Name: Date: Chapter 26 B Practice Test-Kirchoff's Rules and RC Circuits

Chapter 26 B Practice Test-Kirchoff's Rules and RC Circuits AP Physics C

1. In this circuit, two batteries, one with a potential difference of 10 V and the other with a potential difference of 20 V, are connected in series across a resistance of 90  $\Omega$ . The power delivered by the 10-V battery is approximately



2. The current through the battery in the figure is approximately



- A) 10 A B) 13 A C) 0.67 A D) 6.0 A E) None of these is correct.
- 3. The current *I* through the battery in this circuit is



A) 13 mA B) 3.0 A C) 15 mA D) 0.67 A E) None of these is correct.

4. You connect resistors of 2  $\Omega$ , 3  $\Omega$ , and 6  $\Omega$  in parallel across a battery. The current through the 6- $\Omega$  resistor is 3 A. What are the currents in the other two resistors? I = 3 A



- A)  $I_1 = 9 \text{ A}; I_2 = 6 \text{ A}$
- B)  $I_1 = 6 \text{ A}$ ;  $I_2 = 9 \text{ A}$
- C)  $I_1 = 1$  A;  $I_2 = 1.5$  A
- D) The answer cannot be obtained without knowing the emf of the battery.
- E) None of these is correct.
- 5. You connect resistors of 2  $\Omega$ , 3  $\Omega$ , and 6  $\Omega$  in parallel across a battery. The current through the 6- $\Omega$  resistor is 3 A. The power dissipated in the 3- $\Omega$  resistor is approximately



6. The resistance of the unknown resistor (R) is



A)  $0.6 \Omega$  B)  $2 \Omega$  C)  $3 \Omega$  D)  $5 \Omega$  E)  $8 \Omega$ 

7. In this circuit, the batteries have negligible internal resistance and the ammeter has negligible resistance. The current through the ammeter is



8. In the above circuit,  $\varepsilon_1 = 9 \text{ V}$ ,  $\varepsilon_2 = 6 \text{ V}$ , and  $\varepsilon_3 = 6 \text{ V}$ . Also  $R_1 = 25 \Omega$ ,  $R_2 = 125 \Omega$ , and  $R_3 = 55 \Omega$ . Find the current flowing through  $R_1$ .



- 9. A battery is connected to a series combination of a switch, a resistor, and an initially uncharged capacitor. The switch is closed at t = 0. Which of the following statements is true?
  - A) As the charge on the capacitor increases, the current increases.
  - B) As the charge on the capacitor increases, the voltage drop across the resistor increases.
  - C) As the charge on the capacitor increases, the current remains constant.
  - D) As the charge on the capacitor increases, the voltage drop across the capacitor decreases.
  - E) As the charge on the capacitor increases, the voltage drop across the resistor decreases.
- 10. A 20.0- $\mu$ F capacitor is charged to 200 V and is then connected across a 1000- $\Omega$  resistor. What is the initial current just after the capacitor is connected to the resistor?
  - A) 100 mA B) 200 mA C) 150 mA D) 300 mA E) 50 mA

Use the following to answer question 11:



- 11. An uncharged capacitor and a resistor are connected in series to a battery as shown. If ε = 15 V,  $C = 20 \mu F$ , and  $R = 4.0 \times 10^5 \Omega$ , the time constant of the circuit is approximately A) 10 s B) 8.0 s C) 18 s D) 4.0 s E) 2.5 s
- 12. An uncharged capacitor and a resistor are connected in series to a battery as shown. If ε = 15 V,  $C = 20 \mu F$ , and  $R = 4.0 \times 10^5 \Omega$ , the current as a function of time for this circuit is
  - A)  $I(t) = 37.5 e^{0.250t} \mu A$

D)  $I(t) = 37.5 e^{-0.125t} \mu A$ 

B)  $I(t) = 150 e^{-0.250t} \mu A$ 

E)  $I(t) = 300 e^{-0.125t} \mu A$ 

- C)  $I(t) = 37.5 e^{-0.250t} \mu A$
- 13. Doubling the resistance in an RC circuit
  - A) doubles the time constant of the circuit.
  - B) halves the time constant of the circuit.
  - has no effect on the time constant of the circuit.
  - D) has no effect on the rate at which energy is dissipated by the circuit.
  - E) None of these is correct.
- 14. Tony charges a capacitor and then discharges it through a resistor. He notices that, after two time constants, the voltage across the capacitor has decreased to of its value just prior to the initiation of the discharge.

- A) 0.368 B) 0.135 C) 0.0498 D) 0.0183 E) 0.00674

- 15. Which of the following statements is true concerning an ideal ammeter and an ideal voltmeter?
  - A) both have infinite resistance
  - B) both have zero resistance
  - C) the ammeter has zero resistance, and the voltmeter has infinite resistance
  - D) the ammeter has infinite resistance, and the voltmeter has zero resistance
  - E) both have equal, finite resistances
- 16. You want to measure the current through and the voltage difference across a resistor. How should you connect the ammeter and voltmeter to the resistor?
  - A) connect both meters in parallel
  - B) connect both meters in series
  - C) You should connect the ammeter in parallel and the voltmeter in series.
  - D) You should connect the ammeter in series and the voltmeter in parallel.
  - E) It does not matter how you connect the meters to the resistor.
- 17. A capacitor, initially uncharged, is connected in series to a 10-k $\Omega$  resistor and a 9.0-V battery. What is the initial current in this circuit?
  - A)  $6.0 \times 10^{-2}$  A

D) 0.90 A

B)  $9.0 \times 10^{-4}$  A

E)  $6.0 \times 10^{-5} \text{ A}$ 

C)  $5.4 \times 10^{-5} \text{ A}$ 

## **Answer Key**

- 1. D 2. D 3. E 4. A 5. B 6. B 7. B

- 8. D 9. E 10. B

- 11. B 12. D

- 13. A 14. B 15. C 16. D 17. B