts on wire 1 to show that they are the same, 
it is simpler to recognize that these are action and reaction forces. )(a  is 

correct. 
 
4 • Make a field-line sketch of the magnetic field due to the currents in the 
pair of identical coaxial coils shown in Figure 27-49. Consider two cases: (a) the 
currents in the coils have the same magnitude and have the same direction  and  
(b) the currents in the coils have the same magnitude and have the opposite 
directions. 
 
Picture the Problem (a) The field-line sketch follows. An assumed direction for 
the current in the coils is shown in the diagram. Note that the field is stronger in 
the region between the coaxial coils and that the field lines have neither beginning 
nor ending points as do electric-field lines. Because there are an uncountable 
infinity of lines, only a representative few have been shown. 

BI

I

 
(b) The field-line sketch is shown below. An assumed direction for the current in 
the coils is shown in the diagram. Note that the field lines never begin or end and 
that they do not touch or cross each other. Because there are an uncountable 
infinity of lines, only a representative few have been shown. 

 

 
 
 
5 • [SSM] Discuss the differences and similarities between Gauss’s 
law for magnetism and Gauss’s law for electricity. 
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Determine the Concept Both tell you about the respective fluxes through closed 
surfaces. In the electrical case, the flux is proportional to the net charge enclosed. 
In the magnetic case, the flux is always zero because there is no such thing as 
magnetic charge (a magnetic monopole). The source of the magnetic field is NOT 
the equivalent of electric charge; that is, it is NOT a thing called magnetic charge, 
but rather it is moving electric charges. 
 
6 • Explain how you would modify Gauss’s law if scientists discovered 
that single, isolated magnetic poles actually existed. 
  
Determine the Concept Gauss’ law for magnetism now reads: ″The flux of the 
magnetic field through any closed surface is equal to zero.″  Just like each electric 
pole has an electric pole strength (an amount of electric charge), each magnetic 
pole would have a magnetic pole strength (an amount of magnetic charge).  
Gauss’ law for magnetism would read: ″The flux of the magnetic field through 
any closed surface is proportional to the total amount of magnetic charge inside.″ 
 
7 • [SSM] You are facing directly into one end of a long solenoid and 
the magnetic field inside of the solenoid points away from you. From your 
perspective, is the direction of the current in the solenoid coils clockwise or 
counterclockwise? Explain your answer. 
 
Determine the Concept Application of the right-hand rule leads one to conclude 
that the current is clockwise. 
 
8 • Opposite ends of a helical metal spring are connected to the terminals 
of a battery. Do the spacings between the coils of the spring tend increase, 
decrease, or remain the same when the battery is connected? Explain your answer. 
 
Determine the Concept The coils attract each other and tend to move closer 
together when there is current in the spring. The current elements in the same 
direction will attract each other, and a current element of one segment of a coil are 
close to the current elements in adjacent coils that are in the same direction as it 
is. 
 
9 • The current density is constant and uniform in a long straight wire that 
has a circular cross section. True or false: 
 
(a) The magnitude of the magnetic field produced by this wire is greatest at the 
surface of the wire. 
(b) The magnetic field strength in the region surrounding the wire varies 
inversely with the square of the distance from the wire’s central axis. 
(c) The magnetic field is zero at all points on the wire’s central axis. 
(d) The magnitude of the magnetic field inside the wire increases linearly with 
the distance from the wire’s central axis. 
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(a) True. The magnetic field due to an infinitely long, straight wire is given by 

R
IB 2

4
0

π
μ

= , where R is the perpendicular distance to the field point. Because the 

magnetic field decreases linearly as the distance from the wire’s central axis, the 
maximum field produced by this current is at the surface of the wire. 
 
(b) False. Because the magnetic field due to an infinitely long, straight wire is 

given by 
R
IB 2

4
0

π
μ

= , where R is the perpendicular distance to the field point, the 

magnetic field outside the wire decreases linearly as the distance from the wire’s 
central axis. 
 
(c) True. Because IC = 0 at the center of the wire, Ampere’s law ( C

C

Id 0μ=⋅∫ l
rr

B ) 

tells us that the magnetic field is zero at the center of the wire. 
 

(d) True. Application of Ampere’s law shows that, inside the wire, r
R
IB 2

0

2π
μ

= , 

where R is the radius of the wire and r is the distance from the center of the wire. 
 
10 • If the magnetic susceptibility of a material is positive,  
(a) paramagnetic effects or ferromagnetic effects must be greater than diamagnetic 
effects, (b) diamagnetic effects must be greater than paramagnetic effects,  
(c) diamagnetic effects must be greater than ferromagnetic effects,  
(d) ferromagnetic effects must be greater than paramagnetic effects,  
(e) paramagnetic effects must be greater than ferromagnetic effects. 
 
Determine the Concept The magnetic susceptibility χm is defined by the 

equation 
0

app
m μ

χ
B

M
r

r
= , where M

r
is the magnetization vector and is the 

applied magnetic field. For paramagnetic materials, χ

appB
r

m is a small positive number 
that depends on temperature, whereas for diamagnetic materials, it is a small 
negative constant independent of temperature. )(a  is correct. 
 
11 • [SSM] Of the four gases listed in Table 27-1, which are diamagnetic 
and which are paramagnetic? 
 
Determine the Concept H2, CO2, and N2 are diamagnetic (χm < 0); O2 is 
paramagnetic (χm > 0). 
 
12 • When a current is passed through the wire in Figure 27- 50, will the 
wire tend to bunch up or will it tend to form a circle? Explain your answer. 
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Determine the Concept It will tend to form a circle.  Oppositely directed current 
elements will repel each other, and so opposite sides of the loop will repel. 
 
The Magnetic Field of Moving Point Charges 
 
13 • [SSM] At time t = 0, a particle has a charge of 12 μC, is located in 
the z = 0 plane at x = 0, y = 2.0 m, and has a velocity equal to . Find the 
magnetic field in the z = 0 plane at (a) the origin, (b) x = 0, y = 1.0 m, (c) x = 0, y 
= 3.0 m, and (d) x = 0, y = 4.0 m. 

îm/s30   

  
Picture the Problem We can substitute for v

r
 and q in the equation describing the 

magnetic field of the moving charged particle ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
μ ), evaluate r and  

for each of the given points of interest, and then find

r̂

B
r

. 
 

The magnetic field of the moving 
charged particle is given by: 
 

2
0 ˆ

4 r
q rvB ×

=
rr

π
μ  

 
Substitute numerical values and 
simplify to obtain: ( )( ) ( )

( ) 2
2

2
27

ˆˆ
mpT0.36

ˆˆm/s30C12N/A10

r

r
ri

riB

×
⋅=

×
= − μ

r

 

 
(a) Find r and r for the particle at  ˆ
(0, 2.0 m) and the point of interest at 
the origin: 
 

( ) jr ˆm0.2−=
r

, m0.2=r , and  jr ˆˆ −=
 

Evaluating ( 0,0B )
r

 yields: 
 

( ) ( ) ( )
( )

( )k

jiB

ˆpT0.9

m0.2

ˆˆ
mpT0.360,0 2

2

−=

−×
⋅=

r

 

 
(b) Find r and r for the particle at  ˆ
(0, 2.0 m) and the point of interest at 
(0, 1.0 m): 
 

( ) jr ˆm0.1−=
r

, m0.1=r , and  jr ˆˆ −=
 

Evaluate ( m0.1,0B )
r

 to obtain: 
 

( ) ( ) ( )
( )

( )k

jiB

ˆpT36

m0.1

ˆˆ
mpT0.36m0.1,0 2

2

−=

−×
⋅=

r
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(c) Find r and for the particle at  r̂
(0, 2.0 m) and the point of interest at 
(0, 3.0 m): 
 

( ) jr ˆm0.1=
r

, m0.1=r , and  jr ˆˆ =
 

Evaluating ( m0.3,0B )
r

 yields: 
 

( ) ( )
( )

( )k

jiB

ˆpT36

m0.1

ˆˆ
mpT0.36m0.3,0 2

2

=

×
⋅=

r

 

 
(d) Find r and r for the particle at  ˆ
(0, 2.0 m) and the point of interest at 
(0, 4.0 m): 
 

( ) jr ˆm0.2=
r

, m0.2=r , and  jr ˆˆ =
 

Evaluate ( m0.4,0B )
r

 to obtain: 
 

( ) ( )
( )

( )k

jiB

ˆpT0.9

m0.2

ˆˆ
mpT0.36m0.4,0 2

2

=

×
⋅=

r

 

 
14 • At time t = 0, a particle has a charge of 12 μC, is located in the z = 0 
plane at x = 0, y = 2.0 m, and has a velocity equal to . Find the magnetic 
field in the z = 0 plane at (a) x = 1.0 m, y = 3.0 m, (b) x = 2.0 m, y = 2.0 m, and 
(c) x = 2.0 m, y = 3.0 m. 

îm/s30   

 
Picture the Problem We can substitute for v

r
 and q in the equation describing the 

magnetic field of the moving charged particle ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
μ ), evaluate r and  

for each of the given points of interest, and substitute to find 

r̂

B
r

. 
 

The magnetic field of the moving 
charged particle is given by: 
 

2
0 ˆ

4 r
q rvB ×

=
rr

π
μ  

 
Substitute numerical values and 
simplify to obtain: ( )( ) ( )

( ) 2
2

2
27

ˆˆ
mpT0.36

ˆˆm/s30C12N/A10

r

r
ri

riB

×
⋅=

×
= − μ

r
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(a) Find r and r for the particle at  ˆ
(0, 2.0 m) and the point of 
interest at (1.0 m, 3.0 m): 
 

( ) ( ) jir ˆm0.1ˆm0.1 +=
r

, m2=r , and  

jir ˆ
2

1ˆ
2

1ˆ +=  

 

Substitute for r  and r in ˆ ( ) 2
2 ˆˆ

mpT0.36
r

riB ×
⋅=

r
and evaluate ( )m0.3,m0.1B

r
: 

 

( ) ( ) ( )
( )

( )
( )k

k
jii

B

ˆpT13

m2

ˆ

2
mpT0.36

m2

ˆ
2

1ˆ
2

1ˆ

mpT0.36m0.3,m0.1 2

2

2
2

=

⋅
=

⎟
⎠
⎞

⎜
⎝
⎛ +×

⋅=
r

 

 
(b) Find r and r for the particle at  ˆ
(0, 2.0 m) and the point of interest at 
(2.0 m, 2.0 m): 
 

( )ir ˆm0.2=
r

, m0.2=r , and  ir ˆˆ =
 

Substitute for r  and r in ˆ ( ) 2
2 ˆˆ

mpT0.36
r

riB ×
⋅=

r
and evaluate ( )m0.2,m0.2B

r
: 

 

( ) ( )
( )

0
m0.2

ˆˆ
mpT0.36m0.2,m0.2 2

2 =
×

⋅=
iiB

r
 

 
( ) ( ) jir ˆm0.1ˆm0.2 +=

r
, m5=r , and  

jir ˆ
5

1ˆ
5

2ˆ +=  

(c) Find r and for the particle at  r̂
(0, 2.0 m) and the point of 
interest at (2.0 m, 3.0 m): 
 

Substitute for r  and r in ˆ ( ) 2
2 ˆˆ

mpT0.36
r

riB ×
⋅=

r
and evaluate ( )m0.3,m0.2B

r
: 

 

( ) ( ) ( ) ( )k
jii

B ˆpT2.3
m5

ˆ
5

1ˆ
5

2ˆ

mpT0.36m0.3,m0.2 2
2 =

⎟
⎠

⎞
⎜
⎝

⎛
+×

⋅=
r

 

 
15 • A proton has a velocity of  and is 
located in the z = 0 plane at x = 3.0 m, y = 4.0 m at some time t. Find the 
magnetic field in the z = 0 plane at (a) x = 2.0 m, y = 2.0 m, (b) x = 6.0 m,  

ji ˆm/s100.2ˆm/s100.1 22     ×+×

y = 4.0 m, and (c) x = 3.0 m, y = 6.0 m. 
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Picture the Problem We can substitute for v
r

 and q in the equation describing the 

magnetic field of the moving proton ( 2
0 ˆ

4 r
q rvB ×

=
rr

π
μ ), evaluate r and  for each 

of the given points of interest, and substitute to find

r̂

.B
r

 
 
The magnetic field of the moving 
proton is given by: 
 

2
0 ˆ

4 r
vq rB ×

=
rr

π
μ  

Substituting numerical values yields: 
 

( )( ) ( ) ( )[ ]

( )( )
2

224

2

22
1927

ˆˆ0.2ˆ 0.1mT1060.1

ˆˆm/s100.2ˆm/s100.1C101.602N/A10

r

r
rji

rjiB

×+
⋅×=

××+×
×=

−

−−
r

 

 
(a) Find r and r for the proton at  ˆ
(3.0 m, 4.0 m) and the point of 
interest at (2.0 m, 2.0 m): 
 

( ) ( ) jir ˆm0.2ˆm0.1 −−=
r

, m5=r ,  

and jir ˆ
5

2ˆ
5

1ˆ −−=  

 

Substitute for r  and r in ˆ ( )( )
2

224 ˆˆ0.2ˆ 0.1mT1060.1
r

rjiB ×+
⋅×= −

r
and 

evaluate ( )m0.2 ,m0.2B
r

: 
 

( ) ( )
( )

( )
( ) 0

m5

ˆ0.2ˆ0.2
5

mT1060.1

ˆ
5

2ˆ
5

1ˆ0.2ˆ0.1
mT1060.1m2.0 m,0.2

2

224

2
224

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−⋅×
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−×+

⋅×=

−

−

kk

jiji
B

r
r

 

 
(b) Find r and r for the proton at  ˆ
(3.0 m, 4.0 m) and the point of 
interest at (6.0 m, 4.0 m): 
 

( )ir ˆm0.3=
r

, m0.3=r , and  ir ˆˆ =
 

Substitute for r  and r in ˆ ( )( )
2

224 ˆˆ0.2ˆ 0.1mT1060.1
r

rjiB ×+
⋅×= −

r
and 

evaluate : ( )m0.4,m0.6B
r
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( ) ( )( )
( )

( ) ( )kk

ijiB

ˆT106.3
m0.9

ˆ 0.2mT1060.1

m0.3

ˆ ˆ0.2ˆ 0.1mT1060.1mm,4.00.6

25
2

222

2
224

−−

−

×−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅×=

×+
⋅×=

r

 

 
(c) Find r and for the proton at  r̂
(3.0 m, 4.0 m) and the point of 
interest at the (3.0 m, 6.0 m): 
 

( ) jr ˆm0.2=
r

, m0.2=r , and  jr ˆˆ =

Substitute for r  and r in ˆ ( )( )
2

224 ˆˆ0.2ˆ 0.1mT1060.1
r

rjiB ×+
⋅×= −

r
and evaluate 

: ( )m0.6,m0.3B
r

 

( ) ( )( )
( )

( ) ( )kk

jjiB

ˆT100.4
m0.4

ˆ
mT1060.1

m0.2

ˆˆ0.2ˆ 0.1mT1060.1mm,6.00.3

25
2

224

2
224

−−

−

×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×=

×+
⋅×=

r

 

 
16 •• In a pre–quantum-mechanical model of the hydrogen atom, an electron 
orbits a proton at a radius of 5.29 × 10–11 m. According to this model, what is the 
magnitude of the magnetic field at the proton due to the orbital motion of the 
electron? Neglect any motion of the proton. 
 
Picture the Problem The centripetal force acting on the orbiting electron is the 
Coulomb force between the electron and the proton. We can apply Newton’s 2nd 
law to the electron to find its orbital speed and then use the expression for the 
magnetic field of a moving charge to find B. 

 
Express the magnetic field due to the 
motion of the electron: 
 

2
0

4 r
evB

π
μ

=
    

Apply to the electron: ∑ = cradial maF

 r
vm

r
ke 2

2

2

= ⇒
mr
kev

2

=  

 
Substitute for v in the expression for 
B and simplify to obtain: 
 

mr
k

r
e

mr
ke

r
eB 2

2
0

2

2
0

44 π
μ

π
μ

==  
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Substitute numerical values and evaluate B: 
 

( )( )
( ) ( )( )

T5.12

m1029.5kg10109.9
C/mN10988.8

m1029.54
C10602.1N/A104

1131

229

211

21927

=

××
⋅×

×

××
= −−−

−−

π
πB

 

 
17 •• Two equal point charges q are, at some instant, located at (0, 0, 0) and 
at (0, b, 0). They are both moving with speed v in the +x direction (assume  
v << c). Find the ratio of the magnitude of the magnetic force to the magnitude of 
the electric force on each charge. 
 
Picture the Problem We can find the ratio of the magnitudes of the magnetic and 
electrostatic forces by using the expression for the magnetic field of a moving 
charge and Coulomb’s law. Note that v

r
and r

r
, where r

r
is the vector from one 

charge to the other, are at right angles. The field B
r

due to the charge at the origin 
at the location (0, b, 0) is perpendicular to v

r
and r

r
. 

 
Express the magnitude of the 
magnetic force on the moving 
charge at (0, b, 0): 
 

2

22
0

4 b
vqqvBFB π

μ
==  

and, applying the right hand rule, we 
find that the direction of the force is 
toward the charge at the origin; i.e., the 
magnetic force between the two 
moving charges is attractive. 
 

Express the magnitude of the 
repulsive electrostatic interaction 
between the two charges: 
 

2

2

04
1

b
qFE ∈

=
π

 

Express the ratio of FB to FB E and 
simplify to obtain: 
 

2
00

2

2

0

2

22
0

4
1

4 v

b
q

b
vq

F
F

E

B μ

π

π
μ

∈=

∈

=  

 
The Magnetic Field Using the Biot–Savart Law 

18 • A small current element at the origin has a length of 2.0 mm and 
carries a current of 2.0 A in the +z direction. Find the magnetic field due to the 
current element: (a) on the x axis at x = 3.0 m, (b) on the x axis at x = –6.0 m,  
(c) on the z axis at z = 3.0 m, and (d) on the y axis at y = 3.0 m. 
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Picture the Problem We can substitute for I and l
r

l
r

Δ≈d  in the Biot-Savart 

relationship ( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
μ ), evaluate r and  for each of the points of interest, 

and substitute to find

r̂

B
r

d . 
 

Express the Biot-Savart law for the 
given current element: 
 

( )( )( )

( ) 2
2

2
27

2
0

ˆˆ
mnT400.0

ˆˆmm0.2A0.2N/A10

ˆ
4

r
rk

r
rk

r
rIdBd

×
⋅=

×
=

×
=

−

l
r

r

π
μ

 

 
(a) Find r and r for the point whose 
coordinates are (3.0 m, 0, 0): 

ˆ

 

( )ir ˆm0.3=
r

, m0.3=r , and  ir ˆˆ =

Evaluate B
r

d at (3.0 m, 0, 0): ( ) ( )
( )

( ) j

ikB

ˆpT44

m0.3

ˆˆ
mnT400.0m,0,00.3 2

2

=

×
⋅=

r
d

 
(b) Find r and r for the point whose 
coordinates are (−6.0 m, 0, 0): 

ˆ

 

( )ir ˆm0.6−=
r

, m0.6=r , and  ir ˆˆ −=

Evaluate B
r

d at (−6.0 m, 0, 0): ( ) ( )
( )

( )
( ) j

ik

B

ˆpT11

m0.6

ˆˆ
mnT400.0m,0,00.6

2

2

−=

−×
⋅

⋅=−
r

d

 

 
(c) Find r and for the point whose 
coordinates are (0, 0, 3.0 m): 

r̂

 

( )kr ˆm0.3=
r

, m0.3=r , and  kr ˆˆ =

Evaluate B
r

d at (0, 0, 3.0 m): ( ) ( )
( )

0

m0.3

ˆˆ
mnT400.0m3.0,0,0 2

2

=

×
⋅=

kkB
r

d

 
(d) Find r and r for the point whose 
coordinates are (0, 3.0 m, 0): 

ˆ

 

( ) jr ˆm0.3=
r

, m0.3=r , and  jr ˆˆ =
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Evaluate B
r

d at (0, 3.0 m, 0): ( ) ( )
( )

( )i

jkB

ˆpT44

m0.3

ˆˆ
mnT400.0m,00.3,0 2

2

−=

×
⋅=

r
d

 
19 • [SSM] A small current element at the origin has a length of 2.0 mm 
and carries a current of 2.0 A in the +z direction. Find the magnitude and direction 
of the magnetic field due to the current element at the point (0, 3.0 m, 4.0 m). 
 
Picture the Problem We can substitute for I and l

r
l
r

Δ≈d  in the Biot-Savart law 

( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
μ ), evaluate r and  for (0, 3.0 m, 4.0 m), and substitute to 

find

r̂

.B
r

d  
 

The Biot-Savart law for the given 
current element is given by: 
 

2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
μ  

Substituting numerical values yields: 
 

( )( )( ) ( ) 2
2

2
27 ˆˆ

mnT400.0
ˆˆmm0.2A0.2N/A100.1

rr
d rkrkB ×

⋅=
×

×= −
r

 

 
( ) ( )kjr ˆm0.4ˆm0.3 +=

r
,  

m0.5=r , and kjr ˆ
5
4ˆ

5
3ˆ +=  

 

Find r and r for the point whose 
coordinates are (0, 3.0 m, 4.0 m): 

ˆ

 

Evaluate B
r

d at (0, 3.0 m, 4.0 m): 
 

( ) ( )
( )

( )i
kjk

B ˆpT6.9
m0.5

ˆ
5
4ˆ

5
3ˆ

mnT400.0m 4.0m,0.3,0 2
2 −=

⎟
⎠
⎞

⎜
⎝
⎛ +×

⋅=
r

d  

 
20 • A small current element at the origin has a length of 2.0 mm and 
carries a current of 2.0 A in the +z direction. Find the magnitude of the magnetic 
field due to this element and indicate its direction on a diagram at (a) x = 2.0 m,  
y = 4.0 m, z = 0 and (b) x = 2.0 m, y = 0,  z = 4.0 m. 
 
Picture the Problem We can substitute for I and l

r
l
r

Δ≈d  in the Biot-Savart law 

( 2
0 ˆ

4 r
Idd rB ×

=
l
r

r

π
μ ), evaluate r and  for the given points, and substitute to 

find

r̂

B
r

d . 
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Apply the Biot-Savart law to the 
given current element to obtain: 
 

( )( )( )

( ) 2
2

2
27

2
0

ˆˆ
mnT400.0

ˆˆmm0.2A0.2N/A10

ˆ
4

r
rk

r
rk

r
rIdBd

×
⋅=

×
=

×
=

−

l
r

r

π
μ

 

 
( ) ( ) jir ˆm0.4ˆm0.2 +=

r
,  (a) Find r and r for the point whose 

coordinates are (2.0 m, 4.0 m, 0): 
ˆ

m50.2=r ,  
 and  

jijir ˆ
5
0.2ˆ

5
0.1ˆ

52
0.4ˆ

52
0.2ˆ +=+=  

 
Evaluate B

r
d at (2.0 m, 4.0 m, 0):  

 

( ) ( ) ( ) ( ) ( ) ji
jik

Bd ˆpT9.8ˆpT18
m52

ˆ
5

2ˆ
5

1ˆ

mnT400.0m,0m,4.00.2 2
2 +−=

⎟
⎠

⎞
⎜
⎝

⎛ +×
⋅=

r
 

 
The diagram is shown to the right:  
 

x

y

z

 Bd
r

 0) m, 4.0 m, (2.0

 
( ) ( )kir ˆm0.4ˆm0.2 +=

r
,  (b) Find r and r for the point whose 

coordinates are (2.0 m, 0, 4.0 m): 
ˆ

m50.2=r ,  
 and  

kikir ˆ
5
0.2ˆ

5
0.1ˆ

50.2
0.4ˆ

50.2
0.2ˆ +=+=  
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Evaluate B
r

d at (2.0 m, 0, 4.0 m): 
 

( ) ( ) ( ) ( ) j
kik

Bd ˆpT9.8
m50.2

ˆ
5
0.2ˆ

5
0.1ˆ

mnT400.0mm,0,4.00.2 2
2 =

⎟
⎠

⎞
⎜
⎝

⎛ +×
⋅=

r
 

 
The diagram is shown to the right:  

x

y

z

 Bd
r

 ( )m 4.0 0, m, 2.0

 
 
The Magnetic Field Due to Current Loops and Coils 

21 • A single conducting loop has a radius equal to 3.0 cm and carries a 
current equal to 2.6 A.  What is the magnitude of the magnetic field on the line 
through the center of the loop and perpendicular to the plane of the loop (a) the 
center of the loop, (b) 1.0 cm from the center, (c) 2.0 cm from the center, and  
(d) 35 cm from the center? 
 

Picture the Problem We can use ( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
μ  to find B on the axis of the 

current loop. 
 

B on the axis of a current loop is 
given by: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
μ  

Substitute numerical values to 
obtain: 
 

( ) ( ) ( )
( )( )

( )( ) 2322

39

2322

2
27

m030.0

mT10470.1
m030.0

A6.2m030.02N/A10

+

⋅×
=

+
=

−

−

x

x
Bx

π

 

 
(a) Evaluate B at the center of the 
loop: ( )

( )( ) T54
m030.00

mT10470.10 232

39

μ=
+

⋅×
=

−

B  
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(b) Evaluate B at x = 1.0 cm: 
 

( )
( ) ( )( )

T46

m030.0m010.0

mT10470.1m010.0 2322

39

μ=

+

⋅×
=

−

B

 
(c) Evaluate B at x = 2.0 cm: 
 

( )
( ) ( )( )

T31

m030.0m020.0

mT10470.1m020.0 2322

39

μ=

+

⋅×
=

−

B

 
(d) Evaluate B at x = 35 cm: 
 

( )
( ) ( )( )

nT34

m030.0m35.0

mT10470.1m35.0 2322

39

=

+

⋅×
=

−

B
 

 
22 ••• A pair of identical coils, each having a radius of 30 cm, are separated 
by  a distance equal to their radii, that is 30 cm. Called Helmholtz coils, they are 
coaxial and carry equal currents in directions such that their axial fields are in the 
same direction. A feature of Helmholtz coils is that the resultant magnetic field in 
the region between the coils is very uniform. Assume the current in each is 15 A 
and there are 250 turns for each coil. Using a spreadsheet program calculate and 
graph the magnetic field as a function of z, the distance from the center of the 
coils along the common axis, for – 30 cm < z  < + 30 cm. Over what range of z 
does the field vary by less than 20%? 
  
Picture the Problem Let the origin be midway between the coils so that one of 
them is centered at z = −R/2 and the other is centered at z = R/2, where R is the 
radius of the coils.  Let the numeral 1 denote the coil centered at z = −R/2 and the 
numeral 2 the coil centered at z = R/2. We can express the magnetic field in the 
region between the coils as the sum of the magnetic fields BB1 and B2B  due to the 
two coils. 
 
The magnetic field on the z is the 
sum of the magnetic fields due to the 
currents in coils 1 and 2: 
 

( ) ( )zBzBBz 21 +=                     (1) 

Express the magnetic field on the z 
axis due to the coil centered at  
z = −R/2: 

( )
( )[ ] 2322

2
1

2
0

1
2 RRz

INRzB
++

=
μ  

where N is the number of turns. 
 

Express the magnetic field on the z 
axis due to the coil centered at 
z = R/2: 

( )
( )[ ] 2322

2
1

2
0

2
2 RRz

INRzB
+−

=
μ  
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Substitute for   and  in equation (1) to express the total magnetic 
field along the z axis: 

( )zB1 ( )zB2

 

( )[ ] ( )[ ]
( )[ ] ( )[ ] ⎟

⎠
⎞⎜

⎝
⎛ +−+++=

+−
+

++
=

−− 2322
2
1

2322
2
1

2
0

2322
2
1

2
0

2322
2
1

2
0

2

22

RRzRRzINR

RRz

INR

RRz

INRBz

μ

μμ

 

 
The spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
1.13×10−7B1 μ0

R B2 0.30 
N B3 250 
I B3 15 

B5 0.5*$B$1*$B$3*($B$2^2)*$B$4 
2

Coeff
2

0 INRμ
=  

A8 −R −0.30 
B8 $B$5*(($B$2/2+A8)^2+$B$2^2)^(−3/2) ( )[ ] 2322

2
1

2
0

2
−

+− RRzINRμ

C8 $B$5* (($B$2/2−A8)^2+$B$2^2)^(−3/2) ( )[ ] 2322
2
1

2
0

2
−

++ RRzINRμ

( ( ) ( ))zBzBBz 21
410 +=D8 10^4(B8+C8)   

 
 A B C D 
1 μ0= 1.26E-06 N/A2  
2 R= 0.30 m  
3 N= 250 turns  
4 I= 15 A  
5 Coeff= 2.13E−04   
6     
7 z BB1 BB2 B(z)
8 −0.30 5.63E−03 1.34E−03 70 
9 −0.29 5.86E−03 1.41E−03 73 
10 −0.28 6.08E−03 1.48E−03 76 
11 −0.27 6.30E−03 1.55E−03 78 
12 −0.26 6.52E−03 1.62E−03 81 
13 −0.25 6.72E−03 1.70E−03 84 
14 −0.24 6.92E−03 1.78E−03 87 
15 −0.23 7.10E−03 1.87E−03 90 
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61 0.23 1.87E−03 7.10E−03 90 
62 0.24 1.78E−03 6.92E−03 87 
63 0.25 1.70E−03 6.72E−03 84 
64 0.26 1.62E−03 6.52E−03 81 
65 0.27 1.55E−03 6.30E−03 78 
66 0.28 1.48E−03 6.08E−03 76 
67 0.29 1.41E−03 5.86E−03 73 
68 0.30 1.34E− 30 5.63E−03 70  

 
The following graph of BBz as a function of z was plotted using the data in the 
above table. 

 

0

20

40

60

80

100

120

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

z  (m)

Bz
 (G

)

113

90

-0.23 0.23

 
 

The maximum value of BBz is 113 G. Eighty percent of this maximum value is  
90 G. We see that the field is within 20 percent of 113 G in the interval 

m.0.23m23.0 <<− z  
 
23 ••• A pair of Helmholtz coils that have radii R have their axes along the z 
axis (see Problem 22). One coil is in the Rz 2

1−= plane and the second coil is in 
the Rz 2

1=  plane. Show that on the z axis at z = 0 dBz/dz = 0, d2BBz/dz  = 0, and 
d Bz

2

3
B /dz3 = 0. (Note: These results show that the magnitude and direction of the 

magnetic field in the region to either side of the midpoint is approximately equal 
to the magnitude and direction of the magnetic field at the midpoint.) 
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Picture the Problem Let the numeral 1 denote the coil centered at Rz 2
1−= and 

the numeral 2 the coil centered at Rz 2
1= . We can express the magnetic field 

strength in the region between the coils as the sum of the magnetic field strengths 
due to the two coils and then evaluate the derivatives of this function to show that 
dBz/dz = 0, d2BBz/dz  = 0, and d Bz

2 3
B /dz3 = 0 at z = 0. 

 
Express the magnetic field 
strength on the z axis due to 
the coil centered at Rz 2

1−= : 

( ) 3
1

2
0

1 2z
INRzB μ

=  

where ( ) 22
2
1

1 RRzz ++= and N is the 

number of turns and. 
 

Express the magnetic field 
strength on the z axis due to 
the coil centered at  

Rz 2
1= : 

 

( ) 3
2

2
0

2 2z
INRxB μ

=  

where ( ) 22
2
1

2 RRzz +−=  

 

Add these equations to express the total magnetic field along the x axis: 
 

( ) ( ) ( ) ( )3
2

3
1

2
0

3
2

2
0

3
1

2
0

21 222
−− +=+=+= zzINR

z
INR

z
INRzBzBzBz

μμμ
 

 
Differentiate BBz with respect to z to 
obtain: ( )

⎟
⎠
⎞−⎜

⎝
⎛−=

+=

−−

−−

dz
dzz

dz
dzzINR

zz
dz
dINR

dz
dBz

24
2

14
1

2
0

3
2

3
1

2
0

33
2

2
μ

μ

 

 
Because ( ) 22

2
1

1 RRzz ++= : 

 
( )[ ] ( )[ ]

1

2
1

2
1

2122
2
1

2
11 2

z
Rz

RzRRz
dz
dz

+
=

+++=
−

 

 
Because ( ) 22

2
1

2 RRzz +−= : 
 

( )[ ] ( )[ ]

2

2
1

2
1

2122
2
1

2
12 2

z
Rz

RzRRz
dz
dz

−
=

−+−=
−
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( ) ( ) ( ) 212
4
522

2
1

1 0 RRRz =+=  

and 
( ) ( ) ( ) 212

4
522

2
1

2 0 RRRz =+=  

 

Evaluating z1(0) and z2(0) yields: 
 

Substituting for 
dz
dz1 and 

dz
dz2 in the expression for 

dz
dBz  and simplifying yields: 

 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ −−
+

+−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−= −−

5
2

2
1

5
1

2
12

0

2

2
1

4
2

1

2
1

4
1

2
0

33
2

33
2

z
Rz

z
RzINR

z
Rz

z
z

Rz
zINR

dz
dBz

μ

μ

 

 

Substitute for z1(0) and z2(0) and evaluate 
dz

dBz at z = 0: 

 
( )

( )
( )

( )
0

33
2 252

4
5

2
1

252
4
5

2
12

0

0

=
⎟
⎟

⎠

⎞−−
+

⎜
⎜

⎝

⎛ −
=

= R

R

R

RINR
dz

dB

z

z μ  

 

Differentiate 
dz

dBz with respect to z to obtain: 

 
( ) ( )

( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−+

+
−−=

⎥
⎦

⎤
⎢
⎣

⎡ −−
+

+−
=

7
2

2
2
1

5
2

7
1

2
2
1

5
1

2
0

5
2

2
1

5
1

2
12

0
2

2

51513
2

33
2

z
Rz

zz
Rz

z
INR

z
Rz

z
Rz

dz
dINR

dz
Bd z

μ

μ
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Evaluate 2

2

dz
Bd z at z = 0 to obtain: 

 

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

0

11113
2

113
2

51513
2

25
4
525

4
525

4
525

4
5

2
0

27
4
5

2
4
5

25
4
527

4
5

2
4
5

25
4
5

2
0

27
4
5

2
2
1

25
4
527

4
5

2
2
1

25
4
5

2
0

0
2

2

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−+−−=

=

RRRR
INR

R
R

RR
R

R
INR

R
R

RR
R

R
INR

dz
Bd

z

z

μ

μ

μ

 

 

Differentiate 2

2

dz
Bd z with respect to z to obtain: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
⎟
⎟
⎠

⎞−
+

−
−

+
−⎜

⎜
⎝

⎛ +
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−+

+
−−=

9
2

3
2
1

7
2

2
1

7
1

2
1

9
1

3
2
12

0

7
2

2
2
1

5
2

7
1

2
2
1

5
1

2
0

3

3

35151535
3

2

51513
2

z
Rz

z
Rz

z
Rz

z
RzINR

z
Rz

zz
Rz

zdz
dINR

dz
Bd z

μ

μ

 

 

Evaluate 3

3

dz
Bd z at z = 0 to obtain: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( )
( )

0

35151535
3

2

35151535
3

2

292
4
5

3
2
1

272
4
5

2
1

272
4
5

2
1

292
4
5

3
2
12

0

9
2

3
2
1

7
2

2
1

7
1

2
1

9
1

3
2
12

0

0
3

3

=

⎟
⎟

⎠

⎞
−+−

⎜
⎜

⎝

⎛
−=

⎟
⎟
⎠

⎞−
+

−
−−⎜

⎜
⎝

⎛
−=

=

R

R

R

R

R

R

R

RINR

z
R

z
R

z
R

z
RINR

dz
Bd

z

z

μ

μ

 

 
24 ••• Anti-Helmholtz coils are used in many physics applications, such as 
laser cooling and trapping, where a field with a uniform gradient is desired.  
These coils have the same construction as a Helmholtz coil, except that the 
currents have opposite directions, so that the axial fields are in opposite 
directions, and the coil separation is 3R  rather than R.  Graph the magnetic field 
as a function of z, the axial distance from the center of the coils, for an anti-
Helmholtz coil using the same parameters as in Problem 22. Over what interval of 



                                                                 Sources of the Magnetic Field 
 

 

2583

the z axis is dBz/dz within one percent of its value at the midpoint between the 
coils? 
 
Picture the Problem Let the origin be midway between the coils so that one of 
them is centered at Rz 2

3−=  and the other is centered at Rz 2
3= .  Let the 

numeral 1 denote the coil centered at Rz 2
3−= and the numeral 2 the coil 

centered at Rz 2
3= . We can express the magnetic field in the region between the 

coils as the difference of the magnetic fields BB1 and B2B  due to the two coils and 
use the two-point formula to approximate the slope of the graph of BBz as a 
function of z. 
 
The magnetic field on the z is the 
difference between the magnetic 
fields due to the currents in coils 1 
and 2: 
 

( ) ( )zBzBBz 21 −=                     (1) 

Express the magnetic field on the z 
axis due to the coil centered at 

2/3Rz −= : 

( )
( )[ ] 23

22

2
3

2
0

1

2 RRz

INRzB
++

=
μ

 

where N is the number of turns. 
 

Express the magnetic field on the z 
axis due to the coil centered at 

2/3Rz = : 

( )
( )[ ] 23

22

2
3

2
0

2

2 RRz

INRzB
+−

=
μ  

 
Substitute for   and  in equation (1) to express the total magnetic 
field along the z axis: 

( )zB1 ( )zB2

 

( )[ ] ( )[ ]
( )[ ] ( )[ ] ⎟

⎠
⎞

⎜
⎝
⎛ +−−++=

+−
−

++
=

−− 23
22

2
3

23
22

2
3

2
0

23
22

2
3

2
0

23
22

2
3

2
0

2

22

RRzRRzINR

RRz

INR

RRz

INRBz

μ

μμ

   (1) 

 
The spreadsheet solution is shown below. The formulas used to calculate the 
quantities in the columns are as follows: 
 

Cell Formula/Content Algebraic Form 
1.26×10−6B1 μ0

R B2 0.30 
N B3 250 

B3 15 I 
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B5 0.5*B$1*B$3*(B$2^2)*B$4 
2

Coeff =
2

0 INRμ  

A8 −R −0.30 
B8 B$5*((B$2*SQRT(3)/2+A8)^2 ( )[ ]+B$2^2)^(−3/2) 

23
0

2

−μ 22

2
3

2

++ RRzINR  

C8 B$5* ((B$2*SQRT(3)/2−A8)^2
+B$2^2)^(−3/2) ( )[ ] 23

22

2
3

2
0

2

−

+− RRzINRμ  

( ) ( )zBzBBx 21D8  10^4*(B8−C8) = −
E9 (D10 − D8)/(A10 − A8) zBzΔ Δ  
F9 ABS(100*(E9 − E$38)/E$38) % diff  

 
 A B C D E F 
1 μ0= 1.26E−06 N/A2    
2 R= 0.30 m    
3 N= 250 turns    
4 I= 15 A    
5 Coeff= 2.13E−04     
6       
7 z BB1 BB2 B(z) slope % diff 
8 −0.30 7.67E−03 8.30E-04 68.4   
9 −0.29 7.76E−03 8.65E-04 68.9 41 112.1 
10 −0.28 7.82E−03 9.03E-04 69.2 14 104.1 
11 −0.27 7.86E−03 9.42E-04 69.2 −14 95.9 
12 −0.26 7.87E−03 9.84E-04 68.9 −42 87.5 
       

30 −0.08 4.97E−03 2.28E−03 26.9 −332 1.3 
31 −0.07 4.75E−03 2.40E−03 23.5 −334 0.8 
32 −0.06 4.54E−03 2.52E−03 20.2 −335 0.4 
33 −0.05 4.33E−03 2.65E−03 16.8 −336 0.2 
34 −0.04 4.13E−03 2.79E−03 13.5 −336 0.1 
35 −0.03 3.94E−03 2.93E−03 10.1 −337 0.0 
36 −0.02 3.75E−03 3.08E−03 6.7 −337 0.0 
37 −0.01 3.57E−03 3.24E−03 3.4 −337 0.0 
38 0.00 3.40E−03 3.40E−03 0.0 −337 0.0 
39 0.01 3.24E−03 3.57E−03 −3.4 −337 0.0 
40 0.02 3.08E−03 3.75E−03 −6.7 −337 0.0 
41 0.03 2.93E−03 3.94E−03 −10.1 −337 0.0 
42 0.04 2.79E−03 4.13E−03 −13.5 −336 0.1 
43 0.05 2.65E−03 4.33E−03 −16.8 −336 0.2 
44 0.06 2.52E−03 4.54E−03 −20.2 −335 0.4 
45 0.07 2.40E−03 4.75E−03 −23.5 −334 0.8 
46 0.08 2.28E−03 4.97E−03 −26.9 −332 1.3 
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64 0.26 9.84E−04 7.87E−03 −68.9 −42 87.5 
65 0.27 9.42E−04 7.86E−03 −69.2 −14 95.9 
66 0.28 9.03E−04 7.82E−03 −69.2 14 104.1 
67 0.29 8.65E−04 7.76E−03 −68.9 41 112.1 
68 0.30 8.30E−04 7.67E−03 −68.4    

 
The following graph of BBz as a function of z was plotted using the data in the 
above table. 
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Bz
 (G

)

-0.075 0.075

 
Inspection of the table reveals that the slope of the graph of BBz, evaluated at z = 0, 
is −337 G. 1% of this value corresponds approximately to −0.075 m < z < 0.075 m 
or RzR 25.025.0 <<− . 
 
The Magnetic Field Due to Straight-Line Currents 
 
25 •• [SSM] If the currents are both in the –x direction, find the magnetic 
field at the following points on the y axis: (a) y = –3.0 cm, (b) y = 0,  
(c) y = +3.0 cm, and (d) y = +9.0 cm. 
 
Picture the Problem Let + denote the wire (and current) at y = +6.0 cm and − the 

wire (and current) at y = −6.0 cm. We can use 
R
IB 2

4
0

π
μ

= to find the magnetic 

field due to each of the current-carrying wires and superimpose the magnetic  
fields due to the currents in these wires to find B at the given points on the y axis. 
We can apply the right-hand rule to find the direction of each of the fields and, 
hence, of . B

r
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(a) Express the resultant magnetic 
field at y = −3.0 cm: 
 

( ) ( )
( )cm0.3

cm0.3cm0.3

−+

−=−

−

+

B

BB
r

rr

  (1) 

( ) ( ) ( )

T4.44
m090.0

A202m/AT10cm0.3 7

μ=

⋅=− −
+B

 

and 

( ) ( ) ( )

T133
m030.0

A202m/AT10cm0.3 7

μ=

⋅=− −
−B

 

 

Find the magnitudes of the magnetic 
fields at y = −3.0 cm due to each 
wire: 
 

( ) ( )kB ˆT4.44cm0.3 μ=−+

r
 Apply the right-hand rule to find the 

directions of +B
r

and −B
r

: and 
( ) ( )kB ˆT133cm0.3 μ−=−−

r
 

 
 

Substituting in equation (1) yields: 
 

( ) ( ) ( )
( )k

kkB
ˆT89

ˆT133ˆT4.44cm0.3

μ

μμ

−=

−=−
r

 

 
(b) Express the resultant magnetic 
field at y = 0: 
 

( ) ( ) ( )000 −+ += BBB
rrr

 

Because ( ) ( )00 −+ −= BB
rr

: ( ) 00 =B
r

 

 
( ) ( )kB ˆT133cm0.3 μ=+

r
, (c) Proceed as in (a) to obtain: 

( ) ( )kB ˆT4.44cm0.3 μ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆT89

ˆT4.44ˆT133cm0.3

μ

μμ

=

−=
r

 

 

 

( ) ( )kB ˆT133cm0.9 μ−=+

r
, (d) Proceed as in (a) with y = 9.0 cm 

to obtain: ( ) ( )kB ˆT7.26cm0.9 μ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆT160

ˆT7.26ˆT133cm0.9

μ

μμ

−=

−−=
r

 

 
26 •• Using a spreadsheet program or graphing calculator, graph BBz versus 
y when both currents are in the –x direction. 
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Picture the Problem The diagram shows the two wires with the currents flowing 
in the negative x direction. We can use the expression for B due to a long, straight 
wire to express the difference of the fields due to the two currents. We’ll denote 
each field by the subscript identifying the position of each wire. 

I

I

cm 0.6+
y

y−
cm 0.6

 0.6−

 0.6
6−B

r

6
B
r

x

z

y, cm

 
 
The field due to the current in the 
wire located at y = 6.0 cm is: 
 

y
IB
−

=
m060.0

2
4

0
6 π

μ  

The field due to the current in the 
wire located at y = −6.0 cm is: 
 

y
IB
+

=− m060.0
2

4
0

6 π
μ  

The resultant field BBz is the difference between B6B  and BB−6: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

=

−
−

−
=−= −

yy
I

y
I

y
IBBBz

m060.0
1

m060.0
1

4

m060.04m060.04

0

00
66

π
μ

π
μ

π
μ

 

 
The following graph of BBz as a function of y was plotted using a spreadsheet 
program: 
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27 •• The current in the wire at y = –6.0 cm is in the –x direction and the 
current in the wire at y = +6.0 cm is in the +x direction. Find the magnetic field at 
the following points on the y axis: (a) y = –3.0 cm, (b) y = 0, (c) y = +3.0 cm, and 
(d) y = +9.0 cm. 
 
Picture the Problem Let + denote the wire (and current) at y = +6 cm and − the 

wire (and current) at y = −6.0 cm. We can use 
R
IB 2

4
0

π
μ

= to find the magnetic 

field due to each of the current carrying wires and superimpose the magnetic 
fields due to the currents in the wires to find B at the given points on the y axis. 
We can apply the right-hand rule to find the direction of each of the fields and, 
hence, of .B

r
 

 
(a) Express the resultant magnetic 
field at y = −3.0 cm: 
 

( ) ( )
( )cm0.3

cm0.3cm0.3

−+

−=−

−

+

B

BB
r

rr

    (1) 

( ) ( ) ( )

T4.44
m090.0

A202m/AT10cm0.3 7

μ=

⋅=− −
+B

 

and 

( ) ( ) ( )

T133
m030.0

A202m/AT10cm0.3 7

μ=

⋅=− −
−B

 

 

Find the magnitudes of the magnetic 
fields at y = −3.0 cm due to each 
wire: 
 

Apply the right-hand rule to find 
the directions of +B

r
and −B

r
: 

 

( ) ( )kB ˆT4.44cm0.3 μ−=−+

r
 

and   
( ) ( )kB ˆT133cm0.3 μ−=−−

r
 

 
Substituting in equation (1) yields: 
 

( ) ( ) ( )
( )k

kkB
ˆmT18.0

ˆT133ˆT4.44cm0.3

−=

−−=− μμ
r

 

 
(b) Express the resultant magnetic 
field at y = 0: 
 

( ) ( ) ( )000 −+ += BBB
rrr
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( ) ( ) ( )

T7.66
m060.0

A202m/AT100 7

μ=

⋅= −
+B

 

and 

( ) ( ) ( )

T7.66
m060.0

A202m/AT100 7

μ=

⋅= −
−B

 

 

Find the magnitudes of the magnetic 
fields at y = 0 cm due to each wire: 
 

( ) ( )kB ˆT7.660 μ−=+

r
 

and 
( ) ( )kB ˆT7.660 μ−=−

r
 

 

Apply the right-hand rule to find 
the directions of +B

r
and −B

r
: 

 

Substitute to obtain: 
 

( ) ( ) ( )
( )k

kkB
ˆmT13.0

ˆT7.66ˆT7.660

−=

−−= μμ
r

 

 
( ) ( )kB ˆT133cm0.3 μ−=+

r
, 

( ) ( )kB ˆT4.44cm0.3 μ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆmT18.0

ˆT4.44ˆT133cm0.3

−=

−−= μμ
r

 

 

(c) Proceed as in (a) with  
y = +3.0 cm to obtain: 
 

( ) ( )kB ˆT133cm0.9 μ=+

r
, (d) Proceed as in (a) with  

( ) ( )kB ˆT7.26cm0.9 μ−=−

r
, 

and 
( ) ( ) ( )

( )k
kkB

ˆmT11.0

ˆT7.26ˆT133cm0.9

=

−= μμ
r

 

y = +9.0 m to obtain: 

 
28 •• The current in the wire at y = –6.0 cm is in the +x direction and the 
current in the wire at y = +6.0 cm is in the –x direction.  Using a spreadsheet 
program or graphing calculator, graph BBz versus y.  
 
Picture the Problem The diagram shows the two wires with the currents flowing 
in the negative x direction. We can use the expression for B due to a long, straight 
wire to express the difference of the fields due to the two currents. We’ll denote 
each field by the subscript identifying the position of each wire. 
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I

I

cm 0.6+y y−cm 0.6

6
B
r

6−B
r

y−

 0.6 0.6−
y, cm

x

z

 
 
The field due to the current in the 
wire located at y = 6.0 cm is: 
 

y
IB
−

=
m060.0

2
4

0
6 π

μ  

The field due to the current in the 
wire located at y = −6.0 cm is: 
 

y
IB
+

=− m060.0
2

4
0

6 π
μ  

The resultant field BBz is the sum of B6B  and BB−6: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−

=

−
+

−
=+= −

yy
I

y
I

y
IBBBz

m060.0
1

m060.0
1

4

m060.04m060.04

0

00
66

π
μ

π
μ

π
μ

 

 
The following graph of BBz as a function of y was plotted using a spreadsheet 
program: 
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B z
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29 • Find the magnetic field on the z axis at z = +8.0 cm if (a) the currents 
are both in the –x direction, and (b) the current in the wire at y = –6.0 cm is in the 
–x direction and the current in the wire at y = +6.0 cm is in the +x direction. 
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Picture the Problem Let + denote the wire (and current) at y = +6.0 cm and − the 

wire (and current) at y = −6.0 cm. We can use 
R
IB 2

4
0

π
μ

= to find the magnetic 

field due to each of the current carrying wires and superimpose the magnetic 
fields due to the currents in the wires to find B at the given points on the z axis. 

 
(a) Apply the right-hand rule to 
show that, for the currents parallel 
and in the negative x direction, the 
directions of the fields are as shown 
to the right:  

z

y
cm 0.6− cm 0.6

cm 0.8
θ

××

6
B
r

6−B
r

 
 

Express the magnitudes of the 
magnetic fields at z = +8.0 cm due 
to the current-carrying wires at  
y = −6.0 cm and y = +6.0 cm: 

( )
( )

( ) ( )
T0.40

m080.0m060.0

A202
m/AT10

22

7

μ=

+
×

⋅== −
+− zz BB

 

 
Noting that the z components add 
to zero, express the resultant 
magnetic field at z = +8.0 cm: 
 

( ) ( )
( )(
( )

)
j

j

jB

ˆT48

ˆ60.0T0.402

ˆcosT0.402cm0.8

μ

μ

θμ

=

=

=
r

 

 
(b) Apply the right-hand rule to 
show that, for the currents 
antiparallel with the current in 
the wire at y = −6.0 cm in the 
negative x direction, the 
directions of the fields are as 
shown to the right: 
 

z

y
cm 0.6− cm 0.6

cm 0.8
θ

×

6
B
r

6−B
r

•
 

 
Noting that the y components add 
to zero, express the resultant 
magnetic field at z = +8.0 cm: 
 

( ) ( )
( )(
( )

)
k

k

kB

ˆT64

ˆ80.0T0.402

ˆsinT0.402cm0.8

μ

μ

θμ

−=

−=

−=
r

 

 



  Chapter 27    
 

2592 

30 • Find the magnitude of the force per unit length exerted by one wire on 
the other. 
 
Picture the Problem Let + denote the wire (and current) at y = +6.0 cm and − 
the wire (and current) at y = −6.0 cm. The forces per unit length the wires exert 
on each other are action and reaction forces and hence are equal in magnitude. 

We can use to express the force on either wire andBIF l=
R
IB 2

4
0

π
μ

= to express 

the magnetic field at the location of either wire due to the current in the other. 
 

Express the force exerted on either 
wire: 
 

BIF l=  

Express the magnetic field at either 
location due to the current in the 
wire at the other location: 
 

R
IB 2

4
0

π
μ

=  

Substitute for B to obtain: 
R
I

R
IIF

2
00

4
22

4 π
μ

π
μ l

l =⎟
⎠
⎞

⎜
⎝
⎛=  

 
Divide both sides of the equation by 

to obtain: l

 
R
IF 2

0

4
2
π
μ

=
l

 

Substitute numerical values and 
evaluate F/ : l

( )( )

mN/m67.0

m12.0
A20m/AT102 27

=

⋅
=

−

l

F
 

 
31 • Two long, straight parallel wires 8.6 cm apart carry equal currents. 
The wires repel each other with a force per unit length of 3.6 nN/m. (a) Are the 
currents parallel or anti-parallel? Explain your answer. (b) Determine the current 
in each wire. 
 

Picture the Problem We can use 
R
IF 2

0

4
2
π
μ

=
l

to relate the force per unit length 

each current-carrying wire exerts on the other to their common current. 
 
(a) Because the currents repel, they are antiparallel. 
 
(b)The force per unit length 
experienced by each wire is given 
by: 

R
IF 2

0

4
2
π
μ

=
l

⇒
l

FRI
02

4
μ
π

=  
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Substitute numerical values and 
evaluate I: 

( )
( )( )

mA39

nN/m6.3
m/AT102

cm6.8
7

=

⋅
= −I

 

  
32 •• The current in the wire shown in Figure 27-52 is 8.0 A. Find the 
magnetic field at point P. 
 
Picture the Problem Note that the current segments a-b and e-f do not contribute 
to the magnetic field at point P. The current in the segments b-c, c-d, and d-e 
result in a magnetic field at P that points into the plane of the paper. Note that the 
angles bPc and ePd are 45° and use the expression for B due to a straight wire 
segment to find the contributions to the field at P of segments bc, cd, and de. 

a fb

c d

eP

I

 
 

Express the resultant magnetic field 
at P: 
 

decdbc BBBB ++=  

Express the magnetic field due to a 
straight line segment: 
 

( )21
0 sinsin

4
θθ

π
μ

+=
R
IB          (1) 

Use equation (1) to express  and 
: 

bcB

deB
( )

°=

°+°=

45sin
4

0sin45sin
4

0

0

R
I
R
IBbc

π
μ
π
μ

 

 
Use equation (1) to express : cdB ( )

°=

°+°=

45sin
4

2

45sin45sin
4

0

0

R
I

R
IBcd

π
μ
π
μ

 

 
Substitute to obtain: 

°=

°+

°+°=

45sin
4

4

45sin
4

45sin
4

245sin
4

0

0

00

R
I

R
I

R
I

R
I

B

π
μ
π
μ

π
μ

π
μ
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Substitute numerical values and 
evaluate B: 

( )

page  theinto mT23.0

45sin
m010.0

A0.8m/AT104 7

=

°⋅= −B
 

 
33 •• [SSM] As a student technician, you are preparing a lecture 
demonstration on ″magnetic suspension. ″ You have a 16-cm long straight rigid 
wire that will be suspended by flexible conductive lightweight leads above a long 
straight wire. Currents that are equal but are in opposite directions will be 
established in the two wires so the 16-cm wire ″floats″ a distance h above the 
long wire with no tension in its suspension leads. If the mass of the 16-cm wire is 
14 g and if h (the distance between the central axes of the two wires) is 1.5 mm, 
what should their common current be? 
 
Picture the Problem The forces acting on the wire are the upward magnetic 
force FB and the downward gravitational force mg, where m is the mass of the 
wire. We can use a condition for translational equilibrium and the expression for 
the force per unit length between parallel current-carrying wires to relate the 
required current to the mass of the wire, its length, and the separation of the two 
wires. 

B

 
Apply to the floating 

wire to obtain: 

0=∑ yF

 

0=−mgFB  

Express the repulsive force acting on 
the upper wire: 
 

R
IFB

l2
0

4
2

π
μ

=  

Substitute to obtain: 
 0

4
2

2
0 =−mg

R
I l

π
μ

⇒
l02

4
μ
πmgRI =  

 
Substitute numerical values and evaluate I: 
 

( )( )( )
( )( ) A80

m16.0m/AT102
m105.1m/s81.9kg1014

7

323

=
⋅

××
= −

−−

I  

 
34 •• Three long, parallel straight wires pass through the vertices of an 
equilateral triangle that has sides equal to 10 cm, as shown in Figure 27-53. The 
dot indicates that the direction of the current is out of the page and a cross 
indicates that the direction of the current is into the page. If each current is 15 A, 
find (a) the magnetic field at the location of the upper wire due to the currents in 
the two lower wires and (b) the force per unit length on the upper wire. 
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Picture the Problem (a) We can use the right-hand rule to determine the 
directions of the magnetic fields at the upper wire due to the currents in the two 

lower wires and use 
R
IB 2

4
0

π
μ

= to find the magnitude of the resultant field due to 

these currents. (b) Note that the forces on the upper wire are away from and 
directed along the lines to the lower wire and that their horizontal components 

cancel. We can use 
R
IF 2

0

4
2

π
μ

=
l

to find the resultant force in the upward 

direction (the y direction) acting on the top wire. 
 

(a) Noting, from the geometry of the 
wires, the magnetic field vectors 
both are at an angle of 30° with the 
horizontal and that their y 
components cancel, express the 
resultant magnetic field: 
  

iB ˆ30cos2
4

2 0 °=
R
I

π
μr

 

Substitute numerical values and 
evaluate B: 

( ) ( )

right  the towardT52

30cos
m10.0
A152m/AT102 7

μ=

°⋅= −B
 

 
(b) Express the force per unit length 
each of the lower wires exerts on the 
upper wire: 
 

R
IF 2

0

4
2

π
μ

=
l

 

Noting that the horizontal 
components add up to zero, express 
the net upward force per unit length 
on the upper wire: 
 

°=

°+

°=∑

30cos
4

4

30cos
4

2

30cos
4

2

2
0

2
0

2
0

R
I

R
I

R
IFy

π
μ

π
μ

π
μ

l

 

 
Substitute numerical values and 

evaluate∑
l

yF
: 

( )( )

page  theup N/m108.7

30cos
m10.0

A15m/AT104

4

2
7

−

−

×=

°⋅=∑
l

yF

 

 
35 •• Rework Problem 34 with the current in the lower right corner of 
Figure 27- 53 reversed.  
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Picture the Problem (a) We can use the right-hand rule to determine the 
directions of the magnetic fields at the upper wire due to the currents in the two 

lower wires and use 
R
IB 2

4
0

π
μ

= to find the magnitude of the resultant field due to 

these currents. (b) Note that the forces on the upper wire are away from and 
directed along the lines to the lower wire and that their horizontal components 

cancel. We can use 
R
IF 2

0

4
2

π
μ

=
l

to find the resultant force in the upward 

direction (the y direction) acting on the top wire. 
 
(a) Noting, from the geometry of the 
wires, that the magnetic field vectors 
both are at an angle of 30° with the 
horizontal and that their x 
components cancel, express the 
resultant magnetic field: 
  

jB ˆ30sin2
4

2 0 °−=
R
I

π
μr

 

Substitute numerical values and 
evaluate B: 

( ) ( )

page down the T30

30sin
m10.0
A152m/AT102 7

μ=

°⋅= −B
 

 
(b) Express the force per unit length 
each of the lower wires exerts on the 
upper wire: 
 

R
IF 2

0

4
2

π
μ

=
l

 

Noting that the vertical components 
add up to zero, express the net force 
per unit length acting to the right on 
the upper wire: 
 

°=

°+

°=∑

60cos
4

4

60cos
4

2

60cos
4

2

2
0

2
0

2
0

R
I

R
I

R
IFx

π
μ

π
μ

π
μ

l

 

 

Substitute numerical values and evaluate∑
l

xF : 

 

( )( ) right  the towardN/m105.460cos
m10.0

A15m/AT104 4
2

7 −− ×=°⋅=∑
l

xF
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36 •• An infinitely long wire lies along the x axis, and carries current I in the 
+x direction. A second infinitely long wire lies along the y axis, and carries 
current I in the +y direction. At what points in the z = 0 plane is the resultant 
magnetic field zero? 
 
Picture the Problem Let the numeral 1 denote the current flowing in the positive 
x direction and the magnetic field resulting from it and the numeral 2 denote the 
current flowing in the positive y direction and the magnetic field resulting from it. 

We can express the magnetic field anywhere in the xy plane using 
R
IB 2

4
0

π
μ

= and 

the right-hand rule and then impose the condition that 0=B
r

to determine the set 
of points that satisfy this condition. 

 
Express the resultant magnetic field 
due to the two current-carrying 
wires: 
 

21 BBB
rrr

+=                              (1) 

Express the magnetic field due to the 
current flowing in the positive x 
direction: 
 

k
y
IB ˆ2

4
10

1 π
μ

=
r

 

Express the magnetic field due to the 
current flowing in the positive y 
direction: 
 

k
x
IB ˆ2

4
20

2 π
μ

−=
r

 

Substitute for 1B
r

and 2B
r

in equation 
(1) and simplify to obtain: 
 

k

kkB

ˆ2
4

2
4

ˆ2
4

ˆ2
4

00

00

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=

x
I

y
I

x
I

y
I

π
μ

π
μ

π
μ

π
μr

 

because I = I1 = I2. 
 

For 0=B
r

: 02
4

2
4

00 =−
x
I

y
I

π
μ

π
μ

⇒ x = y. 

 
0=B

r
 everywhere on the plane that contains both the z axis and the line y = x in 

the z = 0 plane. 
 
37 •• [SSM] An infinitely long wire lies along the z axis and carries a 
current of 20 A in the +z direction. A second infinitely long wire that is parallel to 
the z and intersects the x axis at x = 10.0 cm. (a) Find the current in the second 
wire if the magnetic field is zero at (2.0 cm, 0, 0) is zero. (b) What is the magnetic 
field at (5.0 cm, 0, 0)? 
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Picture the Problem Let the numeral 1 denote the current flowing along the 
positive z axis and the magnetic field resulting from it and the numeral 2 denote 
the current flowing in the wire located at x = 10 cm and the magnetic field 
resulting from it. We can express the magnetic field anywhere in the xy plane 

using 
R
IB 2

4
0

π
μ

= and the right-hand rule and then impose the condition that 

0=B
r

to determine the current that satisfies this condition. 
 
(a) Express the resultant magnetic 
field due to the two current-carrying 
wires: 
 

21 BBB
rrr

+=                               (1) 

Express the magnetic field at  
x = 2.0 cm due to the current 
flowing in the positive z 
direction: 
 

( ) jB ˆ
cm0.2

2
4

cm0.2 10
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

I
π
μr

 

Express the magnetic field at  
x = 2.0 cm due to the current flowing 
in the wire at x = 10.0 cm: 
 

( ) jB ˆ
cm0.8

2
4

cm0.2 20
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

I
π
μr

 

Substitute for 1B
r

and 2B
r

in equation 
(1) and simplify to obtain: 
 

j

jjB

ˆ
cm0.8

2
4cm0.2

2
4

ˆ
cm0.8

2
4

ˆ
cm0.2

2
4

2010

2010

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

II

II

π
μ

π
μ

π
μ

π
μr

 

 
For 0=B

r
: 0

cm0.8
2

4cm0.2
2

4
2010 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ II
π
μ

π
μ  

or 

0
0.80.2
21 =−

II ⇒ 12 4II =  

 
Substitute numerical values and 
evaluate I2: 
 

( ) A80A2042 ==I  

 

(b) Express the magnetic field at x = 5.0 cm: 
 

( ) ( ) ( ) jjjB ˆ
cm0.54

2ˆ
cm0.5

2
4

ˆ
cm0.5

2
4

cm 0.5 21
02010 IIII

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

π
μ

π
μ

π
μr
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Substitute numerical values and evaluate ( )cm0.5B
r

: 
 

( ) ( )( ) ( ) jjB ˆmT24.0ˆA80A20
cm0.5

m/AT102cm 0.5
7

−=−
⋅

=
−r

 

 
38 •• Three long parallel wires are at the corners of a square, as shown in 
Figure 27- 54.  The wires each carry a current I.  Find the magnetic field at the 
unoccupied corner of the square when (a) all the currents are into the page, (b) I1 
and I3 are into the page and I2 is out, and (c) I1 and I2 are into the page and I3 is 
out. Your answers should be in terms of I and L. 
 
Picture the Problem Choose a coordinate system with its origin at the lower left-
hand corner of the square, the positive x axis to the right and the positive y axis 

upward. We can use 
R
IB 2

4
0

π
μ

=  and the right-hand rule to find the magnitude and 

direction of the magnetic field at the unoccupied corner due to each of the 
currents, and superimpose these fields to find the resultant field. 

 
(a) Express the resultant magnetic 
field at the unoccupied corner: 
 

321 BBBB
rrrr

++=                       (1) 

When all the currents are into the 
paper their magnetic fields at the 
unoccupied corner are as shown to 
the right: 
  
Express the magnetic field at the 
unoccupied corner due to the 
current I1: 
 

jB ˆ2
4

0
1 L

I
π
μ

−=
r

 

 

Express the magnetic field at the 
unoccupied corner due to the current 
I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

L
I

L
I

π
μ
π
μr

 

 
Express the magnetic field at the 
unoccupied corner due to the current 
I3: 
 

iB ˆ2
4

0
3 L

I
π
μ

=
r
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Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jiji

ijijijijB

ˆˆ
4
3ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +−+−=+−+−=

L
I

L
I

L
I

L
I

L
I

L
I

π
μ

π
μ

π
μ

π
μ

π
μ

π
μr

 

 
(b) When I2 is out of the paper the 
magnetic fields at the unoccupied 
corner are as shown to the right: 
 

 
Express the magnetic field at the 
unoccupied corner due to the current 
I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

+−=

+−°=

L
I

L
I

π
μ
π
μr

 

 
Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jijiji

ijijijijB

ˆˆ
4

ˆ
2
1ˆ

2
12

4
ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

000

0000

−=⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ ++−+−=++−+−=

L
I

L
I

L
I

L
I

L
I

L
I

L
I

π
μ

π
μ

π
μ

π
μ

π
μ

π
μ

π
μr

 

 
(c) When I1 and I2 are in and I3 is out 
of the paper the magnetic fields at 
the unoccupied corner are as shown 
to the right: 
  

From (a) or (b) we have: jB ˆ2
4

0
1 L

I
π
μ

−=
r

 

 
From (a) we have: 
 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

L
I

L
I

π
μ
π
μr
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Express the magnetic field at the 
unoccupied corner due to the 
current I3: 
 

iB ˆ2
4

0
3 L

I
π
μ

−=
r

 

Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jiji

ijijijijB

ˆ3ˆ
4

ˆ
2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎟
⎠
⎞

⎜
⎝
⎛ −−+−=−−+−=

L
I

L
I

L
I

L
I

L
I

L
I

π
μ

π
μ

π
μ

π
μ

π
μ

π
μr

 

 
39 •• [SSM] Four long, straight parallel wires each carry current I.  In a 
plane perpendicular to the wires, the wires are at the corners of a square of side 
length a.  Find the magnitude of the force per unit length on one of the wires if 
(a) all the currents are in the same direction and (b) the currents in the wires at 
adjacent corners are oppositely directed.  
 

Picture the Problem Choose a coordinate system with its origin at the lower 
left-hand corner of the square, the positive x axis to the right and the positive y 
axis upward. Let the numeral 1 denote the wire and current in the upper left-hand 
corner of the square, the numeral 2 the wire and current in the lower left-hand 
corner (at the origin) of the square, and the numeral 3 the wire and current in the 

lower right-hand corner of the square. We can use 
R
IB 2

4
0

π
μ

=  and the right-hand 

rule to find the magnitude and direction of the magnetic field at, say, the upper 
right-hand corner due to each of the currents, superimpose these fields to find the 
resultant field, and then use BIF l= to find the force per unit length on the wire. 

 
(a) Express the resultant magnetic 
field at the upper right-hand corner: 
 

321 BBBB
rrrr

++=                     (1) 

When all the currents are into the 
paper their magnetic fields at the 
upper right-hand corner are as shown 
to the right: 
  
Express the magnetic field due to the 
current I1: 

jB ˆ2
4

0
1 a

I
π
μ

−=
r
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Express the magnetic field due to the 
current I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

−=

−°=

a
I

a
I

π
μ
π
μr

 

 
Express the magnetic field due to the 
current I3: 

iB ˆ2
4

0
3 a

I
π
μ

=
r

 

 
Substitute in equation (1) and simplify to obtain: 
 

( ) ( )

[ ]jiji

ijijijijB

ˆˆ
4
3ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

00

0000

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +−+−=+−+−=

a
I

a
I

a
I

a
I

a
I

a
I

π
μ

π
μ

π
μ

π
μ

π
μ

π
μr

 

 
Using the expression for the 
magnetic force on a current-
carrying wire, express the force 
per unit length on the wire at the 
upper right-hand corner: 
 

BIF
=

l
                                    (2) 

[ ]jiF ˆˆ
4

3 2
0 −=
a
I

π
μ

l

r

 
Substitute to obtain: 

and 

a
I

a
I

a
IF

π
μ

π
μ

π
μ

4
23

4
3

4
3

2
0

22
0

22
0

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

l
 

 
(b) When the current in the upper 
right-hand corner of the square is out 
of the page, and the currents in the 
wires at adjacent corners are 
oppositely directed, the magnetic 
fields at the upper right-hand are as 
shown to the right: 
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Express the magnetic field at the 
upper right-hand corner due to 
the current I2: 

( )

( )ji

jiB

ˆˆ
2
2

4

ˆˆ45cos
2

2
4

0

0
2

+−=

+−°=

a
I

a
I

π
μ
π
μr

 

 
Using 1B

r
and from (a), substitute in equation (1) and simplify to obtain: 3B

r

 

( ) ( )

[ ]jijiji

ijijijijB

ˆˆ
4

ˆ
2
1ˆ

2
12

4
ˆ

2
11ˆ

2
112

4

ˆˆˆ
2
1ˆ2

4
ˆ2

4
ˆˆ

2
2

4
ˆ2

4

000

0000

−=⎥⎦
⎤

⎢⎣
⎡ −=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ ++−+−=++−+−=

a
I

a
I

a
I

a
I

a
I

a
I

a
I

π
μ

π
μ

π
μ

π
μ

π
μ

π
μ

π
μr

 

 

[ ]jiF ˆˆ
4

2
0 −=

a
I
π

μ
l

r

 
Substitute in equation (2) to obtain: 

and 

a
I

a
I

a
IF

π
μ

π
μ

π
μ

4
2

44

2
0

22
0

22
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

l
 

 
40 •• Five long straight current-carrying wires are parallel to the z axis, and 
each carries a current I in the +z direction.  The wires each are a distance R from 
the z axis.  Two of the wires intersect the x axis, one at x = R and the other at  
x = –R. Another wire intersects the y axis at y = R.  One of the remaining wires 
intersects the z = 0 plane at the point ( )2,2 RR  and the last remaining wire 
intersects the z = 0 plane at the point ( )2,2 RR− .  Find the magnetic field on 
the z axis.  
  
Picture the Problem The configuration 
is shown in the adjacent figure. Here 
the z axis points out of the plane of the 
paper, the x axis points to the right, the 
y axis points up. We can use  

R
IB 2

4
0

π
μ

=  

and the right-hand rule to find the 
magnetic field due to the current in 
each wire and add these magnetic fields 
vectorially to find the resultant field. 

B3

B2
B1

B5

B4

I1 I5

I2 I4

I3
y

x

 ( )2,2 RR−  ( )2,2 RR

 ( )0,R ( )0,R−

 ( )R,0

 

 
Express the resultant magnetic 
field on the z axis: 

54321 BBBBBB
rrrrrr

++++=      (1) 
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1B
r

is given by: 
 

jB ˆ
1 B=

r
 

2B
r

is given by: ( ) ( ) jiB ˆ45sinˆ45cos2 °+°= BB
r

 
 

3B
r

is given by: 
 

iB ˆ
3 B=

r
 

4B
r

is given by: 
 

( ) ( ) jiB ˆ45sinˆ45cos4 °−°= BB
r

 

5B
r

is given by: 
 

jB ˆ
5 B−=

r
 

Substitute for 1B
r

, 2B
r

, , 3B
r

4B
r

, and 5B
r

in equation (1) and simplify to obtain: 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) iiiii

jjiijijB
ˆ21ˆ45cos2ˆ45cosˆˆ45cos

ˆˆ45sinˆ45cosˆˆ45sinˆ45cosˆ

BBBBBB

BBBBBBB

+=°+=°++°=

−°−°++°+°+=
r

 

 
Express B due to each current at  
z = 0: R

IB 2
4

0

π
μ

=  

 
Substitute for B to obtain: ( ) iB ˆ

2
21 0

R
I

π
μ

+=
r

 

 
Magnetic Field Due to a Current-carrying Solenoid 
 
41 •• [SSM] A solenoid that has length 30 cm, radius 1.2 cm, and 300 
turns carries a current of 2.6 A.  Find the magnitude of the magnetic field on the 
axis of the solenoid (a) at the center of the solenoid, (b) at one end of the 
solenoid. 

 

Picture the Problem We can use ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
=

222202
1

Ra
a

Rb
bnIBx μ  to find B 

at any point on the axis of the solenoid. Note that the number of turns per unit 
length for this solenoid is 300 turns/0.30 m = 1000 turns/m. 

 
Express the magnetic field at any 
point on the axis of the solenoid: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
=

222202
1

Ra
a

Rb
bnIBx μ  
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Substitute numerical values to obtain: 
 

( )( )( )
( ) ( )

( )
( ) ( ) ⎟

⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
=

⎟
⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
⋅×= −

2222

2222

7
2
1

m012.0m012.0
mT634.1

m012.0m012.0
A6.21000m/AT104

a

a

b

b

a

a

b

bBx π

 

 
(a) Evaluate BBx for a = b = 0.15 m: 

 

( ) ( )
( ) ( ) ( ) ( )

mT3.3

m012.0m15.0

m15.0

m012.0m15.0

m15.0mT634.1m 15.0
2222

=

⎟
⎟

⎠

⎞

+
+⎜

⎜

⎝

⎛

+
=xB

 

 
(b) Evaluate BBx (= BendB ) for a = 0 and b = 0.30 m: 
 

( ) ( )
( ) ( )

mT6.1
m012.0m30.0

m30.0mT634.1m 30.0
22

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=xB  

Note that center2
1

end BB ≈ . 
 
42 • A solenoid is 2.7-m long, has a radius of 0.85 cm, and has 600 turns. It 
carries a current I of 2.5 A. What is the magnitude of the magnetic field B inside 
the solenoid and far from either end? 
 
Picture the Problem We can use nIB 0μ= to find the magnetic field inside the 
solenoid and far from either end. 

 
The magnetic field inside the 
solenoid and far from either end is 
given by: 
 

nIB 0μ=  

Substitute numerical values and 
evaluate B: 
 

( ) ( )

mT70.0

A5.2
m7.2

600N/A104 27

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×= −πB
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43 •• A solenoid has n turns per unit length, has a radius R, and carries a 
current I. Its axis coincides with the z axis with one end at l2

1−=z  and the other 
end at l2

1+=z . Show that the magnitude of the magnetic field at a point on the z 
axis in the interval z >  

1
2 l is given by ( )2102

1 coscos θθμ −= nIB , where the 

angles are related to the geometry by: ( ) ( ) 22
2
1

2
1

1cos Rzz +++= llθ  and 

( ) ( ) 22
2
1

2
1

2cos Rzz +−−= llθ . 
 
Picture the Problem The solenoid, extending from 2l−=z to 2l=z , with the 
origin at its center, is shown in the following diagram. To find the field at the 
point whose coordinate is z outside the solenoid we can determine the field at z 
due to an infinitesimal segment of the solenoid of width dz′ at z′, and then 
integrate from 2l−=z  to 2l=z . We’ll treat the segment as a coil of thickness 
ndz′ carrying a current I. 

0

θ
θ

1

2

z

z' l
2

1+l
2
1−

R

 
 

Express the field dB at the axial point 
whose coordinate is z: ( )[ ] dz'

Rzz

IRdB 2322

2
0

'

2
4 +−

=
π

π
μ  

 
Integrate dB from 2l−=z  to 2l=z to obtain: 
 

( )[ ] ( ) ( ) ⎟
⎟

⎠

⎞

+−

−
−⎜

⎜

⎝

⎛

++

+
=

+−
= ∫

−
2222

0
2

2
2322

2
0

2

2

2

2
22 Rz

z

Rz

znI

Rz'z

dz'nIRB
l

l

l

l
l

l

μμ
 

 

( )[ ] 212
2
12

2
1

1cos
l

l

++

+
=

zR

z
θ  Refer to the diagram to express 

cosθ1 and cosθ2: 

and 

( )[ ] 212
2
12

2
1

2cos
l

l

−+

−
=

zR

z
θ  

 
Substitute for the terms in 
parentheses in the expression for B 
to obtain: 

( )2102
1 coscos θθμ −= nIB  
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44 ••• In Problem 43, an expression for the magnitude of the magnetic field 
along the axis of a solenoid is given. For z >> l  and  >> R, the angles θl 1 and θ2 
are very small, so the small-angle approximations 2

2
11cos θθ −≈  and  

sinθ  ≈ tanθ  ≈ θ are highly accurate. (a) Draw a diagram and use it to show that, 
for these conditions, the angles can be approximated as ( )l2

1
1 +≈ zRθ  

and ( )l2
1

2 −≈ zRθ .  (b)  Using these approximations, show that the magnetic 

field at a points on the z axis where z >>  can be written asl ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

1

n
2

2

n0

4 r
q

r
qB

π
μ   

where l2
1

2 −= zr  is the distance to the near end of the solenoid, l2
1

1 += zr  is the 
distance to the far end, and the quantity qm is defined by lμπ == 2

m RnIq , where 
 is the magnitude of the magnetic moment of the solenoid. 

 
  μ = NIπR 2

Picture the Problem (a) We can use the results of Problem 43, together with the 
small angle approximation for the cosine and tangent functions, to show that θ1 

and θ2 are as given in the problem statement and that (b) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

1

m
2

2

m0

4 r
q

r
qB

π
μ . The 

angles θ1 and θ2 are shown in the diagram. Note that ( )2tan 1 l+= zRθ  and 
( )2tan 2 l−= zRθ . 

0

θ
θ

1

2

z

z' l
2

1+l
2
1−

R

 
 

(a) Apply the small angle 
approximation tanθ ≈ θ to obtain: 
 

l2
11 +

≈
z

Rθ and 
l2

12 −
≈

z
Rθ  

(b) Express the magnetic field 
outside the solenoid: 
 

( )2102
1 coscos θθμ −= nIB  

Apply the small angle approximation 
for the cosine function to obtain: 

2

2
12

1
1 1cos ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
lz

Rθ  

and 
2

2
12

1
2 1cos ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=
lz

Rθ  
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Substitute and simplify to obtain: 
 

( ) ( )⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

+
−

−
=

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+−
⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−= 2
2
12

2
1

2
04

1

2

2
12

1

2

2
12

1
02

1 1111
llll zz

nIR
z

R
z

RnIB μμ  

 
Let l2

1
1 += zr be the distance to the 

near end of the solenoid, l2
1

2 −= zr  
the distance to the far end, and 

lμπ == 2RnIqm , where μ = nIπR2 
is the magnetic moment of the 
solenoid to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 2

1

m
2

2

m0

4 r
q

r
qB

π
μ

 

 
Using Ampère’s Law 
 
45 • [SSM]  A long, straight, thin-walled cylindrical shell of radius R 
carries a current I parallel to the central axis of the shell. Find the magnetic field 
(including direction) both inside and outside the shell.  

 
Picture the Problem We can apply Ampère’s law to a circle centered on the axis 
of the cylinder and evaluate this expression for r < R and r > R to find B inside 
and outside the cylinder. We can use the right-hand rule to determine the 
direction of the magnetic fields. 

 
Apply Ampère’s law to a circle 
centered on the axis of the 
cylinder: 
 

CC
Id 0μ=⋅∫ l

rr
B  

Note that, by symmetry, the field is the 
same everywhere on this circle. 
 

Evaluate this expression for r < R: 
 

( ) 000inside ==⋅∫ μ
C

dl
rr

B  

Solve for  to obtain: insideB 0inside =B  

 
Evaluate this expression for r > R: ( ) IRBd

C 0outside 2 μπ ==⋅∫ l
rr

B  

 
Solve for  to obtain: outsideB

R
IB

π
μ
2

0
outside =  
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The direction of the magnetic field is in the direction of the curled fingers of your 
right hand when you grab the cylinder with your right thumb in the direction of 
the current. 
 
46 • In Figure 27-55, one current is 8.0 A into the page, the other current is 
8.0 A out of the page, and each curve is a circular path. (a) Find ∫ ⋅

C
dB l
rr

 for each 

path, assuming that each integral is to be evaluated in the counterclockwise 
direction. (b) Which path, if any, can be used to find the combined magnetic field 
of these currents? 
 
Picture the Problem We can use Ampère’s law, CC

Id 0μ=⋅∫ l
rr

B , to find the line 

integral ∫ ⋅
C

dl
rr

B for each of the three paths. 

 
( )A0.80

1

μ−=⋅∫C dB l
rr

 

The positive tangential direction on C1 
is counterclockwise. Therefore, in 
accord with convention (a right-hand 
rule), the positive normal direction for 
the flat surface bounded by C1 is out of 
the page. ∫ ⋅

C
dl
rr

B is negative because the 

current through the surface is in the 
negative direction (into the page). 
 

(a) Noting that the angle between 
and B

r
l
r

d is 180°, evaluate 

∫ ⋅
C

dl
rr

B for C1: 

 

Noting that the net current bounded 
by C2 is zero, evaluate ∫ ⋅

C
dl
rr

B : 

 

( ) 0A8.0A0.80
2

=−=⋅∫ μ
C

dB l
rr

 

 

Noting that the angle between B
r

and 
l
r

d is 0°, Evaluate ∫ ⋅
C

dl
rr

B for C3: 

 

( )A0.80
3

μ+=⋅∫C dB l
rr

  

 

(b) None of the paths can be used to find B
r

 because the current configuration 
does not have cylindrical symmetry, which means that B

r
cannot be factored out 

of the integral. 
 
47 •• [SSM] Show that a uniform magnetic field that has no fringing field, 
such as that shown in Figure 27- 56 is impossible because it violates Ampère’s 
law. Do this calculation by applying Ampère’s law to the rectangular curve shown 
by the dashed lines. 
 
Determine the Concept The contour integral consists of four portions, two 
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horizontal portions for which 0=⋅∫C dl
rr

B , and two vertical portions. The portion 

within the magnetic field gives a nonvanishing contribution, whereas the portion 
outside the field gives no contribution to the contour integral. Hence, the contour 
integral has a finite value. However, it encloses no current; thus, it appears that 
Ampère’s law is violated. What this demonstrates is that there must be a fringing 
field so that the contour integral does vanish. 
 
48 •• A coaxial cable consists of a solid conducting cylinder that has a radius 
equal to 1.00 mm and a conducting cylindrical shell that has an inner radius equal 
to 2.00 mm and an outer radius equal to 3.00 mm. The solid cylinder carries a 
current of 15.0 A parallel to the central axis.  The cylindrical shell carries and 
current of 15.0 A in the opposite direction. Assume that the current densities are 
uniformly distributed in both conductors. (a) Using a spreadsheet program or 
graphing calculator, graph the magnitude of the magnetic field as a function of the 
radial distance r from the central axis for 0 < R < 3.00 mm. (b) What is the 
magnitude of the field for R > 3.00 mm? 
  

Picture the Problem Let r1 = 1.00 mm, r2 = 2.00 mm, and r3 = 3.00 mm and 
apply Ampère’s law in each of the three regions to obtain expressions for B in 
each part of the coaxial cable and outside the coaxial cable.   
 
(a) Apply Ampère’s law to a circular 
path of radius r < r1 to obtain: 
 

( ) Crr IrB 02
1

μπ =<  

Because the current is uniformly 
distributed over the cross section 
of the inner wire: 
 

2
1

2 r
I

r
IC

ππ
= ⇒ I

r
rIC 2
1

2

=  

Substitute for IC  to obtain: ( ) I
r
rrB rr 2
1

2

02
1

μπ =<  

 
Solving for yields: 

1rrB <
2

1

0

4
2

1 r
rI

B rr π
μ

=<                        (1) 

 
Apply Ampère’s law to a circular 
path of radius r1 < r < r2 to obtain: 
 

( ) IrB rrr 02
21

μπ =<<  

Solving for yields: 
21 rrrB <<

r
IB rrr

1
4

2 0
21 π

μ
=<<                        (2) 
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Apply Ampère’s law to a circular 
path of radius r2 < r < r3 to 
obtain: 
 

( ) ( I'IIrB Crrr − )==<< 002
32

μμπ  

where I′ is the current in the outer 
conductor at a distance less than r from 
the center of the inner conductor. 
 

Because the current is uniformly 
distributed over the cross section 
of the outer conductor: 
 

2
2

2
3

2
2

2 rr
I

rr
I'

ππππ −
=

−
 

Solving for I ′ yields: 
 I

rr
rrI 2

2
2

3

2
2

2

'
−
−

=  

 
Substitute for I ′ to obtain: 
 ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

−=<< I
rr
rrIrB rrr 2

2
2

3

2
2

2

02
32

μπ  

 
Solving for yields: 

21 rrrB <<

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=<< 2
2

2
3

2
2

2
0 1

4
2

32 rr
rr

r
IB rrr π

μ      (3) 

 
A spreadsheet program was used to plot the following graph of equations (1), (2), 
and (3). 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

R (mm)

B
 (G

)

 
(b) Apply Ampère’s law to a circular 
path of radius r > r3 to obtain: 
 

( ) ( ) 02 003
=−==> IIIrB Crr μμπ  

and  0
3
=>rrB  

 
49 •• [SSM] A long cylindrical shell has an inner radius a and an outer 
radius b and carries a current I parallel to the central axis.  Assume that within the 
material of the shell the current density is uniformly distributed. Find an 
expression for the magnitude of the magnetic field for (a) 0 < R < a,  
(b) a < R < b, and (c) R > b. 
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Picture the Problem We can use Ampère’s law to calculate B because of the 
high degree of symmetry. The current through C depends on whether R is less 
than the inner radius a, greater than the inner radius a but less than the outer 
radius b, or greater than the outer radius b.  
 
(a) Apply Ampère’s law to a circular 
path of radius R < a to obtain: 

( ) 0000 ===⋅∫ < μμ CC ar Idl
rr

B  

and 0=<arB  

 
(b) Use the uniformity of the current 
over the cross-section of the 
conductor to express the current I′ 
enclosed by a circular path whose 
radius satisfies the condition  
a < R < b: 
 

( ) ( )2222 ab
I

aR
I'

−
=

− ππ
 

Solving for  yields: 'IIC =
22

22

ab
aRII'IC −

−
==  

 
Substitute in Ampère’s law to 
obtain: 
 

( )

22

22

00

2

ab
aRII'

RBd braC bRa

−
−

==

=⋅ <<<<∫
μμ

πl
rr

B
 

 
Solving for BBa<r<b yields: 

22

22
0

2 ab
aR

r
IB bra −

−
=<< π

μ
 

 
(c) Express IC for R  > b: IIC =  

 
Substituting in Ampère’s law yields: 
 

( ) IRBd brC bR 02 μπ ==⋅ >>∫ l
rr

B  

 
Solve for BBR>b to obtain: 

R
IB bR π

μ
2

0=>  

 
50 •• Figure 27-57 shows a solenoid that has n turns per unit length and 
carries a current I.  Apply Ampère’s law to the rectangular curve shown in the 
figure to derive an expression for the magnitude of the magnetic field. Assume 
that inside the solenoid the magnetic field is uniform and parallel with the central 
axis, and that outside the solenoid there is no magnetic field. 
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Picture the Problem The number of turns enclosed within the rectangular area is 
na. Denote the corners of the rectangle, starting in the lower left-hand corner and 
proceeding counterclockwise, as 1, 2, 3, and 4.  We can apply Ampère’s law to 
each side of this rectangle in order to evaluate ∫ ⋅

C
dl
rr

B . 

 
Express the integral around the 
closed path C as the sum of the 
integrals along the sides of the 
rectangle: 
 

∫

∫∫∫∫

→

→→→

⋅+

⋅+⋅+⋅=⋅

14

433221

l
rr

l
rr

l
rr

l
rr

l
rr

dB

dBdBdBdB
C

 

 

Evaluate : ∫
→

⋅
21

l
rr

dB aBdB =⋅∫
→21

l
rr

 

 
For the paths 2 → 3 and 4 → 1, B

r
 is 

either zero (outside the solenoid) or 
is perpendicular to l

r
d  and so: 

 

0
1432

=⋅=⋅ ∫∫
→→

l
rr

l
rr

dBdB  

For the path 3 → 4, =0 and: B
r

0
43

=⋅∫
→

l
rr

dB  

 
Substitute in Ampère’s law to 
obtain: 
 naII

aBaBd

C

C

00

000

μμ ==

=+++=⋅∫ l
rr

B
 

 
Solving for B yields: 
 

nIB 0μ=  

 
51 •• [SSM] A tightly wound 1000-turn toroid has an inner radius  
1.00 cm and an outer radius 2.00 cm, and carries a current of 1.50 A.  The toroid 
is centered at the origin with the centers of the individual turns in the z = 0 plane. 
In the z = 0 plane: (a) What is the magnetic field strength at a distance of 1.10 cm 
from the origin? (b) What is the magnetic field strength at a distance of 1.50 cm 
from the origin? 
 
Picture the Problem The magnetic field inside a tightly wound toroid is given by 

( )rNIB πμ 20= ,  where a < r < b and a and b are the inner and outer radii of the 
toroid. 
 
Express the magnetic field of a 
toroid: r

NIB
π

μ
2
0=  
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(a) Substitute numerical values and evaluate B(1.10 cm): 
 

( ) ( )( )( )
( ) mT3.27

cm10.12
A50.11000N/A104cm10.1

27

=
×

=
−

π
πB  

 
(b) Substitute numerical values and evaluate B(1.50 cm): 
 

( ) ( )( )( )
( ) mT0.20

cm50.12
A50.11000N/A104cm50.1

27

=
×

=
−

π
πB  

 
52 ••• A thin conducting sheet in the z = 0 plane carries current in the −x 
direction (Figure 27-88a). The sheet extends indefinitely in all directions and the 
current is uniformly distributed throughout the sheet. To find the direction of the 
magnetic field at point P consider the field due only to the currents I1 and I2 in the 
two narrow strips shown. The strips are identical, so I1 = I2. (a) What is the 
direction of the magnetic field at point P due to just I1 and I2? Explain your 
answer using a sketch. (b) What is the direction of the magnetic field at point P 
due to the entire sheet? Explain your answer. (c) What is the direction of the field 
at a point to the right of point P (where y ≠ 0)? Explain your answer. (d) What is 
the direction of the field at a point below the sheet (where z < 0)? Explain your 
answer using a sketch. (e) Apply Ampere’s law to the rectangular curve (Figure 
27-88b) to show that the magnetic field strength at point P is given by λμ02

1=B , 
where dydI=λ is the current per unit length along the y axis. 
   
Picture the Problem In Parts (a), (b), and (c) we can use a right-hand rule to 
determine the direction of the magnetic field at points above and below the 
infinite sheet of current. In Part (d) we can evaluate ∫ ⋅

C
dl
rr

B around the specified 

path and equate it to μ0IC and solve for B. 
 
(a) Because its vertical components 
cancel at P, the magnetic field points 
to the right (i.e., in the +y direction). P

1I
2I

2B
r

1B
r netB

r

× × × × × ×

z

y

 



                                                                 Sources of the Magnetic Field 
 

 

2615

(b) The vertical components of the 
field cancel in pairs. The magnetic 
field is in the +y direction. 

P
netB
r

× × × × × ×

z

y  
 

(c) The magnetic field is in the +y 
direction.  This result follows from 
the same arguments that were used in 
(a) and (b). 
 
 

P
netB
r

× × × × × ×

z

y  
 

(d) Below the sheet the magnetic 
field points to the left; i.e., in the −y 
direction. The vertical components 
cancel in pairs.  

PnetB
r

× × × × × × y

z

 
(e) Express ∫ ⋅

C
dl
rr

B , in the 

counterclockwise direction, for the 
given path: 
 

∫∫∫
⊥

⋅+⋅=⋅
  parallel

22 l
rr

l
rr

l
rr

ddd
C

BBB    (1) 

For the paths perpendicular to the 
sheet, and B

r
l
r

d are perpendicular to 
each other and: 
 

0
 

=⋅∫
⊥

l
rr

dB  

For the paths parallel to the sheet, 
and B

r
l
r

d are in the same direction 
and: 
 

Bwd
p

=⋅∫
 arallel

l
rr

B  

Substituting in equation (1) and 
simplifying yields: 
 ( )wI

Bwdd

C

C

λμμ 00

 parallel

22

==

=⋅=⋅ ∫∫ l
rr

l
rr

BB
 

 
Solving for B yields: λμ02

1=B   
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Magnetization and Magnetic Susceptibility 
 
53 • [SSM] A tightly wound solenoid is 20.0-cm long, has 400 turns, and 
carries a current of 4.00 A so that its axial field is in the +z direction. Find B and 
BBapp at the center when (a) there is no core in the solenoid, and (b) there is a soft 
iron core that has a magnetization of 1.2 × 10  A/m. 6

 
Picture the Problem We can use nIBB 0app μ== to find B and BBapp at the center 
when there is no core in the solenoid and MBB 0app μ+= when there is an iron 

core with a magnetization M = 1.2 × 10  A/m. 6

 
(a) Express the magnetic field, in 
the absence of a core, in the 
solenoid : 
 

nIBB 0app μ==  

Substitute numerical values and evaluate B and BBapp: 
 

( ) ( ) mT1.10A00.4
m200.0

400N/A104 27
app =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×== −πBB  

 
(b) With an iron core with a magnetization M = 1.2 × 106 A/m present: 
 

mT1.10app =B  

and 
( )( ) T5.1A/m102.1N/A104mT1.10 627

0app =××+=+= −πμ MBB  

 
54 • A long tungsten-core solenoid carries a current. (a) If the core is 
removed while the current is held constant, does the magnetic field strength in the 
region inside the solenoid decrease or increase? (b) By what percentage does the 
magnetic field strength in the region inside the solenoid decrease or increase? 
  
Picture the Problem We can use ( )mapp 1 χ+= BB to relate B and  to the 
magnetic susceptibility of tungsten. Dividing both sides of this equation by  

and examining the value of χ

appB

appB

m, tungsten will allow us to decide whether the field 
inside the solenoid decreases or increases when the core is removed. 
 

( )mapp 1 χ+= BB  
where  is the magnetic field in the 

absence of the tungsten core.  
appB

 

Express the magnetic field inside the 
solenoid with the tungsten core 
present B in terms of  and χappB m: 
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Express the ratio of B to : appB

 
m

app

1 χ+=
B
B                               (1) 

 
(a) Because χm, tungsten > 0: appBB > and B will decrease when the 

tungsten core is removed. 
 

(b) From equation (1), the fractional 
change is: 

%108.6108.6 35
m

−− ×=×=χ  

  
55 • As a liquid fills the interior volume of a solenoid that carries a constant 
current, the magnetic field inside the solenoid decreases by 0.0040 percent. 
Determine the magnetic susceptibility of the liquid. 
  
Picture the Problem We can use ( )mapp 1 χ+= BB to relate B and  to the 

magnetic susceptibility of liquid sample. 
appB

 
Express the magnetic field inside the 
solenoid with the liquid sample 
present B in terms of  and  appB

χm, sample: 
 

( )sample m,app 1 χ+= BB  
where  is the magnetic field in the 

absence of the liquid sample.  
appB

 

The fractional change in the 
magnetic field in the core is: 
 

sample m,
app

χ=
Δ
B

B                     

 
Substitute numerical values and 
evaluate sample m,χ : 

5

app
sample m,

100.4

%0040.0Δ

−×−=

−==
B

Bχ
 

 
56 • A long thin solenoid carrying a current of 10 A has 50 turns per 
centimeter of length. What is the magnetic field strength in the region occupied by 
the interior of the solenoid when the interior is (a) a vacuum, (b) filled with 
aluminum, and (c) filled with silver? 
  
Picture the Problem We can use nIBB 0app μ== to find B and at the center 
when there is no core in the solenoid and 

appB
( )mapp 1 χ+= BB when there is an 

aluminum or silver core.  
 
(a) Express the magnetic field, in the 
absence of a core, in the solenoid: 

nIBB 0app μ==  
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Substitute numerical values and evaluate B and : appB

 

( ) ( ) mT63A10
cm
50N/A104 27

app =⎟
⎠
⎞

⎜
⎝
⎛×== −πBB  

 
(b) With an aluminum core: ( )mapp 1 χ+= BB  

 
5

Al m, 103.2 −×=χ  

and 
1103.211 5

Al m, ≈×+=+ −χ  

 

Use Table 27-1 to find the value of 
χm for aluminum: 
 

Substitute numerical values and evaluate B and : appB

 

( ) ( ) mT63A10
cm
50N/A104 27

app =⎟
⎠
⎞

⎜
⎝
⎛×== −πBB  

 
(c) With a silver core: ( )mapp 1 χ+= BB  

 
5

Ag m, 106.2 −×−=χ  

and 
1106.211 5

Ag m, ≈×−=+ −χ  

 

Use Table 27-1 to find the value of 
χm for silver: 
 

Substitute numerical values and evaluate B and : appB

 

( ) ( ) mT63A10
cm
50N/A104 27

app =⎟
⎠
⎞

⎜
⎝
⎛×== −πBB  

 
57 •• [SSM] A cylinder of iron, initially unmagnetized, is cooled to  
4.00 K.  What is the magnetization of the cylinder at that temperature due to the 
influence of Earth’s magnetic field of 0.300 G?  Assume a magnetic moment of 
2.00 Bohr magnetons per atom. 
 
Picture the Problem We can use Curie’s law to relate the magnetization M of the 
cylinder to its saturation magnetization MS. The saturation magnetization is the 
product of the number of atoms n in the cylinder and the magnetic moment of 

each molecule. We can find n using the proportion 
Fe

Fe

A MN
n ρ

= where MFe is the 

molar mass of iron. 
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The magnetization of the cylinder is 
given by Curie’s law: 
 

S
app

3
1 M

kT
B

M
μ

=  

Assuming a magnetic moment of 
2.00 Bohr magnetons per atom: 
 

( )
S

EarthB00.2
3
1 M

kT
BM μ

=          (1) 

The saturation magnetization is 
given by: 
 

( )BS 00.2 μμ nnM ==  
where n is the number of atoms and μ is 
the magnetic moment of each molecule. 
 

The number of atoms of iron per unit 
volume n can be found from the 
molar mass MFe of iron, the density 
ρFe of iron, and Avogadro’s number 
NA: 
 

A
Fe

Fe N
M

n ρ
= ⇒

Fe

BAFe
S

00.2
M

NM μρ
=  

Substitute numerical values and evaluate MS: 
 

( )

m
A10591.1

g 10
kg 1

mol
g55.85

mA 1027.9
mol

atoms10022.6
m
kg1096.700.2

6

3

22423
3

3

S

×=

×

⋅×⎟
⎠
⎞

⎜
⎝
⎛ ×⎟
⎠
⎞

⎜
⎝
⎛ ×

=

−

M
 

 
Substitute numerical values in equation (1) and evaluate M: 
 

( ) m
A34.5

m
A10591.1

K 00.4
K
eV10617.83

G 10
T 1G 300.0

T
eV10788.500.2

6

5

4
5

=⎟
⎠
⎞

⎜
⎝
⎛ ×

⎟
⎠
⎞

⎜
⎝
⎛ ×

⎟
⎠
⎞

⎜
⎝
⎛ ×⎟
⎠
⎞

⎜
⎝
⎛ ×

=
−

−

M  

 
58 •• A cylinder of silver at a temperature of 77 K has a magnetization equal 
to 0.075% of its saturation magnetization.  Assume a magnetic moment of one 
Bohr magneton per atom. The density of silver is 1.05 × 104 kg/m3. (a) What 
value of applied magnetic field parallel to the central axis of the cylinder is 
required to reach this magnetization? (b) What is the magnetic field strength at 
the center of the cylinder? 
 
Picture the Problem We can use Curie’s law to relate the magnetization M of the 
cylinder to its saturation magnetization MS. The saturation magnetization is the 
product of the number of atoms n in the cylinder and the magnetic moment of 
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each atom. We can find n using the proportion 
Ag

Ag

A M
ρ

=
N
n where MAg is the 

molar mass of silver. In Part (b), we can use Equation 27-22 to find the magnetic 
field at the center of the cylinder, on the axis defined by the magnetic field. 
 
(a) The magnetization of the cylinder 
is given by Curie’s law: 
 

S
app

3
1 M

kT
B

M
μ

=  

Assuming a magnetic moment of 
1Bohr magnetons per atom: 

( )
S

appB

3
M

kT
B

M
μ

= ⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

SB
app

3
M
MkTB

μ
  

          
Substitute numerical values and evaluate : appB

 

( )
( ) T 26.000075.0

T
eV10788.5

K 77
K
eV10617.83

5

5

app =
×

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
−

−

B  

 
(b) The magnetic field at the center 
of the cylinder on the axis defined by 
the magnetic field is: 
 

S0app MBB μ+=                       (1) 

The saturation magnetization is 
given by: 
 

( )BS μμ nnM ==  
where n is the number of atoms and μ is 
the magnetic moment of each molecule. 
 

The number of atoms of silver per 
unit volume n can be found from the 
molar mass MAg of silver, the density 
ρAg of silver, and Avogadro’s 
number NA: 
 

A
Ag

Ag N
M

n
ρ

= ⇒
Ag

BAAg
S M

N
M

μρ
=  

Substitute numerical values and evaluate MS: 
 

( )
m
A10434.5

g 10
kg 1

mol
g870.071

mA 1027.9
mol

atoms10022.6
m
kg105.10

5

3

22423
3

3

S ×=
×

⋅×⎟
⎠
⎞

⎜
⎝
⎛ ×⎟
⎠
⎞

⎜
⎝
⎛ ×

=

−

M  
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Substitute numerical values in equation (1) and evaluate B: 
 

( ) T 94.0
m
A10434.5AT 104T 26.0 57 =⎟
⎠
⎞

⎜
⎝
⎛ ×⋅×+= −πB  

 
59 •• During a solid-state physics lab, you are handed a cylindrically shaped 
sample of unknown magnetic material. You and your lab partners place the 
sample in a long solenoid that has n turns per unit length and a current I. The 
values for magnetic field B within the material versus nI, where is the field 
due to the current I and K

appB
m is the relative permeability of the sample, are given 

below. Use these values to plot B versus  and KappB m versus nI. 
 

nI, A/m 0 50 100 150 200 500 1000 10 000 
B, T 0 0.04 0.67 1.00 1.2 1.4 1.6 1.7 

 
Picture the Problem We can use the data in the table and nIB 0app μ= to plot B 
versus . We can find KappB m using appmBKB = . 

 
We can find the applied field  

for a long solenoid using: 
appB

 

nIB 0app μ=  

Km can be found from and B 

using: 
appB

 
app

m B
BK =  

 
The following graph was plotted using a spreadsheet program. The abscissa 
values for the graph were obtained by multiplying nI by μ0. B initially rises 
rapidly, and then becomes nearly flat. This is characteristic of a ferromagnetic 
material. 

0.0

0.4

0.8

1.2

1.6

2.0

0 2 4 6 8 10 12 14

B app (mT)

B
 (T

)
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The following graph of Km versus nI was also plotted using a spreadsheet 
program. Note that Km becomes quite large for small values of nI but then 
diminishes. A more revealing graph would be to plot B/(nI), which would be quite 
large for small values of nI and then drop to nearly zero at nI = 10,000 A/m, 
corresponding to saturation of the magnetization. 

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

nI (A/m)

K
m

 
 
Atomic Magnetic Moments 
 
60 •• Nickel has a density of 8.70 g/cm3 and a molar mass of 58.7 g/mol. 
Nickel’s saturation magnetization is 0.610 T. Calculate the magnetic moment of a 
nickel atom in Bohr magnetons. 
  
Picture the Problem We can find the magnetic moment of a nickel atom μ from 
its relationship to the saturation magnetization MS using μnM =S  where n is the 
number of molecules per unit volume. n, in turn, can be found from Avogadro’s 

number, the density of nickel, and its molar mass using 
Μ

=
ρANn . 

 
Express the saturation magnetic field 
in terms of the number of molecules 
per unit volume and the magnetic 
moment of each molecule: 
 

μnM =S ⇒
n

MS=μ  

Express the number of molecules per 
unit volume in terms of Avogadro’s 
number NA, the molecular mass M, 
and the density ρ: 

Μ
=

ρANn  
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Substitute for n in the equation 
for μ and simplify to obtain: ρμ

μ
ρμ

μ
ρμ

A0

S0

A0

S0

A

S

N
MM

N
M

N
M

=

Μ

=

Μ

=  

 
Substitute numerical values and evaluate μ: 
 

( )( )
( )( )( )

224
32327

3

mA10439.5
g/cm70.8atoms/mol10022.6N/A104

kg/mol107.58T610.0
⋅×=

××
×

= −
−

−

π
μ  

 
Divide μ by  224

B mA1027.9 ⋅×= −μ
 to obtain: 

587.0
mA1027.9
mA10439.5

224

224

B

=
⋅×
⋅×

= −

−

μ
μ  

or B587.0 μμ =  
 
61 •• Repeat Problem 60 for cobalt, which has a density of 8.90 g/cm3, a 
molar mass of 58.9 g/mol, and a saturation magnetization of 1.79 T. 
 
Picture the Problem We can find the magnetic moment of a cobalt atom μ from 
its relationship to the saturation magnetization MS  using ,nM μ=S  where n is the 
number of molecules per unit volume. n, in turn, can be found from Avogadro’s 

number, the density of cobalt, and its molar mass using 
Μ

=
ρANn . 

 
Express the saturation magnetic field 
in terms of the number of molecules 
per unit volume and the magnetic 
moment of each molecule: 
 

μnM =S ⇒
n

MS=μ  

Express the number of molecules 
per unit volume in terms of 
Avogadro’s number NA, the 
molar mass M, and the density ρ: 
 

M
Nn ρA=  

Substitute for n in the equation for μ 
and simplify to obtain: ρμ

μ
ρμ

μ
ρ

μ
A0

S0

A0

S0

A

S

N
MM

M
N
M

M
N
M

===

 
 

Substitute numerical values and evaluate μ: 
 

( )( )
( )( )( )

223
32327

3

mA1057.1
g/cm90.8atoms/mol10022.6N/A104

kg/mol109.58T79.1
⋅×=

××
×

= −
−

−

π
μ  
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Divide μ by  224

B mA1027.9 ⋅×= −μ
69.1

mA1027.9
mA1057.1

224

223

B

=
⋅×
⋅×

= −

−

μ
μ  

or B69.1 μμ =  

 to obtain: 

 
Paramagnetism 
 
62 • Show that Curie’s law predicts that the magnetic susceptibility of a 
paramagnetic substance is given by χm  = μμ0Ms/3kT. 
 
Picture the Problem We can show that χm = μμ0Ms/3kT by equating Curie’s law 

and the equation that defines χm (
0

app
m μ

χ
B

M = ) and solving for χm. 

 
Express Curie’s law: 

S
app

3
1 M

kT
B

M
μ

=  

where MS is the saturation value. 
 

Express the magnetization of the 
substance in terms of its 
magnetic susceptibility χm: 
 

0

app
m μ

χ
B

M =  

S
app

0

app
m 3

1 M
kT
BB μ

μ
χ =  

and 

 S
0

m

3
1 M

kT
μ

μ
χ

= ⇒
kT
M

3
S0

m
μμχ =  

 

Equate these expressions to obtain: 
 

 
63 •• In a simple model of paramagnetism, we can consider that some 
fraction f of the molecules have their magnetic moments aligned with the external 
magnetic field and that the rest of the molecules are randomly oriented and 
therefore do not contribute to the magnetic field. (a) Use this model and Curie’s 
law to show that at temperature T and external magnetic field B, the fraction of 
aligned molecules f is given by μB/(3kT). (b) Calculate this fraction for a sample 
temperature of 300 K, an external field of 1.00 T. Assume that μ has a value of 
1.00 Bohr magneton. 
  
Picture the Problem We can use the assumption that SfMM = and Curie’s law 
to solve these equations simultaneously for the fraction f of the molecules have 
their magnetic moments aligned with the external magnetic field. 
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(a) Assume that some fraction f of 
the molecules have their magnetic 
moments aligned with the external 
magnetic field and that the rest of the 
molecules are randomly oriented and 
so do not contribute to the magnetic 
field: 
 

SfMM =  

From Curie’s law we have: 
S

app

3
1 M

kT
B

M
μ

=
 

 
Equating these expressions yields: 
 S

app
S 3

1 M
kT
B

fM
μ

= ⇒
kT
Bf

3
μ

=  

because B given in the problem  
statement is the external magnetic field 

. appB

 
(b) Substitute numerical values and 
evaluate f: 

( )( )
( )( )

4

23

224

1046.7

K300J/K101.3813
T00.1mA1027.9

−

−

−

×=

×
⋅×

=f
 

  
64 •• Assume that the magnetic moment of an aluminum atom is 1.00 Bohr 
magneton. The density of aluminum is 2.70 g/cm3 and its molar mass is 27.0 
g/mol. (a) Calculate the value of the saturation magnetization and the saturation 
magnetic field for aluminum. (b) Use the result of Problem 62 to calculate the 
magnetic susceptibility at 300 K. (c) Explain why the result for Part (b) is larger 
than the value listed in Table 27-1. 
 
Picture the Problem In (a) we can express the saturation magnetic field in terms 
of the number of molecules per unit volume and the magnetic moment of each 
molecule and use Μ= ρANn to express the number of molecules per unit 
volume in terms of Avogadro’s number NA, the molecular mass M, and the 
density ρ. We can use kTM 3S0m μμχ =  from Problem 86 to calculate χm. 
 
(a) Express the saturation magnetic 
field in terms of the number of 
molecules per unit volume and the 
magnetic moment of each molecule: 
 

BS μnM =  
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Express the number of molecules per 
unit volume in terms of Avogadro’s 
number NA, the molecular mass M, 
and the density ρ: 
 

M
AρNn =

 
 

Substitute for n to obtain: 
B

A
S M

μρNM =
 

 
 

Substitute numerical values and evaluate MS: 
 

( )( )( )

A/m1058.5A/m10582.5

g/mol27.0
mA1027.9kg/m1070.2atoms/mol10022.6

55

2243323

S

×=×=

⋅×××
=

−

M
 

and 
( )( ) T702.0A/m10582.5N/A104 527

S0S =××== −πμ MB  
 
(b) From Problem 62 we have: 

kT
M

3
S0

m
μμχ =  

 
Substitute numerical values and evaluate χm: 
 

( )( )( )
( )( )

4
23

522427

m 1023.5
K300J/K10381.13

A/m10582.5mA1027.9N/A104 −
−

−−

×=
×

×⋅××
=

πχ  

 
(c) In calculating mχ in Part (b) we neglected any diamagnetic effects.  
 
65 •• [SSM] A toroid has N turns, carries a current I, has a mean radius R, 
and has a cross-sectional radius r, where r << R (Figure 27-59). When the toroid 
is filled with material, it is called a Rowland ring. Find  and B in such a ring, 

assuming a magnetization that is everywhere parallel to
appB

 

r 
B app .  

  

Picture the Problem We can use 
a

NIB
π

μ
2

0
app = to express  and appB

MBB 0app μ+=  to express B in terms of  and M. appB

 
Express inside a tightly wound  

toroid: 
appB

 
a

NIB
π

μ
2

0
app = for R − r < a < R + r 
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The resultant field B in the ring is 
the sum of  and μappB 0M: M

a
NIMBB 0

0
0app 2

μ
π

μ
μ +=+=  

 
66 •• A toroid is filled with liquid oxygen that has a magnetic susceptibility 
of 4.00 × 10–3. The toroid has 2000 turns and carries a current of 15.0 A. Its mean 
radius is 20.0 cm, and the radius of its cross section is 8.00 mm. (a) What is the 
magnetization? (b) What is the magnetic field? (c) What is the percentage change 
in magnetic field produced by the liquid oxygen? 
 
Picture the Problem We can find the magnetization using 0appm μχ BM = and 
the magnetic field using ( )mapp 1 χ+= BB . 

 
(a) The magnetization M in terms of 
χm and  is given by: appB

 
0

app
m μ

χ
B

M =  

Express  inside a tightly wound  

toroid: 
appB

 
mean

0
app 2 r

NIB
π
μ

=  

Substitute for to obtain: appB

 
mean

m
0

mean

0

m 2
2

r
NIr

NI

M
π

χ
μ
π
μ

χ ==  

 
Substitute numerical values and 
evaluate M: 

( )( )( )
( )

A/m5.95

m200.02
A0.1520001000.4 3

=

×
=

−

π
M

 

 
(b) Express B in terms of and 

χ
appB

m: 
 

( )mapp 1 χ+= BB  

Substitute for to obtain: appB ( )m
mean

0 1
2

χ
π
μ

+=
r
NIB  

 
Substitute numerical values and evaluate B: 
 

( )( )( )
( ) ( ) mT1.301000.41

m200.02
A0.152000N/A104 3

27

=×+
×

= −
−

π
πB  
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(c) Express the fractional increase in 
B produced by the liquid oxygen: 
 ( )

11
1

1

1

m

m

m

appmappmapp

app

+
=

+
=

=
−+

=

−
=

Δ

χ
χ

χ

χχ
B
B

B
BB

B
BB

B
B

 

 
Substitute numerical values and 
evaluate ΔB/B: 

%398.0

1098.3
1

1000.4
1

1Δ 3

3

=

×=
+

×

= −

−
B
B

 

 
67 •• The centers of the turns of a toroid form a circle with a radius of  
14.0 cm. The cross-sectional area of each turn is 3.00 cm2. It is wound with 5278 
turns of fine wire, and the wire carries a current of 4.00 A. The core is filled with 
a paramagnetic material of magnetic susceptibility 2.90 × 10–4. (a) What is the 
magnitude of the magnetic field within the substance? (b) What is the magnitude 
of the magnetization? (c) What would the magnitude of the magnetic field be if 
there were no paramagnetic core present? 
 

Picture the Problem We can use ( )mapp 1 χ+= BB and
mean

0
app 2 r

NIB
π
μ

= to find B 

within the substance and 
0

app
m μ

χ
B

M =  to find the magnitude of the 

magnetization. 
 
(a) Express the magnetic field B 
within the substance in terms of 

and χappB m: 

 

( )mapp 1 χ+= BB  

Express inside the toroid: appB

 mean

0
app 2 r

NIB
π
μ

=
 

 
Substitute to obtain: 
 

( )
mean

m0

2
1
r

NIB
π

χμ +
=  
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Substitute numerical values and evaluate B: 
 

( )( )( )( )
( ) mT2.30

cm 0.142
1090.21A00.45278N/A104 427

=
×+×

=
−−

π
πB  

 
(b) Express the magnetization M in 
terms of χm and : appB

 
0

app
m μ

χ
B

M =
 

 
Substitute for and simplify to 

obtain: 
appB

mean

m

2 r
NIM

π
χ

=  

 
Substitute numerical values and 
evaluate M: 

( )( )( )
( )

A/m96.6

cm 0.142
A00.452781090.2 4

=

×
=

−

π
M

 

 
(c) If there were no paramagnetic 
core present: 

mT2.30app == BB  

 
Ferromagnetism 
 
68 • For annealed iron, the relative permeability Km has its maximum value 
of approximately 5500 at  = 1.57 × 10appB –4 T. Find the magnitude of the 
magnetization and magnetic field in annealed iron when Km is maximum. 
 
Picture the Problem We can use appmBKB =  to find B and ( ) 0appm 1 μBKM −=  

to find M. 
 
Express B in terms of M and Km: appmBKB =  

 
Substitute numerical values and 
evaluate B: 

( )( ) T86.0T1057.15500 4 =×= −B  

 
Relate M to Km and : appB

 
( )

0

appm

0

app
m 1

μμ
BKB

KM ≈−=  

 
Substitute numerical values and 
evaluate M: 

( )( )

A/m109.6

N/A104
T1057.15500

5

27

4

×=

×
×

= −

−

π
M
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69 •• [SSM] The saturation magnetization for annealed iron occurs when 
= 0.201 T. Find the permeability and the relative permeability of annealed 

iron at saturation. (See Table 27-2) 
appB

  
Picture the Problem We can relate the permeability μ of annealed iron to χm 

using ( ) 0m1 μχμ += , find χm using 
0

app
m μ

χ
B

M = , and use its definition 

( mm 1 χ+=K ) to evaluate Km.  
 
Express the permeability μ of 
annealed iron in terms of  its 
magnetic susceptibility χm: 
 

( ) 0m1 μχμ +=                           (1) 

The magnetization M in terms of χm 
and  is given by: appB

 
0

app
m μ

χ
B

M =  

Solve for and evaluate χm (see 
Table 27-2 for the product of μ0 
and M): 
 

75.10
T 0.201
T16.2

app

0
m ===

B
Mμχ  

 

Use its definition to express and 
evaluate the relative permeability 
Km: 
 

7.11

746.1175.1011 mm

=

=+=+= χK
 

Substitute numerical values in 
equation (1) and evaluate μ: 

( )( )
25

27

N/A1048.1

N/A104746.101
−

−

×=

×+= πμ
 

 
70 •• The coercive force (which is a misnomer because it is really a 
magnetic field value) is defined as the applied magnetic field needed to bring the 
magnetic field back to zero along the hysteresis curve (which is point c in Figure 
27- 38). For a certain permanent bar magnet, the coercive force is known to be 
5.53 × 10–2 T. The bar magnet is to be demagnetized by placing it inside a  
15.0-cm-long solenoid that has 600 turns. What minimum current is needed in the 
solenoid to demagnetize the magnet? 
 
Picture the Problem We can use the relationship between the magnetic field on 
the axis of a solenoid and the current in the solenoid to find the minimum current 
is needed in the solenoid to demagnetize the magnet. 
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Relate the magnetic field on the axis 
of a solenoid to the current in the 
solenoid: 
 

nIBx 0μ= ⇒
n

BI x

0μ
=  

Let  = BappB Bx to obtain: 

 n
B

I
0

app

μ
=  

Substitute numerical values and 
evaluate I: ( )

A0.11

m150.0
600N/A104

T1053.5

27

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
=

−

−

π
I

 

 
71 •• A long thin solenoid has 50 turns/cm and carries a current of 2.00 A. 
The solenoid is filled with iron and the magnetic field is measured to be 1.72 T. 
(a) Neglecting end effects, what is the magnitude of the applied magnetic field?  
(b) What is the magnetization? (c) What is the relative permeability? 
  
Picture the Problem We can use the equation describing the magnetic field on 
the axis of a solenoid, as a function of the current in the solenoid, to find . 
We can then use 

appB
MBB 0app μ+= to find M and appmBKB = to evaluate Km. 

 
(a) Relate the magnetic field on 
the axis of a solenoid to the 
current in the solenoid: 
 

nIBx 0μ=  

Substitute numerical values and 
evaluate : appB

 

( )( )( )
mT6.12

A00.2cm50N/A104 127
app

=

×= −−πB

 
(b) Relate M to B and : appB

MBB 0app μ+= ⇒
0

app

μ
BB

M
−

=  

 
Substitute numerical values and 
evaluate M: 
 A/m1036.1

N/A104
mT12.6T72.1

6

27

×=

×
−

= −π
M

 

 
(c) Express B in terms of Km and 

: appB

 

appmBKB = ⇒
app

m B
BK =  
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Substitute numerical values and 
evaluate Km: 

137
mT12.6
T72.1

m ==K  

 
72 •• When the current in Problem 71 is 0.200 A, the magnetic field is 
measured to be 1.58 T. (a) Neglecting end effects, what is the applied magnetic 
field? (b) What is the magnetization? (c) What is the relative permeability? 
  
Picture the Problem We can use the equation describing the magnetic field on 
the axis of a solenoid, as a function of the current in the solenoid, to find . 
We can then use 

appB
MBB 0app μ+= to find M and appmBKB = to evaluate Km. 

 
(a) Relate the magnetic field on the 
axis of the solenoid to the current in 
the solenoid: 
 

nIBx 0μ=  

Substitute numerical values and evaluate : appB

 

( )( ) mT26.1mT257.1A200.0cm50
A
N104 1

2
7

app ==⎟
⎠
⎞

⎜
⎝
⎛ ×= −−πB  

 
(b) Relate M to B and : appB

MBB 0app μ+= ⇒
0

app

μ
BB

M
−

=  

 
Substitute numerical values and 
evaluate M: 

A/m1026.1

N/A104
mT1.257T58.1

6

27

×=

×
−

= −π
M

 

 
(c) Express B in terms of Km and 

: appB

 

appmBKB = ⇒
app

m B
BK =  

 
Substitute numerical values  and 
evaluate Km: 

3
m 1026.1

mT1.257
T58.1

×==K  

 
73 •• [SSM] A toroid has N turns, carries a current I, has a mean radius R, 
and has a cross-sectional radius r, where r << R (Figure 27-53). The core of the 
toroid of is filled with iron. When the current is 10.0 A, the magnetic field in the 
region where the iron is has a magnitude of 1.80 T. (a) What is the 
magnetization? (b) Find the values for the relative permeability, the permeability, 
and magnetic susceptibility for this iron sample. 
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Picture the Problem We can use MBB 0app μ+= and the expression for the 

magnetic field inside a tightly wound toroid to find the magnetization M. We can 
find Km from its definition, 0mμμ K= to find μ, and mm 1 χ+=K to find χm for the 
iron sample. 
 
(a) Relate the magnetization to B 
and : appB

 

MBB 0app μ+= ⇒
0

app

μ
BB

M
−

=  

Express the magnetic field inside 
a tightly wound toroid: 
 

r
NIB
π

μ
2
0

app =  

Substitute for and simplify to 

obtain: 
appB

 r
NIBr

NIB
M

πμμ
π

μ

2
2

00

0

−=
−

=  

 
Substitute numerical values and 
evaluate M: 

( )
( )

A/m1042.1

m200.02
A0.102000

N/A104
T80.1

6

27

×=

−
×

= − ππ
M

 

 
(b) Use its definition to express Km: 

NI
rB

r
NI
B

B
BK

00app
m

2

2
μ
π

π
μ ===  

 
Substitute numerical values and 
evaluate Km: 

( )( )
( )( )( )

0.90

A0.102000N/A104
T80.1m200.02

27m

=

×
= −π

πK
 

 
Now that we know Km we can find μ 
using: 
 

( )
m/AT1013.1

N/A10490
4

27
0m

⋅×=

×==
−

−πμμ K
 

 
Relate χm to Km: mm 1 χ+=K ⇒ 1mm −= Kχ  

 
Substitute the numerical value of  
Km and evaluate χm: 

89190m =−=χ  

 
74 •• The centers of the turns of a toroid form a circle with a radius of  
14.0 cm. The cross-sectional area of each turn is 3.00 cm2. It is wound with 5278 
turns of fine wire, and the wire carries a current of 0.200 A.  The core is filled 
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with soft iron, which has a relative permeability of 500. What is the magnetic 
field strength in the core? 
 
Picture the Problem We can substitute the expression for applied magnetic field 

(
r

NIB
π

μ
2
0

app = ) in the defining equation for Km ( appmBKB = ) to obtain an 

expression for the magnetic field B in the toroid. 
 
Relate the magnetic field in the 
toroid to the relative permeability 
of its core: 
 

appmBKB =  

Express the applied magnetic 
field in the toroid in terms of the 
current in its winding: 
 

r
NIB
π

μ
2
0

app =  

Substitute for to obtain: appB
r
NIKB

π
μ

2
0m=  

 
Substitute numerical values and evaluate B: 
 

( )( )( )
( ) T 754.0

cm 0.142
A200.05278N/A104500 27

=
×

=
−

π
πB  

 
75 ••• A long straight wire that has a radius of 1.00 mm is coated with an 
insulating ferromagnetic material that has a thickness of 3.00 mm and a relative 
magnetic permeability of 400. The coated wire is in air and the wire itself is 
nonmagnetic. The wire carries a current of 40.0 A.  (a) Find the magnetic field in 
the region occupied by the inside of the wire as a function of the perpendicular 
distance, r, from the central axis of the wire. (b) Find the magnetic field in the 
region occupied by the inside of the ferromagnetic material as a function of the 
perpendicular distance, r, from the central axis of the wire.  (c) Find the magnetic 
field in the region surrounding the wire and coating as a function of the 
perpendicular distance, r, from the central axis of the wire. (d)What must the 
magnitudes and directions of the Amperian currents be on the surfaces of the 
ferromagnetic material to account for the magnetic fields observed? 
  
Picture the Problem We can use Ampère’s law to obtain expressions for the 
magnetic field inside the wire, inside the ferromagnetic material, and in the region 
surrounding the wire and coating. 
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(a) Apply Ampère’s law to a circle 
of radius r < 1.00 mm and concentric 
with the center of the wire: 
 

( ) CC
IrBd 02 μπ ==⋅∫ l

rr
B            (1) 

Assuming that the current is 
distributed uniformly over the cross-
sectional area of the wire (uniform 
current density), express IC in terms 
of the total current I: 
 

22 R
I

r
IC

ππ
=  ⇒ I

R
rIC 2

2

=  

 

Substitute for IC in equation (1) 
to obtain: 
 

( ) 2

2
02
R
IrrB μπ = ⇒ r

R
IB 2

0

2π
μ

=  

 
Substitute numerical values and 
evaluate B:  

( )( )
( )

( )r

rB

T/m00.8

mm00.12
A0.40N/A104

2

27

=

×
=

−

π
π

 

 
(b) Relate the magnetic field inside 
the ferromagnetic material to the 
magnetic field due to the current in 
the wire: 
 

appmBKB =                               (1) 

Apply Ampère's law to a circle of 
radius 1.00 mm < r  < 4.00 mm and 
concentric with the center of the 
wire: 
 

( ) IIrBd CC 00app 2 μμπ ===⋅∫ l
rr

B  

Solving for yields: appB
r
IB

π
μ
2

0
app =  

 
Substitute for in equation (1) to 

obtain: 
appB

 
r

IKB
π
μ

2
0m=  

 
Substitute numerical values and 
evaluate B: 

( )( )

( )
r

r
B

1mT1020.3

2
A0.40N/A104400

3

27

⋅×=

×
=

−

−

π
π
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(c) Apply Ampère’s law to a circle 
of radius r  > 4.00 mm and 
concentric with the center of the 
wire: 
 

( ) IIrBd CC 002 μμπ ===⋅∫ l
rr

B  

Solving for B yields: 
r
IB
π
μ
2

0=  

 
Substitute numerical values and 
evaluate B: 

( )( )

( )
r

r
B

1mT1000.8

2
A0.40N/A104

6

27

⋅×=

×
=

−

−

π
π

 

 
(d) Note that the field in the ferromagnetic region is that which would be 
produced in a nonmagnetic region by a current of 400I = 1600 A. The ampèrian 
current on the inside of the surface of the ferromagnetic material must therefore 
be (1600 − 40) A = 1560 A in the direction of I. On the outside surface there must 
then be an ampèrian current of 1560 A in the opposite direction. 
 
General Problems 
 
76 • Find the magnetic field at point P in Figure 27-60. 
 
Picture the Problem Because point P is on the line connecting the straight 
segments of the conductor, these segments do not contribute to the magnetic field 
at P. Hence, we can use the expression for the magnetic field at the center of a 
current loop to find BBP. 
 
Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0μ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a current loop: 
 

R
I

R
IB

422
1 00 μμ

==  

Substitute numerical values and 
evaluate B: 

( )( )
( )

page  theofout  T24

m20.04
A15N/A104 27

μ

π

=

×
=

−

B
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77 • [SSM] Using Figure 27-61, find the magnetic field (in terms of the 
parameters given in the figure) at point P, the common center of the two arcs. 
 
Picture the Problem Let out of the page be the positive x direction. Because 
point P is on the line connecting the straight segments of the conductor, these 
segments do not contribute to the magnetic field at P. Hence, the resultant 
magnetic field at P will be the sum of the magnetic fields due to the current in the 
two semicircles, and we can use the expression for the magnetic field at the center 
of a current loop to find PB

r
. 

 
Express the resultant magnetic field 
at P: 
 

21 BBB
rrr

+=P                               (1) 

Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0μ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a current loop: 
 

R
I

R
IB

422
1 00 μμ

==  

Express 1B
r

and 2B
r

: iB ˆ
4 1

0
1 R

Iμ
=

r
 and iB ˆ

4 2

0
2 R

Iμ
−=

r
 

 
Substitute in equation (1) to obtain: 
 

page  theofout  ̂11
4

ˆ
4

ˆ
4

21

0

2

0

1

0

i

iiB

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−=

RR
I

R
I

R
I

P

μ

μμr

 

 
78 •• A wire of length  , is wound into a circular coil of N turns, and carries 
a current I. Show that the magnetic field strength in the region occupied by the 
center of the coil is given by

l

lIN 2
0πμ . 

 
Picture the Problem We can express the magnetic field strength B as a function 

of N, I, and R using 
R
NIB

2
0μ= and eliminate R by relating l to R. 

 
Express the magnetic field at the 
center of a coil of N turns and radius 
R: 
 

R
NIB

2
0μ=  
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Relate l to the number of turns N: 
 

RNπ2=l ⇒
N

R
π2
l

=  

 
Substitute for R in the expression for 
B and simplify to obtain: 
 

ll

IN

N

NIB
2

00

2
2

πμ

π

μ
=

⎟
⎠
⎞

⎜
⎝
⎛

=  

 
79 •• A very long wire carrying a current I is bent into the shape shown in 
Figure 27-62. Find the magnetic field at point P. 
 
Picture the Problem The magnetic field at P (which is out of the page) is the 
sum of the magnetic fields due to the three parts of the wire. Let the numerals 1, 
2, and 3 denote the left-hand, center (short), and right-hand wires. We can then 
use the expression for B due to a straight wire segment to find each of these fields 
and their sum. 
 
Express the resultant magnetic field 
at point P: 
 

321 BBBBP ++=  

Because BB1 = B3B : 212 BBBP +=                            (1) 
 

Express the magnetic field due to 
a straight wire segment: 
 

( )21
0 sinsin

4
θθ

π
μ

+=
R
IB  

For wires 1 and 3 (the long wires),  
θ1 = 90° and θ2 = 45°: 

( )

⎟
⎠
⎞

⎜
⎝
⎛ +=

°+°=

2
11

4

45sin90sin
4

0

0
1

a
I
a
IB

π
μ
π
μ

 

 
For wire 2, θ1 = θ2 = 45°: ( )

⎟
⎠
⎞

⎜
⎝
⎛=

°+°=

2
2

4

45sin45sin
4

0

0
2

a
I
a
IB

π
μ
π
μ

 

 
Substitute for BB1 and B2B  in equation (1) and simplify to obtain: 
 

( ) page  theofout  21
2

2
1

2
11

22
2

42
11

4
2

0

000

+=

⎟
⎠

⎞
⎜
⎝

⎛
++=⎟

⎠

⎞
⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+=

a
I

a
I

a
I

a
IBP

π
μ

π
μ

π
μ

π
μ
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80 •• A power cable carrying 50 A is 2.0 m below Earth’s surface, but the 
cable’s direction and precise position are unknown. Explain how you could locate 
the cable using a compass. Assume that you are at the equator, where Earth’s 
magnetic field is horizontal and 0.700 G due north. 
 
Picture the Problem Depending on the direction of the wire, the magnetic field 
due to its current (provided this field is a large enough fraction of Earth’s 
magnetic field)  will either add to or subtract from Earth’s field and moving the 
compass over the ground in the vicinity of the wire will indicate the direction of 
the current. 
 
Apply Ampère’s law to a circle of 
radius r and concentric with the 
center of the wire: 
 

( ) IIrBd CC 00wire 2 μμπ ===⋅∫ l
rr

B  

Solve for B to obtain: 
 r

IB
π
μ
2

0
wire =  

 
Substitute numerical values and 
evaluate : wireB

( )( )
( )

G0500.0
m0.22

A50N/A104 27

wire

=

×
=

−

π
πB

 

 
Express the ratio of  to 

: 
wireB

EarthB
%7

G0.7
G05.0

Earth

wire ≈=
B
B  

Thus, the field of the current-carrying 
wire should be detectable with a good 
compass. 
 

If the cable runs in a direction other than east-west, its magnetic field is in a 
direction different than that of Earth’s, and by moving the compass about one 
should observe a change in the direction of the compass needle. 
 
If the cable runs east-west, its magnetic field is in the north-south direction and 
thus either adds to or subtracts from Earth’s field, depending on the current 
direction and location  of the compass. If the magnetic field is toward the north, 
the two fields add and the resultant field is stronger. If perturbed, the compass 
needle will oscillate about its equilibrium position. The stronger the field, the 
higher the frequency of oscillation. By moving from place to place and 
systematically perturbing the needle one should be able to detect a change 
frequency, and thus a change in magnetic field strength. 
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81 •• [SSM] A long straight wire carries a current of 20.0 A, as shown in 
Figure 27-63. A rectangular coil that has two sides parallel to the straight wire has 
sides that are 5.00-cm long and 10.0-cm long. The side nearest to the wire is 2.00 
cm from the wire. The coil carries a current of 5.00 A. (a) Find the force on each 
segment of the rectangular coil due to the current in the long straight wire.  
(b) What is the net force on the coil? 
 
Picture the Problem Let I1 and I2 represent the currents of 20 A and 5.0 A, , 

, , and  the forces that act on the horizontal wire, and 
topF

r

sideleft F
r

bottomF
r

sideright F
r

1B
r

, 

2B
r

, , and 3B
r

4B
r

 the magnetic fields at these wire segments due to I1. We’ll need 

to take into account the fact that 1B
r

 and 3B
r

 are not constant over the segments 1 
and 3 of the rectangular coil.  Let the +x direction be to the right and the +y 
direction be upward. Then the +z direction is toward you (i.e., out of the page). 
Note that only the components of 1B

r
, 2B

r
, 3B

r
, and 4B

r
 into or out of the page 

contribute to the forces  acting on the rectangular coil. The +x and +y directions 
are up the page and to the right. 
 
(a) Express the force 1Fd

r
acting on a 

current element l
r

dI2 in the top 
segment of wire: 
 

12top BF
r

l
rr
×= dId  

 

Because ( )î22 −= ll
r

dIdI  in this 
segment of the coil and the 
magnetic field due to I1 is given by 

( )kB ˆ
2

10
1 −=

l

r

π
μ I

: 

 

( ) ( )

j

kiF

ˆ
2

ˆ
2

ˆ

210

10
2top

l

l

l
l

r

dII

I
dI

π
μ

π
μ

−=

−×−=
 

Integrate to obtain: topF
r

d

 

j

jF

ˆ
cm 2.0
cm 0.7ln

2

ˆ
2

210

cm 7.0

cm 0.2

210
top

⎟
⎠
⎞

⎜
⎝
⎛−=

−= ∫

π
μ

π
μ

II

dII
l

lr

 

 
Substitute numerical values and evaluate topF

r
: 

 

( )( )
( )jjF ˆN 105.2ˆ

cm 2.0
cm 0.7ln

2

A 0.5A 20
A
N104

5
2

7

top
−

−

×−=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ×

−=
π

π
r
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Express the force acting on 

a current element
bottomF

r
d

l
r

dI2 in the 
horizontal segment of wire at the 
bottom of the coil: 
 

32bottom BF
r

l
rr
×= dId  

 

Because ( )î22 ll
r

dIdI =  in this 
segment of the coil and the 
magnetic field due to I1 is given by 

( )kB ˆ
2

10
1 −=

l

r

π
μ I

: 

 

( )
j

kiF

ˆ
2

ˆ
2

ˆ

210

10
2bottom

l

l

l
l

r

dII

I
dId

π
μ

π
μ

=

−×=
 

Integrate to obtain: bottomF
r

d
 

j

jF

ˆ
cm 2.0
cm 0.7ln

2

ˆ
2

210

cm 7.0

cm 0.2

210
bottom

⎟
⎠
⎞

⎜
⎝
⎛=

= ∫

π
μ

π
μ

II

dII
d

l

lr

 

 
Substitute numerical values and evaluate bottomF

r
: 

 

( )( )
( )jjF ˆN 105.2ˆ

cm 2.0
cm 0.7ln

2

A 0.5A 20
A
N104

5
2

7

bottom
−

−

×=⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
π

π
r

 

 
222sideleft BF

r
l
rr

×= I  Express the forces and 

in terms of I
sideleft F

r

sideright F
r

2 and 2B
r

and 

4B
r

: 

and  
442sideright BF

r
l
rr

×= I  

  
Express 2B

r
and 4B

r
: kB ˆ2

4 1

10
2 R

I
π
μ

−=
r

 and kB ˆ2
4 4

10
4 R

I
π
μ

−=
r

 

 
Substitute for 2B

r
and 4B

r
to obtain: 

 

ikjF ˆ
2

ˆ2
4

ˆ
2

2120

1

10
22sideleft R

II
R
II

π
μ

π
μ l

l
r

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×−=  

and  

ikjF ˆ
2

ˆ2
4

ˆ
4

2140

4

10
42sideright R

II
R
I

I
π

μ
π
μ l

l
r

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−×=  
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Substitute numerical values and evaluate sideleft F

r
and sideright F

r
: 

 
( )( )( )( )

( ) ( )iiF ˆN100.1ˆ
m0200.02

A00.5A0.20m100.0N/A104 4
27

sideleft 
−

−

×=
×

=
π

πr
 

and 
( )( )( )( )

( ) ( )iiF ˆN1029.0ˆ
m0700.02

A00.5A0.20m100.0N/A104 4
27

sideright  
−

−

×−=
×

−=
π

πr
 

 
(b) Express the net force acting on 
the coil: 
 

sideright  bottomsideleft  topnet FFFFF
rrrrr

+++=    

Substitute for , , topF
r

sideleft F
r

bottomF
r

, and sideright F
r

 and simplify to obtain: 

 
( ) ( ) ( ) ( )
( )i

ijijF
ˆN1071.0

ˆN1029.0N 105.2ˆN100.1ˆN 105.2
4

4545
net

−

−−−−

×=

×−+×+×+×−=
r

 

 
82 •• The closed loop shown in Figure 27-64 carries a current of 8.0 A in the 
counterclockwise direction. The radius of the outer arc is 0.60 m and that of the 
inner arc is 0.40 m. Find the magnetic field at point P. 
 
Picture the Problem Let out of the page be the positive x direction and the 
numerals 40 and 60 refer to the circular arcs whose radii are 40 cm and 60 cm. 
Because point P is on the line connecting the straight segments of the conductor, 
these segments do not contribute to the magnetic field at P. Hence the resultant 
magnetic field at P will be the sum of the magnetic fields due to the current in the 
two circular arcs and we can use the expression for the magnetic field at the 
center of a current loop to find PB

r
. 

 
Express the resultant magnetic field 
at P: 
 

6040 BBB
rrr

+=P                          (1) 

Express the magnetic field at the 
center of a current loop: 
 

R
IB

2
0μ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of one-sixth of a current loop: R

I
R
IB

1226
1 00 μμ

==  
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Express and : 40B
r

60B
r

iB ˆ
12 40

0
40 R

Iμ
−=

r
and iB ˆ

12 60

0
60 R

Iμ
=

r
 

 
Substitute for and in 
equation (1) and simplify to obtain: 

40B
r

60B
r

 
i

iiB

ˆ11
12

ˆ
12

ˆ
12

4060

0

60

0

40

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+−=

RR
I

R
I

R
I

P

μ

μμr

 

 
Substitute numerical values and evaluate PB

r
: 

 
( )( ) ( )iiB ˆT70.0ˆ

m40.0
1

m60.0
1

12
A0.8N/A104 27

μπ
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

×
=

−

P

r
 

or 
page  theinto T70.0 μ=PB  

 
83 •• A closed circuit consists of two semicircles of radii 40 cm and 20 cm 
that are connected by straight segments, as shown in Figure 27-65. A current of 
3.0 A exists in this circuit and has a clockwise direction. Find the magnetic field 
at point P. 

 
Picture the Problem Let the +x direction be into the page and the numerals 20 
and 40 refer to the circular arcs whose radii are 20 cm and 40 cm. Because point P 
is on the line connecting the straight segments of the conductor, these segments 
do not contribute to the magnetic field at P and the resultant field at P is the sum 
of the fields due to the two semicircular current loops.  
 
Express the resultant magnetic 
field at P: 
 

4020 BBB
rrr

+=P                          (1) 

Express the magnetic field at the 
center of a circular current loop: 
 

R
IB

2
0μ=  

where R is the radius of the loop. 
 

Express the magnetic field at the 
center of half a circular current 
loop: 
 

R
I

R
IB

422
1 00 μμ

==  

Express and : 20B
r

40B
r

iB ˆ
4 20

0
20 R

Iμ
=

r
and iB ˆ

4 40

0
40 R

Iμ
=

r
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Substitute for and in 
equation (1) and simplify to obtain: 

20B
r

40B
r

 
i

iiB

ˆ11
4

ˆ
4

ˆ
4

4020

0

40

0

20

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

RR
I

R
I

R
I

P

μ

μμr

 

 
Substitute numerical values and evaluate BBP: 
 

( )( ) ( )iiBP
ˆT1.7ˆ

m40.0
1

m20.0
1

4
A0.3N/A104 27

μπ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

×
=

−r
 

or 
page  theinto T1.7 μ=PB  

 
84 •• A very long straight wire carries a current of 20.0 A. An electron 
outside the wire is 1.00 cm from the central axis of the wire is moving with a 
speed of 5.00 × 106 m/s.  Find the force on the electron when it moves (a) directly 
away from the wire, (b) parallel to the wire in the direction of the current, and  
(c) perpendicular to the central axis of wire and tangent to a circle that is coaxial 
with the wire. 
 
Picture the Problem Chose the coordinate system shown to the right. Then the 
current is in the +z direction. Assume that the electron is at (1.00 cm, 0, 0). We 
can use BvF

rrr
×= q to relate the magnetic force on the electron to v

r
and and B

r

jB ˆ2
4

0

r
I

π
μ

=
r

 to express the magnetic field at the location of the electron. We’ll 

need to express v
r

for each of the three situations described in the problem in order 
to evaluate BvF

rrr
×= q . 

 
 
Express the magnetic force acting on 
the electron: 
 

BvF
rrr

×= q                        



                                                                 Sources of the Magnetic Field 
 

 

2645

 
Express the magnetic field due to 
the current in the wire as a function 
of distance from the wire: 
 

j
r
IB ˆ2

4
0

π
μ

=
r

 

Substitute for and simplifying 
yields: 

B
r

 

( jvjvF ˆ
4

2ˆ2
4

00 ×=×=
rr )r

r
Iq

r
Iq

π
μ

π
μ    (1) 

 
(a) Express the velocity of the 
electron when it moves directly 
away from the wire: 
 

ivv ˆ=
r

 
 

Substitute for v
r

 in equation (1) and 
simplify to obtain: 

( ) kjiF ˆ
4

2ˆˆ
4

2 00

r
Ivqv

r
Iq

π
μ

π
μ

=×=
r

 

 
Substitute numerical values and evaluate F

r
: 

 
( )( )( )( )

( )
( )k

kF

ˆN1020.3

m0100.04

ˆA0.20m/s1000.5C10602.1N/A1042

16

61927

−

−−

×−=

××−×
=

π
πr

 

and 
page  theinto N1020.3 16−×=F  

 
(b) Express v

r
when the electron is 

traveling parallel to the wire in the 
direction of the current: 
 

kv ˆv=
r

 

Substitute in equation (1) to obtain: ( ) ijkF ˆ
4

2ˆˆ
4

2 00

r
Ivqv

r
Iq

π
μ

π
μ

−=×=
r

 

 
Substitute numerical values and evaluate F

r
: 

 
( )( )( )( )

( )
( )i

iF

ˆN1020.3

m0100.04

ˆA0.20m/s1000.5C10602.1N/A1042

16

61927

−

−−

×=

××−×
−=

π
πr

 

and 
right  the towardN 1020.3 16−×=F  
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(c) Express v

r
when the electron is 

traveling perpendicular to the wire 
and tangent to a circle around the 
wire: 
 

jvv ˆ=
r

 

Substitute for v
r

in equation (1) and 
simplify to obtain: 

( ) 0ˆˆ
4

2 0 =×= jjF v
r

Iq
π
μr

 

 
85 •• A current of 5.00 A is uniformly distributed over the cross section of a 
long straight wire of radius Ro = 2.55 mm.  Using a spreadsheet program, graph 
the magnetic field strength as a function of R, the distance from the central axis of 
the wire, for 0 ≤ R ≤ R0. 
 
Picture the Problem We can apply Ampère's law to derive expressions for the 
magnetic field strength as a function of the distance from the center of the wire. 
 
Apply Ampère's law to a closed 
circular path of radius r ≤ R0 to 
obtain: 
 

( ) CRr IrB 02
0

μπ =≤  

Because the current is uniformly 
distributed over the cross section 
of the wire: 
 

2
0

2 R
I

r
IC

ππ
= ⇒ I

R
rIC 2

0

2

=  

Substitute for IC to obtain: 
 ( ) 2

0

2
02

0 R
IrrB Rr

μπ =≤  

 
Solving for yields: 

0RrB ≤ r
R

I
R
rIB Rr 2

0

0
2
0

0 2
420 π
μ

π
μ

==≤             (1) 

 
Apply Ampère's law to a closed 
circular path of radius r > R0 to 
obtain: 
 

( ) IIrB CRr 002
0

μμπ ==>  

Solving for yields: 
0RrB >

r
IB rr

2
4

0
0 π

μ
=>                            (2) 

 
The spreadsheet program to calculate B as a function of r in the interval  
0 ≤ r ≤ 10R0 is shown below. The formulas used to calculate the quantities in the 
columns are as follows: 
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Cell Formula/Content Algebraic Form 
B1 

π
μ
4

01.00E−07  

I B2 5.00 
R0B3 2.55E−03 

C6 10^4*$B$1*2*$B$2*A6/$B$3^2
r

R
I
2
0

0 2
4π
μ  

C17 10^4*$B$1*2*$B$2*A6/A17 
r
I2

4
0μ  
π 

 
 A B C 

1 μ/4π= 1.00E−07 N/A2

2 I= 5 A 
3 R0= 2.55E−03 m 
4    
5 R (m) R (mm) B (T) 
6 0.00E+00 0.00E+00 0.00E+00 
7 2.55E−04 2.55E−01 3.92E−01 
8 5.10E−04 5.10E−01 7.84E−01 
9 7.65E−04 7.65E−01 1.18E+00 
10 1.02E−03 1.02E+00 1.57E+00 
    

102 2.45E−02 2.45E+01 4.08E−01 
103 2.47E−02 2.47E+01 4.04E−01 
104 2.50E−02 2.50E+01 4.00E−01 
105 2.52E−02 2.52E+01 3.96E−01 
106 2.55E−02 2.55E+01 3.92E−01  

 
A graph of B as a function of r follows. 

0

1

2

3

4

0 4 8 12 16 20 24

R (mm)

B
 (G

)

 
 
86 •• A 50-turn coil of radius 10.0 cm carries a current of 4.00 A and a 
concentric 20-turn coil of radius 0.500 cm carries a current of 1.00 A. The planes 
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of the two coils are perpendicular. Find the magnitude of the torque exerted by the 
large coil on the small coil. (Neglect any variation in magnetic field due to the 
current in the large coil over the region occupied by the small coil.) 
 
Picture the Problem We can use Bμτ

rrr
×= to find the torque exerted on the 

small coil (magnetic moment = μr ) by the magnetic field B
r

due to the current in 
the large coil. 
 

Bμτ
rrr

×=  
or, because the planes of the two coils 
are perpendicular, Bμτ =  

Relate the torque exerted by the large 
coil on the small coil to the magnetic 
moment  of the small coil and the 
magnetic field due to the current 
in the large coil: 

μr

B
r

 
NIA=μ  

where I is the current in the coil, N is 
the number of turns in the coil, and A is 
the cross-sectional area of the coil. 
 

Express the magnetic moment of 
the small coil: 

Express the magnetic field at the 
center of the large coil: R

I'N'B
2

0μ= where I′is the current in the 

large coil, N′ is the number of turns in 
the coil, and R is its radius. 
 

Substitute for B and μ in the 
expression for τ  to obtain: R

NN'II'A
2

0μτ =  

 
Substitute numerical values and evaluate τ : 
 

( )( )( )( ) ( ) ( )
( ) mN97.1

cm0.102
N/A104cm500.0A00.1A00.42050 272

⋅=
×

=
−

μππτ  

 
87 •• The magnetic needle of a compass is a uniform rod with a length of 
3.00 cm, a radius of 0.850 mm, and a density of  7.96 × 103 kg/m3. The needle is 
free to rotate in a horizontal plane, where the horizontal component of Earth’s 
magnetic field is 0.600 G. When disturbed slightly, the compass executes simple 
harmonic motion about its midpoint with a frequency of 1.40 Hz. (a) What is the 
magnetic dipole moment of the needle? (b) What is the magnetization of the 
needle? (c) What is the amperian current on the surface of the needle? 
 
Picture the Problem (a) We can solve the equation for the frequency f of the 
compass needle for the magnetic dipole moment of the needle. In Parts (b) and (c) 
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we can use their definitions to find the magnetization M and the amperian current 
Iamperian. 
 
(a) The frequency of the compass 
needle is given by: 
 

I
Bf μ

π2
1

= ⇒
B

If 224πμ =  

where I is the moment of inertia of the 
needle. 
 

The moment of inertia of the needle 
is: 
 

32
12
12

12
12

12
1 LrVLmLI ρπρ ===  

Substitute for I to obtain: 
 B

Lrf
3

3223 ρπμ =  

 
Substitute numerical values and evaluate μ: 
 

( ) ( )( ) ( )
( )

22

4

3233321-3

mA1024.5

T10600.03
m0300.0m10850.0kg/m1096.7s40.1

⋅×=

×
××

=

−

−

−πμ
 

 
(b) Use its definition to express the 
magnetization M: 
 

V
M μ

=  

Substitute to obtain: 
B

Lf
BV

Lrf
V

M
33

2223223 ρπρπμ
===  

 
Substitute numerical values and evaluate M: 
 

( ) ( )( )
( ) A/m1070.7

T10600.03
m0300.0kg/m1096.7s40.1 5

4

2332-12

×=
×

×
= −

πM  

 
(c) The amperian current on the surface of the needle is: 
 

( )( ) kA1.23m0300.0A/m1070.7 5
amperian =×== MLI  

 
88 •• A relatively inexpensive ammeter, called a tangent galvanometer, 
can be made using Earth’s magnetic field. A plane circular coil that has N turns 
and a radius R is oriented so the magnetic field BBc it produces in the center of the 
coil is either east or west. A compass is placed at the center of the coil. When 
there is no current in the coil, assume the compass needle points due north. When 



  Chapter 27    
 

2650 

there is a current in the coil (I), the compass needle points in the direction of the 
resultant magnetic field at an angle θ to the north. Show that the current I is 
related to θ and to the horizontal component of Earth’s magnetic field BeB  
by I =

2RBe
μ0N

tanθ . 

 
Picture the Problem Note that BBe and BcB  are perpendicular to each other and that 
the resultant magnetic field is at an angle θ  with north. We can use trigonometry 
to relate BBc and BeB  and express BBc in terms of the geometry of the coil and the 
current flowing in it. 
 

θtanec BB =  
where θ is the angle of the resultant 
field from north. 
 

Express BBc in terms of BeB : 

Express the field BBc due to the 
current in the coil: 
 

R
INB

2
0

c
μ

=  

where N is the number of turns. 
 

Substitute for BBc to obtain: 
θμ tan

2 e
0 B

R
IN
= ⇒ θ

μ
tan2

0

e

N
RBI =  

 
89 •• Earth’s magnetic field is about 0.600 G at the magnetic poles, and is 
pointed vertically downward at the magnetic pole in the northern hemisphere. If 
the magnetic field were due to an electric current circulating in a loop at the radius 
of the inner iron core of Earth (approximately 1300 km), (a) what would be the 
magnitude of the current required? (b) What direction would this current have—
the same as Earth’s spin, or opposite? Explain your answer. 
 
Picture the Problem The current required can be found by solving the equation 
for the magnetic field on the axis of a current loop for the current in the loop. We 
can use the right-hand rule to determine the direction of this current. 
 
(a) The magnetic field on the axis of 
a current loop is given by: 
 

( ) 2322

2
0 2

4 Rx
IRBx

+
=

π
π
μ  

Solving for I yields: 
 

( )
2

0

2322

2
4

R
BRxI x

πμ
π +

=  
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Substitute numerical values and evaluate I: 
 

( ) ( )( )

( )
GA 5.15

km 1300
A
N1042

G 10
T 1G 600.0km 1300km 63704

2
2

7

4

2322

=
⎟
⎠
⎞

⎜
⎝
⎛ ×

⎟
⎠
⎞

⎜
⎝
⎛ ×+

=
−ππ

π
I  

 
(b) Because Earth’s magnetic field points down at the north pole, application of 
the right-hand rule indicates that the current is counterclockwise when viewed 
from above the north pole.  
 
90 •• A long, narrow bar magnet has its magnetic moment r

μ  parallel to its 
long axis and is suspended at its center—in essence becoming a frictionless 
compass needle. When the magnet is placed in a magnetic field  

r 
B , it lines up with 

the field. If it is displaced by a small angle and released, show that the magnet 

will oscillate about its equilibrium position with frequency given by
I
Bμ

π2
1 , 

where I is the moment of inertia about the point of suspension. 
 
Picture the Problem We can apply Newton’s 2nd law for rotational motion to 
obtain the differential equation of motion of the bar magnet. While this equation 
is not linear, we can use a small-angle approximation to render it linear and obtain 
an expression for the square of the angular frequency that we can solve for the 
frequency f of the motion. 
 
Apply Newton’s 2nd law to the bar 
magnet to obtain the differential 
equation of motion for the magnet: 
 

2

2

sin
dt
dIB θθμ =−  

where I is the moment of inertia of the 
magnet about an axis through its point 
of suspension. 
 

For small displacements from 
equilibrium (θ << 1): 2

2

dt
dIB θθμ ≈−  

 
Rewrite the differential equation 
as: 02

2

=+ θμθ B
dt
dI  

or 

02

2

=+ θμθ
I
B

dt
d  
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Because the coefficient of the linear 
term is the square of the angular 
frequency, we have: 
 

I
Bμω =2 ⇒ 

I
Bμω =  

 

Because fπω 2= : 

I
Bf μπ =2 ⇒

I
Bf μ

π2
1

=  

 
91 •• An infinitely long straight wire is bent, as shown in Figure 27-66. The 
circular portion has a radius of 10.0 cm and its center a distance r from the 
straight part. Find r so that the magnetic field at the region occupied by the center 
of the circular portion is zero. 
 
Picture the Problem Let the positive x direction be out of the page. We can use 
the expressions for the magnetic fields due to an infinite straight line and a 
circular loop to express the net magnetic field at the center of the circular loop. 
We can set this net field to zero and solve for r. 
 
Express the net magnetic field at the 
center of circular loop: 
 

lineloop BBB
rrr

+=                         (1) 

Letting R represent the radius of the 
loop, express : loopB

r i
R
IB ˆ

2
0

loop
μ

−=
r

 

 
Express the magnetic field due to 
the current in the infinite straight 
line: 
 

i
r
IB ˆ

2
0

line π
μ

=
r

 

 

Substitute for and in 

equation (1) and simplify to obtain: 
loopB

r
lineB

r

 

iiiB ˆ
22

ˆ
2

ˆ
2

0000 ⎟
⎠
⎞

⎜
⎝
⎛ +−=+−=

r
I

R
I

r
I

R
I

π
μμ

π
μμr

 

 
If 0=B

r
, then: 0

22
00 =+−
r
I

R
I

π
μμ ⇒ 011

=+−
rR π

 

 
Solving for r yields: cm18.3cm0.10

==
π

r  

 
92 •• (a) Find the magnetic field strength point P on the perpendicular 
bisector of a wire segment carrying current I, as shown in Figure 27-67. (b) Use 
your result from Part (a) to find the magnetic field strength at the center of a 
regular polygon of N sides. (c) Show that when N is very large, your result 
approaches that for the magnetic field strength at the center of a circle.  
 
Picture the Problem (a) We can use the expression for B due to a straight wire 
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segment, to find the magnetic field strength at P. Note that the current in the wires 
whose lines contain point P do not contribute to the magnetic field strength at 
point P. In Part (b) we can use our result from (a), together with the value for θ 
when the polygon has N sides, to obtain an expression for B at the center of a 
polygon of N sides. (c) Letting N grow without bound will yield the equation for 
the magnetic field strength at the center of a circle. 
 
(a) Express the magnetic field 
strength at P due to the straight wire 
segment: 
 

( )21
0 sinsin

4
θθ

π
μ

+=
R
IBP  

Because θ1 = θ2 = θ : ( ) θ
π
μθ

π
μ sin

2
sin2

4
00 ⎟

⎠
⎞

⎜
⎝
⎛==

R
I

R
IBP  

 
Refer to the figure to obtain: 
 22

sin
Ra

a
+

=θ  

 
Substituting for sinθ  in the 
expression for BBP yields: 
 

22
0

2 RaR
aIBP
+

=
π

μ  

 
(b) θ for an N-sided polygon is given 
by: N

πθ =  

 
Because each side of the polygon 
contributes to B an amount equal 
to that obtained in (a): 
 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

NR
INB π

π
μ sin

2
0 , N = 3, 4, … K 

(c) For large N, π/N is small, so 

NN
ππ

≈⎟
⎠
⎞

⎜
⎝
⎛sin . Hence: 

R
I

N
N

R
I

NR
INB

N

N

2
Limit

2

sin
2

Limit

00

0

μπ
π
μ

π
π
μ

==

⎟
⎠
⎞

⎜
⎝
⎛=

∞→

∞→∞

 

 the expression for the magnetic field 
strength at the center of a current-
carrying circular loop. 

  
93 •• The current in a long cylindrical conductor of radius 10 cm varies with 
distance from the axis of the cylinder according to the relation I(r) = (50 A/m)r.  
Find the magnetic field at the following perpendicular distances from the wire’s 
central axis (a) 5.0 cm, (b) 10 cm, and (c) 20 cm. 
 
Picture the Problem We can use Ampère’s law to derive expressions for B(r) for 
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r ≤ R and r > R that we can evaluate for the given distances from the center of the 
cylindrical conductor. 
 
Apply Ampère’s law to a closed 
circular path a distance r ≤ R from 
the center of the cylindrical 
conductor to obtain: 
 

( )( ) (rIIrrBd CC 002 μμπ ===⋅∫ l )
rr

B  

Solve for B(r) to obtain: 
 

( ) ( )
r
rIrB

π
μ

2
0=  

 
Substitute for I(r): 
 

( ) ( ) ( )
π

μ
π

μ
2

A/m50
2

A/m50 00 ==
r

rrB  

 
(a) and (b) Noting that B is 
independent of r, substitute 
numerical values and evaluate  
B(5.0 cm) and B(10 cm): 
 

( ) ( )
( )( )

T10
2

A/m50N/A104
cm10cm0.5

27

μ
π

π

=

×
=

=
−

BB

 

 
(c) Apply Ampère’s law to a closed 
circular path a distance r > R from 
the center of the cylindrical 
conductor to obtain: 
 

( )( ) (RIIrrBd CC 002 μμπ ===⋅∫ l )
rr

B  

Solving for B(r) yields: 
 

( ) ( )
r
RIrB

π
μ

2
0=  

 
Substitute numerical values and evaluate B(20 cm): 
 

( ) ( )( )( )
( ) T0.5

m20.02
m10.0A/m50N/A104cm20

27

μ
π

π
=

×
=

−

B  

 
94 •• Figure 27- 68 shows a square loop that has 20-cm long sides and is in 
the z = 0 plane with its center at the origin. The loop carries a current of 5.0 A. An 
infinitely long wire that is parallel to the x axis and carries a current of 10 A 
intersects the z axis at z = 10 cm. The directions of the currents are shown in the 
figure. (a) Find the net torque on the loop. (b) Find the net force on the loop. 
 
Picture the Problem The field B

r
due to the 10-A current is in the yz plane. The 

net force on the wires of the square in the y direction cancel and do not contribute 
to a net torque or force. We can use Flτ

rrr
×= , BF

r
l
rr
×= I , and the expression for 
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the magnetic field due to a long straight wire to express the torque acting on each 
of the wires and hence, the net torque acting on the loop. 

y

z

10 cm

10 cm

10F
r

10−F
r

10−B
r

10B
r

10l
r

10−l
r

10 A

5.0 A5.0 A

×

×
−10 cm 0

 
 
(a) The net torque about the x axis is 
the sum of the torques due to the 
forces and  : 10F

r
10−F

r

 

10-10net τττ rrr
+=                        

 

Substituting for 10τ
r

and 10-τ
r

yields: 10101010net −− ××= + FlFlτ rrrrr
    

where the subscripts refer to the 
positions of the current-carrying wires. 
 

 

( ) 101010 BIF
r

l
rr

×=  
and 

( ) 101010 −−− ×= BIF
r

l
rr

 
 

The forces acting on the wires are 
given by: 
 

Substitute for and to obtain: 10F
r

10−F
r

 
( )[ ] ( )[ ]101010101010net −−− ××××= + BIlBIlτ r

l
rrr

l
rrr

             (1) 
 

The lever arms for the forces acting 
on the wires at y = 10 cm and  
y = −10 cm are: 
 

( ) jl ˆm 10.010 =
r

and ( ) jl ˆm 10.010 −=−

r
 

 

( )kj
R
IB ˆˆ

2
12

4
0

10 −−=
π
μr

 

where 
( ) ( ) m141.0m10.0m10.0 22 =+=R . 

 

The magnetic field at the wire at 
y = 10 cm is given by: 

Substitute numerical values and evaluate 10B
r

: 
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( ) ( ) ( )( )kjkjB ˆˆT0.10ˆˆ

m141.0
A102

24
N/A104 27

10 −−=−−
×

=
−

μ
π

πr
 

 
Proceed similarly to obtain: ( )( )kjB ˆˆT0.1010 +−=− μ

r
 

 
Substitute in equation (1) and simplify to obtain: 
 

( ) ( )( ) ( )( )[ ]
( ) ( )( )( ) ( )( )[ ]

( )i
ij

ij

ˆmN0.2

ˆˆT0.10ˆm 20.0A 0.5ˆm 10.0

ˆˆT0.10ˆm 20.0A 0.5ˆm 10.0net

⋅−=

+−×−×−

−−××=

μ

μ

μ

kj

kjτr

 

 
(b) The net force acting on the loop 
is the sum of the forces acting on its 
four sides: 
 

1010 −+= FFFnet

rrr
                       (2) 

Evaluate to obtain: 10F
r

 
( ) ( )( ) ( )( )
( ) ( )[ ]
( )( )jk

kji

kjiBIF

ˆˆN10

ˆˆˆN10

ˆˆT0.10ˆm20.0A0.5101010

+−=

−−×=

−−×=×=

μ

μ

μ
r

l
rr

 

 
Evaluating yields: 10−F

r

 
( ) ( )( ) ( )( )
( ) ( )[ ]
( )( )jk

kji

kjiBIF

ˆˆN10

ˆˆˆN10

ˆˆT0.10ˆm20.0A0.5101010

+=

+−×−=

+−×−=×= −−−

μ

μ

μ
r

l
rr

 

 
Substitute for  and in equation (2) and simplify to obtain: 10F

r
10−F

r

 
( )( ) ( )( ) ( ) jjkjkF t

ˆN20ˆˆN10ˆˆN10ne μμμ =+++−=
r

 

 
95 •• [SSM] A current balance is constructed in the following way: A 
straight 10.0-cm-long section of wire is placed on top of the pan of an electronic 
balance (Figure 27-69). This section of wire is connected in series with a power 
supply and a long straight horizontal section of wire that is parallel to it and 
positioned directly above it. The distance between the central axes of the two 
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wires is 2.00 cm. The power supply provides a current in the wires. When the 
power supply is switched on, the reading on the balance increases by 5.00 mg. 
What is the current in the wire? 
 
Picture the Problem The force acting on the lower wire is given by 

, where I is the current in the lower wire, l is the length of the wire 
on the balance, and B is the magnetic field strength at the location of the lower 
wire due to the current in the upper wire. We can apply Ampere’s law to find B at 
the location of the wire on the pan of the balance. 

BIF l=lower wire

 
The force experienced by the lower 
wire is given by: 
 

BIF l=lower wire  

Apply Ampere’s law to a closed 
circular path of radius r centered on 
the upper wire to obtain: 
 

( ) IIrB C 002 μμπ == ⇒
r
IB

π
μ
2

0=  

Substituting for B in the expression 
for the force on the lower wire and 
simplifying yields: 
 

r
I

r
IIF

π
μ

π
μ

22

2
00

lower wire
l

l =⎟
⎠
⎞

⎜
⎝
⎛=  

Solve for I to obtain: 
 

l0

lower wire2
μ

πrF
I =  

 
Note that the force on the lower wire 
is the increase in the reading of the 
balance. Substitute numerical values 
and evaluate I: 

( )( )
( )( )

A 24.2A 236.2

cm 0.10N/A 104
kg 1000.5cm 00.22

27

6

==

×
×

= −

−

π
πI

 

 
96 •• Consider the current balance of Problem 95. If the sensitivity of the 
balance is 0.100 mg, what is the minimum current detectable using this current 
balance? 
 
Picture the Problem We can use a proportion to relate minimum current 
detectible using this balance to its sensitivity and to the current and change in 
balance reading from Problem 95.  
 
The minimum current Imin detectible 
is to the sensitivity of the balance as 
the current in Problem 95 is to the 
change in the balance reading in 
Problem 95: 
 

mg5.00
A236.2

mg100.0
min =

I  
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Solving for Imin yields: 
 ( )

mA7.44

mg5.00
A236.2mg100.0min

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=I

 

 
The ″standard″ current balance can be made very sensitive by increasing the 
length (i.e., moment arm) of the wire balance, which one cannot do with this kind; 
however, this is compensated somewhat by the high sensitivity of the electronic 
balance. 
 
97 ••• [SSM] A non-conducting disk that has radius R, carries a uniform 
surface charge density σ, and rotates with angular speed ω. (a) Consider an 
annular strip that has a radius r, a width dr, and a charge dq. Show that the current 
(dI) produced by this rotating strip is given by rdrωσ . (b) Use your result from 
Part (a) to show that the magnetic field strength at the center of the disk is given 
by the expression Rσωμ02

1 . (c) Use your result from Part (a) to find an 
expression for the magnetic field strength at a point on the central axis of the disk 
a distance z from its center. 
 
Picture the Problem The diagram 
shows the rotating disk and the circular 
strip of radius r and width dr with 
charge dq. We can use the definition of 
surface charge density to express dq in 
terms of r and dr and the definition of 
current to show that dI = ωσr dr. We 
can then use this current and expression 
for the magnetic field on the axis of a 
current loop to obtain the results called 
for in Parts (b) and (c). 

 

 
(a) Express the total charge dq that 
passes a given point on the circular 
strip once each period: 
 

rdrdAdq πσσ 2==  

Letting q be the total charge that 
passes along a radial section of the 
disk in a period of time T, express 
the current in the element of width 
dr: 
 

rdrrdr
dt
dqdI ωσ

ω
π

πσ
=== 2

2  
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(c) Express the magnetic field dBx at 
a distance z along the axis of the disk 
due to the current loop of radius r 
and width dr: 
 

( )

( )
dr

rz
r
rz
dIrdBx

2322

3
0

2322

2
0

2

2
4

+
=

+
=

ωσμ

π
π
μ

 

 
Integrate from r = 0 to r = R to 
obtain: ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

+
=

+
= ∫

x
zR
zR

dr
rz

rB
R

x

22
2

2

22

22
0

0
2322

3
0

ωσμ

ωσμ

 

 
(b) Evaluate BBx for x = 0: ( ) R

R
RBx σωμωσμ

02
1

2

2
0

2
0 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
98 ••• A square loop that has sides of length l lies in the z = 0 plane with its 
center at the origin. The loop carries a current I. (a) Derive an expression for the 
magnetic field strength at any point on the z axis. (b) Show that for z much larger 
than l, your result from Part (a) becomes ( )3

0 2 zB πμμ≈ , where μ is the 
magnitude of the magnetic moment of the loop. 
 
Picture the Problem From the symmetry of the system it is evident that the 
magnetic fields due to each segment have the same magnitude. We can express 
the magnetic field at (x,0,0) due to one side (segment) of the square, find its 
component in the x direction, and then multiply by four to find the resultant field. 
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( )ll
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( )ll
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(a) B due to a straight wire segment 
is given by:  
 

( )21
0 sinsin

4
θθ

π
μ

+=
R
IB  

where R is the perpendicular distance 
from the wire segment to the field 
point. 
 

Use 21 θθ =  and 422 l+= xR  to 
express B due to one side at (x,0,0): 
 

( ) ( )

( )12
2

0

12
2

0
1

sin

4
2

sin2

4
4

0,0,

θ
π
μ

θ
π
μ

l

l

+

=

+

=

x

I

x

IxB

 

 
Referring to the diagram, express 

1sinθ : 
 

2

22sin
2

2
1

l

ll

+

==

x
d

θ  

 
Substituting for 1sinθ  and 
simplifying yields: 
 

( )

24
4

2

2

4
2

0,0,

2
2

2
2

0

2
2

2
2

0
1

l

l

l

l

l

l

++

=

++

=

xx

I

xx

IxB

π

μ

π
μ

 

 
By symmetry, the sum of the y and  z 
components of the fields due to the 
four wire segments must vanish, 
whereas the x components will add. 
The diagram to the right is a view of 
the xy plane showing the relationship 
between 1B

r
 and the angle β it makes 

with the x axis. 
 

x

z

R

β

 ( )0,0,2
1r

 ( )z,0,0

 ( )0,0,0

 
1B
r

β

 
Express BB1x: 
 

βcos11 BB x =  
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Substituting for cosβ and simplifying 
yields: 

24
8

4

2

24
4

2
2

2
2

2
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2
2

2
2

2
2

0
1
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l
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⎛
+
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=
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I
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IB x

π

μ

π

μ

 

 
The resultant magnetic field is the 
sum of the fields due to the four wire 
segments (sides of the square): 
 

i

iB

ˆ

24
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=
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I
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π

μ  

 
(b) Factor x2 from the two factors in 
the denominator to obtain: 
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For x >> l: 

iiB ˆ
2

ˆ
2 3

0
3

2
0

xx
I

π
μμ

π
μ

=≈
lr

 

where . 2lI=μ
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