
Chapter 26 
The Magnetic Field 
 
Conceptual Problems 
 
1 • [SSM] When the axis of a cathode-ray tube is horizontal in a region 
in which there is a magnetic field that is directed vertically upward, the electrons 
emitted from the cathode follow one of the dashed paths to the face of the tube in 
Figure 26-30. The correct path is (a) 1, (b) 2, (c) 3, (d) 4, (e) 5. 
 
Determine the Concept Because the electrons are initially moving at 90° to the 
magnetic field, they will be deflected in the direction of the magnetic force acting 
on them. Use the right-hand rule based on the expression for the magnetic force 
acting on a moving charge BvF

rrr
×= q , remembering that, for a negative charge, 

the force is in the direction opposite that indicated by the right-hand rule, to 
convince yourself that the particle will follow the path whose terminal point on 
the screen is 2. )(b is correct. 

 
2 •• We define the direction of the electric field to be the same as the 
direction of the force on a positive test charge.  Why then do we not define the 
direction of the magnetic field to be the same as the direction of the magnetic 
force on a moving positive test charge?  
 
Determine the Concept The direction of the force depends on the direction of the 
velocity.  We do not define the direction of the magnetic field to be in the 
direction of the force because if we did, the magnetic field would be in a different 
direction each time the velocity was in a different direction.  If this were the case, 
the magnetic field would not be a useful construct. 

 
3 • [SSM] A flicker bulb is a light bulb that has a long, thin flexible 
filament. It is meant to be plugged into an ac outlet that delivers current at a 
frequency of 60 Hz.  There is a small permanent magnet inside the bulb.  When 
the bulb is plugged in the filament oscillates back and forth.  At what frequency 
does it oscillate?  Explain. 
 
Determine the Concept Because the alternating current running through the 
filament is changing direction every 1/60 s, the filament experiences a force that 
changes direction at the frequency of the current. 
 
4 • In a cyclotron, the potential difference between the dees oscillates with 
a period given by   T = 2πm qB( ). Show that the expression to the right of the 
equal sign has units of seconds if q, B and m have units of coulombs, teslas and 
kilograms, respectively. 
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Determine the Concept Substituting the SI units for q, B, and m yields: 

s
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⎞
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⎠
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⎛
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5 • A 7Li nucleus has a charge equal to +3e and a mass that is equal to the 
mass of seven protons. A 7Li nucleus and a proton are both moving perpendicular 
to a uniform magnetic field . The magnitude of the momentum of the proton is 
equal to the magnitude of the momentum of the nucleus. The path of the proton 
has a radius of curvature equal to R

B
r

p and the path of the 7Li nucleus has a radius of 
curvature equal to RLi. The ratio Rp/RLi is closest to (a) 3/1, (b) 1/3, (c) 1/7,  
(d) 7/1, (e) 3/7, (f) 7/3. 
 
Determine the Concept We can use Newton’s 2nd law for circular motion to 
express the radius of curvature R of each particle in terms of its charge, 
momentum, and the magnetic field. We can then divide the proton’s radius of 
curvature by that of the 7Li nucleus to decide which of these alternatives is 
correct. 
 
Apply Newton’s 2nd law to the 
lithium nucleus to obtain: 
 

R
vmqvB

2

= ⇒
qB
mvR =  

For the 7Li nucleus this becomes: 
eB
pR

3
Li

Li =                                  (1) 

 
For the proton we have: 

eB
p

R p
p =                                     (2) 

 
Divide equation (2) by equation 
(1) and simplify to obtain: 

Li

p

Li

p

Li

p 3

3
p
p

eB
p
eB
p

R
R

==  

 
Because the momenta are equal: 
 3

Li

p =
R
R

 ⇒ )(a is correct. 

 
6 • An electron moving in the +x direction enters a region that has a 
uniform magnetic field in the +y direction. When the electron enters this region, it 
will (a) be deflected toward the +y direction, (b) be deflected toward the –y 
direction, (c) be deflected toward the +z direction, (d) be deflected toward the –z 
direction, (e) continue undeflected in the +x direction. 
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Determine the Concept Application of the right-hand rule indicates that a 
positively charged body would experience a downward force and, in the absence 
of other forces, be deflected downward. Because the direction of the magnetic 
force on an electron is opposite that of the force on a positively charged object, an 
electron will be deflected upward.  )(c is correct. 
 
7 • [SSM] In a velocity selector, the speed of the undeflected charged 
particle is given by the ratio of the magnitude of the electric field to the 
magnitude of the magnetic field.  Show that E B  in fact does have the units of 
m/s if E and B are in units of volts per meter and teslas, respectively. 
 
Determine the Concept Substituting the SI units for E and B yields: 

s
m

C

m
s
C

C
mA

mA
N
C
N

=
⋅

==
⋅

=

⋅

 

 
8 • How are the properties of magnetic field lines similar to the properties 
of electric field lines? How are they different? 
 

Similarities Differences 
1. Their density on a surface 
perpendicular to the lines is a measure 
of the strength of the field 
 
2.  The lines point in the direction of 
the field 
 
3. The lines do not cross. 

1.  Magnetic field lines neither begin 
nor end.  Electric field lines begin on 
positive charges and end on negative 
charges. 
 
2.   Electric forces are parallel or anti-
parallel to the field lines.  Magnetic 
forces are perpendicular to the field 
lines. 

 
9 • True or false: 
 
(a) The magnetic moment of a bar magnet points from its north pole to its south 

pole. 
(b) Inside the material of a bar magnet, the magnetic field due to the bar magnet 

points from the magnet’s south pole toward its north pole. 
(c) If a current loop simultaneously has its current doubled and its area cut in 

half, then the magnitude of its magnetic moment remains the same. 
(d) The maximum torque on a current loop placed in a magnetic field occurs 

when the plane of the loop is perpendicular to the direction of the magnetic 
field. 
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(a) False. By definition, the magnetic moment of a small bar magnet points from 
its south pole to its north pole. 
 
(b) True. The external magnetic field of a bar magnet points from the north pole 
of the magnet to south pole. Because magnetic field lines are continuous, the 
magnet’s internal field lines point from the south pole to the north pole. 
 
(c) True. Because the magnetic dipole moment of a current loop is given by 

nNIA
rr

=μ , simultaneously doubling the current and halving its area leaves the 
magnetic dipole moment unchanged. 
 
(d) False. The magnitude of the torque acting on a magnetic dipole moment is 
given θμτ sinB=  where θ is the angle between the axis of the current loop and 
the direction of the magnetic field. When the plane of the loop is perpendicular to 
the field direction θ = 0 and the torque is zero. 
 
10 •• Show that the von Klitzing constant, h e2 , gives the SI unit for 
resistance (the ohm) h and e are in units of joule seconds and coulombs, 
respectively. 
 
Determine the Concept The von Klitzing resistance is related to the Hall 

resistance according to where HK nRR = 2K e
hR = . 

 

Substituting the SI units of h and e yields: ΩAV
sC
CJ

C
sJ
2 ===

⋅  

 
11 ••• The theory of relativity states that no law of physics can be described 
using the absolute velocity of an object, which is in fact impossible to define due 
to a lack of an absolute reference frame. Instead, the behavior of interacting 
objects can only be described by the relative velocities between the objects. New 
physical insights result from this idea. For example, in Figure 26-31 a magnet 
moving at high speed relative to some observer passes by an electron that is at rest 
relative to the same observer. Explain why you are sure that a force must be 
acting on the electron. In what direction will the force point at the instant the 
north pole of the magnet passes directly underneath the electron? Explain your 
answer. 
 
Determine the Concept From relativity; this is equivalent to the electron moving 
from right to left at speed v with the magnet stationary.  When the electron is 
directly over the magnet, the field points directly up, so there is a force directed 
out of the page on the electron. 
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Estimation and Approximation 
 
12  • Estimate the maximum magnetic force per meter that Earth’s magnetic 
field could exert on a current-carrying wire in a 20-A circuit in your house. 
 
Picture the Problem Because the magnetic force on a current-carrying wire is 
given by BLF

rrr
×= I , the maximum force occurs when θ  = 90°. Under this 

condition, . ILBF =max

 
The maximum force per unit length 
that the Earth’s magnetic field could 
exert on a current-carrying wire in 
your home is given by: 
 

IB
L
F

=⎥⎦
⎤

max

 

For a 20-A circuit and  
B = 0.5 × 10−4 T: 
 

( )( )

mN/m 1

T 105.0A 20 4

max

=

×=⎥⎦
⎤ −

L
F

 

 
13  •• Your friend wants to be magician and intends to use Earth’s magnetic 
field to suspend a current-carrying wire above the stage. He asks you to estimate 
the minimum current needed to suspend the wire just above Earth’s surface at the 
equator (where Earth’s magnetic field is horizontal). Assume the wire has a linear 
mass density of 10 g/m. Would you advise him to proceed with his plans for this 
act? 
 
Picture the Problem Because the magnetic force on a current-carrying wire is 
given by BLF

rrr
×= I , the maximum force occurs when θ  = 90°. Under this 

condition, . In order to suspend the wire, this magnetic force would 
have to be equal in magnitude to the gravitational force exerted by Earth on the 
wire: 

ILBF =max

 
0gm =− FF  

or, 
0=− mgILB  

 

Letting the upward direction be the 
+y direction, apply to the 

wire to obtain: 

0=∑ yF

 
Solving for I yields: 
 B

g
L
m

LB
mgI ⎟

⎠
⎞

⎜
⎝
⎛==  

where m/L is the linear density of the 
wire. 
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Substitute numerical values and 
evaluate I: 
 

( ) kA 2
T105.0

m/s 81.9g/m 10 4

2

≈
×

= −I  

You should advise him to develop some other act. A current of 2000 A would 
overheat the wire (which is a gross understatement). 
 
The Force Exerted by a Magnetic Field 
 
14 • Find the magnetic force on a proton moving in the +x direction at a 
speed of 0.446 Mm/s in a uniform magnetic field of 1.75 T in the +z direction. 
  
Picture the Problem The magnetic force acting on a charge is given by 

BvF
rrr

×= q . We can express v
r

and B
r

, form their vector (″cross″) product, and 
multiply by the scalar q to find F

r
. 

 
The magnetic force acting on the 
proton is given by: 
 

BvF
rrr

×= q  

Express v
r

: 
 

( )iv ˆMm/s446.0=
r

 

Express : B
r

( )kB ˆT75.1=
r

 
 

Substitute numerical values and evaluate F
r

: 
 

( ) ( ) ( )[ ] ( ) jkiF ˆpN125.0ˆT75.1ˆMm/s446.0C10602.1 19 −=××= −
r

 

 
15 • A point particle has a charge equal to –3.64 nC and a velocity equal to 

. Find the force on the charge if the magnetic field is  i m/s 1075.2 3×
(a) 0.38 T ˆ j , (b) 0.75 T ˆ i + 0.75 T ˆ j , (c) 0.65 T , and (d) 0.75 T  . ˆ i ˆ i + 0.75 T ˆ k
 
Picture the Problem The magnetic force acting on the charge is given 
by . We can express vBvF

rrr
×= q r

and B
r

, form their vector (also known as the 
″cross″) product, and multiply by the scalar q to find F

r
. 

 
Express the force acting on the 
charge: 
 

BvF
rrr

×= q  

Substitute numerical values to 
obtain: 
 

( ) ( )[ ]BiF
rr

××−= ˆm/s1075.2nC64.3 3
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(a) Evaluate F
r

for  = 0.38 T : B
r

ĵ
 

( ) ( )[ ( ) ] ( )kjiF ˆN8.3ˆT38.0ˆm/s1075.2nC64.3 3 μ−=××−=
r

 

 
(b) Evaluate F

r
for  = 0.75 T  + 0.75 T : B

r
î ĵ

 
( ) ( )[ ( ) ( ){ }] ( )kjiiF ˆN5.7ˆT75.0ˆT75.0ˆm/s1075.2nC64.3 3 μ−=+××−=

r
 

 
(c) Evaluate F

r
for  = 0.65 T : B

r
î

 
( ) ( ) ( )[ ] 0ˆT65.0ˆm/s1075.2nC64.3 3 =××−= iiF

r
 

 
(d) Evaluate F

r
for B

r
 = 0.75 T  + 0.75 T : î k̂

 
( ) ( )[ ( ) ( ) ] ( ) jkiiF ˆN5.7ˆT75.0ˆT75.0ˆm/s1075.2nC64.3 3 μ=+××−=

r
 

 
16 • A uniform magnetic field equal to 1.48 T is in the +z direction. Find 
the force exerted by the field on a proton if the velocity of the proton is  
(a) , (b) , (c) , and (d) . î km/s 7.2 ĵ km/s 7.3 k̂ km/s 8.6 ji ˆ km/s 3.0  ̂ km/s 0.4 +
 
Picture the Problem The magnetic force acting on the proton is given 
by . We can express vBvF

rrr
×= q r

and B
r

, form their vector product, and multiply 
by the scalar q to find F

r
. 

 
The magnetic force acting on the 
proton is given by: 
 

BvF
rrr

×= q  

(a) Evaluate F
r

for v = 2.7 km/s : 
r î

 
( ) ( ) ( )[ ] ( )jkiF ˆN104.6ˆT48.1ˆkm/s7.2C10602.1 1619 −− ×−=××=

r
 

 
(b) Evaluate F

r
for v  = 3.7 km/s : 

r ĵ
 

( ) ( ) ( )[ ] ( )ikjF ˆN108.8ˆT48.1ˆkm/s7.3C10602.1 1619 −− ×=××=
r
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(c) Evaluate F
r

for  = 6.8 km/s : v
r k̂

 
( ) ( ) ( )[ ] 0ˆT48.1ˆkm/s8.6C10602.1 19 =××= − kkF

r
 

 
(d) Evaluate F

r
for : ji ˆkm/s0.3ˆkm/s0.4 +=vr

 
( ) ( ) ( ){ } ( )[ ]

( ) ( ) ji

kjiF
ˆN105.9ˆN101.7

ˆT48.1ˆkm/s0.3ˆkm/s0.4C10602.1
1616

19

−−

−

×−×=

×+×=
r

 

 
17 • A straight wire segment that is 2.0 m long makes an angle of 30º with 
a uniform 0.37-T magnetic field. Find the magnitude of the force on the wire if 
the wire carries a current of 2.6 A. 
  
Picture the Problem The magnitude of the magnetic force acting on a segment of 
wire carrying a current I is given by θsinBIF l=  where is the length of the 
segment of wire, B is the magnetic field, and θ is the angle between direction of 
the current in the segment of wire and the direction of the magnetic field.  

l

 
Express the magnitude of the 
magnetic force acting on the segment 
of wire: 
 

θsinBIF l=  

Substitute numerical values and 
evaluate F: 

( )( )( )
N96.0

30sinT37.0m0.2A6.2

=

°=F
 

 
18 • A straight segment of a current-carrying wire has a current element 

LI
r

, where I = 2.7 A and . The segment is in a region with 
a uniform magnetic field given by . Find the force on the segment of wire. 

jiL ˆ cm 0.4ˆ cm 0.3 +=
r

îT 3.1
 
Picture the Problem We can use BLF

rrr
×= I to find the force acting on the wire 

segment. 
 
Express the force acting on the 
wire segment: 
 

BLF
rrr

×= I  

Substitute numerical values and 
evaluate F

r
: 

( ) ( ) ( )[ ] ( )
( )k

ijiF
ˆN14.0

ˆT3.1ˆcm0.4ˆcm3.0A7.2

−=

×+=
r
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19 • What is the force on an electron that has a velocity equal to  
 when it is in a region with a magnetic field given by 

? 
ji ˆ 103.0  ˆ m/s 100.2 66 ×−×

ki ˆ T 0.60  ̂ T 80.0 +
 
Picture the Problem The magnetic force acting on the electron is given by 

.  BvF
rrr

×= q
 
The magnetic force acting on the 
proton is given by: 
 

BvF
rrr

×= q  

Substitute numerical values and evaluate F
r

: 
 

( ) ( ){[ ( ) } ( ) ]
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )kji

kji

ikjk

kjijiF

ˆpN58.0ˆpN13.0ˆpN19.0

ˆpN577.0ˆpN128.0ˆpN192.0

ˆpN192.0ˆpN384.0ˆpN128.0ˆpN192.0

Tˆ4.0ˆ6.0ˆ8.0ˆMm/s3ˆMm/s2C10602.1 19

−−−=

−−−=

−+−+−+−=

−+×−×−= −
r

 

 
20 •• The section of wire shown in Figure 26-32 carries a current equal to 
1.8 A from a to b. The segment is in a region that has a magnetic field whose 
value is . Find the total force on the wire and show that the total force is 
the same as if the wire were in the form of a straight wire directly from a to b and 
carrying the same current. 

k̂T 2.1

 
Picture the Problem We can use BF

r
l
rr

×= I to find the force acting on the 
segments of the wire as well as the magnetic force acting on the wire if it were a 
straight segment from a to b. 
 
Express the magnetic force acting on 
the wire: 
 

cm 4cm 3 FFF
rrr

+=  

Evaluate : cm 3F
r

 
( ) ( ) ( )[ ]
( )( )

( ) j

j

kiF

ˆN0648.0

ˆN0648.0

ˆT2.1ˆcm0.3A8.1cm 3

−=

−=

×=
r

 

 
Evaluate : cm 4F

r

 
( ) ( ) ( )[ ]
( )i

kjF
ˆN0864.0

ˆT2.1ˆcm0.4A8.1cm 4

=

×=
r
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Substitute to obtain: ( ) ( )
( ) ( ) ji

ijF
ˆmN65ˆmN86

ˆN0864.0ˆN0648.0

−=

+−=
r

 

 
If the wire were straight from a to b: 
 

( ) ( ) ji ˆcm0.4ˆcm0.3 +=l
r

 

The magnetic force acting on the wire is: 
 

( ) ( ) ( )[ ] ( ) ( ) ( )
( ) ( ) ji

ijkjiF
ˆmN65ˆmN86

ˆN0864.0ˆN0648.0ˆT2.1ˆcm0.4ˆcm0.3A8.1

−=

+−=×+=
r

 

in agreement with the result obtained above when we treated the two straight 
segments of the wire separately. 
 
21 •• A straight, stiff, horizontal 25-cm-long wire that has a mass equal to 
50 g is connected to a source of emf by light, flexible leads. A magnetic field of 
1.33 T is horizontal and perpendicular to the wire. Find the current necessary to 
″float″ the wire, that is, when it is released from rest it remains at rest. 
 
Picture the Problem Because the magnetic field is horizontal and perpendicular 
to the wire, the force it exerts on the current-carrying wire will be vertical. Under 
equilibrium conditions, this upward magnetic force will be equal to the downward 
gravitational force acting on the wire. 
 
Apply to the wire: 0vertical =∑ F

 

0mag =− wF  

Express : magF BIF l=mag  because θ = 90°. 

 
Substitute for to obtain: magF

 
0=− mgBIl ⇒

B
mgI
l

=  

 
Substitute numerical values and 
evaluate I: 

( )( )
( )( ) A5.1

T33.1cm25
m/s81.9g50 2

==I  

 
22 •• In your physics laboratory class, you have constructed a simple 
gaussmeter for measuring the horizontal component of magnetic fields. The setup 
consists of a stiff 50-cm wire that hangs vertically from a conducting pivot so that 
its free end makes contact with a pool of mercury in a dish below (Figure 26-33). 
The mercury provides an electrical contact without constraining the movement of 
the wire. The wire has a mass of 5.0 g and conducts a current downward.  
(a) What is the equilibrium angular displacement of the wire from vertical if the 
horizontal component of the magnetic field is 0.040 T and the current is 0.20 A? 
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(b) What is the sensitivity of this gaussmeter?  That is, what is the ratio of the 
output to the input (in radians per tesla). 
 
Picture the Problem The magnetic 
field is out of the page. The diagram 
shows the gaussmeter displaced from 
equilibrium under the influence of the 
gravitational force , the magnetic 
force 

grm

mF
r

, and the force exerted by the 
conducting pivot F

r
. We can apply the 

condition for translational equilibrium 
in the x direction to find the equilibrium 
angular displacement of the wire from 
the vertical. In Part (b) we can solve the 
equation derived in Part (a) for B and 
evaluate this expression for the given 
data to find the horizontal magnetic 
field sensitivity of this gaussmeter. 

θ

θ

 gmr

y

 
mF
r

 F
r

x

θ
θ

 

 
(a) Apply to the wire 

to obtain: 

0=∑ xF

 

0sinm =+−=∑ θmgFFx  

 
 

φsinm BIF l=  
or, because φ = 90°, 

BIF l=m  
 

The magnitude of the magnetic force 
acting on the wire is given by: 
 

Substitute for Fm to obtain: 
 

0sin =+− θmgBIl                  (1) 
 

Solving for θ  yields: 
⎥
⎦

⎤
⎢
⎣

⎡
= −

mg
BIl1sinθ  

 
Substitute numerical values and 
evaluate θ: 
 

( )( )( )
( )( )

mrad 827.4679.4

m/s81.9kg0050.0
T040.0m50.0A20.0sin 2

1

=°=°=

⎥
⎦

⎤
⎢
⎣

⎡
= −θ

 

 
(b) The sensitivity of this gaussmeter  
is the ratio of the output to the input: B

θ
=ysensitivit  
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rad/T 0.2
T 040.0

mrad 82ysensitivit ==  

 

Substitute numerical values and 
evaluate the sensitivity of the 
gaussmeter: 
 
23 •• [SSM] A 10-cm long straight wire is parallel with the x axis and 
carries a current of 2.0 A in the +x direction. The force on this wire due to the 
presence of a magnetic field   

r 
B  is 3. . If this wire is rotated so that 

it is parallel with the y axis with the current in the +y direction, the force on the 
wire becomes − . Determine the magnetic field 

0 N ̂  j + 2.0 N ˆ k 

3.0 N ˆ i − 2.0 N ˆ k   
r 
B . 

 
Picture the Problem We can use the information given in the 1st and 2nd 
sentences to obtain an expression containing the components of the magnetic 
field . We can then use the information in the 1B

r st and 3rd sentences to obtain a 
second equation in these components that we can solve simultaneously for the 
components of B

r
. 

 
Express the magnetic field in 
terms of its components: 

B
r

 

kjiB ˆˆˆ
zyx BBB ++=

r
                 (1) 

Express F
r

in terms of : B
r

 
( ) ( ) ][ ( )

( ) ( ) ( ) ( ) kBjBkBjBiBi

kBjBiBiBIF

yzzyx

zyx

ˆmA20.0ˆmA20.0ˆˆˆˆmA20.0

ˆˆˆˆm10.0A0.2

⋅+⋅−=++×⋅=

++×=×=
r

l
rr

 

 
( ) N0.3mA20.0 =⋅− zB  

and 
( ) N0.2mA20.0 =⋅ yB  

Equate the components of this 
expression for F

r
with those 

given in the second sentence of 
the statement of the problem to 
obtain: 
 
Noting that BBx is undetermined, 
solve for BzB  and BBy: 
 

T15−=zB and T10=yB  

 

When the wire is rotated so that the current flows in the positive y direction: 
 

( ) ( ) ][ ( )
( ) ( ) ( ) ( ) kBiBkBjBiBj

kBjBiBjBIF

xzzyx

zyx

ˆmA20.0ˆmA20.0ˆˆˆˆmA20.0

ˆˆˆˆm10.0A0.2

⋅−⋅=++×⋅=

++×=×=
r

l
rr
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( ) N0.2mA20.0 −=⋅ xB  
and 

( ) N0.3mA20.0 −=⋅− zB  

Equate the components of this 
expression for F

r
with those 

given in the third sentence of the 
problem statement to obtain: 
 
Solve for BBx and BzB  to obtain: 
 

T10=xB and, in agreement with our 
results above, T15−=zB  
 

Substitute in equation (1) to obtain: ( ) ( ) ( )kjiB ˆT15ˆT10ˆT10 −+=
r

 

 
24 •• A 10-cm long straight wire is parallel with the z axis and carries a 
current of 4.0 A in the + z direction. The force on this wire due to a uniform 
magnetic field     

r 
B  is −0.20 N ˆ i + 0.20 N ̂  j . If this wire is rotated so that it is 

parallel with the x axis with the current is in the +x direction, the force on the wire 
becomes . Find     

r 
0.20 ˆ k  N B .  

 
Picture the Problem We can use the information given in the 1st and 2nd 
sentences to obtain an expression containing the components of the magnetic 
field . We can then use the information in the 1B

r st and 3rd sentences to obtain a 
second equation in these components that we can solve simultaneously for the 
components of B

r
. 

 
Express the magnetic field in 
terms of its components: 

B
r

 

kjiB ˆˆˆ
zyx BBB ++=

r
                 (1) 

Express F
r

in terms of : B
r

 ( ) ( ) ][ ( )
( ) ( )
( ) ( ) iBjB

kBjBiBk

kBjBiBk

BIF

yy

zyx

zyx

ˆmA40.0ˆmA40.0

ˆˆˆˆmA40.0

ˆˆˆˆm1.0A0.4

⋅−⋅=

++×⋅=

++×=

×=
r

l
rr

 
( ) N20.0mA40.0 =⋅ yB  Equate the components of this 

expression for F
r

with those given in 
the second sentence of the statement 
of the problem to obtain: 

and 
( ) N20.0mA40.0 =⋅ xB  

 
Noting that BBz is undetermined, 
solve for BxB  and BBy: 
 

T50.0=xB and T50.0=yB  
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When the wire is rotated so that the current flows in the positive x direction: 
 

( ) ( ) ][ ( )
( ) ( ) ( ) ( ) kBjBkBjBiBi

kBjBiBiBIF

yzzyx

zyx

ˆmA40.0ˆmA40.0ˆˆˆˆmA40.0

ˆˆˆˆm10.0A0.4

⋅+⋅−=++×⋅=

++×=×=
r

l
rr

 

 
( ) 0mA40.0 =⋅− zB  

and 
( ) N2.0mA40.0 =⋅ yB  

Equate the components of this 
expression for F

r
with those 

given in the third sentence of the 
problem statement to obtain: 
 
Solve for BBz and ByB  to obtain: 
 

0=zB  
and, in agreement with our results 
above, 

T50.0=yB  

 
Substitute in equation (1) to obtain: ( ) ( ) jiB ˆT50.0ˆT50.0 +=

r
 

 
25 •• [SSM] A current-carrying wire is bent into a closed semicircular 
loop of radius R that lies in the xy plane (Figure 26-34). The wire is in a uniform 
magnetic field that is in the +z direction, as shown. Verify that the force acting on 
the loop is zero. 
 
Picture the Problem With the current in the direction indicated and the magnetic 
field in the z direction, pointing out of the plane of the page, the force is in the 
radial direction and we can integrate the element of force dF acting on an element 
of length dℓ between θ = 0 and π  to find the force acting on the semicircular 
portion of the loop and use the expression for the force on a current-carrying wire 
in a uniform magnetic field to find the force on the straight segment of the loop. 

 
 
Express the net force acting on the 
semicircular loop of wire: segment

straight 
loop

ar semicircul FFF
rrr

+=             (1) 
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Express the force acting on the 
straight segment of the loop: 
 

jRIBkBiRIBIF ˆ2ˆˆ2
segment
straight −=×=×=

r
l
rr

Express the force dF acting on the 
element of the wire of length dℓ: 
 

θIRBdBIddF == l  

Express the x and y components of 
dF: 
 

θcosdFdFx = and θsindFdFy =  

 

θθ dIRBdFy sin=  Because, by symmetry, the x 
component of the force is zero, 
we can integrate the y component 
to find the force on the wire: 

and 

jRIB

jdRIBjFF y

ˆ2

ˆsinˆ
0loop

arsemicircul

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫

π

θθ
r

 

 
Substitute in equation (1) to obtain: 0ˆ2ˆ2 =−= jRIBjRIBF

r
 

 
26 ••• A wire bent in some arbitrary shape carries a current I. The wire is in a 
region with a uniform magnetic field   

r 
B .  Show that the total force on the part of 

the wire from some arbitrary point on the wire (designated as a) to some other 
arbitrary point on the wire (designated as b) is    

r 
F = I

r 
L ×

r 
B , where   

r 
L  is the vector 

from point a to point b. In other words, show that the force on an arbitrary section 
of the bent wire is the same as the force would be on a straight section wire 
carrying the same current and connecting the two endpoints of the arbitrary 
section. 
 
Picture the Problem We can integrate the expression for the force acting on 
an element of the wire of length 

F
r

d
L
r

d from a to b to show that .BLF
rrr

×= I  
 
Express the force  acting on the 
element of the wire of length 

F
r

d
:L

r
d  

 

BLF
rrr

×= Idd  

Integrate this expression to obtain: 
 ∫ ×=

b

a

Id BLF
rrr

 

 
Because and I are constant: B

r

BLBLF
rrrrr

×=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫ IdI

b

a

 

where L
r

is the vector from a to b. 
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Motion of a Point Charge in a Magnetic Field 
 
27 • [SSM] A proton moves in a 65-cm-radius circular orbit that is 
perpendicular to a uniform magnetic field of magnitude 0.75 T. (a) What is the 
orbital period for the motion? (b) What is the speed of the proton? (c) What is the 
kinetic energy of the proton? 
 
Picture the Problem We can apply Newton’s 2nd law to the orbiting proton to 
relate its speed to its radius. We can then use T = 2πr/v to find its period. In Part 
(b) we can use the relationship between T and v to determine v. In Part (c) we can 
use its definition to find the kinetic energy of the proton. 
 
(a) Relate the period T of the motion 
of the proton to its orbital speed v: 
 

v
rT π2

=                                    (1) 

Apply Newton’s 2nd law to the 
proton to obtain: 
 

r
vmqvB

2

= ⇒
qB
mvr =  

Substitute for r in equation (1) and 
simplify to obtain: 
 

qB
mT π2

=  

Substitute numerical values and 
evaluate T: 
 

( )
( )( )

ns87

ns4.87
T75.0C10602.1

kg10673.12
19

27

=

=
×

×
= −

−πT
 

 
(b) From equation (1) we have: 

T
rv π2

=  

 
Substitute numerical values and 
evaluate v: 
 

( )

m/s107.4

m/s1067.4
ns4.87

m65.02

7

7

×=

×==
πv

 

 
(c) Using its definition, express and evaluate the kinetic energy of the proton: 
 

( )( )

MeV11

J101.602
eV1J1082.1m/s1067.4kg10673.1 19

122727
2
12

2
1

=

×
××=××== −

−−mvK
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28 • A 4.5-keV electron (an electron that has a kinetic energy equal to  
4.5 keV) moves in a circular orbit that is perpendicular to a magnetic field of 
0.325 T. (a) Find the radius of the orbit. (b) Find the frequency and period of the 
orbital motion. 
 
Picture the Problem (a) We can apply Newton’s 2nd law to the orbiting electron 
to obtain an expression for the radius of its orbit as a function of its mass m, 
charge q, speed v, and the magnitude of the magnetic field B. Using the definition 
of kinetic energy will allow us to express r in terms of m, q, B, and the electron’s 
kinetic energy K. (b) The period of the orbital motion is given by T = 2πr/v. 
Substituting for r (or r/v) from Part (a) will eliminate the orbital speed of the 
electron and leave us with an expression for T that depends only on m, q, and B. 
The frequency of the orbital motion is the reciprocal of the period of the orbital 
motion. 
 
(a) Apply Newton’s 2nd law to the 
orbiting electron to obtain: 
 

r
vmqvB

2

= ⇒
qB
mvr =

           
 

Express the kinetic energy of the 
electron: 
 

2
2
1 mvK = ⇒

m
Kv 2

=              

Substituting for v in the expression 
for r and simplifying yields: 
 

qB
Km

m
K

qB
mr 22

==  

 
Substitute numerical values and evaluate r: 
 

( ) ( )
( )( ) mm70.0mm696.0

T325.0C10.6021
eV

J101.602kg10109.9keV5.42

19

19
31

==
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

= −

−
−

r  

 
(b) Relate the period of the electron’s 
motion to the radius of its orbit and 
its orbital speed: 
 

v
rT π2

=  

Because 
qB
mvr = : 

 qB
m

v
qB
mv

T π
π

2
2

==  
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Substitute numerical values and 
evaluate T: 
 

( )
( )( )

ns 11.0s 10099.1

T 325.0C101.602
kg10109.92

10

19

31

=×=

×
×

=

−

−

−πT
 

 
The frequency of the motion is known 
as the cyclotron frequency and is the 
reciprocal of the period of the 
electron’s motion: 

GHz1.9
ns110.0

11
===

T
f  

 
29 •• A proton, a deuteron and an alpha particle in a region with a uniform 
magnetic field each follow circular paths that have the same radius. The deuteron 
has a charge that is equal to the charge a proton has, and an alpha particle has a 
charge that is equal to twice the charge a proton has. Assume that mα = 2md = 
4mp. Compare (a) their speeds, (b) their kinetic energies, and (c) the magnitudes 
of their angular momenta about the centers of the orbits.  
  
Picture the Problem We can apply Newton’s 2nd law to the orbiting particles to 
derive an expression for their orbital speeds as a function of their charge, their 
mass, the magnetic field in which they are moving, and the radii of their orbits. 
We can then compare their speeds by expressing their ratios. In Parts (b) and (c) 
we can proceed similarly starting with the definitions of kinetic energy and 
angular momentum. 
 
(a) Apply Newton’s 2nd law to an 
orbiting particle to obtain: 
 

r
vmqvB

2

= ⇒
m

qBr
v =  

p

p
p m

Brq
v = ,                               (1) 

α

α
α m

Brqv = , and                        (2) 

d

d
d m

Brqv =                                  (3) 

 

The speeds of the orbiting particles 
are given by: 
 

Divide equation (2) by equation (1) 
and simplify to obtain: 
 
 

( ) 2
1

p

p

p

p

p

pp 4
2

====
me

em
mq
mq

m
Brq

m
Brq

v
v

α

αα

α

α  

or 
p2 vv =α                                     
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Divide equation (3) by equation (1) 
and simplify to obtain: 
 ( ) 2

1

p

p

dp

pd

p

p

d

d

p

d

2
====

me
em

mq
mq

m
Brq

m
Brq

v
v  

or 
pd2 vv =                               

 
Combining these results yields: 
 

pd22 vvv ==α  

(b) Using the expression for its 
orbital speed derived in (a), express 
the kinetic energy of an orbiting 
particle: 
 

m
rBq

m
qBrmmvK

2

2222

2
12

2
1 =⎟

⎠
⎞

⎜
⎝
⎛==  

 
 

The kinetic energies of the three 
particles are given by: 
 

p

222
p

p 2m
rBq

K = ,  
                         

(4) 

 α

α
α m

rBqK
2

222

= ,
  
and  

   
            (5)

            

d

222
d

d 2m
rBqK =

       
                     (6) 

 
Dividing equation (7) by equation 
(6) and simplifying yields: 
 

( )
( )

p

p
2

p
2

2
p

p
2

p

222
p

2
1

222

2
1

p

1

4
2

KK

me
me

mq
mq

m
rBq

m
rBq

K
K

=⇒=

===

α

α

αα

α

α

 

 
Divide equation (8) by equation (6) 
and simplify to obtain: 
 ( )

dp2
1

p
2

p
2

d
2
p

p
2
d

p

222
p

d

222
d

p

d

2

2
2

2

KK

me
me

mq
mq

m
rBq

m
rBq

K
K

=⇒=

===
 

 
Combining these results yields: 

pd2 KKK ==α  
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rvmL ppp = ,                              
rvmL ααα = , and                       
rvmL ddd =                                      

                       

(c) The angular momenta of the 
orbiting particles are given by: 

( )( )
2

4

pp

p2
1

p

ppp

===
vm

vm
rvm
rvm

L
L ααα  

Express the ratio of Lα to Lp: 

or 
p2LL =α  

 
( )( )

1
2

pp

p2
1

p

pp

dd

p

d ===
vm

vm
rvm
rvm

L
L  

Express the ratio of Ld to Lp: 

or 
pd LL =  

 
Combining these results yields: 

pd 22 LLL ==α  

  
30 •• A particle has a charge q, a mass m, a linear momentum of magnitude 
p and a kinetic energy K. The particle moves in a circular orbit of radius R 
perpendicular to a uniform magnetic field B

r
. Show that (a) p = BqR and 

(b)   K = 1
2 B2q2R 2 / m . 

 
Picture the Problem We can use the definition of momentum to express p in 
terms of v and apply Newton’s 2nd law to the orbiting particle to express v in 
terms of q, B, R, and m. In Part (b) we can express the particle’s kinetic energy in 
terms of its momentum and use our result from Part (a) to show that 

.222
2
1 mRqBK =  

 
(a) Express the momentum of the 
particle: 
 

mvp =                                     (1) 

Apply to the orbiting 

particle to obtain: 
cradial maF =∑

 
R
vmqvB

2

= ⇒
m

qBRv =  

Substitute for v in equation (1) to 
obtain: 

qBR
m

qBRmp =⎟
⎠
⎞

⎜
⎝
⎛=  
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(b) Express the kinetic energy of the 
orbiting particle as a function of its 
momentum: 
 

m
pK
2

2

=  

Substitute our result for p from Part 
(a) to obtain: 

( )
m

RBq
m

qBRK
22

2222

==  

  
31 •• [SSM] A beam of particles with velocity   

r 
v  enters a region that has a 

uniform magnetic field     
r 
B  in the +x direction. Show that when the x component of 

the displacement of one of the particles is 2π(m/qB)v cos θ, where θ is the angle 
between      and 

r 
v   

r 
B , the velocity of the particle is in the same direction as it was 

when the particle entered the field. 
 
Picture the Problem The particle’s velocity has a component v1 parallel to B

r
 

and a component v2 normal to B
r

. v1 = v cosθ and is constant, whereas v2 = v sinθ , 
being normal to , will result in a magnetic force acting on the beam of particles 
and circular motion perpendicular to

B
r

B
r

. We can use the relationship between 
distance, rate, and time and Newton’s 2nd law to express the distance the particle 
moves in the direction of the field during one period of the motion. 
 
Express the distance moved in the 
direction of   by the particle during 
one period: 

B
r

 

Tvx 1=                                      (1) 

Express the period of the circular 
motion of the particles in the 
beam: 
 

2

2
v

rT π
=                                    (2) 

Apply Newton’s 2nd law to a particle 
in the beam to obtain: 
 

r
vmBqv

2
2

2 = ⇒
m

qBrv =2  

Substituting for v2 in equation (2) 
and simplifying yields: 
 

qB
m

m
qBr

rT ππ 22
==  

 
Because v1 = v cosθ, equation (1) 
becomes: ( ) θππθ cos22cos v

qB
m

qB
mvx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
32 •• A proton that has a speed equal to 1.00 × 106 m/s enters a region that 
has a uniform magnetic field that has a magnitude of 0.800 T and points into the 
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page, as shown in Figure 26-35. The proton enters the region at an angle θ  = 60º. 
Find the exit angle φ and the distance d. 
  
Picture the Problem The trajectory of 
the proton is shown to the right. We 
know that, because the proton enters the 
uniform field perpendicularly to the 
field, its trajectory while in the field 
will be circular. We can use symmetry 
considerations to determine φ. The 
application of Newton’s 2nd law to the 
proton while it is in the magnetic field 
and of trigonometry will allow us to 
conclude that r = d and to determine the 
value of d. 

 

 
From symmetry, it is evident that the 
angle θ in Figure 26-35 equals the 
angle φ:  
 

°= 60φ  

Apply to the proton 

while it is in the magnetic field to 
obtain: 

cradial maF =∑

 

r
vmqvB

2

= ⇒
qB
mvr =  

Use trigonometry to obtain: 
 

( )
r

d 2
2
130sin90sin ==°=−° θ  

 
Solving for d yields: 
 

r = d 

Substitute for r to obtain: 
qB
mvd =

 
 

Substitute numerical values and 
evaluate d: 

( )( )
( )( )

mm 1.13

T800.0C10602.1
m/s1000.1kg10673.1

19

627

=

×
××

== −

−

rd
 

 
33 •• [SSM] Suppose that in Figure 26-35, the magnetic field has a 
magnitude of 60 mT, the distance d is 40 cm, and θ is 24º. Find the speed v at 
which a particle enters the region and the exit angle φ if the particle is a (a) proton 
and (b) deuteron. Assume that md = 2mp. 
 



                                                                             The Magnetic Field 
 

 

2515

Picture the Problem The trajectory of 
the proton is shown to the right. We 
know that, because the proton enters the 
uniform field perpendicularly to the 
field, its trajectory while in the field 
will be circular. We can use symmetry 
considerations to determine φ. The 
application of Newton’s 2nd law to the 
proton and deuteron while they are in 
the uniform magnetic field will allow 
us to determine the values of vp and vd.  
 
(a) From symmetry, it is evident that 
the angle θ in Figure 26-35 equals 
the angle φ:  
 

°= 24φ   

Apply to the proton 

while it is in the magnetic field to 
obtain: 

cradial maF =∑

 

p

2
p

ppp r
v

mBvq = ⇒
p

pp
p m

Brq
v =   (1) 

Use trigonometry to obtain: 
 

( )
r

d 266sin90sin =°=−° θ      

 
Solving for r yields: 

°
=

66sin2
dr  

 
Substituting for r in equation (1) 
and simplifying yields: 
 

°
=

66sin2 p

p
p m

Bdq
v                       (2) 

Substitute numerical values and 
evaluate vp: 
 

( )( )( )
( )

m/s103.1

66sinkg101.6732
m40.0mT60C10602.1

6

27

19

p

×=

°×
×

= −

−

v

 

 
(b) From symmetry, it is evident that 
the angle θ in Figure 26-35 equals 
the angle φ:  
 

°= 24φ  independently of whether 

the particles are protons or deuterons. 

For deuterons equation (2) 
becomes: 
 

°
=

66sin2 d

d
d m

Bdqv  
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Because and : pd 2mm = pd qq =
( ) °

=
°

≈
66sin466sin22 p

p

p

p
d m

Bdq
m

Bdq
v  

 
Substitute numerical values and 
evaluate vd: 

( )( )( )
( )

m/s103.6

66sinkg101.6734
m40.0mT60C10602.1

5

27

19

d

×=

°×
×

= −

−

v
 

 
34 •• The galactic magnetic field in some region of interstellar space has a 
magnitude of 1.00 × 10–9 T. A particle of interstellar dust has a mass of 10.0 μg 
and a total charge of 0.300 nC. How many years does it take for the particle to 
complete revolution of the circular orbit caused by its interaction with the 
magnetic field? 
 
Picture the Problem We can apply Newton’s 2nd law of motion to express the 
orbital speed of the particle and then find the period of the dust particle from this 
orbital speed. Assume that the particle moves in a direction perpendicular to B

r
. 

 
The period of the dust particle’s 
motion is given by: 
 

v
rT π2

=  

Apply to the particle: cmaF =∑
 r

vmqvB
2

= ⇒
m

qBrv =  

 
Substitute for v in the expression for 
T and simplify: 
 

qB
m

qBr
rmT ππ 22

==  

Substitute numerical values and 
evaluate T: 

( )
( )( )

y1064.6

Ms31.56
y1s10094.2

T1000.1nC300.0
kg/g10g100.102

3

11

9

36

×=

××=

×
××

= −

−−πT

 

 
Applications of the Magnetic Force Acting on Charged Particles 

35 • [SSM] A velocity selector has a magnetic field that has a magnitude 
equal to 0.28 T and is perpendicular to an electric field that has a magnitude equal 
to 0.46 MV/m. (a) What must the speed of a particle be for that particle to pass 
through the velocity selector undeflected? What kinetic energy must (b) protons 
and (c) electrons have in order to pass through the velocity selector undeflected? 
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Picture the Problem Suppose that, for positively charged particles, their motion 
is from left to right through the velocity selector and the electric field is upward. 
Then the magnetic force must be downward and the magnetic field out of the 
page. We can apply the condition for translational equilibrium to relate v to E and 
B. In (b) and (c) we can use the definition of kinetic energy to find the energies of 
protons and electrons that pass through the velocity selector undeflected. 
 
(a) Apply to the 

particle to obtain: 

0=∑ yF 0magelec =− FF  

or 

0=− qvBqE ⇒
B
Ev =  

 

 

Substitute numerical values and 
evaluate v: 
 m/s106.1

m/s1064.1
T28.0

MV/m46.0

6

6

×=

×==v
 

 
(b) The kinetic energy of protons 
passing through the velocity 
selector undeflected is: 
 

( )( )

keV14

J101.602
eV1J1026.2

m/s1064.110673.1

19
15

26
kg

27
2
1

2
p2

1
p

=

×
××=

××=

=

−
−

−

vmK

 

 
(c) The kinetic energy of electrons 
passing through the velocity selector 
undeflected is: 
 

( )( )

eV7.7

J101.602
eV1J1023.1

m/s1064.110109.9

19
18

26
kg

31
2
1

2
e2

1
e

=

×
××=

××=

=

−
−

−

vmK

 

 
36 •• A beam of protons is moving in the +x direction with a speed of  
12.4 km/s through a region in which the electric field is perpendicular to the 
magnetic field. The beam is not deflected in this region. (a) If the magnetic field 
has a magnitude of 0.85 T and points in the + y direction, find the magnitude and 
direction of the electric field. (b) Would electrons that have the same velocity as 
the protons be deflected by these fields? If so, in what direction would they be 
deflected?  If not, why not? 
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Picture the Problem Because the beam of protons is not deflected; we can 
conclude that the electric force acting on them is balanced by the magnetic force. 
Hence, we can find the magnetic force from the given data and use its definition 
to express the electric field. 
 
(a) Use the definition of electric field 
to relate it to the electric force acting 
on the beam of protons: 
 

q
elec

elec
FE
r

r
=

 

Express the magnetic force acting 
on the beam of protons: 
 

kjiF ˆˆˆ
mag qvBBqv =×=

r
 

Because the electric force must be equal in magnitude but opposite in 
direction: 
 

( )( )( ) ( )kkkqvBF ˆN10689.1ˆT85.0km/s4.12C10.6021ˆ 1519
elec

−− ×−==×−=−=
r

 
 

Substitute in the equation for the 
electric field to obtain: 

( )

( )k

kE

ˆkV/m11

C10.6021

ˆN10689.1
19

15

elec

−=

×
×−

= −

−r

 

 
(b) Because both and  would be reversed, electrons are not deflected 

either. 
magF

r
elecF

r

 
37 •• The plates of a Thomson q/m apparatus are 6.00 cm long and are 
separated by 1.20 cm. The end of the plates is 30.0 cm from the tube screen. The 
kinetic energy of the electrons is 2.80 keV. If a potential difference of 25.0 V is 
applied across the deflection plates, by how much will the point where the beam 
strikes the screen displaced?  
 
Picture the Problem Figure 26-18 is reproduced below. We can express the total 
deflection of the electron beam as the sum of the deflections while the beam is in 
the field between the plates and its deflection while it is in the field-free space. 
We can, in turn, use constant-acceleration equations to express each of these 
deflections. The resulting equation is in terms of v0 and E. We can find v0 from 
the kinetic energy of the beam and E from the potential difference across the 
plates and their separation. In Part (b) we can equate the electric and magnetic 
forces acting on an electron to express B in terms of E and v0. 
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Express the total deflection Δy of 
the electrons: 
 

21 yyy Δ+Δ=Δ                                  (1) 
where Δy1 is the deflection of the beam 
while it is in the electric field and Δy2 is 
the deflection of the beam while it 
travels along a straight-line path outside 
the electric field. 
 

Use a constant-acceleration 
equation to express Δy1: 
 

( )2
2
1

1 tay y Δ=Δ                                   (2) 

where Δt = x1/v0 is the time an electron 
is in the electric field between the 
plates. 
 

Apply Newton’s 2nd law to an 
electron between the plates to 
obtain: 
 

ymaqE = ⇒
m
qEay =  

Substitute for ay in equation (2) 
to obtain: 
 

2

0

1
2
1

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=Δ

v
x

m
qEy                           (3) 

 
Express the vertical deflection 
Δy2 of the electrons once they are 
out of the electric field: 
 

22 tvy yΔ=Δ                                        (4) 

Use a constant-acceleration 
equation to find the vertical speed 
of an electron as it leaves the 
electric field: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Δ+=

0

1

10

0
v
x

m
qE

tavv yyy

 

 

Substitute in equation (4) to 
obtain: 
 

2
0

21

0

2

0

1
2 mv

xqEx
v
x

v
x

m
qEy =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ         (5) 
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2
0

21

2

0

1
2
1

mv
xqEx

v
x

m
qEy +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=Δ     

Substitute equations (3) and (5) 
in equation (1) to obtain: 

or 

 ⎟
⎠
⎞

⎜
⎝
⎛ +=Δ 2

1
2
0

1

2
xx

mv
qExy                         (6) 

 
Use the definition of kinetic energy 
to express the square of the speed of 
the electrons: 
 

2
02

1 mvK = ⇒
m
Kv 22

0 =  

 

Express the electric field between the 
plates in terms of their potential 
difference: 
 

d
VE =  

Substituting for E and  in equation 
(6) and simplifying yields: 

2
0v

⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ += 2

11
2

1
1

2222Δ xx
dK

qVxxx

m
Km

x
d
Vq

y  

Substitute numerical values and evaluate Δy: 
 

( )( )( )
( )( ) mm37.7cm0.30

2
cm00.6

keV 80.2cm 20.12
cm00.6V 5.02C10602.1Δ

19

=⎟
⎠
⎞

⎜
⎝
⎛ +

×
=

−

y  

 
38 •• Chlorine has two stable isotopes, 35Cl and 37Cl. Chlorine gas which 
consists of singly-ionized ions is to be separated into its isotopic components 
using a mass spectrometer. The magnetic field strength in the spectrometer is  
1.2 T. What is the minimum value of the potential difference through which these 
ions must be accelerated so that the separation between them, after they complete 
their semicircular path, is 1.4 cm? 
 
Picture the Problem The diagram below represents the paths of the two ions 
entering the magnetic field at the left. The magnetic force acting on each causes 
them to travel in circular paths of differing radii due to their different masses. We 
can apply Newton’s 2nd law to an ion in the magnetic field to obtain an expression 
for its radius and then express their final separation in terms of these radii that, in 
turn, depend on the energy with which the ions enter the field. We can connect 
their energy to the potential through which they are accelerated using the work-
kinetic energy theorem and  relate their separation Δs to the accelerating potential 
difference ΔV. 
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Express the separation Δs of the 
chlorine ions: 
 

( )35372 rrs −=Δ                         (1) 

Apply Newton’s 2nd law to an ion in 
the magnetic field of the mass 
spectrometer: 
 

r
vmqvB

2

= ⇒
qB
mvr =               (2) 

Relate the speed of an ion as it enters 
the magnetic field to the potential 
difference through which it has been 
accelerated: 
 

2
2
1 mvVq =Δ ⇒

m
Vqv Δ

=
2  

Substitute for v in equation (2) to 
obtain: 
 

2
22

qB
Vm

m
Vq

qB
mr Δ

=
Δ

=  

 
Use this equation to express the radii 
of the paths of the two chlorine 
isotopes to obtain: 
 

2
35

35
2

qB
Vmr Δ

= and 2
37

37
2

qB
Vmr Δ

=  

Substitute for r35 and r37 in equation 
(1) to obtain: 
 

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
=Δ

3537

2
35

2
35

212

222

mm
q
V

B

qB
Vm

qB
Vms

 

 
Solving for ΔV yields: 

( )2

3537

2
2

2

2

mm

sqB
V

−

⎟
⎠
⎞

⎜
⎝
⎛ Δ

=Δ  
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Substitute numerical values and 
evaluate ΔV: 
 

( )( )

( )

( ) ( )
MV12.0

kg101.663537

mTC1065.5

u35u372
2
cm4.1T2.1C101.602

Δ

272

2224

2

2
219

=

×−

⋅⋅×
=

−

⎟
⎠
⎞

⎜
⎝
⎛×

=

−

−

−

V

 
39 •• [SSM] In a mass spectrometer, a singly ionized 24Mg ion has a mass 
equal to 3.983 × 10–26 kg and is accelerated through a 2.50-kV potential 
difference. It then enters a region where it is deflected by a magnetic field of  
557 G. (a) Find the radius of curvature of the ion’s orbit. (b) What is the 
difference in the orbital radii of the 26Mg and 24Mg ions? Assume that their mass 
ratio is 26:24. 
  
Picture the Problem We can apply Newton’s 2nd law to an ion in the magnetic 
field to obtain an expression for r as a function of m, v, q, and B and use the work-
kinetic energy theorem to express the kinetic energy in terms of the potential 
difference through which the ion has been accelerated. Eliminating v between 
these equations will allow us to express r in terms of m, q, B, and ΔV. 
 
Apply Newton’s 2nd law to an ion 
in the magnetic field of the mass 
spectrometer: 
 

r
vmqvB

2

= ⇒
qB
mvr =               (1) 

Apply the work-kinetic energy 
theorem to relate the speed of an 
ion as it enters the magnetic field 
to the potential difference 
through which it has been 
accelerated: 
 

2
2
1 mvVq =Δ ⇒

m
Vqv Δ

=
2  

Substitute for v in equation (1) 
and simplify to obtain: 
 

2
22

qB
Vm

m
Vq

qB
mr Δ

=
Δ

=       (2) 

 
(a) Substitute numerical values and 
evaluate equation (2) for 24Mg : 

( )( )
( )( )

cm3.63

T10557C101.602
kV50.2kg10983.32

2419

26

24

=

××

×
=

−−

−

r
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(b) Express the difference in the 
radii for 24Mg and 26Mg: 
 

2426 rrr −=Δ  

Substituting for r26 and r24 and simplifying yields: 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−=−=

1
24
26Δ21

24
26Δ21

Δ21Δ2Δ2Δ

24
2424

24262
24

2
26

q
Vm

B
mm

q
V

B

mm
q
V

BqB
Vm

qB
Vmr

 

 
Substitute numerical values and evaluate Δr: 
 

( )( ) cm 58.21
24
26

C101.602
kg10983.3kV 50.22

T10557
1Δ 19

26

4 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
×

×
= −

−

−r  

 
40 •• A beam of singly ionized 6Li and 7Li ions passes through a velocity 
selector and enters a region of uniform magnetic field with a velocity that is 
perpendicular to the direction of the field. If the diameter of the orbit of the 6Li 
ions is 15 cm, what is the diameter of the orbit for 7Li ions? Assume their mass 
ratio is 7:6. 
 
Picture the Problem We can apply Newton’s 2nd law to an ion in the magnetic 
field of the spectrometer to relate the diameter of its orbit to its charge, mass, 
velocity, and the magnetic field. If we assume that the velocity is the same for the 
two ions, we can then express the ratio of the two diameters as the ratio of the 
masses of the ions and solve for the diameter of the orbit of 7Li. 
 
Apply Newton’s 2nd law to an ion in 
the field of the spectrometer: 
 

r
vmqvB

2

= ⇒
qB
mvr =  

Express the diameter of the orbit: 
 qB

mvd 2
=  

 
The diameters of the orbits for 
6Li and 7Li are: qB

vmd 6
6

2
= and 

qB
vmd 7

7
2

=  

 
Assume that the velocities of the two 
ions are the same and divide the 2nd 
of these diameters by the first to 
obtain: 

6

7

6

7

6

7

2

2

m
m

qB
vm

qB
vm

d
d

==  
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Solve for and evaluate d7: ( ) cm18cm15
6
7

6
6

7
7 === d

m
md  

 
41 •• Using Example 26- 6, determine the time required for a 58Ni ion and a 
60Ni ion to complete the semicircular path. 
 
Picture the Problem The time required for each of the ions to complete its 
semicircular paths is half its period. We can apply Newton’s 2nd law to an ion in 
the magnetic field of the spectrometer to obtain an expression for r as a function 
of the charge and mass of the ion, its velocity, and the magnetic field. 
 
Express the time for each ion to 
complete its semicircular path: 
 

v
rTt π

==Δ 2
1  

Apply Newton’s 2nd law to an ion 
in the field of the spectrometer: r

vmqvB
2

= ⇒
qB
mvr =  

 
Substitute for r to obtain: 

qB
mt π

=Δ  

 
( )

( )( )
s7.15

T120.0C101.602
kg106606.158Δ 19

27

58

μ

π

=

×
×

= −

−

t
 

Substitute numerical values and 
evaluate Δt58 and Δt60: 

and 
( )

( )( )
s3.16

T120.0C101.602
kg106606.160Δ 19

27

60

μ

π

=

×
×

= −

−

t
 

 
42 •• Before entering a mass spectrometer, ions pass through a velocity 
selector consisting of parallel plates that are separated by 2.0 mm and have a 
potential difference of 160 V. The magnetic field strength is 0.42 T in the region 
between the plates. The magnetic field strength in the mass spectrometer is 1.2 T. 
Find (a) the speed of the ions entering the mass spectrometer and (b) the 
difference in the diameters of the orbits of singly ionized 238U and 235U. The mass 
of a 235U ion is 3.903 × 10–25 kg. 
 
Picture the Problem We can apply a condition for equilibrium to ions passing 
through the velocity selector to obtain an expression relating E, B, and v that we 
can solve for v. We can, in turn, express E in terms of the potential difference V 
between the plates of the selector and their separation d. In (b) we can apply 
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Newton’s 2nd law to an ion in the bending field of the spectrometer to relate its 
diameter to its mass, charge, velocity, and the magnetic field. 
 
(a) Apply to the ions in 

the crossed fields of the velocity 
selector to obtain: 

0=∑ yF

 

0magelec =− FF  

or 

0=− qvBqE ⇒
B
Ev =  

 
Express the electric field between the 
plates of the velocity selector in 
terms of their separation and the 
potential difference across them: 
 

d
VE =  

Substituting for E yields: 
 dB

Vv =  

 
Substitute numerical values and 
evaluate v: 
 

( )( )
m/s109.1

m/s10905.1
T42.0mm2.0

V160

5

5

×=

×==v
 

 
(b) Express the difference in the 
diameters of the orbits of singly 
ionized 238U and 235U: 
 

235238 ddd −=Δ                           (1) 

Apply to an ion in 

the spectrometer’s magnetic 
field: 

cradial maF =∑

 

r
vmqvB

2

= ⇒
qB
mvr =  

Express the diameter of the orbit: 
 qB

mvd 2
=  

 
The diameters of the orbits for 238U 
and 235U are: qB

vmd 238
238

2
= and 

qB
vmd 235

235
2

=  

 
Substitute in equation (1) to obtain: 
 

( )235238

235238

2

22

mm
qB

v
qB

vm
qB

vmd

−=

−=Δ
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Substitute numerical values and evaluate Δd: 
 

( )( )

( )( ) cm1
T2.1C101.602

u
kg106606.1u235u238m/s10905.12

Δ 19

27
5

=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
−×

= −

−

d  

 
43 •• [SSM] A cyclotron for accelerating protons has a magnetic field 
strength of 1.4 T and a radius of 0.70 m. (a) What is the cyclotron’s frequency? 
(b) Find the kinetic energy of the protons when they emerge. (c) How will your 
answers change if deuterons are used instead of protons?  
 
Picture the Problem We can express the cyclotron frequency in terms of the 
maximum orbital radius and speed of the protons/deuterons. By applying 
Newton’s 2nd law, we can relate the radius of the particle’s orbit to its speed and, 
hence, express the cyclotron frequency as a function of the particle’s mass and 
charge and the cyclotron’s magnetic field. In Part (b) we can use the definition of 
kinetic energy and their maximum speed to find the maximum energy of the 
emerging protons. 
 
(a) Express the cyclotron frequency 
in terms of the proton’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===              (1) 

Apply Newton’s 2nd law to a proton 
in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

=  ⇒   
qB
mvr =           (2)            

Substitute for r in equation (1) and 
simplify to obtain: m

qB
mv

qBvf
ππ 22

==                       (3) 

 
Substitute numerical values and 
evaluate f: 

( )( )
( )
MHz21

MHz3.21
kg10673.12

T4.1C10602.1
27

19

=

=
×

×
= −

−

π
f

 

 
(b) Express the maximum kinetic 
energy of a proton: 
 

2
max2

1
max mvK =  

From equation (2), is given by: maxv
 m

qBrv max
max =  
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Substitute for and simplify to 
obtain: 

maxv
2

max

22

2
1

2
max

2
1

max r
m
Bq

m
qBrmK ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛=     

 
Substitute numerical values and evaluate : maxK
 

( ) ( ) ( )

MeV46MeV46.0

J101.602
eV1J1037.7m7.0

kg10673.1
T4.1C10602.1

19-
122

27

2219

2
1

max

==

×
××=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
×

= −
−

−

K
 

 
(c) From equation (3) we see that 
doubling m halves f: 
 

MHz11protons2
1

deuterons == ff  

From our expression for Kmax we see 
that doubling m halves K: 

MeV23protons2
1

deuterons == KK  

 
44 •• A certain cyclotron that has a magnetic field whose magnitude is 1.8 T 
is designed to accelerate protons to a kinetic energy of 25 MeV. (a) What is the 
cyclotron frequency for this cyclotron? (b) What must the minimum radius of the 
magnet be to achieve this energy? (c) If the alternating potential difference 
applied to the dees has a maximum value of 50 kV, how many revolutions must 
the protons make before emerging with kinetic energies of 25 MeV? 
 
Picture the Problem We can express the cyclotron frequency in terms of the 
maximum orbital radius and speed of the protons be accelerated in the cyclotron. 
By applying Newton’s 2nd law, we can relate the radius of the proton’s orbit to its 
speed and, hence, express the cyclotron frequency as a function of the its mass 
and charge and the cyclotron’s magnetic field. In Part (b) we can use the 
definition of kinetic energy express the minimum radius required to achieve the 
desired emergence energy. In Part (c) we can find the number of revolutions 
required to achieve this emergence energy from the energy acquired during each 
revolution. 
 
(a) Express the cyclotron frequency 
in terms of the proton’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===  

Apply Newton’s 2nd law to a proton 
in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

= ⇒ 
qB
mvr =              (1)            
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Substitute for v and simplify to 
obtain: m

qB
mv

qBvf
ππ 22

==                             

 
Substitute numerical values and 
evaluate f: 

( )( )
( )
MHz27

kg10673.12
T8.1C10602.1

27

19

=

×
×

= −

−

π
f

 

 
(b) Using the definition of kinetic 
energy, relate emergence energy 
of the protons to their velocity: 
 

2
2
1 mvK = ⇒

m
Kv 2

=  

Substitute for v in equation (1) and 
simplify to obtain: 
 

qB
Km

m
K

qB
mr 22

==  

 
Substitute numerical values and 
evaluate rmin: 

( )( )
( )( )
cm40

T8.1C10602.1
kg10673.1MeV252

19

27

=

×
×

= −

−

r
 

 
(c) Express the required number 
of revolutions N in terms of the 
energy gained per revolution: 
 

rev

MeV25
E

N =  

Because the beam is accelerated 
through a potential difference of  
50 kV twice during each 
revolution: 
 

keV1002rev =Δ= VqE  

Substitute the numerical value of 
and evaluate N: revE

rev105.2
keV/rev100
MeV25 2×==N  

 
45 •• Show that for a given cyclotron the cyclotron frequency for 
accelerating deuterons is the same as the frequency for accelerating alpha 
particles is half the frequency for accelerating protons in the same magnetic field.  
The deuteron has a charge that is equal to the charge a proton has, and an alpha 
particle has a charge that is equal to twice the charge a proton has. Assume that 
mα = 2md = 4mp. 
  
Picture the Problem We can express the cyclotron frequency in terms of the 
maximum orbital radius and speed of a particle being accelerated in the cyclotron. 
By applying Newton’s 2nd law, we can relate the radius of the particle’s orbit to its 
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speed and, hence, express the cyclotron frequency as a function of its charge-to-
mass ratio and the cyclotron’s magnetic field. We can then use data for the 
relative charges and masses of deuterons, alpha particles, and protons to establish 
the ratios of their cyclotron frequencies. 
 
Express the cyclotron frequency in 
terms of a particle’s orbital speed 
and radius: 
 

r
v

vrT
f

ππ 22
11

===  

Apply Newton’s 2nd law to a particle 
in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

=  ⇒ 
qB
mvr =                             

Substitute for r to obtain: 
m
qB

mv
qBvf

ππ 22
==                   (1)            

 
Evaluate equation (1) for deuterons: 
 dd

d
d 22 m

eB
m
qBf

ππ
==  

 

dd 22
2

22 m
eB

m
eB

m
qBf

πππ α

α
α ===  

and 

αff =d  

 

Evaluate equation (1) for alpha 
particles: 
 

d

dd2
1

p

p
p

2
2

2
22

f

m
eB

m
eB

m
qBf

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

πππ  

and 

αfff == dp2
1  

Evaluate equation (1) for protons: 
 

  
46 ••• Show that the radius of the orbit of a charged particle in a cyclotron is 
proportional to the square root of the number of orbits completed. 
  
Picture the Problem We can apply Newton’s 2nd law to the orbiting charged 
particle to obtain an expression for its radius as a function of its particle’s kinetic 
energy. Because the energy gain per revolution is constant, we can express this 
kinetic energy as the product of the number of orbits completed and the energy 
gained per revolution and, hence, show that the radius is proportional to the 
square root of the number of orbits completed. 
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Apply Newton’s 2nd law to a particle 
in the magnetic field of the 
cyclotron: 
 

r
vmqvB

2

= ⇒
qB
mvr =               (1)            

Express the kinetic energy of the 
particle in terms of its speed and 
solve for v: 
 

2
2
1 mvK = ⇒ 

m
Kv 2

=            (2) 

 

Noting that the energy gain per 
revolution is constant, express the 
kinetic energy in terms of the 
number of orbits N completed by the 
particle and energy Erev gained by 
the particle each revolution: 
 

revNEK =                                  (3) 

Substitute equations (2) and (3) in 
equation (1) to obtain: 
 

21rev
rev

2
21

212

N
qB
mE

mNE
qB

mK
qBm

K
qB
mr

==

==

 

or 21Nr ∝  

 
Torques on Current Loops, Magnets, and Magnetic Moments 

47 • [SSM] A small circular coil consisting of 20 turns of wire lies in a 
region with a uniform magnetic field whose magnitude is 0.50 T. The 
arrangement is such that the normal to the plane of the coil makes an angle of 60º 
with the direction of the magnetic field. The radius of the coil is 4.0 cm, and the 
wire carries a current of 3.0 A. (a) What is the magnitude of the magnetic moment 
of the coil? (b) What is the magnitude of the torque exerted on the coil? 
  
Picture the Problem We can use the definition of the magnetic moment of a coil 
to evaluate μ and the expression for the torque exerted on the coil Bμτ

rrr
×=  to 

find the magnitude of τ. 
 
(a) Using its definition, express the 
magnetic moment of the coil: 
 

2rNINIA πμ ==  

Substitute numerical values and 
evaluate μ: 
 

( )( ) ( )
22

2

mA30.0mA302.0

m040.0A0.320

⋅=⋅=

= πμ
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(b) Express the magnitude of the 
torque exerted on the coil: 
 

θμτ sinB=  

Substitute numerical values and 
evaluate τ : 

( )( )
mN13.0

60sinT50.0mA302.0 2

⋅=

°⋅=τ
 

 
48 • What is the maximum torque on a 400-turn circular coil of radius  
0.75 cm that carries a current of 1.6 mA and is in a region with a uniform 
magnetic field of 0.25 T? 
  
Picture the Problem The coil will experience the maximum torque when the 
plane of the coil makes an angle of 90° with the direction of B

r
. The magnitude of 

the maximum torque is then given by Bμτ =max . 
 
The maximum torque acting on the 
coil is: 
 

Bμτ =max  

Use its definition to express the 
magnetic moment of the coil: 
 

2rNINIA πμ ==  

Substitute to obtain: BrNI 2
max πτ =  

 
Substitute numerical values and 
evaluate τ : 

( )( ) ( ) ( )
mN28

T25.0cm75.0mA6.1400 2
max

⋅=

=

μ

πτ

 
49 • [SSM]  A current-carrying wire is in the shape of a square of edge-
length 6.0 cm.  The square lies in the z = 0 plane. The wire carries a current of  
2.5 A. What is the magnitude of the torque on the wire if it is in a region with a 
uniform magnetic field of magnitude 0.30 T that points in the (a) +z direction and 
(b) +x direction? 
 
Picture the Problem We can use Bμτ

rrr
×= to find the torque on the coil in the 

two orientations of the magnetic field. 
 
Express the torque acting on the 
coil: 
 

Bμτ
rrr

×=  

Express the magnetic moment of 
the coil: 
 

kkμ ˆˆ 2ILIA ±=±=
r  
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(a) Evaluate τr for in the +z 
direction: 

B
r ( ) 0ˆˆˆˆ 22 =×±=×±= kkBILkBkILτr  

 
( )

( )( ) ( )
( ) j

j

ikBILiBkIL

ˆmmN 7.2

ˆT30.0m060.0A5.2

ˆˆˆˆ
2

22

⋅±=

±=

×±=×±=τr

 

(b) Evaluate τr for in the +x 
direction: 

B
r

and 
mN107.2 3 ⋅×= −τr  

 
50 • A current-carrying wire is in the shape of an equilateral triangle of 
edge-length 8.0 cm.  The triangle lies in the z = 0 plane. The wire carries a current 
of 2.5 A. What is the magnitude of the torque on the wire if it is in a region with a 
uniform magnetic field of magnitude 0.30 T that points in the (a) +z direction and 
(b) +x  direction? 
 
Picture the Problem We can use Bμτ

rrr
×= to find the torque on the equilateral 

triangle in the two orientations of the magnetic field. 
 
Express the torque acting on the coil: 
 

Bμτ
rrr

×=  

Express the magnetic moment of the 
coil: 
 

kμ ˆIA±=
r  

Relate the area of the equilateral 
triangle to the length of its side: 
 ( ) 2

2
1

4
3

2
3

2
1

altitudebase

LLL

A

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

×=

 

 
Substitute to obtain: 
 kμ ˆ

4
3 2IL

±=
r  

 
(a) Evaluate τr for in the +z 
direction: 

B
r

( ) 0ˆˆ
4

3

ˆˆ
4

3

2

2

=×±=

×±=

kk

kkτ

IBL

BILr
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(b) Evaluate τr for in the +x 
direction: 

B
r

( )
( ) ( )( )

( )j

j

ikIBLiBkILτ

ˆmN101.2

ˆ
4

T30.0A5.2m080.03

ˆˆ
4

3ˆˆ
4

3

3

2

22

⋅×±=

±=

×±=×±=

−

r

 

and 
mN 101.2 3 ⋅×= −τr  

 
51 •• A rigid wire is in the shape of a square of edge-length L.  The square 
has mass m and the wire carries current I. The square lies on flat horizontal 
surface in a region where there is a magnetic field of magnitude B that is parallel 
to two edges of the square. What is the minimum value of B so that one edge of 
the square will lift off the surface? 
 
Picture the Problem One edge of the square will lift off the surface when the 
magnitude of the magnetic torque acting on it equals the magnitude of the 
gravitational torque acting on it. 
 
The condition for liftoff is that the 
magnitudes of the torques must be 
equal: 
 

gravmag ττ =                          (1) 

Express the magnetic torque acting 
on the square: 
 

BILB 2
mag == μτ  

Express the gravitational torque 
acting on one edge of the square: 
 

mgL=gravτ  

Substituting in equation (1) yields: mgLBIL =min
2 ⇒

IL
mgB =min  

  
52 •• A rectangular current-carrying 50-turn coil, as shown in Figure 26-36, 
is pivoted about the z axis. (a) If the wires in the z = 0 plane make an angle  
θ = 37º with the y axis, what angle does the magnetic moment of the coil make 
with the unit vector     ? (b) Write an expression for   in terms of the unit vectors 

 and    , where   is a unit vector in the direction of the magnetic moment.  

ˆ i   ̂ n
    ̂ i ˆ j   ̂ n
(c) What is the magnetic moment of the coil? (d) Find the torque on the coil when 
there is a uniform magnetic field   

r 
B  = 1.5 T  in the region occupied by the coil. 

(e) Find the potential energy of the coil in this field.  (The potential energy is zero 
when θ = 0.) 

  
ˆ j 
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Picture the Problem The diagram shows the coil as it would appear from along 
the positive z axis. The right-hand rule for determining the direction of n  has 
been used to establish n  as shown. We can use the geometry of this figure to 
determine θ and to express the unit normal vector n . The magnetic moment of the 
coil is given by and the torque exerted on the coil by

ˆ
ˆ

ˆ
nμ ˆNIA=

r
Bμτ
rrr

×= . Finally, 
we can find the potential energy of the coil in this field from Bμ

rr
⋅−=U . 

x

y

I

 n̂

θ

 °37

 
 
(a) Noting that θ and the angle 
whose measure is 37° have their 
right and left sides mutually 
perpendicular, we can conclude 
that: 
 

°= 37θ  

(b) Use the components of to 
express n in terms of and : 

n̂
ˆ î ĵ

ji

ji

jijninn yx

ˆ60.0ˆ80.0

ˆ602.0ˆ799.0

ˆ37sinˆ37cosˆˆˆ

−=

−=

°−°=+=

 

 
(c) Express the magnetic moment 
of the coil: 
 

nμ ˆNIA=
r

 

Substitute numerical values and evaluate μr : 
 

( )( )( )( ) ( ) ( )
( ) ( )ji

jijiμ
ˆmA25.0ˆmA34.0

ˆmA253.0ˆmA335.0ˆ602.0ˆ799.0cm0.48A75.150
22

222

⋅−⋅=

⋅−⋅=−=
r

 

 
(d) Express the torque exerted on 
the coil: 
 

Bμτ
rrr

×=  
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Substitute for and to obtain: μr B

r

 
( ) ( ){ } ( )

( )( ) ( )( ) ( )kjjji

jjiτ
ˆmN50.0ˆˆmN379.0ˆˆmN503.0

ˆT5.1ˆmA253.0ˆmA335.0 22

⋅=×⋅−×⋅=

×⋅−⋅=
r

 

 
(e) Express the potential energy of 
the coil in terms of its magnetic 
moment  and the magnetic field: 
 

Bμ
rr

⋅−=U  

Substitute for and and evaluate U: μr B
r

 
( ) ( ){ } ( )
( )( ) ( )( ) J38.0ˆˆmN379.0ˆˆmN503.0

ˆT5.1ˆmA253.0ˆmA335.0 22

=⋅⋅+⋅⋅−=

⋅⋅−⋅−=

jjji

jjiU
 

 
53 •• [SSM] For the coil in Problem 52 the magnetic field is now  
    
r 
B  = 2.0 T    . Find the torque exerted on the coil when  is equal to (a) , (b) ˆ j n̂ ˆ i ˆ j , 

(c) −  ĵ , and (d) 
ˆ i 
2

+
ˆ j 
2

. 

  
Picture the Problem We can use the right-hand rule for determining the direction 
of  to establish the orientation of the coil for value of and n̂ n̂ Bμτ

rrr
×= to find the 

torque exerted on the coil in each orientation. 
 
(a) The orientation of the coil 
is shown to the right:  

x

y

 n̂

 
Evaluate τr  for  = 2.0 T  and 

 = : 
B
r

ĵ
n̂ î
 

( )( )( ) ( )
( )( ) ( )

( )k

kji

ji

BnNIABμτ

ˆmN84.0

ˆmN840.0ˆˆmN840.0

ˆT0.2ˆcm0.48A75.150

ˆ
2

⋅=

⋅=×⋅=

×=

×=×=
rrrr
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(b) The orientation of the coil is 
shown to the right: 

x

y

 n̂

 
Evaluate τr  for  = 2.0 T  and 

 = : 
B
r

ĵ
n̂ ĵ
 

( )( )( ) ( )
( )( )

0

ˆˆmN840.0

ˆT0.2ˆcm0.48A75.150

ˆ
2

=

×⋅=

×=

×=×=

jj

jj

BnNIABμτ
rrrr

 

 
(c) The orientation of the coil is 
shown to the right: x

y

 n̂
 

Evaluate τ  for  = 2.0 T  and 
 = − : 

r B
r

ĵ
n̂ ĵ
 

( )( )( ) ( )
( )( )
0

ˆˆmN840.0

ˆT0.2ˆcm0.48A75.150

ˆ
2

=

×⋅−=

×−=

×=×=

jj

jj

BnNIABμτ
rrrr

 

 
(d) The orientation of the coil is 
shown to the right: 

x

y

 n̂

 
Evaluate τr  for  = 2.0 T  and 

 = ( + )/
B
r

ĵ
n̂ î ĵ 2 : 
 

( )( )( )( ) ( )

( )( )
( )( )

( )k

jj

ji

jji

BnNIABμτ

ˆmN59.0

ˆˆmN594.0

ˆˆmN594.0

ˆT0.2ˆˆ
2

cm0.48A75.150

ˆ
2

⋅=

×⋅+

×⋅=

×+=

×=×=
rrrr

 
54 •• A small bar magnet has a length equal to 6.8 cm and its magnetic 
moment is aligned with a uniform magnetic field of magnitude 0.040 T.  The bar 
magnet is then rotated through an angle of 60 about an axis perpendicular to its 
length The observed torque on the bar magnet has a magnitude of 0.10 N⋅m.  



                                                                             The Magnetic Field 
 

 

2537

(a) Find the magnetic moment of the magnet. (b) Find the potential energy of the 
magnet. 
 
Picture the Problem Because the small magnet can be modeled as a magnetic 
dipole; we can use the equation for the torque on a current loop to find its 
magnetic moment. 
 
(a) Express the magnitude of the 
torque acting on the magnet: 
 

θμτ sinB=  

Solve for μ to obtain: 
 θ

τμ
sinB

=  

 
Substitute numerical values and 
evaluate μ: ( )

2mA9.2
60sinT040.0

mN10.0
⋅=

°
⋅

=μ  

 
(b) The potential energy of the 
magnet is given by: 
 

θμμ cosBBU −=⋅−=
rr  

Substitute numerical values and 
evaluate U: 

( )( )
mJ 58

60cosT 040.0mA 887.2 2

−=

°⋅−=U
 

 
55 •• A wire loop consists of two semicircles connected by straight 
segments (Figure 26-37). The inner and outer radii are 0.30 m and 0.50 m, 
respectively. A current of 1.5 A is in this wire and the current in the outer 
semicircle is in the clockwise direction. What is the magnetic moment of this 
current loop? 
  
Picture the Problem We can use the definition of the magnetic moment to find 
the magnetic moment of the given current loop and a right-hand rule to find its 
direction. 
 
Using its definition, express the 
magnetic moment of the current 
loop: 
 

IA=μ  

Express the area bounded by the 
loop: 
 

( ) ( )2
inner

2
outer

2
inner

2
outer2

1

2
RRRRA −=−=

πππ

 
Substitute for A to obtain: 
 

( )2
inner

2
outer2

RRI
−=

πμ  
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Substitute numerical values and 
evaluate μ: 

( ) ( ) ( )[ ]
2

22

mA38.0

m30.0m50.0
2

A5.1

⋅=

−=
πμ

 

 
Apply the right-hand rule for determining the direction of the unit normal vector 
(the direction of μ) to conclude that μr points into the page. 
 
56 •• A wire of length L is wound into a circular coil that has N turns. Show 
that when the wire carries a current I, the magnetic moment of the coil has a 
magnitude given by IL2/(4πN). 
  
Picture the Problem We can use the definition of the magnetic moment of a coil 
to find the magnetic moment of a wire of length L that is wound into a circular 
coil of N loops. We can find the area of the coil from its radius R and we can find 
R by dividing the length of the wire by the number of turns. 
 
Use its definition to express the 
magnetic moment of the coil: 
 

NIA=μ                                    (1) 

Express the circumference of each 
loop: 
 

R
N
L π2= ⇒

N
LR
π2

=  

where R is the radius of a loop. 
 

The area of the coil is given by: 
 

2RA π=  
 

Substituting for A and simplifying 
yields: 
 

2

22

42 N
L

N
LA

ππ
π =⎟

⎠
⎞

⎜
⎝
⎛=  

Substitute for A in equation (1) and 
simplify to obtain: N

IL
N

LNI
ππ

μ
44

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

  
57 •• [SSM] A particle that has a charge q and a mass m moves with 
angular velocity ω in a circular path of radius r. (a) Show that the average current 
created by this moving particle is ωq/(2π) and that the magnetic moment of its 
orbit has a magnitude of   

1
2 qωr2 . (b) Show that the angular momentum of this 

particle has the magnitude of mr2ω and that the magnetic moment and angular 

momentum vectors are related by 
  

r 
μ =

q
2m

⎛ 
⎝ 

⎞ 
⎠ 

r 
L , where L

r
is the angular 

momentum about the center of the circle. 
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Picture the Problem We can use the definition of current and the relationship 
between the frequency of the motion and its period to show that I = qω/2π . We 
can use the definition of angular momentum and the moment of inertia of a point 
particle to show that the magnetic moment has the magnitude .2

2
1 rqωμ =  Finally, 

we can express the ratio of μ to L and the fact that μr and L
r

are both parallel to ω
r

 
to conclude that  = (q/2m)μr L

r
. 

 
(a) Using its definition, relate the 
average current to the charge passing 
a point on the circumference of the 
circle in a given period of time: 
 

qf
T
q

t
qI ==

Δ
Δ

=  

Relate the frequency of the motion 
to the angular frequency of the 
particle: 
 

π
ω
2

=f  

Substitute for f to obtain: 
 π

ω
2
qI =  

 
From the definition of the magnetic 
moment we have: 
 

( ) 2
2
12

2
rqrqIA ωπ

π
ωμ =⎟

⎠
⎞

⎜
⎝
⎛==  

(b) Express the angular momentum 
of the particle: 
 

ωIL =  

The moment of inertia of the particle 
is: 
 

2mrI =  

Substituting for I yields: 
 

( ) ωω 22 mrmrL ==  

 
Express the ratio of μ to L and 
simplify to obtain: 
 

m
q

mr
rq

L 22

2
2
1

==
ω

ωμ
⇒ L

m
q

2
=μ  

 
Because and μr L

r
are both parallel to 

: ωr
Lμ
rr

m
q

2
=  

  
58 ••• A hollow non-conducting cylinder has length L and inner and outer 
radii Ri A uniformly charged non-conducting cylindrical shell (Figure 26-38) has 
length L, inner and outer radii Ri and Ro, respectively, a charge density ρ and an 
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angular velocity ω about its axis. Derive an expression for the magnetic moment 
of the cylinder. 
 
Picture the Problem We can express the magnetic moment of an element of 
charge dq in a cylinder of length L, radius r, and thickness dr, relate this charge to 
the length, radius, and thickness of the cylinder, express the current due to this 
rotating charge, substitute for A and dI in our expression for μ and then integrate 
to complete our derivation for the magnetic moment of the rotating cylinder as a 
function of its angular velocity. 
 
Express the magnetic moment of an 
element of charge dq in a cylinder of 
length L, radius r, and thickness dr: 
 

dIrAdId 2πμ ==                    (1) 
 

Relate the charge dq in the cylinder 
to the length of the cylinder, its 
radius, and thickness: 
  

rdrLdq ρπ2=  
 

The current due to this rotating 
charge is given by: 
 

( ) drrLrdrLdqdI ωρρπ
π

ω
π

ω
=== 2

22
 

Substitute for dI in equation (1) and 
simplify to obtain: 
 

( ) drrLrdrLrd 32 ρπωρωπμ ==  
 

Integrate r from Ri to R0 to obtain: ( )4
i

4
04

13
0

i

RRLdrrL
R

R

−== ∫ ρπωρπωμ  

 
Because and μr ω

r
 are parallel: ( )ωμ

rr 4
i

4
04

1 RRL −= ρπ  

 
59 ••• [SSM] A uniform non-conducting thin rod of mass m and length L 
has a uniform charge per unit length λ and rotates with angular speed ω about an 
axis through one end and perpendicular to the rod. (a) Consider a small segment 
of the rod of length dx and charge dq = λdr at a distance r from the pivot (Figure 
26-40). Show that the average current created by this moving segment is ωdq/(2π) 
and show that the magnetic moment of this segment is 1

2 λωr2dx . (b) Use this to 
show that the magnitude of the magnetic moment of the rod is 1

6 λωL3 . (c) Show 
that the magnetic moment   

r 
μ  and angular momentum   

r 
L  are related by 

  

r 
μ =

Q
2m

⎛ 
⎝ 

⎞ 
⎠ 

r 
L , where Q is the total charge on the rod.  
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Picture the Problem We can follow the step-by-step outline provided in the 
problem statement to establish the given results.  
 
(a) Express the magnetic moment 
of the rotating element of charge: 
 

AdId =μ                                  (1) 

The area enclosed by the rotating 
element of charge is: 
 

2xA π=  

Express dI in terms of dq and Δt: 
t

dx
t

dqdI
Δ

=
Δ

=
λ  where Δt is the time 

required for one revolution.  
 

The time Δt required for one 
revolution is: 
 

ω
π21

==Δ
f

t  

Substitute for Δt and simplify to 
obtain: 
 

dxdI
π

λω
2

=  

 
Substituting for dI in equation (1) 
and simplifying yields: 
 

( ) dxxdxxd 2
2
12

2
λω

π
λωπμ =⎟

⎠
⎞

⎜
⎝
⎛=  

(b) Integrate dμ from x = 0 to x = L  
to obtain: 

3
6
1

0

2
2
1 Ldxx

L

λωλωμ == ∫  

 
(c) Express the angular momentum 
of the rod: 
 

ωIL =  
where L is the angular momentum of 
the rod and I is the moment of inertia of 
the rod with respect to the point about 
which it is rotating. 
 

Express the moment of inertia of the 
rod with respect to an axis through its 
end: 
 

2
3
1 mLI =  

where L is now the length of the rod. 

Substitute to obtain: ω2
3
1 mLL =  
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Divide the expression for μ by L to 
obtain: m

L
mL

L
L 22

3
1

3
6
1 λ

ω
λωμ

==  

or, because Q = λL, 

L
m

Q
2

=μ  

 
Because ω

r
and are parallel: ωL rr

I= Lμ
rr

M
Q

2
=  

 
60 ••• A non-uniform, non-conducting thin disk of mass m, radius R, and 
total charge Q has a charge per unit area σ  that varies as σ0r/R and a mass per 
unit area σm that is given by (m/Q) σ. The disk rotates with angular speed ω about 
its central axis. (a) Show that the magnetic moment of the disk has a magnitude 

  
1
5 πωσ 0R

4  which can be alternatively rewritten as 3
10 ωQR 2 . (b) Show that the 

magnetic moment   
r 
μ  and angular momentum   

r 
L  are related by Lμ

rr

M
Q

2
= . 

 
Picture the Problem We can express the magnetic moment of an element of 
current dI due to a ring of radius r, and thickness dr with charge dq. Integrating 
this expression from r = 0 to r = R will give us the magnetic moment of the disk. 
We can integrate the charge on the ring between these same limits to find the total 
charge on the disk and divide μ by Q to establish the relationship between them. 
In Part (b) we can find the angular momentum of the disk by first finding the 
moment of inertia of the disk by integrating r2dm between the same limits used 
above. 

 
 
(a) Express the magnetic moment 
of an  element of the disk: 
  

AdId =μ  

The area enclosed by the rotating 
element of charge is: 
 

2xA π=  



                                                                             The Magnetic Field 
 

 

2543

Express the element of current 
dI: 

( ) drr
R

rdr
R
r

dAf
t

dA
t

dqdI

20
0 2

2
ωσ

πσ
π

ω

σσ

=⎟
⎠
⎞

⎜
⎝
⎛=

=
Δ

=
Δ

=
 

 
Substitute for A and dI and simplify 
to obtain: 
 

drr
R

drr
R

rd 40202 πωσωσπμ ==  

Integrate dμ from r = 0 to r = R to 
obtain: 
 

4
05

1

0

40 Rdrr
R

R

πωσ
πωσ

μ == ∫       (1) 

The charge dq within a distance r of 
the center of the disk is given by: 
 

drr
R

dr
R
rrdrrdq

20

0

2

22

πσ

σπσπ

=

⎟
⎠
⎞

⎜
⎝
⎛==

 

 
Integrate dq from r = 0 to r = R to 
obtain: 

2
03

2

0

202 Rdrr
R

Q
R

πσπσ
== ∫                (2) 

 
Divide equation (1) by Q to obtain: 

10
3 2

2
03

2

4
05

1 R
R
R

Q
ω

πσ
πωσμ

==  

and 
2

10
3 RQωμ =                                  (3) 

 
(b) Express the moment of inertia 
of an element of mass dm of the 
disk: 
 

( )

drr
QR
m

drr
Q
R
rm

rdr
Q
mr

dArdmrdI

40

3
0

2

m
22

2

2

2

σπ

σπ

πσ

σ

=

⎟
⎠
⎞

⎜
⎝
⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

 

 
Integrate dI from r = 0 to r = R to 
obtain: 
 

40

0

40

5
22 R

Q
mdrr

QR
mI

R σπσπ
== ∫  
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Divide I by equation (2) and 
simplify to obtain: 
 

2
2

03
2

40

5
35

2

R
Q
m

R

R
Q

m

Q
I

==
πσ

σπ

 

and 
2

5
3 RmI =  

 
Express the angular momentum of 
the disk: 
 

ωω 2
5
3 mRIL ==  

Divide equation (3) by L and 
simplify to obtain: m

Q
mR

RQ
L 22

5
3

2
10
3

==
ω

ωμ  ⇒ L
m

Q
2

=μ  

 
Because  is in the same direction 
as ω

μr
r

: 
Lμ
rr

m
Q
2

=  

 
61 ••• [SSM] A spherical shell of radius R carries a constant surface charge 
density σ. The shell rotates about its diameter with angular speed ω. Find the 
magnitude of the magnetic moment of the rotating shell. 
 
Picture the Problem We can use the result of Problem 57 to express μ as a 
function of Q, M, and L. We can then use the definitions of surface charge density 
and angular momentum to substitute for Q and L to obtain the magnetic moment 
of the rotating shell. 
 
Express the magnetic moment of the 
spherical shell in terms of its mass, 
charge, and angular momentum:  
 

L
M
Q

2
=μ  

Use the definition of surface charge 
density to express the charge on the 
spherical shell: 
 

24 RAQ πσσ ==  
 

Express the angular momentum of 
the spherical shell: 
 

ωω 2
3
2 MRIL ==  

 

Substitute for L and simplify to 
obtain: ωπσωπσμ 4

3
42

2

3
2

2
4 RMR

M
R

=⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  
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62 ••• A uniform solid uniformly charged sphere of radius R has a volume 
charge density ρ. The sphere rotates about an axis through its center with angular 
speed ω. Find the magnitude of the magnetic moment of this rotating sphere. 
  
Picture the Problem We can use the result of Problem 57 to express μ as a 
function of Q, M, and L. We can then use the definitions of volume charge density 
and angular momentum to substitute for Q and L to obtain the magnetic moment 
of the rotating sphere. 
 
Express the magnetic moment of the 
solid sphere in terms of its mass, 
charge, and angular momentum:  
 

L
M
Q

2
=μ  

Use the definition of volume charge 
density to express the charge of the 
sphere: 
 

3
3
4 RVQ πρρ ==  

 

Express the angular momentum 
of the solid sphere: 
 

ωω 2
5
2 MRIL ==  

 

Substitute for Q and L and 
simplify to obtain: 
 

ωπρω
πρ

μ 5
15
42

3
3
4

5
2

2
RMR

M
R

=⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

 
63 ••• A uniform thin uniformly charged disk of mass m, radius R, and 
uniform surface charge density σ rotates with angular speed ω about an axis 
through its center and perpendicular to the disk (Figure 26-40). The disk in in a 
region with a uniform magnetic field   

r 
B  that makes an angle θ with the rotation 

axis. Calculate (a) the magnitude of the torque exerted on the disk by the 
magnetic field and (b) the precession frequency of the disk in the magnetic field.  
 
Picture the Problem We can use its definition to express the torque acting on the 
disk, Example 26-11 to express the magnetic moment of the disk, and the 
definition of the precession frequency to find the precession frequency of the disk.

 
(a) The magnitude of the net torque 
acting on the disk is: 
 

τ = μBsinθ  
where μ is the magnetic moment of the 
disk. 
 

From Example 26-11: ωπσμ 4
4
1 r=  

 
Substitute for μ in the expression for 
τ  to obtain: 

θωπστ sin4
4
1 Br=  

 



   Chapter 26    
 

 

2546 

(b) The precession frequency Ω  is 
equal to the ratio of the torque 
divided by the spin angular 
momentum: 
   

ω
τ
I

=Ω  

For a solid disk, the moment of 
inertia is given by: 
 

2
2
1 mrI =  

Substitute for τ  and I to obtain: 
θπσ

ω
θωπσ

sin
2

sin
Ω

2

2
2
1

4
4
1

m
Br

mr
Br

==  

 
Remarks: Note that the precession frequency is independent of ω. 
 
The Hall Effect 
 
64 • A metal strip that is 2.00-cm wide and 0.100-cm thick carries a 
current of 20.0 A in region with a uniform magnetic field of 2.00 T, as shown in 
Figure 26-41. The Hall voltage is measured to be 4.27 μV. (a) Calculate the drift 
speed of the free electrons in the strip. (b) Find the number density of the free 
electrons in the strip. (c) Is point a or point b at the higher potential? Explain your 
answer. 
 
Picture the Problem We can use the Hall effect equation to find the drift speed 
of the electrons and the relationship between the current and the number density 
of charge carriers to find n. In (c) we can use a right-hand rule to decide whether a 
or b is at the higher potential. 
 
(a) Express the Hall voltage as a 
function of the drift speed of the 
electrons in the strip: 
 

BwvV dH = ⇒
Bw
Vv H

d =  

Substitute numerical values and 
evaluate vd: ( )( )

mm/s107.0

mm/s1068.0
cm00.2T2.00

V27.4
d

=

==
μv

 

 
(b) Express the current as a 
function of the number density of 
charge carriers: 
 

dnAqvI = ⇒
dAqv

In =  

Substitute numerical values and evaluate n: 
 

( )( )( )( )
328

19 m1085.5
mm/s1068.0C10.6021cm100.0cm2.00

A0.20 −
− ×=

×
=n  



                                                                             The Magnetic Field 
 

 

2547

(c) Apply a right-hand rule to l
r

I and B
r

to conclude that positive charge will 
accumulate at a and negative charge at b and therefore ba VV > . The Hall effect 
electric field is directed from a toward b. 
 
65 •• [SSM] The number density of free electrons in copper is 8.47 × 1022 
electrons per cubic centimeter. If the metal strip in Figure 26-41 is copper and the 
current is 10.0 A, find (a) the drift speed vd and (b) the potential difference  
Va – Vb. Assume that the magnetic field strength is 2.00 T. 
 
Picture the Problem We can use AnqvI d= to find the drift speed and 

to find the potential difference VBwvV dH = a – Vb . 
 
(a) Express the current in the 
metal strip in terms of the drift 
speed of the electrons: 
 

AnqvI d= ⇒
nqA

Iv =d  

 
 

Substitute numerical values and evaluate vd: 
 

( )( )( )( )
m/s1068.3

m/s10685.3
cm100.0cm00.2C10602.1cm108.47

A0.10

5

5
19322d

−

−
−−

×=

×=
××

=v
 

 
(b) The potential difference ba VV −  is 
the Hall voltage and is given by: 
 

BwvVVV ba dH ==−  

Substitute numerical values and evaluate ba VV − : 
 

( )( )( ) V47.1cm00.2T00.2m/s10685.3 5 μ=×=− −
ba VV  

 
66 •• A copper strip has 8.47 × 1022 electrons per cubic centimeter is  
2.00-cm wide, is 0.100-cm thick, and is used to measure the magnitudes of 
unknown magnetic fields that are perpendicular to it. Find the magnitude of B 
when the current is 20.0 A and the Hall voltage is (a) 2.00 μV, (b) 5.25 μV, and 
(c) 8.00 μV. 
 
Picture the Problem We can use BwvV dH = to express B in terms of VH and 

 to eliminate the drift velocity vAnqvI d= d and derive an expression for B in 
terms of VH, n, and t. 
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Relate the Hall voltage to the drift 
velocity and the magnetic field: 
 

BwvV dH = ⇒
wv

VB
d

H=  

Express the current in the metal strip 
in terms of the drift velocity of the 
electrons: 
 

AnqvI d= ⇒
nqA

Iv =d  

 
 

Substitute for vd and simplify to 
obtain: 

H

HHH

V
I

nqt

Iw
nqwtV

Iw
nqAV

w
nqA

I
VB

=

===

 

 
Substitute numerical values and simplify to obtain: 
 

( )( )( ) ( ) H
25H

19322

s/m107845.6
A0.20

cm100.0C10602.1cm1047.8 VVB ×=
××

=
−−

 

 
(a) Evaluate B for VH = 2.00 μV: 
 

( )( )
T36.1

V00.2s/m107845.6 25

=

×= μB
 

 
(b) Evaluate B for VH = 5.25 μV: 
 

( )( )
T56.3

V25.5s/m107845.6 25

=

×= μB
 

 
(c) Evaluate B for VH = 8.00 μV: 
 

( )( )
T43.5

V00.8s/m107845.6 25

=

×= μB
 

 
67 •• Because blood contains ions, moving blood develops a Hall voltage 
across the diameter of an artery. A large artery that has a diameter of 0.85 cm can 
have blood flowing through it with a maximum speed of 0.60 m/s. If a section of 
this artery is in a magnetic field of 0.20 T, what is the maximum potential 
difference across the diameter of the artery? 
  
Picture the Problem We can use BwvV dH = to find the Hall voltage developed 
across the diameter of the artery. 
 
Relate the Hall voltage to the flow 
speed of the blood vd, the diameter of 
the artery w, and the magnetic field 
B: 

BwvV dH =  
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Substitute numerical values and 
evaluate VH: 

( )( )( )
mV0.1

cm85.0T20.0m/s60.0H

=

=V
 

 
68 •• The Hall coefficient RH is a property of conducting material (just as 
resistivity is). It is defined as RH = Ey/(JxBBz), where Jx is x component of the 
current density in the material, BzB  is the z component of the magnetic field, and Ey 
is the y component resulting Hall electric field. Show that the Hall coefficient is 
equal to 1/(nq), where q is the charge of the charge carriers  (–e if they are 
electrons). (The Hall coefficients of monovalent metals, such as copper, silver, 
and sodium are therefore negative.) 
 
Picture the Problem Let the width of the slab be w and its thickness t. We can 
use the definition of the Hall electric field in the slab, the expression for the Hall 
voltage across it, and the definition of current density to show that the Hall 
coefficient is also given by 1/(nq). 
 
The Hall coefficient is: 
 zx

y

BJ
E

R =  

 
Using its definition, express the 
Hall electric field in the slab: 
 

w
VEy

H=  

The current density in the slab is: 
dnqv

wt
IJ x ==  

 
Substitute for Ey and Jx and simplify 
to obtain: 

zz wBnqv
V

Bnqv
w

V

R
d

H

d

H

==  

 
Express the Hall voltage in terms of 
vd, B, and w: 

wBvV zdH =  
 
 

Substitute for VH and simplify to 
obtain: nqwBnqv

wBvR
z

z 1

d

d ==  

 
69 •• [SSM] Aluminum has a density of 2.7 × 103 kg/m3 and a molar mass 
of 27 g/mol. The Hall coefficient of aluminum is R = –0.30 × 10–10 m3/C. (See 
Problem 68 for the definition of R.) What is the number of conduction electrons 
per aluminum atom? 
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Picture the Problem We can determine the number of conduction electrons per 
atom from the quotient of the number density of charge carriers and the number of 
charge carriers per unit volume. Let the width of a slab of aluminum be w and its 
thickness t. We can use the definition of the Hall electric field in the slab, the 
expression for the Hall voltage across it, and the definition of current density to 
find n in terms of R and q and MNn Aa ρ= , to express na. 
 
Express the number of electrons per 
atom N: 
 

an
nN =                                         (1)         

where n is the number density of charge 
carriers and na is the number of atoms 
per unit volume. 
 

From the definition of the Hall 
coefficient we have: 
 

zx

y

BJ
E

R =  

 
Express the Hall electric field in the 
slab: 
 

w
VEy

H=  

The current density in the slab is: 
dnqv

wt
IJ x ==  

 
Substitute for Ey and Jx in the 
expression for R to obtain: 

zz wBnqv
V

Bnqv
w

V

R
d

H

d

H

==  

 
Express the Hall voltage in terms 
of vd, B, and w: 

wBvV zdH =  
 
 

Substitute for VH and simplify to 
obtain: nqwBnqv

wBvR
z

z 1

d

d ==   ⇒ 
Rq

n 1
=   (2)        

 
Express the number of atoms na per 
unit volume: 
 

M
Nn A

a ρ=                                    (3) 

Substitute equations (2) and (3) in 
equation (1) to obtain: 
 

ANqR
MN
ρ

=  
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Substitute numerical values and evaluate N: 
 

( )

4

mol
atoms106.022

m
kg107.2

C
m100.30C101.602

mol
g27

23
3

3
3

1019

≈

⎟
⎠
⎞

⎜
⎝
⎛ ×⎟

⎠
⎞

⎜
⎝
⎛ ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×−×−

=
−−

N
 

 
General Problems 
 
70 • A long wire parallel to the x axis carries a current of 6.50 A in the +x 
direction. The wire occupies a region that has a uniform magnetic field  
    
r 
B  = 1.35 T    

ˆ j . Find the magnetic force per unit length on the wire. 
  
Picture the Problem We can use the expression for the magnetic force acting on 
a wire ( ) to find the force per unit length on the wire. BF

r
l
rr

×= I
 
Express the magnetic force on the 
wire: 
 

BF
r

l
rr

×= I  
 

Substitute for and to obtain: l
r

I B
r ( ) ( ) jiF ˆT35.1ˆA50.6 ×= l

r
 

and 

( ) ( jiF ˆT35.1ˆA50.6 ×=
l

 

)
r

 

 
Simplify to obtain: ( )( ) ( )kjiF ˆN/m78.8ˆˆN/m78.8 =×=

l

r

 

 
71 • An alpha particle (charge +2e) travels in a circular path of radius  
0.50 m in a region with a magnetic field whose magnitude is 0.10 T. Find (a) the 
period, (b) the speed, and (c) the kinetic energy (in electron volts) of the alpha 
particle. (The mass of an alpha particle is 6.65 × 10–27 kg.) 
 
Picture the Problem We can express the period of the alpha particle’s motion in 
terms of its orbital speed and use Newton’s 2nd law to express its orbital speed in 
terms of known quantities. Knowing the particle’s period and the radius of its 
motion we can find its speed and kinetic energy. 
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(a) Relate the period of the alpha 
particle’s motion to its orbital 
speed: 
 

v
rT π2

=                                       (1) 

Apply Newton’s 2nd law to the alpha 
particle to obtain: 
 

r
vmqvB

2

= ⇒
m

qBrv =  

 
Substitute for v in equation (1) and 
simplify to obtain: qB

m

m
qBr

rT ππ 22
==  

 
Substitute numerical values and 
evaluate T: 
 

( )
( )( )

s3.1

s30.1
T10.0C10602.12

kg1065.62
19

27

μ

μπ

=

=
×

×
= −

−

T

(b) Solve equation (1) for v: 
T

rv π2
=  

 
Substitute numerical values and 
evaluate v: 
 

( )

m/s104.2

m/s10409.2
s30.1
m50.02

6

6

×=

×==
μ

πv
 

 
(c) The kinetic energy of the alpha 
particle is: 
 ( )( )

MeV12.0

J101.602
eV1J10930.1

m/s10409.2kg1065.6

19
14

2627
2
1

2
2
1

=

×
××=

××=

=

−
−

−

mvK

 

 
72 •• The pole strength qm of a bar magnet is defined by l

rr
mq=μ , where  

r
μ  

is the magnetic moment of the magnet and 
r
l  is the position of the north-pole end 

of the magnet relative to the south-pole end. Show that the torque exerted on a bar 
magnet in a uniform magnetic field   

r 
B  is the same as if a force Bq

r
m+  is exerted 

on the north-pole of the magnetic and a force Bq
r

m−  is exerted on the south-pole. 
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Picture the Problem The configuration 
of the magnet and field are shown in 
the figure. We’ll assume that a force 

B
r

mq+ is exerted on the north-pole end 
and a force B

r
mq−  is exerted on the 

south-pole end and show that this 
assumption leads to the familiar 
expression for the torque acting on a 
magnetic dipole. 

B

θ

μ

 

 
Assuming that a force B

r
mq+ is 

exerted on the north-pole end and a 
force B

r
mq−  is exerted on the south- 

pole end, express the net torque 
acting on the bar magnet: 
 

θ

θθτ

sin

sin
2

sin
2
m

mm

l

ll

Bq

BqBq

=

−
−=

 

 

θμθ
μ

τ sinsin BB == l
l

r

 
Substitute for qm to obtain: 

or  
Bμτ
rrr

×=  

 
73 •• [SSM] A particle of mass m and charge q enters a region where there 
is a uniform magnetic field     

r 
  parallel with the x axis. The initial velocity of the 

particle is         , so the particle moves in a helix. (a) Show that the 
radius of the helix is r = mv

B
r 
v = v0x

ˆ i + v0y
ˆ j 

0y/qB. (b) Show that the particle takes a time  
Δt = 2πm/qB to complete each turn of the helix. (c) What is the x component of 
the displacement of the particle during time given in Part (b)?  
 
Picture the Problem We can use BvF

rrr
×= q to show that motion of the particle 

in the x direction is not affected by the magnetic field. The application of 
Newton’s 2nd law to motion of the particle in yz plane will lead us to the result 
that r = mv0y /qB. By expressing the period of the motion in terms of v0y we can 
show that the time for one complete orbit around the helix is t = 2πm/qB. 
 
(a) Express the magnetic force acting 
on the particle: 
 

BvF
rrr

×= q  
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Substitute for vr and and simplify 
to obtain: 

B
r

 

( )
( ) (

kk

ijii

ijiF

ˆˆ0

ˆˆˆˆ

ˆˆˆ

00

00

00

BqvBqv

BqvBqv

Bvvq

yy

yx

yx

−=−=

×+×=

×+=

)
r

 

i.e., the motion in the direction of the 
magnetic field (the x direction) is not 
affected by the field. 
 

Apply Newton’s 2nd law to the 
particle in the plane perpendicular to 

(i.e., the yz plane): î
 

r
v

mBqv y
y

2
0

0 =                           (1) 

Solving for r yields: 
qB

mv
r y0=  

 
(b) Relate the time for one orbit 
around the helix to the particle’s 
orbital speed: 
 

yv
rt

0

2Δ π
=                                     

Solve equation (1) for v0y: 
 m

qBrv y =0  

 
Substitute for v0y and simplify to 
obtain: 
 

qB
m

m
qBr

rt ππ 22Δ ==  

 
(c) Because, as was shown in Part 
(a), the motion in the direction of the 
magnetic field (the x direction) is not 
affected by the field, the x 
component of the displacement of 
the particle as a function of t is: 
 

( ) tvtx xo=  

For t = : tΔ ( )
qB
mv

qB
mvtx x

x
o

o
22 ππ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ  

 
74 •• A metal crossbar of mass m rides on a parallel pair of long horizontal 
conducting rails separated by a distance L and connected to a device that supplies 
constant current I to the circuit, as shown in Figure 26-42. The circuit is in a 
region with a uniform magnetic field B

r
 whose direction is vertically downward. 
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There is no friction and the bar starts from rest at t = 0. (a) In which direction will 
the bar start to move? (b)  Show that at time t the bar has a speed of (BIL/m)t.  
 
Picture the Problem We can use a constant-acceleration equation to relate the 
velocity of the crossbar to its acceleration and Newton’s 2nd law to express the 
acceleration of the crossbar in terms of the magnetic force acting on it. We can 
determine the direction of motion of the crossbar using a right-hand rule or, 
equivalently, by applying BF

r
l
rr

×= I .  
 

atvv += 0  
or, because v0 = 0, 

atv =  

(a) Using a constant-acceleration 
equation, express the velocity of the 
bar as a function of its acceleration 
and the time it has been in motion: 
 
Use Newton’s 2nd law to express the 
acceleration of the rail: 
 

m
Fa =  

where F is the magnitude of the 
magnetic force acting in the direction of 
the crossbar’s motion. 
 

Substitute for a  to obtain: 
 

t
m
Fv =  

 
Express the magnetic force acting on 
the current-carrying crossbar: 
 

ILBF =  
 

Substitute to obtain: 
 t

m
ILBv =  

 
(b) Because the magnetic force is to the right and the crossbar starts from rest, the 
motion of the crossbar will also be toward the right.  
 
75 •• [SSM] Assume that the rails Problem 74 are frictionless but tilted 
upward so that they make an angle θ with the horizontal, and with the current 
source attached to the low end of the rails.  The magnetic field is still directed 
vertically downward. (a) What minimum value of B is needed to keep the bar 
from sliding down the rails? (b) What is the acceleration of the bar if B is twice 
the value found in Part (a)? 
 
Picture the Problem Note that with the rails tilted, F

r
 still points horizontally to 

the right (I, and hence , is out of the page). Choose a coordinate system in 
which down the incline is the positive x direction. Then we can apply a condition 

l
r
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for translational equilibrium to find the vertical magnetic field B
r

 needed to keep 
the bar from sliding down the rails. In Part (b) we can apply Newton’s 2nd law to 
find the acceleration of the crossbar when B is twice its value found in (a). 
 

F

B
Mg

Fn

θ

θ

 
 
(a) Apply to the crossbar 

to obtain: 

0=∑ xF

 

0cossin =− θθ BImg l  

Solving for B yields:  
θtan

lI
mgB = and vˆtan uB θ

l

r

I
mg

−=   

where  is a unit vector in the vertical 
direction. 

vû

 
(b) Apply Newton’s 2nd law to the 
crossbar to obtain: 
 

mamgBI =− θθ sincos'l  

Solving for a yields: 
 

θθ sincos g
m
B'Ia −=

l  

 
Substitute B′ = 2B and simplify to 
obtain: 
 

θθθ

θθ
θ

sinsinsin2

sincos
tan2

ggg

g
m

I
mgI

a

=−=

−= l
l

 

 
Note that the direction of the acceleration is up the incline. 
 
76 •• A long, narrow bar magnet that has magnetic moment   

r 
μ  parallel to 

its long axis is suspended at its center as a frictionless compass needle. When 
placed in region with a horizontal magnetic field   

r 
B , the needle lines up with the 

field. If it is displaced by a small angle θ, show that the needle will oscillate about 



                                                                             The Magnetic Field 
 

 

2557

its equilibrium position with frequency f = 1
2π

μB
I

, where I is the moment of 

inertia of the needle about the point of suspension. 
 
Picture the Problem We’re being asked to show that, for small displacements 
from equilibrium, the bar magnet executes simple harmonic motion. To show its 
motion is SHM we need to show that the bar magnet experiences a linear 
restoring torque when displaced from equilibrium. We can accomplish this by 
applying Newton’s 2nd law in rotational form and using a small angle 
approximation to obtain the differential equation for simple harmonic motion. 
Once we have the differential equation of motion we can identify ω and express f. 
 
Apply Newton’s 2nd law to the bar 
magnet: 
 

2

2

sin
dt
dIB θθμ =−  

where the minus sign indicates that the 
torque acts in such a manner as to align 
the magnet with the magnetic field and 
I is the moment of inertia of the 
magnet. 
 

For small displacements from 
equilibrium, θ << 1 and: 

θθ ≈sin  
 
 

Hence our differential equation of 
motion becomes: 
 

θμθ B
dt
dI −=2

2

 

 
Thus for small displacements from 
equilibrium we see that the 
differential equation describing the 
motion of the bar magnet is the 
differential equation of simple 
harmonic motion. Solve this 
equation for d2θ/dt2 to obtain: 
 

θωθμθ 2
2

2

−=−=
I
B

dt
d  

where 
I
Bμω =  

Relate f to ω to obtain: 
 I

Bf μ
ππ

ω
2
1

2
==  

   
77 •• A straight conducting wire whose length is 20 m is parallel to the y 
axis and is moving in the +x direction with a speed of 20 m/s in a region with a 
magnetic field given by . (a) Because of this magnetic force, electrons 
move to one end of the wire leaving the other end positively charged, until the 

k̂T 50.0
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electric field due to this charge separation exerts a force on the conduction 
electrons that balances the magnetic force. Find the magnitude and direction of 
this electric field in the steady state situation.  (b) Which end of the wire is 
positively charged and which end is negatively charged? (c) Suppose the moving 
wire is 2.0-m long. What is the potential difference between its two ends due to 
this electric field? 
 
Picture the Problem (a) We can use a condition for translational equilibrium to 
relate E

r
to F

r
. In Part (c) we can apply the definition of electric field in terms of 

potential difference to evaluate the difference in potential between the ends of the 
moving wire. 
 
(a) Sum the forces acting on an 
electron under steady-state 
conditions to obtain: 
  

0=+ FE
rr

q ⇒
q
FE
r

r
−=  

The magnetic force on an electron in 
the conductor is given by: 
 

( ) jki

kiBvF
ˆˆˆ

ˆˆ

qvBqvB

Bqvq

−=×=

×=×=
rrr

 

 
Substituting for F

r
and simplifying 

yields: 
 

jjE ˆˆ
vB

q
qvB

=
−

−=
r

 

Substitute numerical values and 
evaluate E

r
: 

( )( ) ( ) jjE ˆV/m 10ˆT50.0m/s20 ==
r

 

 
(b) Because the electric force acting on the conduction electrons is in the +y 
direction, the end of the wire that is in the +y direction becomes negatively 
charged and the end of the wire that is in the −y direction becomes positively 
charged. The positive end has the lesser y coordinate. 
 
(c) The potential difference between 
the ends of the wire is: 

( )( )
V20

m0.2V/m0.10ΔΔ

=

== yEV
 

 
78 ••• A circular loop of wire that has a mass m and carries a constant current 
I is in a region with a uniform magnetic field. It is initially in equilibrium and its 
magnetic moment is aligned with the magnetic field. The loop is given a small 
angular displacement about an axis through it center and perpendicular to the 
magnetic field and then released. What is the period of the subsequent motion? 
(Assume that the only torque exerted on the loop is due to the magnetic field and 
that there are no other forces acting on the loop.) 
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Picture the Problem We’re being asked to show that, for small displacements 
from equilibrium, the circular loop executes simple harmonic motion. To show its 
motion is SHM we must show that the loop experiences a linear restoring torque 
when displaced from equilibrium. We can accomplish this by applying Newton’s 
2nd law in rotational form and using a small angle approximation to obtain the 
differential equation for simple harmonic motion. Once we have the differential 
equation we can identify ω and express the period T of the motion. 
 
Apply Newton’s 2nd law to the 
loop: 
 

2

2

inertiasin
dt
dIIAB θθ =−  

where the minus sign indicates that the 
torque acts in such a manner as to align 
the loop with the magnetic field and 
Iinertia is the moment of inertia of the 
loop. 
 

For small displacements from 
equilibrium, θ  << 1 and: 

θθ ≈sin  
 
 

Hence, our differential equation  of 
motion becomes: 
 

θθ IAB
dt
dI −=2

2

inertia  

 
Thus for small displacements from 
equilibrium we see that the 
differential equation describing the 
motion of the current loop is the 
differential equation of simple 
harmonic motion. Solve this 
equation for d2θ/dt2 to obtain: 
 

θθ

inertia
2

2

I
IAB

dt
d

−=  

. 
 

Noting that the moment of inertia of 
a hoop about its diameter is 2

2
1 mR , 

substitute for Iinertia and simplify to 
obtain: 

θωθπθπθ 2
2

2
1

2

2

2 2
−=−=−=

m
BI

mR
BRI

dt
d  

where 
m
IBπω 2

=  

 
The period T of the motion is related 
to the angular frequency ω: 
 

ω
π2

=T  

Substituting for ω and simplifying 
yields: IB

mT π2
=  
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79 ••• A small bar magnet has a magnetic moment  

r 
μ  that makes an angle θ 

with the x axis. The magnet is in a region that has a non-uniform magnetic field 
given by . Using ( ) ( ) jiB yBxB yx += ˆr

xUFx ∂∂−= , yUFy ∂∂−=  and 
zUFz ∂∂−= , show that there is a net magnetic force on the magnet that is given 

by jiF ˆˆ
y

B
x

B y
y

x
x ∂

∂
+

∂
∂

= μμ
r

. 

 
Picture the Problem We can express μr in terms of its components and calculate 
U from and μr B

r
using Bμ

rr
⋅−=U . Knowing U we can calculate the components 

of F
r

 using Fx = −dU/dx and Fy = −dU/dy. 
 
Express the net force acting on the 
magnet in terms of its components: 
 

jiF ˆˆ
yx FF +=

r
                             (1) 

Express in terms of its 
components: 

μr

 

kjiμ ˆˆˆ
zyx μμμ ++=

r  

Express the potential energy of the 
bar magnetic in the nonuniform 
magnetic field: 
 

( ) ( ) ( )( )
( ) ( )yBxB

yBxB

U

yyxx

yxzyx

μμ

μμμ

−−=

+⋅++−=

⋅−=

jikji

Bμ
ˆˆˆˆˆ

rr

 
Because is constant but  
depends on x and y: 

μr B
r

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=−=
x

B
dx
dUF x

xx μ  

 and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=−=

y
B

dy
dUF y

yy μ  

 
Substitute in equation (1) to obtain: 

jiF ˆˆ
y

B
x

B y
y

x
x ∂

∂
+

∂
∂

= μμ
r

 

  
80 •• A proton, a deuteron and an alpha particle all have the same kinetic 
energy. They are moving in a region with a uniform magnetic field that is 
perpendicular to each of their velocities. Let Rp, Rd, and Rα be the radii of their 
circular orbits, respectively.  The deuteron has a charge that is equal to the charge 
a proton has, and an alpha particle has a charge that is equal to twice the charge a 
proton has. Find the ratios Rd/Rp and Rα/Rp. Assume that mα = 2md = 4mp. 
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Picture the Problem We can apply Newton’s 2nd law to an orbiting particle to 
obtain an expression for the radius of its orbit R as a function of its mass m, 
charge q, speed v, and the magnitude of the magnetic field B.  
 
Apply Newton’s 2nd law to an 
orbiting particle to obtain: 
 

r
vmqvB

2

= ⇒
qB
mvr =  

Express the kinetic energy of the 
particle: 

2
2
1 mvK = ⇒

m
Kv 2

=  

 
Substitute for v in the expression for 
r and simplify to obtain: 
 

Km
qBm

K
qB
mr 212

==        (1) 

 
Using equation (1), express the 
ratio Rd/Rp: 
 

2
2

21

21

p

p

p

d

d

p

p
p

d
d

p

d

==

==

m
m

e
e

m
m

q
q

Km
Bq

Km
Bq

R
R

 

 
Using equation (1), express the 
ratio Rα /Rp: 
 

1
4

2

21

21

p

p

p

p

p
p

p

==

==

m
m

e
e

m
m

q
q

Km
Bq

Km
Bq

R
R α

α

α
αα

 

 
81 ••• Your forensic chemistry group, working closely with the local law 
enforcement agencies, has acquired a mass spectrometer similar to that discussed 
in the text. It employs a uniform magnetic field that has a magnitude of 0.75 T. To 
calibrate the mass spectrometer, you decide to measure the masses of various 
carbon isotopes by measuring the position of impact of the various singly ionized 
carbon ions that have entered the spectrometer with a kinetic energy of 25 keV.  A 
wire chamber with position sensitivity of 0.50 mm is part of the apparatus.  What 
will be the limit on its mass resolution (in kg) for ions in this mass range, that is 
those whose mass is on the order of that of a carbon atom? 
 
Picture the Problem We can apply Newton’s 2nd law, with the force on a moving 
charged particle in a magnetic field as the net force, to an ion in the spectrometer 
to obtain an expression for the radius of its trajectory as a function of its 
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momentum. We can then use the definition of kinetic energy to eliminate the 
speed of the ion from the expression for the radius of its trajectory. Differentiating 
the expression for the range (twice the radius of curvature) of the ions with 
respect to their mass will yield the mass resolution for ions whose masses are 
roughly 19.9 × 10−27 kg. We’ll assume that the carbon atoms are singly ionized. 

 
Apply Newton’s 2nd law to an ion in 
the spectrometer to obtain: 
 

r
vmqvB

2

= ⇒
qB
mvr =             (1) 

where q is the charge of the ion, m is its 
mass, and r is the radius of curvature of 
its path. 
 

From the definition of kinetic energy 
we have: 
 

2
2
1 mvE = ⇒

m
Ev 2

=  

 
Substituting for v in equation (1) and 
simplifying yields: 
 

qB
mE

qB
m
Em

r 2
2

==              (2) 

 
The range R of the ions is twice their 
radius of curvature: qB

mE
qB

mER 822
==            (3)   

                        
Differentiate R with respect to m to 
obtain: 
 

( )

22
2

2

2
18

88

Bmq
E

qB
m
E

mqB
E

m
dm
d

qB
E

qB
mE

dm
d

dm
dR

===

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 

 
Solving for dm yields: 
 E

BmqdR

Bmq
E

dRdm
22

22

22

==                  

 
Substitute numerical values and evaluate dm: 
 

( ) ( )( ) ( ) kg 100.1

eV
C 10602.1keV 252

T 80.0C 10602.1kg 109.19mm 50.0 28
19

221927
−

−

−−

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

××
=dm  

 
 


