Chapter 26
The Magnetic Field

Conceptual Problems

1 . [SSM] When the axis of a cathode-ray tube is horizontal in a region
in which there is a magnetic field that is directed vertically upward, the electrons
emitted from the cathode follow one of the dashed paths to the face of the tube in
Figure 26-30. The correct path is (a) 1, (b) 2, (c) 3, (d) 4, (e) 5.

Determine the Concept Because the electrons are initially moving at 90° to the
magnetic field, they will be deflected in the direction of the magnetic force acting
on them. Use the right-hand rule based on the expression for the magnetic force
acting on a moving charge F = gv x B, remembering that, for a negative charge,
the force is in the direction opposite that indicated by the right-hand rule, to
convince yourself that the particle will follow the path whose terminal point on

the screen is 2. | (b) |is correct.

2 e We define the direction of the electric field to be the same as the
direction of the force on a positive test charge. Why then do we not define the
direction of the magnetic field to be the same as the direction of the magnetic
force on a moving positive test charge?

Determine the Concept The direction of the force depends on the direction of the
velocity. We do not define the direction of the magnetic field to be in the
direction of the force because if we did, the magnetic field would be in a different
direction each time the velocity was in a different direction. If this were the case,
the magnetic field would not be a useful construct.

3 * [SSM] A flicker bulb is a light bulb that has a long, thin flexible
filament. It is meant to be plugged into an ac outlet that delivers current at a
frequency of 60 Hz. There is a small permanent magnet inside the bulb. When
the bulb is plugged in the filament oscillates back and forth. At what frequency
does it oscillate? Explain.

Determine the Concept Because the alternating current running through the
filament is changing direction every 1/60 s, the filament experiences a force that
changes direction at the frequency of the current.

4 * Inacyclotron, the potential difference between the dees oscillates with
a period given by 7 = 27zm/ (qB). Show that the expression to the right of the

equal sign has units of seconds if ¢, B and m have units of coulombs, teslas and
kilograms, respectively.
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Determine the Concept Substituting the SI units for ¢, B, and m yields:

kg-m
C i T = A ‘m = C ‘m = m = S = l
kg kg kg kg kg-m |s
S e A "Li nucleus has a charge equal to +3e and a mass that is equal to the

mass of seven protons. A 'Li nucleus and a proton are both moving perpendicular

to a uniform magnetic field B . The magnitude of the momentum of the proton is
equal to the magnitude of the momentum of the nucleus. The path of the proton
has a radius of curvature equal to R, and the path of the "Li nucleus has a radius of
curvature equal to Ry;. The ratio R,/Ry; is closest to (a) 3/1, (b) 1/3, (¢) 1/7,
(d)7/1,(e) 3/7, () 7/3.

Determine the Concept We can use Newton’s 2™ law for circular motion to
express the radius of curvature R of each particle in terms of its charge,
momentum, and the magnetic field. We can then divide the proton’s radius of
curvature by that of the 'Li nucleus to decide which of these alternatives is
correct.

Apply Newton’s 2™ law to the . v R
lithium nucleus to obtain: e =m R 4B
For the 'Li nucleus this becomes: _ Py (1)
Li —
3eB
For the proton we have: R = Py 2)
eB
Divide equation (2) by equation Dy
(1) and simplify to obtain: R, eB _ 3P
R, Pu  py
3eB
Because the momenta are equal: R, .
e =3 =| (a) |is correct.

6 . An electron moving in the +x direction enters a region that has a
uniform magnetic field in the +y direction. When the electron enters this region, it
will (a) be deflected toward the +y direction, (b) be deflected toward the —y
direction, (c) be deflected toward the +z direction, (d) be deflected toward the —z
direction, (e) continue undeflected in the +x direction.
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Determine the Concept Application of the right-hand rule indicates that a
positively charged body would experience a downward force and, in the absence
of other forces, be deflected downward. Because the direction of the magnetic
force on an electron is opposite that of the force on a positively charged object, an

electron will be deflected upward. | (¢) |is correct.

7 e [SSM] In a velocity selector, the speed of the undeflected charged
particle is given by the ratio of the magnitude of the electric field to the
magnitude of the magnetic field. Show that E/B in fact does have the units of

m/s if £ and B are in units of volts per meter and teslas, respectively.

Determine the Concept Substituting the SI units for £ and B yields:

N C

C _A~m__;'m_ m
"N Cc C Ls
A-m

8 . How are the properties of magnetic field lines similar to the properties
of electric field lines? How are they different?

Similarities Differences

1. Their density on a surface 1. Magnetic field lines neither begin

perpendicular to the lines is a measure | nor end. Electric field lines begin on

of the strength of the field positive charges and end on negative
charges.

2. The lines point in the direction of

the field 2. Electric forces are parallel or anti-
parallel to the field lines. Magnetic

3. The lines do not cross. forces are perpendicular to the field
lines.

9 . True or false:

(a) The magnetic moment of a bar magnet points from its north pole to its south
pole.

(b) Inside the material of a bar magnet, the magnetic field due to the bar magnet
points from the magnet’s south pole toward its north pole.

(c¢) If a current loop simultaneously has its current doubled and its area cut in
half, then the magnitude of its magnetic moment remains the same.

(d) The maximum torque on a current loop placed in a magnetic field occurs
when the plane of the loop is perpendicular to the direction of the magnetic
field.
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(a) False. By definition, the magnetic moment of a small bar magnet points from
its south pole to its north pole.

(b) True. The external magnetic field of a bar magnet points from the north pole
of the magnet to south pole. Because magnetic field lines are continuous, the
magnet’s internal field lines point from the south pole to the north pole.

(c¢) True. Because the magnetic dipole moment of a current loop is given by
M = NIAn , simultaneously doubling the current and halving its area leaves the

magnetic dipole moment unchanged.

(d) False. The magnitude of the torque acting on a magnetic dipole moment is
given T = uBsin @ where 6 is the angle between the axis of the current loop and

the direction of the magnetic field. When the plane of the loop is perpendicular to
the field direction = 0 and the torque is zero.

10 e Show that the von Klitzing constant, h/ e, gives the SI unit for

resistance (the ohm) /4 and e are in units of joule seconds and coulombs,
respectively.

Determine the Concept The von Klitzing resistance is related to the Hall

resistance according to R, =nR,;where R, = iz .
e
Substituting the SI units of / and e yields: % = 'Z—/C =V/A=|Q
s

11 e The theory of relativity states that no law of physics can be described
using the absolute velocity of an object, which is in fact impossible to define due
to a lack of an absolute reference frame. Instead, the behavior of interacting
objects can only be described by the relative velocities between the objects. New
physical insights result from this idea. For example, in Figure 26-31 a magnet
moving at high speed relative to some observer passes by an electron that is at rest
relative to the same observer. Explain why you are sure that a force must be
acting on the electron. In what direction will the force point at the instant the
north pole of the magnet passes directly underneath the electron? Explain your
answer.

Determine the Concept From relativity; this is equivalent to the electron moving
from right to left at speed v with the magnet stationary. When the electron is
directly over the magnet, the field points directly up, so there is a force directed
out of the page on the electron.
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Estimation and Approximation

12+  Estimate the maximum magnetic force per meter that Earth’s magnetic
field could exert on a current-carrying wire in a 20-A circuit in your house.

Picture the Problem Because the magnetic force on a current-carrying wire is

given by F = IL x B , the maximum force occurs when 6 = 90°. Under this
condition, F,, =ILB.

The maximum force per unit length F } _ 1B
that the Earth’s magnetic field could L.
exert on a current-carrying wire in

your home is given by:

(20A)(0.5x10 T)

For a 20-A circuit and F
B=05x10"T: L]

=| ImN/m

13 e Your friend wants to be magician and intends to use Earth’s magnetic
field to suspend a current-carrying wire above the stage. He asks you to estimate
the minimum current needed to suspend the wire just above Earth’s surface at the
equator (where Earth’s magnetic field is horizontal). Assume the wire has a linear
mass density of 10 g/m. Would you advise him to proceed with his plans for this
act?

Picture the Problem Because the magnetic force on a current-carrying wire is
given by F =ILx B, the maximum force occurs when 6 = 90°. Under this
condition, F, =ILB . In order to suspend the wire, this magnetic force would

have to be equal in magnitude to the gravitational force exerted by Earth on the
wire:

Letting the upward direction be the F,-F,=0

+y direction, apply ZF , = 0to the or,

wire to obtain: ILB-mg =0

Solving for / yields: jome _(mg
LB \L)B

where m/L is the linear density of the
wire.
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Substitute numerical values and I (1 0g /m) 9.81 m/s?

evaluate I: 0.5%107*T | 2kA

You should advise him to develop some other act. A current of 2000 A would
overheat the wire (which is a gross understatement).

The Force Exerted by a Magnetic Field

14 +  Find the magnetic force on a proton moving in the +x direction at a
speed of 0.446 Mm/s in a uniform magnetic field of 1.75 T in the +z direction.

Picture the Problem The magnetic force acting on a charge is given by
F = qv x B. We can express ¥ and B , form their vector ("cross”) product, and

multiply by the scalar ¢ to find F .

The magnetic force acting on the F = qv X B
proton is given by:

Express v : = (O 446 Mm/s)
Express B : B= (1.75 T)Ig

Substitute numerical values and evaluate F :

F =(1.602x107 C)[(0.446 Mim/s)i x (1.75T)k |=[ ~(0.125pN);

15 A point particle has a charge equal to —3.64 nC and a velocity equal to
2.75%10° m/s i . Find the force on the charge if the magnetic field is
(a) 0.38Tj, () 0.75Ti +0.75Tj, (c) 0.65Ti,and (d) 0.75 Ti +0.75 Tk.

Picture the Problem The magnetic force acting on the charge is given
by F = gv x B. We can express v and B , form their vector (also known as the

"cross”) product, and multiply by the scalar g to find F .

Express the force acting on the F=gvxB
charge:
Substitute numerical values to F=(- 3_64nC)l(2.75 x10° m/s); X BJ

obtain:
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(a) Evaluate F for B =0.38 T}:

~
.

F =(-3.64nC)[(2.75x10° m/s)i x(O.38T)]]= ~(3.8uN)k

(b) Evaluate F for B =0.75 T i +0.75 T}:

F =(=3.64n0)[(2.75x10" mis)i x {0.75T)i + (0.75T)j |=[ - (7.5 :N) &

(¢) Evaluate F for B =0.65T i

F =(=3.64n0)|(2.75x10° m/s)i (0.65T)i]=[ 0]

(d) Evaluate F for B =0.75T i +0.75Tk:

A
.

F =(=3.64n0)[(2.75%10° mis)i x (0.75T)i + (0.75T)k ) =[ (7.5 2N

16 - A uniform magnetic field equal to 1.48 T is in the +z direction. Find
the force exerted by the field on a proton if the velocity of the proton is

(a)2.7km/si , (b) 3.7km/s j, (c) 6.8km/sk, and (d) 4.0km/si +3.0km/s j .

Picture the Problem The magnetic force acting on the proton is given
by F = gv x B. We can express v and B, form their vector product, and multiply

by the scalar ¢ to find F .

The magnetic force acting on the F
proton is given by:

11
<
<
X
~°T

(a) Evaluate F for v = 2.7 km/s i

~

F =(1.602x10 C)[(2.7kmis)i x (1.48T)k | = ~ (6.4x107° N);j

(b) Evaluate F for v = 3.7 km/s j

F =(1.602x10 C)[3.7km/s) }x (1.48T)# ] = [ (8.8x107° N)F
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(c) Evaluate F for v = 6.8 km/s k :

F=(1.602x10™" c)[(é.skm/s)léx(l.48T)12]= (0]

(d) Evaluate F for V = 4.0km/sf+3.0km/sj' :

F =(1.602x107° C)|{(4.0km/s)i +(3.0km/s) j | (1.48T) ]|

A
.

= (7.1x10"*N)i =(9.5x 10 N j

17 A straight wire segment that is 2.0 m long makes an angle of 30° with
a uniform 0.37-T magnetic field. Find the magnitude of the force on the wire if
the wire carries a current of 2.6 A.

Picture the Problem The magnitude of the magnetic force acting on a segment of
wire carrying a current / is given by F = I/Bsin@ where / is the length of the
segment of wire, B is the magnetic field, and @is the angle between direction of
the current in the segment of wire and the direction of the magnetic field.

Express the magnitude of the F =1/Bsin@

magnetic force acting on the segment

of wire:

Substitute numerical values and F =(2.6A)(2.0m)(0.37T)sin 30°
evaluate [ -1 096N

18 . A straight segment of a current-carrying wire has a current element

IL, where [=2.7 Aand L=3.0cmi +4.0 cm}' . The segment is in a region with

a uniform magnetic field given by 1.3 Ti . Find the force on the segment of wire.

Picture the Problem We can use F = IL x B to find the force acting on the wire
segment.

Express the force acting on the F=ILxB
wire segment:

A
.

Substitute numerical values and F=(27 A)[(3_0 cm)i +(4.0cm) ]]x (1.37)i
evaluate F : _[Z0 14N)I€
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19 - What is the force on an electron that has a velocity equal to
2.0x10° m/si —3.0x10° } when it is in a region with a magnetic field given by

0.80Ti +0.60Tk?

Picture the Problem The magnetic force acting on the electron is given by
F = gV xB.

Il
Q
<
X
~°T)

The magnetic force acting on the F
proton is given by:

Substitute numerical values and evaluate F :

F=(-1.602x10™ C)|{2 Mm/s)i — (3Mm/s) j{x (0.87 +0.6 j — 0.4k T]
= (=0.192pN)k + (= 0.128 pN) j + (~ 0.384 pN) & + (- 0.192 pN)i

= —(0.192pN)i —(0.128 pN) j — (0.577 pN) k

N
.

=| =(0.19pN)i — (0.13pN) j - (0.58 pN ) k

20 e The section of wire shown in Figure 26-32 carries a current equal to
1.8 A from a to b. The segment is in a region that has a magnetic field whose

value is 1.2 Tk . Find the total force on the wire and show that the total force is

the same as if the wire were in the form of a straight wire directly from a to b and
carrying the same current.

Picture the Problem We can use F = I/ x Bto find the force acting on the
segments of the wire as well as the magnetic force acting on the wire if it were a
straight segment from a to b.

Express the magnetic force acting on F=F,_+F,,

the wire:

Evaluate F,_: F, = (l.8A)[(3.0cm)fx (1.2 T)IeJ
- (0.0648N )~ })
= —(0.0648N);

Evaluate 13'40m : F, = (1.8A)[(4.0cm)}>< (I.ZT)IQJ

(0.0864N)i
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Substitute to obtain: F =—(0.0648N);j+(0.0864N)i
=| (86mN)i —(65mN);

A
.

If the wire were straight from a to b: 7 =(3.0cm)i +(4.0cm);

The magnetic force acting on the wire is:

~ A
.

F = (1.8A)[(3.0cm)t +(4.0cm)j']x (1.2T)k =—(0.0648N)j +(0.0864N)i
=| (86 mN)i —(65mN);

in agreement with the result obtained above when we treated the two straight
segments of the wire separately.

21 = A straight, stiff, horizontal 25-cm-long wire that has a mass equal to
50 g is connected to a source of emf by light, flexible leads. A magnetic field of
1.33 T is horizontal and perpendicular to the wire. Find the current necessary to
"float” the wire, that is, when it is released from rest it remains at rest.

Picture the Problem Because the magnetic field is horizontal and perpendicular
to the wire, the force it exerts on the current-carrying wire will be vertical. Under
equilibrium conditions, this upward magnetic force will be equal to the downward
gravitational force acting on the wire.

Apply ZFvertical = OtO the Wire: Fmag —w= 0
Express F,,,: F.. = I{B because 6=90°.

Substitute for £, to obtain: [B-mg=0=>1= %

Substitute numerical values and I (50 g)(9.81m/s2) B

= =|1.5A
evaluate I (25¢m)(1.33T)

22 e+ Inyour physics laboratory class, you have constructed a simple
gaussmeter for measuring the horizontal component of magnetic fields. The setup
consists of a stiff 50-cm wire that hangs vertically from a conducting pivot so that
its free end makes contact with a pool of mercury in a dish below (Figure 26-33).
The mercury provides an electrical contact without constraining the movement of
the wire. The wire has a mass of 5.0 g and conducts a current downward.

(a) What is the equilibrium angular displacement of the wire from vertical if the
horizontal component of the magnetic field is 0.040 T and the current is 0.20 A?
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(b) What is the sensitivity of this gaussmeter? That is, what is the ratio of the

output to the input (in radians per tesla).

Picture the Problem The magnetic
field is out of the page. The diagram
shows the gaussmeter displaced from
equilibrium under the influence of the
gravitational force mg, the magnetic
force F,_, and the force exerted by the

conducting pivot F . We can apply the
condition for translational equilibrium
in the x direction to find the equilibrium
angular displacement of the wire from
the vertical. In Part (b) we can solve the
equation derived in Part (a) for B and
evaluate this expression for the given
data to find the horizontal magnetic
field sensitivity of this gaussmeter.

(a) Apply ZFx = 0 to the wire

to obtain:

The magnitude of the magnetic force
acting on the wire is given by:
Substitute for Fy, to obtain:

Solving for € yields:

Substitute numerical values and
evaluate @

(b) The sensitivity of this gaussmeter
is the ratio of the output to the input:

ZF; =—F, +mgsin@ =0

F, =1/Bsing
or, because ¢ = 90°,
F, =1/B
—I/B+mgsin@ =0 (1)
6 =sin™ M—B}
L mg
. [ (0.20A)(0.50m)(0.040T)
6 = sin >
(0.0050kg )(9.81m/s?)
= 4.679°=| 4.7° | =| 82 mrad

e 0
sensitivity = —
B
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Substitute numerical values and . .. 82mrad
sensitivity =

evaluate the sensitivity of the 0.040T
gaussmeter:

=|2.0rad/T

23 e [SSM] A 10-cm long straight wire is parallel with the x axis and
carries a current of 2.0 A in the +x direction. The force on this wire due to the

presence of a magnetic field Bis3.0N j +2.0 Nk . If this wire is rotated so that
it is parallel with the Y axis with the current in the +y direction, the force on the
wire becomes —3.0 Ni —2.0 N k. Determine the magnetic field B.

Picture the Problem We can use the information given in the 1% and 2™
sentences to obtain an expression containing the components of the magnetic
field B. We can then use the information in the 1% and 3™ sentences to obtain a
second equation in these components that we can solve simultaneously for the
components of B .

Express the magnetic field B in B= Bxf + By} + leg (1)
terms of its components:

Express F in terms of B :

F=IixB=020A)0.10m)i |x(B.i +B,j+Bk)
=(0.20A -m)i (Bz+B ]+Bk) ~(0.20A-m)B_j+(0.20A-m)B k

Equate the components of this (O 20A- m) =3.0N
expression for F with those and

given in the second sentence of (0,20 A-m)By =2.0N
the statement of the problem to

obtain:

Noting that B, is undetermined, B, =-15Tand B, =10T

solve for B, and B,
When the wire is rotated so that the current flows in the positive y direction:

F =IixB=(20A)0.10m)j|x(B.i + B,j+B.k)
=(0.20A -m)jx (Bxf +B,j+ leé)z (0.20A-m)B.i —(0.20A-m)B_k
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Equate the components of this (0.20A-m)B, =—2.0N
expression for F with those and
given in the third sentence of the — (0.20 A- m)BZ =-3.0N

problem statement to obtain:

Solve for B, and B; to obtain: B =10T and, in agreement with our
results above, B, =—15T

Substitute in equation (1) to obtain: B=|(10T) i+ (IOT)} —(1 ST)IQ

24 e A 10-cm long straight wire is parallel with the z axis and carries a
current of 4.0 A in the + z direction. The force on this wire due to a uniform

magnetic field B is —0.20 Ni +0.20 N}. If this wire is rotated so that it is
parallel with the x axis with the current is in the +x direction, the force on the wire
becomes0.20 £ N . Find B.

Picture the Problem We can use the information given in the 1% and 2™
sentences to obtain an expression containing the components of the magnetic
field B. We can then use the information in the 1 and 3™ sentences to obtain a
second equation in these components that we can solve simultaneously for the
components of B .

Express the magnetic field B in B=Bi+ By}' +B.k (1)
terms of its components:
Express F in terms of B : F=IixB

— (4.0A)0.1m)i|x(B.i + B,]+ B.K)
— (0.40A-mYix (B + B, }+ B.k)
(0.40A-m)B,j—(0.40A-m)B,i

Equate the components of this (0.40A - m) =0.20N
expression for F with those given in and
the second sentence of the statement (().4() A- m) B_=0.20N

of the problem to obtain:

Noting that B. is undetermined, B, =050Tand B, =0.50T
solve for B, and B,:
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When the wire is rotated so that the current flows in the positive x direction:

A
.

F=IixB=(40A)0.10m)i x(B,i + B, j+B.k)
=(0.40A-m)i x (Bxi +B,j+ leé): ~(0.40A-m)B_j+(0.40A-m)B k

Equate the components of this - (O.4OA . m)Bz =0

expression for F with those and

given in the third sentence of the (0.4OA . m)By =0.2N

problem statement to obtain:

Solve for B. and B, to obtain: B =0
and, in agreement with our results
above,
B, =0.50T

Substitute in equation (1) to obtain: B - (O. 50 T){ n (0'50 T)}

25 e [SSM] A current-carrying wire is bent into a closed semicircular
loop of radius R that lies in the xy plane (Figure 26-34). The wire is in a uniform
magnetic field that is in the +z direction, as shown. Verify that the force acting on
the loop is zero.

Picture the Problem With the current in the direction indicated and the magnetic
field in the z direction, pointing out of the plane of the page, the force is in the
radial direction and we can integrate the element of force dF acting on an element
of length d¢ between 8 = 0 and 7 to find the force acting on the semicircular
portion of the loop and use the expression for the force on a current-carrying wire
in a uniform magnetic field to find the force on the straight segment of the loop.

Y
dar
a6 d€ =\Rd6
R
7] x
Express the net force acting on the F=F_. . . + f‘mght (1)

semicircular loop of wire: loop segment
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Express the force acting on the Fstraight = I/ x B =2RIi x Bk = —2RIB}'
straight segment of the loop: segment
Express the force dF acting on the dF =1d/B = IRBd0

element of the wire of length d¢:

Express the x and y components of dF, =dF cos@ anddF, = dF sin 6
dF:
Because, by symmetry, the x dF, = IRBsin0do
component of the force is zero, and
we can integrate the y component - . x .
to find the force on the wire: F, icicir = F,J = (RIBJ sin 0d9] j
loop 0
= 2RIBj
Substitute in equation (1) to obtain: F =2RIBj—2RIBj = @

26 eee A wire bent in some arbitrary shape carries a current /. The wire is in a

region with a uniform magnetic field B. Show that the total force on the part of
the wire from some arbitrary point on the wire (designated as a) to some other

arbitrary point on the wire (designated as b) is F= IL x B, where L is the vector
from point a to point b. In other words, show that the force on an arbitrary section
of the bent wire is the same as the force would be on a straight section wire
carrying the same current and connecting the two endpoints of the arbitrary
section.

Picture the Problem We can integrate the expression for the force dF acting on
an element of the wire of length dL from a to b to show that F = ILx B.

Express the force dF acting on the dF =IdLx B
element of the wire of length dL :

Integrate this expression to obtain: LA
F = j IdLx B

Because B and [ are constant: ~ L) . ——
F=1 J.dL xB=|ILxB

where L is the vector from a to b.
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Motion of a Point Charge in a Magnetic Field

27 o [SSM] A proton moves in a 65-cm-radius circular orbit that is
perpendicular to a uniform magnetic field of magnitude 0.75 T. (a) What is the
orbital period for the motion? () What is the speed of the proton? (¢) What is the
kinetic energy of the proton?

Picture the Problem We can apply Newton’s 2™ law to the orbiting proton to
relate its speed to its radius. We can then use 7'= 27/v to find its period. In Part
(b) we can use the relationship between 7 and v to determine v. In Part (c) we can
use its definition to find the kinetic energy of the proton.

(a) Relate the period T of the motion T = 2mr (1)
of the proton to its orbital speed v: v
Apply Newton’s 2™ law to the v my
. qgB=m—=r=—
proton to obtain: P2 gB
Substitute for 7 in equation (1) and T 27mm
simplify to obtain: qB
Substitute numerical values and 27[(1 673x107 kg)
] T= 5 =87.4ns
evaluate T: (1.602x107° C)(0.75T)
=|87ns
(b) From equation (1) we have: . 2mr
T
Substitute numerical values and 7 (0.65m) _4.67%10 m/s
evaluate v: 87.4ns
=] 4.7x10" m/s

(c) Using its definition, express and evaluate the kinetic energy of the proton:

leV

(1.673x107 ke )(4.67x107 m/s) =1.82x10™ Jx——
1.602x107"

2
K=-mv° =

I
<
(¢}
<
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28 ¢ A 4.5-keV electron (an electron that has a kinetic energy equal to

4.5 keV) moves in a circular orbit that is perpendicular to a magnetic field of
0.325 T. (a) Find the radius of the orbit. (b) Find the frequency and period of the
orbital motion.

Picture the Problem (a) We can apply Newton’s 2™ law to the orbiting electron
to obtain an expression for the radius of its orbit as a function of its mass m,
charge ¢, speed v, and the magnitude of the magnetic field B. Using the definition
of kinetic energy will allow us to express » in terms of m, ¢, B, and the electron’s
kinetic energy K. (b) The period of the orbital motion is given by T = 27m/v.
Substituting for » (or /v) from Part (a) will eliminate the orbital speed of the
electron and leave us with an expression for 7 that depends only on m, ¢, and B.
The frequency of the orbital motion is the reciprocal of the period of the orbital
motion.

(a) Apply Newton’s 2" law to the . v o m
orbiting electron to obtain: e =m 7 "= gB
Express the kinetic energy of the K =Ly sy = 2K
electron: 2 “\ m
Substituting for v in the expression _m [2K _2Km
for r and simplifying yields: "= B\ 'm  ¢B

Substitute numerical values and evaluate r:

-19
\/2(4.5 keV)(9.109x10™ kg){l.602x\i0Jj
€

=0.696mm=| 0.70mm

V=

(1.602x107°C)(0.325T)

(b) Relate the period of the electron’s T 27
motion to the radius of its orbit and v
its orbital speed:

my my
Because r =—: 27—

qB T—
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Substitute numerical values and 27[(9. 109x107 kg)

evaluate T: (1.602x107° C)0.325T)
=1.099%x10""s=| 0.11ns

1 j—
0.110ns

The frequency of the motion is known f 1
as the cyclotron frequency and is the T
reciprocal of the period of the

electron’s motion:

9.1GHz

29 e A proton, a deuteron and an alpha particle in a region with a uniform
magnetic field each follow circular paths that have the same radius. The deuteron
has a charge that is equal to the charge a proton has, and an alpha particle has a
charge that is equal to twice the charge a proton has. Assume that m, = 2mq =
4my,. Compare (a) their speeds, (b) their kinetic energies, and (c) the magnitudes
of their angular momenta about the centers of the orbits.

Picture the Problem We can apply Newton’s 2™ law to the orbiting particles to
derive an expression for their orbital speeds as a function of their charge, their
mass, the magnetic field in which they are moving, and the radii of their orbits.
We can then compare their speeds by expressing their ratios. In Parts (b) and (c¢)
we can proceed similarly starting with the definitions of kinetic energy and
angular momentum.

(a) Apply Newton’s 2™ law to an v qBr
.- . . qgB=m—=v =—
orbiting particle to obtain: r m
The speeds of the orbiting particles _q,Br .
are given by: Yo T m, ()
v, = 4.8 , and (2)
ma
B
vy =2 3)
my
Divide equation (2) by equation (1) q,Br
and simplify to obtain: v, _ m, _4q,m, _ 2em,
v, 4,Br qm, e(4mp)
m,
or
v =v



Divide equation (3) by equation (1)
and simplify to obtain:

Combining these results yields:

(b) Using the expression for its
orbital speed derived in (@), express
the kinetic energy of an orbiting
particle:

The kinetic energies of the three
particles are given by:

Dividing equation (7) by equation
(6) and simplifying yields:

Divide equation (8) by equation (6)
and simplify to obtain:

Combining these results yields:
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q,Br
Vo _ My 4gm, em,
YV ) M B q,Mq ) e(2mp) o
m,
or
vy =v,

2p2. 2
Br
K, =t (4)
b 2
mP
2 2.2
B
K, ‘Iaz—r, and (5)
ma
2p2.2
K, =45 (6)
¢ 2m
d
lq;Bzrz
Kol omy _dmy _(2e)m,
K, 1q;Bzr2 qjma ez(4mp)
2 mp
=1=>K,=K,
i
Ky 2my _qamy _ e,
K, q;Bzr2 q;md e’ 2mp)
2m,
==K, =2K,
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(¢) The angular momenta of the L =my,r,
orbiting particles are given by: L,=m,v,r,and
L,=myv,r
. ) i
Express the ratio of L, to Ly: L, my,r (4mp )(2 vp) _9
L, mpyr m,v,
or
L,=2L,
Express the ratio of Ly to Ly: Ly, mygr (2mp )(% vp) _
L, myr my,
or
Ly=L,
Combining these results yields: L,=2L,=2L

30 e A particle has a charge ¢, a mass m, a linear momentum of magnitude
p and a kinetic energy K. The particle moves in a circular orbit of radius R

perpendicular to a uniform magnetic field B . Show that (a) p = BgR and
(B)K=1B¢’R*/ m.

Picture the Problem We can use the definition of momentum to express p in
terms of v and apply Newton’s 2™ law to the orbiting particle to express v in
terms of ¢, B, R, and m. In Part (b) we can express the particle’s kinetic energy in
terms of its momentum and use our result from Part (a) to show that
K =1B*¢*R*/m.

2

(a) Express the momentum of the p=my (1)
particle:

Apply Y F, . = ma, to the orbiting B =m v _,_4BR

particle to obtain: R m

gBR

Substitute for v in equation (1) to b= m( qBRj B

obtain: m
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(b) Express the kinetic energy of the K.P

orbiting particle as a function of its 2m

momentum:

Substitute our result for p from Part (q B R)z q°B*R®
(@) to obtain: K= om | om

31 e [SSM] A beam of particles with velocity v enters a region that has a
uniform magnetic field B in the +x direction. Show that when the x component of
the displacement of one of the particles is 2 z(m/gB)v cos 6, where fis the angle

between v and B, the velocity of the particle is in the same direction as it was
when the particle entered the field.

Picture the Problem The particle’s velocity has a component v; parallel to B
and a component v, normal to B. v, = v cos@and is constant, whereas v, = v sin8,
being normal to B , will result in a magnetic force acting on the beam of particles
and circular motion perpendicular to B. We can use the relationship between
distance, rate, and time and Newton’s 2™ law to express the distance the particle
moves in the direction of the field during one period of the motion.

Express the distance moved in the x=vT (1)
direction of B by the particle during
one period:
Express the period of the circular T 2mr 2)
motion of the particles in the Vv,
beam:
Apply Newton’s 2" law to a particle B > gBr
in the beam to obtain: 9,8 = m? = V2 = m
Substituting for v, in equation (2) T 27r _ 27m
and simplifying yields: qBr 4B

m
Because v, = v cosé, equation (1) 2mm m
becomes: x =(vcosd) q_B =| 27 q_B vcos@

32 e A proton that has a speed equal to 1.00 x 10° m/s enters a region that
has a uniform magnetic field that has a magnitude of 0.800 T and points into the
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page, as shown in Figure 26-35. The proton enters the region at an angle € = 60°.
Find the exit angle ¢ and the distance d.

Picture the Problem The trajectory of
the proton is shown to the right. We
know that, because the proton enters the
uniform field perpendicularly to the
field, its trajectory while in the field
will be circular. We can use symmetry
considerations to determine ¢. The
application of Newton’s 2™ law to the
proton while it is in the magnetic field
and of trigonometry will allow us to
conclude that » = d and to determine the
value of d.

From symmetry, it is evident that the $=| 60°
angle &1in Figure 26-35 equals the

angle ¢
Apply > F_.. =ma,to the prot g
pply Z radial ma, 0 the proton qu = mv_:>r = ﬂ
while it is in the magnetic field to r 9B
obtain:
Use trigonometry to obtain: in(90°— ) = sin 30° = 1_d)2
2 r
Solving for d yields: r=d
Substitute for » to obtain: J="v
qB
Substitute numerical values and J (1 673x107% kg)(l .00x10° m/ s)
=y =
evaluate d: (1.602x107° C)(0.800T)
=|13.1mm

33 e [SSM] Suppose that in Figure 26-35, the magnetic field has a
magnitude of 60 mT, the distance d is 40 cm, and @is 24°. Find the speed v at
which a particle enters the region and the exit angle ¢ if the particle is a (a) proton
and (b) deuteron. Assume that my= 2m;,
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Picture the Problem The trajectory of
the proton is shown to the right. We
know that, because the proton enters the
uniform field perpendicularly to the
field, its trajectory while in the field
will be circular. We can use symmetry
considerations to determine ¢. The
application of Newton’s 2™ law to the
proton and deuteron while they are in
the uniform magnetic field will allow
us to determine the values of v, and vq.

(a) From symmetry, it is evident that $=|24°
the angle #1in Figure 26-35 equals

the angle ¢:
Appl F. ... = ma,to the proton > r B
pp y Z radial c p qupB — mp—p:>Vp — qp p (1)
while it is in the magnetic field to r, m;
obtain:
Use trigonometry to obtain: §in(90°— ) = sin 66° = dj2
r
Solving for 7 yields: o d
25in 66°
Substituting for » in equation (1) q,Bd
e Vo= 2)
and simplifying yields: p 2m, sin 66°
Substitute numerical values and (1 602x107" C)(6O mT)(0.40m)
V.=
evaluate vp: P 2(1.673x107 kg )sin 66°
=[1.3x10° m/s

(b) From symmetry, it is evident that ¢ =| 24° | independently of whether
the angle @in Figure 26-35 equals

the angle ¢:

the particles are protons or deuterons.

For deuterons equation (2) __ 4q,Bd
becomes: ¢ 2m, sin 66°
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Because my =2m and g, =¢q,: q,Bd q,Bd
v, R =
¢ 202m Jsin66°  4m sin66°

Substitute numerical values and . (1.602>< 107" C)(60 mT)(0.40m)
evaluate vg: 7 4(1.673x107 kg)sin 66°
=| 6.3x10° m/s

34 e The galactic magnetic field in some region of interstellar space has a
magnitude of 1.00 x 10~ T. A particle of interstellar dust has a mass of 10.0 zg
and a total charge of 0.300 nC. How many years does it take for the particle to
complete revolution of the circular orbit caused by its interaction with the
magnetic field?

Picture the Problem We can apply Newton’s 2™ law of motion to express the
orbital speed of the particle and then find the period of the dust particle from this

orbital speed. Assume that the particle moves in a direction perpendicular to B .

The period of the dust particle’s o2
motion is given by: v
Apply » F =ma_to the particle: g

pply D F =ma_to the particle qu:mv—:v:q—Br

r m

Substitute for v in the expression for T 27mm _ 27m
T and simplify: qBr  gB
Substitute numerical values and B 27:(10.0 x10°gx10~ kg/ g)
evaluate T: (0.300nC)(1.00x10° T)

—2.094x10" sx— 1Y
31.56 Ms

=| 6.64x10°y

Applications of the Magnetic Force Acting on Charged Particles

35 o [SSM] A velocity selector has a magnetic field that has a magnitude
equal to 0.28 T and is perpendicular to an electric field that has a magnitude equal
to 0.46 MV/m. (a) What must the speed of a particle be for that particle to pass
through the velocity selector undeflected? What kinetic energy must (o) protons
and (c) electrons have in order to pass through the velocity selector undeflected?



The Magnetic Field 2517

Picture the Problem Suppose that, for positively charged particles, their motion
is from left to right through the velocity selector and the electric field is upward.
Then the magnetic force must be downward and the magnetic field out of the
page. We can apply the condition for translational equilibrium to relate v to £ and
B. In (b) and (c) we can use the definition of kinetic energy to find the energies of
protons and electrons that pass through the velocity selector undeflected.

(a) Apply ZF , =0to the Foee = Frae =0
particle to obtain: or

qE—quzO:v:%

Substitute numerical values and _0.46MV/m _ 6
v=———"—=1.64x10"m/s
evaluate v: 0.28T
=|1.6x10°m/s
(b) The kinetic energy of protons K, = %mpv2

passing through the velocity

selector undeflected is: - %(1 673x10" s, )(1 64x10° m/S)Z

=226x107" Jxle—v_19
1.602x107"J
=| 14keV
(c) The kinetic energy of electrons K, =1my?

passing through the velocity selector
undeflected is:

2

= 1(9.109x107", )(1.64x10° nvs
leV

—1.23%107" Jx———
1.602x107"° J

=|7.7eV

36 e= A beam of protons is moving in the +x direction with a speed of

12.4 km/s through a region in which the electric field is perpendicular to the
magnetic field. The beam is not deflected in this region. (@) If the magnetic field
has a magnitude of 0.85 T and points in the + y direction, find the magnitude and
direction of the electric field. (b) Would electrons that have the same velocity as
the protons be deflected by these fields? If so, in what direction would they be
deflected? If not, why not?



2518 Chapter 26

Picture the Problem Because the beam of protons is not deflected; we can
conclude that the electric force acting on them is balanced by the magnetic force.
Hence, we can find the magnetic force from the given data and use its definition
to express the electric field.

(a) Use the definition of electric field - F
to relate it to the electric force acting clec q
on the beam of protons:

Express the magnetic force acting F,.= qvi x Bj = qvBk
on the beam of protons:

Because the electric force must be equal in magnitude but opposite in
direction:

F,. =—qvBk =—(1.602x10™ C)(12.4km/s)(0.85T)& == —(1.689x10™° N )&
Substitute in the equation for the . - (1 .689x107" N)Ig
electric field to obtain: T 1.602x107°C

=| —(11kV/m)k

(b) Because both Fmag and F,

elec

would be reversed, electrons are not deflected

either.

37 e The plates of a Thomson g/m apparatus are 6.00 cm long and are
separated by 1.20 cm. The end of the plates is 30.0 cm from the tube screen. The
kinetic energy of the electrons is 2.80 keV. If a potential difference of 25.0 V is
applied across the deflection plates, by how much will the point where the beam
strikes the screen displaced?

Picture the Problem Figure 26-18 is reproduced below. We can express the total
deflection of the electron beam as the sum of the deflections while the beam is in
the field between the plates and its deflection while it is in the field-free space.
We can, in turn, use constant-acceleration equations to express each of these
deflections. The resulting equation is in terms of vy and E. We can find vy from
the kinetic energy of the beam and £ from the potential difference across the
plates and their separation. In Part () we can equate the electric and magnetic
forces acting on an electron to express B in terms of £ and vy.



Deflection
plates
",
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Screen
B

v, Y

Express the total deflection Ay of
the electrons:

Use a constant-acceleration
equation to express Ayi:

Apply Newton’s 2™ law to an
electron between the plates to
obtain:

Substitute for a, in equation (2)
to obtain:

Express the vertical deflection
Ay of the electrons once they are
out of the electric field:

Use a constant-acceleration
equation to find the vertical speed
of an electron as it leaves the
electric field:

Substitute in equation (4) to
obtain:

:

Ay = Ay, + Ay, (1)
where Ay, is the deflection of the beam
while it is in the electric field and Ay, is
the deflection of the beam while it
travels along a straight-line path outside
the electric field.

Ay, =4a,(At) )
where Af = x1/vy 1s the time an electron

is in the electric field between the
plates.

_ _gqE
qE = may = ay = 7
E 2
X
Ay, =%[q—j(—lJ 3)
m J\ v,
Ay, =v AL, 4)

v, =V, +a,At
m v,

sl

m \ v, )\ v, mv,
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Substitute equations (3) and (5)
in equation (1) to obtain:

Use the definition of kinetic energy
to express the square of the speed of
the electrons:

Express the electric field between the
plates in terms of their potential
difference:

Substituting for £ and v; in equation

(6) and simplifying yields:

Ay=—9d |14y —ﬂﬁ+
IR\ 2 T )T hak \ 2

Substitute numerical values and evaluate Ay:

Ayz(

2(1.20cm)(2.80keV)

38 e Chlorine has two stable isotopes, >°Cl and *’Cl. Chlorine gas which
consists of singly-ionized ions is to be separated into its isotopic components
using a mass spectrometer. The magnetic field strength in the spectrometer is

1.602x10™"° C)(25.0V)(6.00 cm)(6.00 cm

+30.0cmj =

7.37 mm

(6)

:

1.2 T. What is the minimum value of the potential difference through which these
ions must be accelerated so that the separation between them, after they complete

their semicircular path, is 1.4 cm?

Picture the Problem The diagram below represents the paths of the two ions
entering the magnetic field at the left. The magnetic force acting on each causes
them to travel in circular paths of differing radii due to their different masses. We
can apply Newton’s 2" law to an ion in the magnetic field to obtain an expression
for its radius and then express their final separation in terms of these radii that, in
turn, depend on the energy with which the ions enter the field. We can connect
their energy to the potential through which they are accelerated using the work-
kinetic energy theorem and relate their separation As to the accelerating potential

difference AV.
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Express the separation As of the
chlorine ions:

Apply Newton’s 2" Jaw to an ion in
the magnetic field of the mass
spectrometer:

Relate the speed of an ion as it enters
the magnetic field to the potential
difference through which it has been
accelerated:

Substitute for v in equation (2) to
obtain:

Use this equation to express the radii
of the paths of the two chlorine
isotopes to obtain:

Substitute for 735 and 737 in equation
(1) to obtain:

Solving for AV yields:

As =2(r; —r35) (1
v mv
qguB=m—=r=—- (2)
r qB
gAV =1mv’=v = 298V
m

m_[2gAV _\/2mAV

- qB m qB’

2m,.A 2m.,. A
r = m352Vandr37= m372V
\ ¢B \ ¢B

As=2 2my AV 3 2my AV
qB’ B’

o P2 - )
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Substitute numerical values and
evaluate AV:

(1.602x10™ C)(1.2 T){

NG
5.65x107'C-T* - m’
(V37 =35 (1.66x10™ k)

=|0.12MV

1.4cmj2

AV =

39 e [SSM] Ina mass spectrometer, a singly ionized **Mg ion has a mass
equal to 3.983 x 10%° kg and is accelerated through a 2.50-kV potential
difference. It then enters a region where it is deflected by a magnetic field of

557 G. (a) Find the radius of curvature of the ion’s orbit. () What is the
difference in the orbital radii of the **Mg and **Mg ions? Assume that their mass
ratio is 26:24.

Picture the Problem We can apply Newton’s 2™ law to an ion in the magnetic
field to obtain an expression for » as a function of m, v, ¢, and B and use the work-
kinetic energy theorem to express the kinetic energy in terms of the potential
difference through which the ion has been accelerated. Eliminating v between
these equations will allow us to express » in terms of m, g, B, and AV.

Apply Newton’s 2™ law to an ion B - v _my 1
in the magnetic field of the mass qve=m r == qB M
spectrometer:

Apply the work-kinetic energy GAV =Ly =y = 2gAV

theorem to relate the speed of an 2 m
ion as it enters the magnetic field

to the potential difference

through which it has been

accelerated:
Substitute for v in equation (1) m [2gAV 2mAV
and simplify to obtain: T n - 2 (2)
: qB m qB
(a) Substitute numerical values and 2(3.9 83x107%° kg)(2. 50kV)
evaluate equation (2) for **Mg : 24 = (1 602 %10~ C)(S 5710~ T)z

=| 63.3cm




(b) Express the difference in the
radii for **Mg and **Mg:
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Ar=ry—ry,

Substituting for 7,6 and 74 and simplifying yields:

gB’

A \/2m26AV ~ \/2m24AV _

gB’

1 [2AV| |26
Y I Y el Vi
BY\ ¢ 24

S o - )

P

Substitute numerical values and evaluate Ar:

Ar = —~
55710 T

40 e

-26
L [GsoivIBosix 0 ke) 26 ) g
1602107 C

24

A beam of singly ionized °Li and "Li ions passes through a velocity

selector and enters a region of uniform magnetic field with a velocity that is
perpendicular to the direction of the field. If the diameter of the orbit of the °Li
1ons is 15 cm, what is the diameter of the orbit for "Li ions? Assume their mass

ratio is 7:6.

Picture the Problem We can apply Newton’s 2™ law to an ion in the magnetic
field of the spectrometer to relate the diameter of its orbit to its charge, mass,
velocity, and the magnetic field. If we assume that the velocity is the same for the
two ions, we can then express the ratio of the two diameters as the ratio of the
masses of the ions and solve for the diameter of the orbit of "Li.

Apply Newton’s 2" Jaw to an ion in
the field of the spectrometer:

Express the diameter of the orbit:

The diameters of the orbits for
®Li and "Li are:

Assume that the velocities of the two
jons are the same and divide the 2™
of these diameters by the first to
obtain:

2

qvB = mi=r=""
r qB
J= 2my
qB
d - 2mgv and d, = 2m,v
9B 9B
2m,v
d__98 _m

d, 2my  m,
qB
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Solve for and evaluate d7: d, = m; d, - % (1 SCm) _8em

Mg

41 e Using Example 26- 6, determine the time required for a **Ni ion and a
%Ni ion to complete the semicircular path.

Picture the Problem The time required for each of the ions to complete its
semicircular paths is half its period. We can apply Newton’s 2™ law to an ion in
the magnetic field of the spectrometer to obtain an expression for 7 as a function
of the charge and mass of the ion, its velocity, and the magnetic field.

Express the time for each ion to A=l =T
complete its semicircular path: ? v
Apply Newton’s 2™ law to an ion B - v _my
in the field of the spectrometer: o =m r == qB
Substitute for  to obtain: Ap= M
qB
Substitute numerical values and 5 872(1 .6606x107% kg)
. At = 19
evaluate Afsg and Afg: (1.602x107° C)(0.120T)
=157 us
and
607(1.6606x107 kg)
Aty =

~ (1.602x10™ C)(0.120T)
=163 us

42 e Before entering a mass spectrometer, ions pass through a velocity
selector consisting of parallel plates that are separated by 2.0 mm and have a
potential difference of 160 V. The magnetic field strength is 0.42 T in the region
between the plates. The magnetic field strength in the mass spectrometer is 1.2 T.
Find (a) the speed of the ions entering the mass spectrometer and (b) the
difference in the diameters of the orbits of singly ionized **U and ***U. The mass
of a *°U ion is 3.903 x 10 kg.

Picture the Problem We can apply a condition for equilibrium to ions passing
through the velocity selector to obtain an expression relating £, B, and v that we
can solve for v. We can, in turn, express £ in terms of the potential difference
between the plates of the selector and their separation d. In (b) we can apply
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Newton’s 2™ law to an ion in the bending field of the spectrometer to relate its
diameter to its mass, charge, velocity, and the magnetic field.

(a) Apply ZFy = 0 to the ions in

the crossed fields of the velocity
selector to obtain:

Express the electric field between the
plates of the velocity selector in
terms of their separation and the
potential difference across them:

Substituting for E yields:

Substitute numerical values and
evaluate v:

(b) Express the difference in the
diameters of the orbits of singly
ionized **U and *°U:

Apply Z:Fmdia1 = ma, to an ion in
the spectrometer’s magnetic
field:

Express the diameter of the orbit:

The diameters of the orbits for **U
and >°U are:

Substitute in equation (1) to obtain:

F;lec - F mag = 0
or

qE—quZO:v:%

=V
d
|14
y=—
dB
y= 160V =1.905%x10° m/s
(2.0mm)(0.427T)
=11.9x10° m/s
Ad = d238 _d235 (1)
V2 myv
quB=m—=r=—-
r qB
J= 2my
qB
dys = 2 nd d,y; = 2rssY
qB qB
Ad = 2mygv - 2myy5v
qB qB
2v
= _(mzss mzas)
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Substitute numerical values and evaluate Ad:

2(1.905x10° m/s)(238u - 2351)

1.6606x107 kgj

Ad =

=|lcm

(L.602x10™ C)(1.27T)

43 e [SSM] A cyclotron for accelerating protons has a magnetic field
strength of 1.4 T and a radius of 0.70 m. (@) What is the cyclotron’s frequency?
(b) Find the kinetic energy of the protons when they emerge. (c) How will your
answers change if deuterons are used instead of protons?

Picture the Problem We can express the cyclotron frequency in terms of the
maximum orbital radius and speed of the protons/deuterons. By applying
Newton’s 2™ law, we can relate the radius of the particle’s orbit to its speed and,
hence, express the cyclotron frequency as a function of the particle’s mass and
charge and the cyclotron’s magnetic field. In Part () we can use the definition of
kinetic energy and their maximum speed to find the maximum energy of the
emerging protons.

(a) Express the cyclotron frequency I N S (1)
in terms of the proton’s orbital speed T 2mwlv 2mr
and radius:
Apply Newton’s 2™ law to a proton B Vv _my
in the magnetic field of the qvB = me = = q_B 2)
cyclotron:
Substitute for 7 in equation (1) and _gqBv _ ¢4B 3
o : f=r=r— 3)
simplify to obtain: 2mmy - 27am
Substitute numerical values and 7 (1.602>< 107" C)(l AT) > 13MH
= = . y 4
evaluate /: 27(1.673x107 kg)
=|21MHz
(b) Express the maximum kinetic K. . =imv.
energy of a proton:
From equation (2), v, is given by: v = qBr...
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max

obtain: m

. . )
Substitute for v, and simplify to © - lm[ qBr, j _ L( 4’ B ] ,
max 2
m

Substitute numerical values and evaluate K__ :

-19 2
K =t (1.602x10 CZ(1.4T) 0.7mf =7.37x10" jx— 1V
1.673x107 kg 1.602x10"°J

=46.0MeV =| 46 MeV

(c) From equation (3) we see that Facuterons =5 Syrotons =| 11MHz
doubling m halves f:

From our expression for Kp,x we see K geuterons = 3 K prorons =| 23MeV
that doubling m halves K:

44 e A certain cyclotron that has a magnetic field whose magnitude is 1.8 T
is designed to accelerate protons to a kinetic energy of 25 MeV. (a) What is the
cyclotron frequency for this cyclotron? () What must the minimum radius of the
magnet be to achieve this energy? (c) If the alternating potential difference
applied to the dees has a maximum value of 50 kV, how many revolutions must
the protons make before emerging with kinetic energies of 25 MeV?

Picture the Problem We can express the cyclotron frequency in terms of the
maximum orbital radius and speed of the protons be accelerated in the cyclotron.
By applying Newton’s 2" law, we can relate the radius of the proton’s orbit to its
speed and, hence, express the cyclotron frequency as a function of the its mass
and charge and the cyclotron’s magnetic field. In Part () we can use the
definition of kinetic energy express the minimum radius required to achieve the
desired emergence energy. In Part (¢) we can find the number of revolutions
required to achieve this emergence energy from the energy acquired during each
revolution.

(a) Express the cyclotron frequency I N S

in terms of the proton’s orbital speed T 2mwlv 2mr

and radius:

Apply Newton’s 2™ law to a proton B Vv _my 1
in the magnetic field of the e =m- == gB ()

cyclotron:
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Substitute for v and simplify to _gBv  ¢B

. feit -
obtain: 2mmyv - 27am
Substitute numerical values and f= (1 602x107" C)(I .8 T)
evaluate f: — 27(1.673x10 7 kg)

=| 27MHz
(b) Using the definition of kinetic X 2K
K=tmv=v= |—

energy, relate emergence energy m

of the protons to their velocity:

Substitute for v in equation (1) and m 2K ~2Km
o . P /_ _
simplify to obtain: gB\ m 4B
Substitute numerical values and \/ 2(25 MeV)(l 673x1077 kg)
evaluate rmin: ~ (1.602x107C)(1.8T)
=|40cm
(c) Express the required number _ 25MeV

N
of revolutions N in terms of the E

rev

energy gained per revolution:

Because the beam is accelerated E., =2qAV =100keV

through a potential difference of

50 kV twice during each

revolution:

Substitute the numerical value of No_ MV 107ty
E., and evaluate N: 100keV/rev

45 e Show that for a given cyclotron the cyclotron frequency for
accelerating deuterons is the same as the frequency for accelerating alpha
particles is half the frequency for accelerating protons in the same magnetic field.
The deuteron has a charge that is equal to the charge a proton has, and an alpha
particle has a charge that is equal to twice the charge a proton has. Assume that
Mg = 2mq = 4my,

Picture the Problem We can express the cyclotron frequency in terms of the
maximum orbital radius and speed of a particle being accelerated in the cyclotron.
By applying Newton’s 2" law, we can relate the radius of the particle’s orbit to its
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speed and, hence, express the cyclotron frequency as a function of its charge-to-
mass ratio and the cyclotron’s magnetic field. We can then use data for the
relative charges and masses of deuterons, alpha particles, and protons to establish
the ratios of their cyclotron frequencies.

Express the cyclotron frequency in f= r_ 1 _ v
terms of a particle’s orbital speed T 2mwlv 2m
and radius:
Apply Newton’s 2™ law to a particle v my
) ) qgvB=m— = r=—
in the magnetic field of the 7’ qB
cyclotron:
Substitute for » to obtain: _gBv B g
f= -4 ()
2nmv - 2w m
Evaluate equation (1) for deuterons: £ = B g _ B e
¢on my 27w my
Evaluate equation (1) for alpha f = B g, _B 2 _B e
particles: “ 27m, 272my 27 m,
and
Ja=Tta
Evaluate equation (1) for protons: _Bg, B e _ 5 B e
p_27zmp 2z img T\ 27 m,
=2 fd
and
2= Ja=

46 e Show that the radius of the orbit of a charged particle in a cyclotron is
proportional to the square root of the number of orbits completed.

Picture the Problem We can apply Newton’s 2™ law to the orbiting charged
particle to obtain an expression for its radius as a function of its particle’s kinetic
energy. Because the energy gain per revolution is constant, we can express this
kinetic energy as the product of the number of orbits completed and the energy
gained per revolution and, hence, show that the radius is proportional to the
square root of the number of orbits completed.
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Apply Newton’s 2™ law to a particle VB — mﬁ e _mv ()
in the magnetic field of the ve= p 4B

cyclotron:

Express the kinetic energy of the Ko lmie pe 2K @)
particle in terms of its speed and 2 “\ m

solve for v:

Noting that the energy gain per K = NE_, 3)

revolution is constant, express the
kinetic energy in terms of the
number of orbits N completed by the
particle and energy E', gained by
the particle each revolution:

Substitute equations (2) and (3) in m 2K
’/‘ —

equation (1) to obtain: - q_B m amk

_ L
qB

= %szNErev = —Vz'f‘“zvl/ ?
q q

or | roc N2

Torqgues on Current Loops, Magnets, and Magnetic Moments

47 o [SSM] A small circular coil consisting of 20 turns of wire lies in a
region with a uniform magnetic field whose magnitude is 0.50 T. The
arrangement is such that the normal to the plane of the coil makes an angle of 60°
with the direction of the magnetic field. The radius of the coil is 4.0 cm, and the
wire carries a current of 3.0 A. (@) What is the magnitude of the magnetic moment
of the coil? () What is the magnitude of the torque exerted on the coil?

Picture the Problem We can use the definition of the magnetic moment of a coil
to evaluate  and the expression for the torque exerted on the coil 7 = fix B to
find the magnitude of 7.

(a) Using its definition, express the 1 =NIA=NIzr’
magnetic moment of the coil:

Substitute numerical values and 2 =(20)(3.0A)7(0.040m)’
evaluate s

=0.302A-m’ =| 0.30A-m’
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(b) Express the magnitude of the T = uBsind

torque exerted on the coil:

Substitute numerical values and T= (O.302A -m’ )(O.SOT)sin 60°
evaluate 7: _[013N-m

48 What is the maximum torque on a 400-turn circular coil of radius
0.75 cm that carries a current of 1.6 mA and is in a region with a uniform
magnetic field of 0.25 T?

Picture the Problem The coil will experience the maximum torque when the

plane of the coil makes an angle of 90° with the direction of B . The magnitude of
the maximum torque is then given by, = uB.

The maximum torque acting on the T .. =MuB
coil is:
Use its definition to express the 1 =NIA= NIzr’

magnetic moment of the coil:

Substitute to obtain: 7. =NIzr’B
Substitute numerical values and 7. =(400)(1.6mA)7(0.75cm)*(0.25T)
evaluate 7: _[28N-m

49 . [SSM] A current-carrying wire is in the shape of a square of edge-
length 6.0 cm. The square lies in the z = 0 plane. The wire carries a current of
2.5 A. What is the magnitude of the torque on the wire if it is in a region with a
uniform magnetic field of magnitude 0.30 T that points in the (a) +z direction and
(b) +x direction?

Picture the Problem We can use 7 = jix B to find the torque on the coil in the
two orientations of the magnetic field.

Express the torque acting on the T=jxB
coil:
Express the magnetic moment of ji =14k = 1k

the coil:
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(a) Evaluate 7 for B in the +z T =+I%k x Bk = J_r]LZB(IQ X 12)= @
direction:

(b) Evaluate 7 for B in the +x 7= +I% x Bi = 1Bk x i
direction: = +(2.5A)(0.060m)*(0.30T)j

50 o A current-carrying wire is in the shape of an equilateral triangle of
edge-length 8.0 cm. The triangle lies in the z = 0 plane. The wire carries a current
of 2.5 A. What is the magnitude of the torque on the wire if it is in a region with a
uniform magnetic field of magnitude 0.30 T that points in the (@) +z direction and
(b) +x direction?

Picture the Problem We can use 7 = ji x B to find the torque on the equilateral
triangle in the two orientations of the magnetic field.

Express the torque acting on the coil: T=lxB
Express the magnetic moment of the A=t 14k
coil:
Relate the area of the equilateral A4 = 1basexaltitude
triangle to the length of its side:
L) REANRERS
2 2 4
Substitute to obtain: RNEY 3
== k
4
— . + 2 . .
(q) EYaluate 7 for B in the +z P NEYSI§ i x Bi
direction: 4
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(b) Evaluate 7 for B in the +x - NEY ) 4 3LIB (;
direction: ey kxBi =1 4 (kX’)
2
_ . 3(0.080m) (2.5A)(0.30T)]:

4
=+(2.1x10° N-m)j

7|=|2.1x10° N-m

51 e A rigid wire is in the shape of a square of edge-length L. The square
has mass m and the wire carries current /. The square lies on flat horizontal
surface in a region where there is a magnetic field of magnitude B that is parallel
to two edges of the square. What is the minimum value of B so that one edge of
the square will lift off the surface?

Picture the Problem One edge of the square will lift off the surface when the
magnitude of the magnetic torque acting on it equals the magnitude of the
gravitational torque acting on it.

The condition for liftoff is that the Tinag = Cgrav (1)
magnitudes of the torques must be

equal:

Express the magnetic torque acting Tiag = MB = II’B

on the square:

Express the gravitational torque Ty =MEL
acting on one edge of the square:

Substituting in equation (1) yields: B =mgl =B - %

52 e A rectangular current-carrying 50-turn coil, as shown in Figure 26-36,
is pivoted about the z axis. (a) If the wires in the z = 0 plane make an angle
6= 37° with the y axis, what angle does the magnetic moment of the coil make

with the unit vector i ? (b) Write an expression for a in terms of the unit vectors
i and f , where n is a unit vector in the direction of the magnetic moment.

(c) What is the magnetic moment of the coil? (d) Find the torque on the coil when
there is a uniform magnetic field B=15T f in the region occupied by the coil.

(e) Find the potential energy of the coil in this field. (The potential energy is zero
when 6=0.)
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Picture the Problem The diagram shows the coil as it would appear from along
the positive z axis. The right-hand rule for determining the direction of n has
been used to establish # as shown. We can use the geometry of this figure to
determine #and to express the unit normal vector 2. The magnetic moment of the

coil is given by zi = NIAn and the torque exerted on the coil by 7 = ix B . Finally,
we can find the potential energy of the coil in this field from U =—-pu- B.

y
f'/
i
37° ~
N
~
0 ~N
X
(a) Noting that #and the angle Q=|37°
whose measure is 37° have their
right and left sides mutually
perpendicular, we can conclude
that:
(b) Use the components of nto A=ni+ ny}' =c0s37° —sin37°j

express nin terms of i and j : —0.799f —0 602}'

=| 0.80i —0.60

(c) Express the magnetic moment i = NIdn
of the coil:

Substitute numerical values and evaluate 4 :
i =(50)(1.75 A)(48.0em?)(0.799F - 0.6027 )= (0.335A-m?) i —(0.253 A - m?)}

N
.

=[(034A-m*)i—(025A-m?)]

Il
=!

X

~°T

(d) Express the torque exerted on T
the coil:
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Substitute for z and B to obtain:

A

#={0335A-m?)i —(0.253A - m? ) }jx(1.5T)}
(0.503N-m)(i ,) 0.379N- m( )= (0.50N-m)k

(e) Express the potential energy of U=-j-B
the coil in terms of its magnetic
moment and the magnetic field:

Substitute for z and B and evaluate U:

U=—{0335A-m*)i —(0.253A - m?)j}-(1.5T)}
= —(0.503N-m)(F - )+ (0379N-m)(j- j)=[ 0.387

53 e [SSM] For the coil in Problem 52 the magnetic field is now
B =2.0Tj .Find the torque exerted on the coil when # is equal to (a) i , (b) j,

3 i J
—j,and (d) = +—=.
(c) —Jj,and (d) L2
Picture the Problem We can use the right-hand rule for determining the direction

of A to establish the orientation of the coil for value of fiand 7 = jix Bto find the

torque exerted on the coil in each orientation.

(a) The orientation of the coil y
is shown to the right: A
n
—»—— X
>
Evaluate 7 for B =2.0 Tj and T =JixB=NIAAx B
A=i: 0)(1.75A)(48.0cm’ i x (2.0T)j

=(5
=(0.840N- m)({} (0.840N-m)k
(0.84N-m)k
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(b) The orientation of the coil is
shown to the right:

Evaluate 7 for B =2.0 T j and

A

n=j:

(c) The orientation of the coil is
shown to the right:

Evaluate 7 for B =2.0 Tj and
h=—j:

(d) The orientation of the coil is
shown to the right:

Evaluate 7 for B =2.0 T } and
A=@+])2:

C —X

xB
)(1.75A) ( 48.0cm’)jx(2.0T)j
—0.840N-m)(jx ]|

)

o=

T-=

~ (0.594N-m)(Fx j)
+(0.594N - m)(j= })
=1 (0.59N-m)k

54 e A small bar magnet has a length equal to 6.8 cm and its magnetic
moment is aligned with a uniform magnetic field of magnitude 0.040 T. The bar
magnet is then rotated through an angle of 60 about an axis perpendicular to its
length The observed torque on the bar magnet has a magnitude of 0.10 N-m.
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(a) Find the magnetic moment of the magnet. (b) Find the potential energy of the

magnet.

Picture the Problem Because the small magnet can be modeled as a magnetic
dipole; we can use the equation for the torque on a current loop to find its

magnetic moment.

(a) Express the magnitude of the
torque acting on the magnet:

Solve for y to obtain:

Substitute numerical values and
evaluate s

(b) The potential energy of the
magnet is given by:

Substitute numerical values and
evaluate U:

7= puBsin @
T
# Bsinf
0.10N-m

= 29A-m’

# = (0.040T)sin 60°

U=-ji-B=-uBcosé

U =—(2.887 A-m?)(0.040 T)cos 60°
=| -58ml

55 e« A wire loop consists of two semicircles connected by straight
segments (Figure 26-37). The inner and outer radii are 0.30 m and 0.50 m,
respectively. A current of 1.5 A is in this wire and the current in the outer
semicircle is in the clockwise direction. What is the magnetic moment of this

current loop?

Picture the Problem We can use the definition of the magnetic moment to find
the magnetic moment of the given current loop and a right-hand rule to find its

direction.
Using its definition, express the
magnetic moment of the current

loop:

Express the area bounded by the
loop:

Substitute for A4 to obtain:

u=1I14

A:%(ﬂ'RZ —7Z'R~2 )=£(R2 _Riiner)

=2 (R - L)
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Substitute numerical values and B 7:(1 S A)
evaluate s

[(0.50m) —(0.30m)

= 0.38A-m’

Apply the right-hand rule for determining the direction of the unit normal vector
(the direction of x) to conclude that z points into the page.

56 e A wire of length L is wound into a circular coil that has N turns. Show
that when the wire carries a current /, the magnetic moment of the coil has a
magnitude given by IL*/(4 7).

Picture the Problem We can use the definition of the magnetic moment of a coil
to find the magnetic moment of a wire of length L that is wound into a circular
coil of N loops. We can find the area of the coil from its radius R and we can find
R by dividing the length of the wire by the number of turns.

Use its definition to express the u = NIA (1)
magnetic moment of the coil:

Express the circumference of each L _ YR =R = L
loop: N 27N
where R is the radius of a loop.

The area of the coil is given by: A= 7R’

Substituting for 4 and simplifying y LY 2
yields: o) Tam
Substitute for 4 in equation (1) and I2 112
simplify to obtain: u=MN 4nN® | | 4aN

57 e [SSM] A particle that has a charge ¢ and a mass m moves with
angular velocity @ in a circular path of radius . (@) Show that the average current
created by this moving particle is wg/(27) and that the magnetic moment of its
orbit has a magnitude of %qa)r2 . (b) Show that the angular momentum of this
particle has the magnitude of mr* @ and that the magnetic moment and angular

momentum vectors are related by 1= (Zi) L, where L is the angular
m

momentum about the center of the circle.
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Picture the Problem We can use the definition of current and the relationship
between the frequency of the motion and its period to show that I = gaw/27 . We
can use the definition of angular momentum and the moment of inertia of a point
particle to show that the magnetic moment has the magnitude # = L gor’. Finally,

we can express the ratio of z to L and the fact that z and L are both parallel to @

to conclude that i = (¢/2m) L .

(a) Using its definition, relate the / Ag_q _ of
average current to the charge passing At T

a point on the circumference of the

circle in a given period of time:

Relate the frequency of the motion f= K23
to the angular frequency of the 2
particle:
Substitute for f'to obtain: /| 9@
2
From the definition of the magnetic =14 = qo (7272): I qa)r2
moment we have: 2r
(b) Express the angular momentum L=Iw
of the particle:
The moment of inertia of the particle I =mr’
is:
Substituting for / yields: L= (mr2 )a) =| mr*w
Express the ratio of z2to L and U tqor’  q q
e : £= =L =1
simplify to obtain: L mrlo 2m 2m
Because z and L are both parallel to S| 4
o: # 2m

58 eee A hollow non-conducting cylinder has length L and inner and outer
radii R; A uniformly charged non-conducting cylindrical shell (Figure 26-38) has
length L, inner and outer radii R; and R,, respectively, a charge density p and an
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angular velocity @ about its axis. Derive an expression for the magnetic moment
of the cylinder.

Picture the Problem We can express the magnetic moment of an element of
charge dq in a cylinder of length L, radius 7, and thickness dr, relate this charge to
the length, radius, and thickness of the cylinder, express the current due to this
rotating charge, substitute for 4 and d/ in our expression for x and then integrate
to complete our derivation for the magnetic moment of the rotating cylinder as a
function of its angular velocity.

Express the magnetic moment of an du= Adl = rr’dl (1)
element of charge dq in a cylinder of
length L, radius r, and thickness dr:

Relate the charge dg in the cylinder dq = 2nLprdr
to the length of the cylinder, its
radius, and thickness:

The cur'renj[ due to this rotating ar =2 dq = Kol (27 Lprdr) = Lpradr
charge is given by: 2r 2
Substitute for d in equation (1) and du=rr’ (L pa)rdr) = Lprar’dr

simplify to obtain:

Integrate r from R; to Ry to obtain: Ry
8 ° 7 =Lp7m)_[r3dr=%Lp7m)(Rg —Rf)
R;

Because u and @ are parallel: ji = %Lpﬂ(Rg _Ri4)£,

59 e [SSM] A uniform non-conducting thin rod of mass m and length L
has a uniform charge per unit length 1 and rotates with angular speed @ about an
axis through one end and perpendicular to the rod. (a) Consider a small segment
of the rod of length dx and charge dg = Adr at a distance r from the pivot (Figure
26-40). Show that the average current created by this moving segment is wdq/(27)
and show that the magnetic moment of this segment is %ﬂa)rzdx . (b) Use this to

show that the magnitude of the magnetic moment of the rod is £ AwL’. (¢) Show

that the magnetic moment x and angular momentum L are related by

U= (22) L, where Q is the total charge on the rod.
m
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Picture the Problem We can follow the step-by-step outline provided in the
problem statement to establish the given results.

(a) Express the magnetic moment
of the rotating element of charge:

The area enclosed by the rotating
element of charge is:

Express dI in terms of dg and At:

The time At required for one
revolution is:

Substitute for A¢ and simplify to
obtain:

Substituting for d in equation (1)
and simplifying yields:

() Integrate dy fromx =0tox =L
to obtain:

(c) Express the angular momentum
of the rod:

Express the moment of inertia of the

rod with respect to an axis through its

end:

Substitute to obtain:

du = Adl (1)

A=rmx

dl = ﬂ = @ where At is the time
At At

required for one revolution.

Ao L _27
f o

a1 =2 gy
2

du = (ﬁxz)(g—wdx] =| 1 dex’dx

L
e %le.xzdx =| L lol’
0

L=1Iw

where L is the angular momentum of
the rod and / is the moment of inertia of
the rod with respect to the point about
which it is rotating.

I=1ml
where L is now the length of the rod.

L=imlw
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Divide the expression for ¢ by L to U %Aa)f AL
obtain: L Iml o " om
or, because 0 = AL,
0
==19L
H 2m
Because @ and L = Ié are parallel: Gi— 0 i
2M
60 oo A non-uniform, non-conducting thin disk of mass m, radius R, and

total charge Q has a charge per unit area o that varies as opr/R and a mass per
unit area o, that is given by (m/Q) o. The disk rotates with angular speed @ about
its central axis. (a) Show that the magnetic moment of the disk has a magnitude

%ﬁa)aoR4 which can be alternatively rewritten as = ®QR” . (b) Show that the

magnetic moment  and angular momentum L are related by u= %Ii .

Picture the Problem We can express the magnetic moment of an element of
current d/ due to a ring of radius 7, and thickness dr with charge dq. Integrating
this expression from » = 0 to » = R will give us the magnetic moment of the disk.
We can integrate the charge on the ring between these same limits to find the total
charge on the disk and divide x by Q to establish the relationship between them.
In Part (b) we can find the angular momentum of the disk by first finding the
moment of inertia of the disk by integrating r*dm between the same limits used
above.

(a) Express the magnetic moment du = Adl
of an element of the disk:

2
TX

The area enclosed by the rotating A
element of charge is:



Express the element of current
dr:

Substitute for 4 and dI and simplify
to obtain:

Integrate du fromr=0tor=R to
obtain:

The charge dg within a distance  of
the center of the disk is given by:

Integrate dg from r=0to r =R to
obtain:

Divide equation (1) by Q to obtain:

(b) Express the moment of inertia

of an element of mass dm of the
disk:

Integrate dI fromr=0tor=Rto
obtain:
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ar =94 _ A _ g
At At
=2 o, L 2z rdr)= Go® 2 gy
2 R R
du = ﬁrz%f)rzdr = O-O—mr4dr
oot , . 2
U= jr dr=| so,moR (1)
R 0
dq =2mrodr = 2727’(00 %jdr
_ 2ro, 2
2ro, f ) ) )
0= jr dr =270,R )

0

u _tomoR' 3R’
Q0 lrmo,R’ 10
and

1=| 20wk’ 3)

dl =r’dm=r’c, dA

_ (g UJ(zm)

27zm(; O'Oj
dr

= ——7r

0
_2mo, ridr
OR
_ 2mmo, jir“dr _ 2mmo, R

OR 4 S0
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Divide / by equation (2) and 2moy pa
simplify to obtain: I _ 50 _ 3m _,

0 %”O-ORZ 50

and

[="g

5

Express the angular momentum of L=Io= %mRza)
the disk:
Divide equation (3) by L and u 50wk Q e .
simplify to obtain: L ImRo om T om
Because z is in the same direction - 0 i
as @ : = om

61 ee» [SSM] A spherical shell of radius R carries a constant surface charge
density o. The shell rotates about its diameter with angular speed @. Find the
magnitude of the magnetic moment of the rotating shell.

Picture the Problem We can use the result of Problem 57 to express u as a
function of O, M, and L. We can then use the definitions of surface charge density
and angular momentum to substitute for Q and L to obtain the magnetic moment
of the rotating shell.

Express the magnetic moment of the _ 0
spherical shell in terms of its mass, 2M
charge, and angular momentum:

Use the definition of surface charge 0 = oA = 47oR’
density to express the charge on the
spherical shell:

Express the angular momentum of L=Ilo=2MRw
the spherical shell:

3

Substitute for L and simplify to 2
- PHY _[A7OR N2 e | = [Sao R
obtain; M 3
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62 eee A uniform solid uniformly charged sphere of radius R has a volume
charge density p. The sphere rotates about an axis through its center with angular
speed w. Find the magnitude of the magnetic moment of this rotating sphere.

Picture the Problem We can use the result of Problem 57 to express u as a
function of O, M, and L. We can then use the definitions of volume charge density
and angular momentum to substitute for Q and L to obtain the magnetic moment
of the rotating sphere.

Express the magnetic moment of the _ 9
solid sphere in terms of its mass, 2M
charge, and angular momentum:

Use the definition of volume charge Q=pV=%47pR’
density to express the charge of the

sphere:
Express the angular momentum L=1lo=:MR'w
of the solid sphere:
Substitute for O and L and 4m0R* )2
. - —| 37PE N2 R | = LmoR’w
simplify to obtain: M s 15

63 e« A uniform thin uniformly charged disk of mass m, radius R, and
uniform surface charge density o rotates with angular speed @ about an axis
through its center and perpendicular to the disk (Figure 26-40). The disk in in a
region with a uniform magnetic field B that makes an angle & with the rotation
axis. Calculate (a) the magnitude of the torque exerted on the disk by the
magnetic field and (b) the precession frequency of the disk in the magnetic field.

Picture the Problem We can use its definition to express the torque acting on the
disk, Example 26-11 to express the magnetic moment of the disk, and the
definition of the precession frequency to find the precession frequency of the disk.

(a) The magnitude of the net torque 7= uBsin @

acting on the disk is: where u 1s the magnetic moment of the
disk.

From Example 26-11: 1= %7[0- o

Substitute for  in the expression for r=|1 rortwBsin @

7 to obtain:
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(b) The precession frequency Q is Q- "
equal to the ratio of the torque " Io
divided by the spin angular

momentum:

For a solid disk, the moment of I= %m;ﬂ

inertia is given by:

Substitute for 7 and / to obtain: 1 76 r* wBsin 6 | 7or*B

Q= sin &

. -
Tmrew 2m

Remarks: Note that the precession frequency is independent of w.
The Hall Effect

64 o A metal strip that is 2.00-cm wide and 0.100-cm thick carries a
current of 20.0 A in region with a uniform magnetic field of 2.00 T, as shown in
Figure 26-41. The Hall voltage is measured to be 4.27 ©V. (a) Calculate the drift
speed of the free electrons in the strip. (b) Find the number density of the free
electrons in the strip. (c) Is point a or point b at the higher potential? Explain your
answer.

Picture the Problem We can use the Hall effect equation to find the drift speed
of the electrons and the relationship between the current and the number density
of charge carriers to find n. In (c) we can use a right-hand rule to decide whether a
or b is at the higher potential.

(a) E).cpress the H?lll voltage as a V. = v,Bw=>v, = 13
function of the drift speed of the Bw
electrons in the strip:

Substitute numerical values and v = 4.27 uN — 0.1068 mm/s

(2.00T)(2.00cm)
=|0.107mm/s

evaluate vq4:

(b) E)Fpress the current as a . [=ndgv,=n=
function of the number density of Aqv,
charge carriers:

Substitute numerical values and evaluate n:

20.0A

= =]5.85x10*m™
" = (2.00cm)(0.100em)(1.602x10™ C)(0.1068 mmys) - 0
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(c) Apply a right-hand rule to I7and B to conclude that positive charge will

accumulate at @ and negative charge at b and therefore| V, >V, |. The Hall effect

electric field is directed from a toward b.

65 e [SSM] The number density of free electrons in copper is 8.47 x 10*
electrons per cubic centimeter. If the metal strip in Figure 26-41 is copper and the
current is 10.0 A, find (a) the drift speed v4 and (b) the potential difference

V4 — Vi Assume that the magnetic field strength is 2.00 T.

Picture the Problem We can use / = ngv, 4 to find the drift speed and
Vy =v,Bwto find the potential difference V, -V} .

i 1
(a) Exprc?ss' the current in the‘ I=nqv,A=v, =
metal strip in terms of the drift nqA
speed of the electrons:

Substitute numerical values and evaluate vq4:

v, = 10.0A =3.685x10" m/s

(8.47x102 em™ )(1.602x10™ C)(2.00cm)(0.100cm)
=|3.68x10" m/s

(b) The potential difference V, -V, is V.=V, =V, =v,Bw
the Hall voltage and is given by:

Substitute numerical values and evaluate V, -V, :

V, -V, =(3.685x10° m/s)(2.00T)(2.00cm) = [ 1.47 zv

66 e A copper strip has 8.47 x 10%* electrons per cubic centimeter is
2.00-cm wide, is 0.100-cm thick, and is used to measure the magnitudes of
unknown magnetic fields that are perpendicular to it. Find the magnitude of B
when the current is 20.0 A and the Hall voltage is (a) 2.00 ¢V, (b) 5.25 ¢V, and
(c) 8.00 uV.

Picture the Problem We can use V}; = v,Bwto express B in terms of /'y and
I = ngv A to eliminate the drift velocity vq and derive an expression for B in

terms of Vy, n, and .
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Rela‘@ the Hall voltage t'o the drift V, = v,Bw=B = Va
velocity and the magnetic field: VW

Express the current in the metal strip [ =nqu,Ad=>v, = 1
in terms of the drift velocity of the ¢ ¢ ngd
electrons:

Substitute for v4 and simplify to B Vu _ngdVy _ ngwtVy
obtain: 1 Iw Iw
—Ww
ngA

nqt
=—1V,
I H

Substitute numerical values and simplify to obtain:

22 -3 -19
5 B47x10” om)(1.602x10° C)(0.100em)¥;, _ (6.784510° sm? )7,
20.0A

(a) Evaluate B for Vg =2.00 uV: B= (6.7845>< 10° s/m® )(Z.OO,LN)
=[136T

(b) Evaluate B for Vi = 5.25 4V: B =(6.7845x10° s/m*)(5.25 V)
=[3.56T

(¢) Evaluate B for Vi; = 8.00 4V: B =(6.7845x10° s/m*)(8.00 4V)
=[5.43T

67 e+ Because blood contains ions, moving blood develops a Hall voltage
across the diameter of an artery. A large artery that has a diameter of 0.85 cm can
have blood flowing through it with a maximum speed of 0.60 m/s. If a section of
this artery is in a magnetic field of 0.20 T, what is the maximum potential
difference across the diameter of the artery?

Picture the Problem We can use V}; = v,Bwto find the Hall voltage developed

across the diameter of the artery.

Relate the Hall voltage to the flow Vy =v,Bw
speed of the blood vy, the diameter of

the artery w, and the magnetic field

B:
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N
Il

(0.60m/s)(0.20T)(0.85cm)
evaluate Vy: —[1omV

Substitute numerical values and

68 e The Hall coefficient Ry is a property of conducting material (just as
resistivity is). It is defined as Ry = E,/(J.B:), where J; is x component of the
current density in the material, B. is the z component of the magnetic field, and E,
is the y component resulting Hall electric field. Show that the Hall coefficient is
equal to 1/(ng), where g is the charge of the charge carriers (—e if they are
electrons). (The Hall coefficients of monovalent metals, such as copper, silver,
and sodium are therefore negative.)

Picture the Problem Let the width of the slab be w and its thickness #. We can
use the definition of the Hall electric field in the slab, the expression for the Hall
voltage across it, and the definition of current density to show that the Hall
coefficient is also given by 1/(ng).

The Hall coefficient is: Ro E,

J)CBZ
Using its definition, express the E = Va
Hall electric field in the slab: Tow
The current density in the slab is: J = _

T T TGy

Substitute for £, and J; and simplify Va
to obtain: R=_ W __ £

ngvyB, - ngvawB_

Express the Hall voltage in terms of Vy=v,B.w

vq, B, and w:

Substitute for Vi and simplify to R v Bw |1
obtain: ngv,wB. | ng

69 e [SSM] Aluminum has a density of 2.7 x 10° kg/m’ and a molar mass
of 27 g/mol. The Hall coefficient of aluminum is R = —0.30 x 10" m*/C. (See
Problem 68 for the definition of R.) What is the number of conduction electrons
per aluminum atom?
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Picture the Problem We can determine the number of conduction electrons per
atom from the quotient of the number density of charge carriers and the number of
charge carriers per unit volume. Let the width of a slab of aluminum be w and its
thickness 7. We can use the definition of the Hall electric field in the slab, the
expression for the Hall voltage across it, and the definition of current density to
find 7 in terms of R and ¢ andn, = pN, /M , to express n,.

Express the number of electrons per
atom N:

From the definition of the Hall
coefficient we have:

Express the Hall electric field in the
slab:

The current density in the slab is:

Substitute for £, and J; in the
expression for R to obtain:

Express the Hall voltage in terms
of vg, B, and w:

Substitute for V' and simplify to
obtain:

Express the number of atoms n, per
unit volume:

Substitute equations (2) and (3) in
equation (1) to obtain:

N=L (1)
n

a
where 7 is the number density of charge
carriers and », is the number of atoms
per unit volume.

E
R=—"

JXBZ

%
E, :VH
J, = =ngqvy

Vu

R = w VH

Vy=v,B.w
R v,B.w _L n—i @)
ngvywB_ ngq Rq
NA
n,=p—= 3
=P (3)
M
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Substitute numerical values and evaluate N:

7 &
N = mol
3
(-1.602x10™ €} ~0.30x10" - (2.7><1o3 1“%](6.02%1023 at"msj
C m mol

~| 4

General Problems

70 o A long wire parallel to the x axis carries a current of 6.50 A in the +x
direction. The wire occupies a region that has a uniform magnetic field

B=135T f . Find the magnetic force per unit length on the wire.

Picture the Problem We can use the expression for the magnetic force acting on
a wire (f‘ =/x E) to find the force per unit length on the wire.

Express the magnetic force on the F=I1IxB

wire:

Substitute for /¢ and B to obtain: F =(6.50A)i x(1.35T);
and
% = (6.50A)i x(1.35T)j

Simplify to obtain:

n\l'ﬁjl

= (8.78N/m)(Fx j)=[ (8.78 N/m ik

71 . An alpha particle (charge +2e) travels in a circular path of radius

0.50 m in a region with a magnetic field whose magnitude is 0.10 T. Find (a) the
period, (b) the speed, and (c) the kinetic energy (in electron volts) of the alpha
particle. (The mass of an alpha particle is 6.65 x 10" kg.)

Picture the Problem We can express the period of the alpha particle’s motion in
terms of its orbital speed and use Newton’s 2™ law to express its orbital speed in
terms of known quantities. Knowing the particle’s period and the radius of its
motion we can find its speed and kinetic energy.
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(a) Relate the period of the alpha
particle’s motion to its orbital

speed:

Apply Newton’s 2™ law to the alpha
particle to obtain:

Substitute for v in equation (1) and
simplify to obtain:

Substitute numerical values and
evaluate 7*

(b) Solve equation (1) for v:

Substitute numerical values and
evaluate v:

(c) The kinetic energy of the alpha
particle is:

72 e

7=" (1)

2

qu=mV—:>v:q—Br
r m
_ 2m  2mm
q9Br 4B
m

27(6.65%10 kg)
2(1.602x107° C)(0.10T

=130us
)

=13 us

v = M =2.409%x10° m/s

1.30 us
=12.4%x10°m/s

2
my

(6.65x107" kg)(2.409x10° m/s )’
leV
1.602x107J

K =

©O= o=

=1.930x107"* Jx

=| 0.12MeV

The pole strength gy, of a bar magnet is defined by u = qmz , where

is the magnetic moment of the magnet and £ is the position of the north-pole end
of the magnet relative to the south-pole end. Show that the torque exerted on a bar

magnet in a uniform magnetic field B is the same as if a force + qu is exerted

on the north-pole of the magnetic and a force — qu is exerted on the south-pole.
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Picture the Problem The configuration
of the magnet and field are shown in
the figure. We’ll assume that a force
+¢,,B is exerted on the north-pole end

and a force —qu is exerted on the

south-pole end and show that this
assumption leads to the familiar
expression for the torque acting on a
magnetic dipole.

i B i Bg ! . —Bq /¢
Assuming that a force +¢g,_B is =29t G Z29m

sin @

exerted on the north-pole end and a
force — ¢, B is exerted on the south- = Bq,,lsin0

pole end, express the net torque
acting on the bar magnet:

Substitute for ¢y, to obtain: | ,u|
T=B— ; lsin@ = uBsin @

or

7=|xB

73 e [SSM] A particle of mass m and charge ¢ enters a region where there
is a uniform magnetlc ﬁeld B parallel with the x axis. The initial velocity of the
particle is v = v, i + Vo j so the particle moves in a helix. (a) Show that the
radius of the helix is » = mvy,/gB. (b) Show that the particle takes a time

At =27mm/gB to complete each turn of the helix. (¢) What is the x component of
the displacement of the particle during time given in Part (5)?

Picture the Problem We can use F = g¥ x B to show that motion of the particle

in the x direction is not affected by the magnetic field. The application of
Newton’s 2™ law to motion of the particle in yz plane will lead us to the result
that » = mv, /gB. By expressing the period of the motion in terms of vy, we can
show that the time for one complete orbit around the helix is ¢ = 2mm/gB.

(a) Express the magnetic force acting F=g¥xB
on the particle:
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Substitute for ¥ and B and simplify F = q(v()xf +V, y})x Bi
to obtain:

A
.

= quXB(z X ;)+ quyB(; X ;)
=0- quyBlg = —qvoyBlg

1.€., the motion in the direction of the
magnetic field (the x direction) is not

affected by the field.

Apply Newton’s 2™ law to the Ve
T . qv, B=m—= (1)

particle in the plane perpendicular to 0y B
i (i.e., the yz plane):
Solving for r yields: mvy,,

r=—=

qB

(b) Relate the time for one orbit Af = 2zr

around the helix to the particle’s v,
orbital speed:

Solve equation (1) for vy _gBr
Vo, =

m
Substitute for vy, and simplify to Af = 2xr _ 2zm
obtain: qBr qB

m
(c) Because, as was shown in Part x(t)=v ¢t
(a), the motion in the direction of the
magnetic field (the x direction) is not
affected by the field, the x
component of the displacement of
the particle as a function of ¢ is:
Fort= At: x(At)=vm(27zm]= 2 mv,,

\ ¢B qB

74 e A metal crossbar of mass m rides on a parallel pair of long horizontal
conducting rails separated by a distance L and connected to a device that supplies
constant current / to the circuit, as shown in Figure 26-42. The circuit is in a

region with a uniform magnetic field B whose direction is vertically downward.
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There is no friction and the bar starts from rest at = 0. (@) In which direction will
the bar start to move? (b) Show that at time # the bar has a speed of (BIL/m)t.

Picture the Problem We can use a constant-acceleration equation to relate the
velocity of the crossbar to its acceleration and Newton’s 2™ law to express the
acceleration of the crossbar in terms of the magnetic force acting on it. We can
determine the direction of motion of the crossbar using a right-hand rule or,

equivalently, by applying F=IIxB.

(a) Using a constant-acceleration v=y,+at
equation, express the velocity of the or, because v = 0,
bar as a function of its acceleration v = at

and the time it has been in motion:

Use Newton’s 2™ law to express the a=E

acceleration of the rail: m
where F is the magnitude of the
magnetic force acting in the direction of

the crossbar’s motion.

Substitute for a to obtain: . F ;
m
Express the magnetic force acting on F=ILB

the current-carrying crossbar:

Substitute to obtain: ILB

(b) Because the magnetic force is to the right and the crossbar starts from rest, the
motion of the crossbar will also be toward the right.

75 e [SSM] Assume that the rails Problem 74 are frictionless but tilted
upward so that they make an angle & with the horizontal, and with the current
source attached to the low end of the rails. The magnetic field is still directed
vertically downward. (¢) What minimum value of B is needed to keep the bar
from sliding down the rails? () What is the acceleration of the bar if B is twice
the value found in Part (a)?

Picture the Problem Note that with the rails tilted, F still points horizontally to
the right (/, and hence /, is out of the page). Choose a coordinate system in
which down the incline is the positive x direction. Then we can apply a condition
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for translational equilibrium to find the vertical magnetic field B needed to keep
the bar from sliding down the rails. In Part (b) we can apply Newton’s 2™ law to
find the acceleration of the crossbar when B is twice its value found in (a).

(a) Apply ZFX = (0 to the crossbar mgsin@ — 1B cos 6 =0
to obtain:
Solving for B yields:

B="%tangand B = —Etanﬁﬁv
Vi V4

where #@  is a unit vector in the vertical

direction.
(b) Apply Newton’s 2™ law to the I{B'cos 0 —mgsin 0 = ma
crossbar to obtain:
Solving for a yields: 4= I(B cosO— gsin 0
m
Subs‘tlfute B' = 2B and simplify to 27078 im0
obtain: a=—2  coso- gsinf
m

=2gsinf—gsinf =| gsinf

Note that the direction of the acceleration is up the incline.

76 oo A long, narrow bar magnet that has magnetic moment u parallel to
its long axis is suspended at its center as a frictionless compass needle. When
placed in region with a horizontal magnetic field B, the needle lines up with the
field. If it is displaced by a small angle 6, show that the needle will oscillate about
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f B
its equilibrium position with frequency f = L ﬂT , where [ is the moment of

2
inertia of the needle about the point of suspension.

Picture the Problem We’re being asked to show that, for small displacements
from equilibrium, the bar magnet executes simple harmonic motion. To show its
motion is SHM we need to show that the bar magnet experiences a linear
restoring torque when displaced from equilibrium. We can accomplish this by
applying Newton’s 2" law in rotational form and using a small angle
approximation to obtain the differential equation for simple harmonic motion.
Once we have the differential equation of motion we can identify @ and express f.

Apply Newton’s 2™ law to the bar _Bsind=1 d*o
magnet: dr’

where the minus sign indicates that the
torque acts in such a manner as to align
the magnet with the magnetic field and
1 is the moment of inertia of the

magnet.
For small displacements from sind =~ 0
equilibrium, #<<1 and:
Hence our differential equation of d’o 0
motion becomes: dr? HB
Thus for small displacements from d’0  uB )
e =——0=-w0
equilibrium we see that the dt* I
differential equation describing the LB
motion of the bar magnet is the where o = N
differential equation of simple
harmonic motion. Solve this
equation for &*@/dr* to obtain:
Relate f'to w to obtain: W 1 |uB
f == — | —
2 |2z N 1

77 e A straight conducting wire whose length is 20 m is parallel to the y
axis and is moving in the +x direction with a speed of 20 m/s in a region with a

magnetic field given by 0.50 T k. (a) Because of this magnetic force, electrons
move to one end of the wire leaving the other end positively charged, until the
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electric field due to this charge separation exerts a force on the conduction
electrons that balances the magnetic force. Find the magnitude and direction of
this electric field in the steady state situation. (b) Which end of the wire is
positively charged and which end is negatively charged? (c¢) Suppose the moving
wire is 2.0-m long. What is the potential difference between its two ends due to
this electric field?

Picture the Problem (a) We can use a condition for translational equilibrium to
relate E to F . In Part (c) we can apply the definition of electric field in terms of
potential difference to evaluate the difference in potential between the ends of the
moving wire.

a) Sum the forces acting on an . - F
(@) £ gE+F =0=FE =——
electron under steady-state q
conditions to obtain:

The magnetic force on an electron in F =qvxB =qvixBk

the conductor is given by: — v B(f o ,;) — _qvBj

Substituting for F and simplifying E — quj’

oSt = vBj
yields: q

Substitute numerical values and E =(20m/s)(0.50 T)} =| (10 V/m)}'
evaluate E :

(b) Because the electric force acting on the conduction electrons is in the +y
direction, the end of the wire that is in the +y direction becomes negatively
charged and the end of the wire that is in the —y direction becomes positively
charged. The positive end has the lesser y coordinate.

(c) The potential difference between AV =EAy = (10-0 v/ m)(2.0m)
the ends of the wire is: =20V

78 eee A circular loop of wire that has a mass m and carries a constant current
1 is in a region with a uniform magnetic field. It is initially in equilibrium and its
magnetic moment is aligned with the magnetic field. The loop is given a small
angular displacement about an axis through it center and perpendicular to the
magnetic field and then released. What is the period of the subsequent motion?
(Assume that the only torque exerted on the loop is due to the magnetic field and
that there are no other forces acting on the loop.)
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Picture the Problem We’re being asked to show that, for small displacements
from equilibrium, the circular loop executes simple harmonic motion. To show its
motion is SHM we must show that the loop experiences a linear restoring torque
when displaced from equilibrium. We can accomplish this by applying Newton’s
2" law in rotational form and using a small angle approximation to obtain the
differential equation for simple harmonic motion. Once we have the differential
equation we can identify @ and express the period 7 of the motion.

Apply N s 2" 2
pply Newton’s 2™ law to the I4Bsing—1 da-e
IOOp: inertia dtz

where the minus sign indicates that the
torque acts in such a manner as to align
the loop with the magnetic field and
Linertia 18 the moment of inertia of the

loop.
For small displacements from sind =~ 6
equilibrium, @ << 1 and:
Henf:e, our differential equation of . d’o Y
motion becomes: fnertia - 72
Thus for small displacements from d*e _ IAB 0
equilibrium we see that the drr e
differential equation describing the
motion of the current loop is the
differential equation of simple
harmonic motion. Solve this
equation for d*@/df* to obtain:
Noting that the moment of inertia of d’o I7R’B 2178 )
a hoop about its diameter is 1 mR", dt* Im R’ m
substitute for fineria and simplify to 27IB
obtain: where o = m
The period T of the motion is related r_2r
to the angular frequency w: @
Substituting for @ and simplifying 2 om

yields: IB
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79 eee A small bar magnet has a magnetic moment g that makes an angle &
with the x axis. The magnet is in a region that has a non-uniform magnetic field

given by B =B (x)i + By(y)j . Using F, =—0U/ox,F, =-0U/dy and
F, =—0U/dz , show that there is a net magnetic force on the magnet that is given
oB

Yy

OB,
by F=u,—=i+ .
yF =

—

>

Picture the Problem We can express # in terms of its components and calculate
U from z and B using U = —ji- B . Knowing U we can calculate the components
of F using F, = —dU/dx and F, = —-dU/dy.

Express the net force acting on the F = Fxf + ij €))
magnet in terms of its components:

Express g in terms of its o= p i+ ﬂy}+ u.k

components:

Express the potential energy of the U=-j-B

bar magnetlc 1T1 the nonuniform Y 12) . ( B.(x)i + B, ) ]”)
magnetic field:

Because ji is constant but B o dU _ 8ij
depends on x and y: ’ de T\ ox
and
oB
K, = _d_U =H, -
dy oy
Substitute in equation (1) to obtain: - OB : OB,
F=lpu—i+p—j
ox " oy

80 e A proton, a deuteron and an alpha particle all have the same kinetic
energy. They are moving in a region with a uniform magnetic field that is
perpendicular to each of their velocities. Let R,,, Ry, and R,, be the radii of their
circular orbits, respectively. The deuteron has a charge that is equal to the charge
a proton has, and an alpha particle has a charge that is equal to twice the charge a
proton has. Find the ratios R4/R, and R./R,. Assume that m, = 2mq = 4my,,.
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Picture the Problem We can apply Newton’s 2™ law to an orbiting particle to
obtain an expression for the radius of its orbit R as a function of its mass m,
charge ¢, speed v, and the magnitude of the magnetic field B.

Apply Newton’s 2™ law to an . Vv my

orbiting particle to obtain: v =m r "= gB

Exp.ress the kinetic energy of the K =Ly — 2K

particle: 2 m

Substitute for v in the expression for m 2K 1 ——

r and simplify to obtain: "= q_B m - q_B 2Km (D
Using equation (1), express the 1 Km

ratio Ra/Ry: R, q,B ‘ 9y |[my

Using equation (1), express the 1 Km
ratio R, /Ry: R, q,B 4 |m,
Rp L I2Kmp qa mp
q,B
-
2e\| m

81 eee Your forensic chemistry group, working closely with the local law
enforcement agencies, has acquired a mass spectrometer similar to that discussed
in the text. It employs a uniform magnetic field that has a magnitude of 0.75 T. To
calibrate the mass spectrometer, you decide to measure the masses of various
carbon isotopes by measuring the position of impact of the various singly ionized
carbon ions that have entered the spectrometer with a kinetic energy of 25 keV. A
wire chamber with position sensitivity of 0.50 mm is part of the apparatus. What
will be the limit on its mass resolution (in kg) for ions in this mass range, that is
those whose mass is on the order of that of a carbon atom?

Picture the Problem We can apply Newton’s 2" law, with the force on a moving
charged particle in a magnetic field as the net force, to an ion in the spectrometer
to obtain an expression for the radius of its trajectory as a function of its
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momentum. We can then use the definition of kinetic energy to eliminate the
speed of the ion from the expression for the radius of its trajectory. Differentiating
the expression for the range (twice the radius of curvature) of the ions with
respect to their mass will yield the mass resolution for ions whose masses are
roughly 19.9 x 107" kg. We’ll assume that the carbon atoms are singly ionized.

Apply Newton’s 2™ law to an ion in
the spectrometer to obtain:

From the definition of kinetic energy
we have:

Substituting for v in equation (1) and
simplifying yields:

The range R of the ions is twice their
radius of curvature:

Differentiate R with respect to m to
obtain:

Solving for dm yields:

2
v my
qgvB=m—=r= (1)
r qB
where ¢ is the charge of the ion, m is its
mass, and r is the radius of curvature of

its path.

E = %mv2 =Svy= 2—E
m

 [2E

;= m _ 2mE (2)
qB gB

2N2mE  AJ8mE

R= = (3)
qB gB

d_Rzi[ SmEJJS_EiW)

dm dm\ ¢B gB dm

U m
qB 2\/_ qB qu BZ
quB2
qu

Substitute numerical values and evaluate dm:

dm =(0.50 mm)

(19.9x107 kg)1.602x10™" CJ (0.80 T)*

={1.0x10* kg

-19
2(251<er1'602“0 C
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