
Chapter 24 
Capacitance 
 
Conceptual Problems 
 
1 • If the voltage across a parallel-plate capacitor is doubled, its 
capacitance (a) doubles (b) drops by half (c) remains the same. 
 
Determine the Concept The capacitance of a parallel-plate capacitor is a 
function of the surface area of its plates, the separation of these plates, and the 
electrical properties of the matter between them. The capacitance is, therefore, 
independent of the voltage across the capacitor. )(c is correct. 

 
2 • If the charge on an isolated spherical conductor is doubled, its self-
capacitance (a) doubles (b) drops by half (c) remains the same. 
 
Determine the Concept The capacitance of an isolated spherical capacitor is 
given by RC 04 ∈π= , where R is its radius. The capacitance is, therefore, 

independent of the charge of the capacitor. )(c  is correct. 

 
3 • True or false: The electrostatic energy density is uniformly distributed 
in the region between the conductors of a cylindrical capacitor. 
 
Determine the Concept False. The electrostatic energy density is not uniformly 
distributed because the magnitude of the electric field strength is not uniformly 
distributed,  
 
4 • If the distance between the plates of a charged and isolated parallel-
plate capacitor is doubled, what is the ratio of the final stored energy to the initial 
stored energy? 
 
Determine the Concept The energy stored in the electric field of a parallel-plate 
capacitor is related to the potential difference across the capacitor by .2

1 QVU =  If 
Q is constant, U is directly proportional to V and doubling V doubles U. Hence the 
ratio of the initial stored energy to the final stored energy is 2 . 

 
5 • [SSM] A parallel-plate capacitor is connected to a battery. The space 
between the two plates is empty. If the separation between the capacitor plates is 
tripled while the capacitor remains connected to the battery, what is the ratio of 
the final stored energy to the initial stored energy? 
 
Determine the Concept The energy stored in a capacitor is given by 

QVU 2
1= and the capacitance of a parallel-plate capacitor by .0 dAC ∈= We can 
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combine these relationships, using the definition of capacitance and the condition 
that the potential difference across the capacitor is constant, to express U as a 
function of d. 
 
Express the energy stored in the 
capacitor: 
 

QVU 2
1=                                  (1) 

Use the definition of capacitance to 
express the charge of the capacitor: 
 

CVQ =  

Express the capacitance of a 
parallel-plate capacitor in terms of 
the separation d of its plates: 
 

d
AC 0∈

=  

where A is the area of one plate. 

Substituting for Q and C in equation 
(1) yields: 
 

d
AVU

2

2
0∈=  

 

Because
d

U 1
∝ , tripling the separation of the plates will reduce the energy stored 

in the capacitor to one-third its previous value. Hence the ratio of the final stored 
energy to the initial stored energy is 3/1 . 

 
6 • If the capacitor of Problem 5 is disconnected from the battery before 
the separation between the plates is tripled, what is the ratio of the final stored 
energy to the initial stored energy? 
  
Picture the Problem Let V represent the initial potential difference between the 
plates, U the energy stored in the capacitor initially, d the initial separation of the 
plates, and V ′, U ′, and d ′ these physical quantities when the plate separation has 
been tripled. We can use QVU 2

1= to relate the energy stored in the capacitor to 
the potential difference across it and V = Ed to relate the potential difference to 
the separation of the plates. 
 
Express the energy stored in the 
capacitor before the tripling of the 
separation of the plates: 
 

QVU 2
1=  
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Express the energy stored in the 
capacitor after the tripling of the 
separation of the plates: 
 

QV'U' 2
1=  

because the charge on the plates does 
not change. 

Express the ratio of U′ to U and 
simplify to obtain: V

V'
QV
QV'

U
U'

==
2
1
2
1

 

 
EdV =  

and 
Ed'V' =  

because E depends solely on the charge 
on the plates and, as observed above, 
the charge does not change during the 
separation process. 
 

The potential differences across the 
capacitor plates before and after the 
plate separation, in terms of the 
electric field E between the plates, 
are given by: 
 

Substituting for V and V ′ to 
obtain: d

d'
Ed
Ed'

U
U'

==  

 
For d ′ = 3d: 33'

==
d
d

U
U ⇒ The ratio of the final 

stored energy to the initial stored 
energy is 3 . 

 
7 • True or false:  

 
(a) The equivalent capacitance of two capacitors in parallel is always greater 

than the larger of the two capacitance values. 
(b) The equivalent capacitance of two capacitors in series is always less than 

the least of the two capacitance values if the charges on the two plates that 
are connected by an otherwise isolated conductor sum to zero. 

  
(a) True. The equivalent capacitance of two capacitors in parallel is the sum of the 
individual capacitances. 
 
(b) True. The equivalent capacitance of two capacitors in series is the reciprocal 
of the sum of the reciprocals of the individual capacitances. 
 
8 • Two uncharged capacitors have capacitances C0 and 2C0, respectively, 
and are connected in series.  This series combination is then connected across the 
terminals a battery. Which of the following is true?  
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(a) The capacitor 2C0 has twice the charge of the other capacitor. 
(b) The voltage across each capacitor is the same. 
(c) The energy stored by each capacitor is the same. 
(d) The equivalent capacitance is 3C0. 
(e) The equivalent capacitance is 2C0/3. 
  
(a) False. Capacitors connected in series carry the same charge Q. 
 
(b) False. The voltage V across a capacitor whose capacitance is C0 is Q/C0 and 
the voltage across the second capacitor is Q/(2C0). 
 
(c) False. The energy stored in a capacitor is given by QV2

1 .  
 
(d) False. This would be the equivalent capacitance if they were connected in 
parallel. 
 
(e) True. Taking the reciprocal of the sum of the reciprocals of C0 and 2C0 yields 
Ceq = 2C0/3. 
 
9 • [SSM] A dielectric is inserted between the plates of a parallel-plate 
capacitor, completely filling the region between the plates. Air initially filled the 
region between the two plates. The capacitor was connected to a battery during 
the entire process. True or false: 
 
(a) The capacitance value of the capacitor increases as the dielectric is inserted 

between the plates. 
(b) The charge on the capacitor plates decreases as the dielectric is inserted 

between the plates. 
(c) The electric field between the plates does not change as the dielectric is 

inserted between the plates. 
(d) The energy storage of the capacitor decreases as the dielectric is inserted 

between the plates. 
 
Determine the Concept The capacitance of the capacitor is given by 

d
AC 0∈κ

= , the charge on the capacitor is given by CVQ = , and the energy 

stored in the capacitor is given by 2
2
1 CVU = . 

 
(a) True. As the dielectric material is inserted, κ increases from 1 (air) to its value 
for the given dielectric material. 
 
(b) False. Because Q = CV, and C increases, Q must increase. 
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(c) True. E = V/d, where d is the plate separation. 
 
(d) False. The energy storage of a capacitor is independent of the presence of 
dielectric and is given by QVU 2

1= . 
 
10 •• Capacitors A and B (Figure 24-33) have identical plate areas and gap 
separations. The space between the plates of each capacitor is half-filled with a 
dielectric as shown. Which has the larger capacitance, capacitor A or capacitor B? 
Explain your answer.  
 
Picture the Problem We can treat configuration A as two capacitors in parallel 
and configuration B as two capacitors in series. Finding the equivalent 
capacitance of each configuration and examining their ratio will allow us to 
decide whether A or B has the greater capacitance. In both cases, we’ll let C1 be 
the capacitance of the dielectric-filled capacitor and C2 be the capacitance of the 
air capacitor. 
 
In configuration A we have: 
 

21A CCC +=  

d
A

d
A

d
AC

2
02

1
0

1

10
1

∈κ∈κ∈κ
===  

and 

d
A

d
A

d
AC

2
02

1
0

2

20
2

∈∈∈
===  

 

Express C1 and C2: 
 

Substitute for C1 and C2 and simplify 
to obtain: 

( )1
222
000

A +=+= κ
∈∈∈κ

d
A

d
A

d
A

C   

 
In configuration B we have: 

21B

111
CCC

+=  ⇒ 
21

21

CC
CCCb +

=  

 

d
A

d
A

d
AC 0

2
1
0

1

10
1

2∈∈∈
===  

and 

d
A

d
A

d
AC 0

2
1

0

2

20
2

2 ∈κ∈κ∈κ
===  

 

Express C1 and C2: 
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Substitute for C1 and C2 and simplify 
to obtain: 

( )

⎟
⎠
⎞

⎜
⎝
⎛

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

1
2

1
2

22

22

22

0

0

00

00

00

B

κ
κ∈

κ
∈

∈κ∈

∈κ∈

∈κ∈

d
A
d

A
d

A
d

A
d

A
d

A
d

A
d

A

C

    

 
Divide  by  BC AC
 

( ) ( )2
0

0

A

B

1
4

1
2

1
2

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛

+=
κ

κ

κ
∈

κ
κ∈

d
A

d
A

C
C

 

 

Because 
( )

1
1

4
2 <+κ

κ  for κ > 1: BA CC >  

 
11 •• [SSM] (a) Two identical capacitors are connected in parallel. This 
combination is then connected across the terminals of a battery. How does the 
total energy stored in the parallel combination of the two capacitors compare to 
the total energy stored if just one of the capacitors were connected across the 
terminals of the same battery? (b) Two identical capacitors that have been 
discharged are connected in series. This combination is then connected across the 
terminals of a battery. How does the total energy stored in the series combination 
of the two capacitors compare to the total energy stored if just one of the 
capacitors were connected across the terminals of the same battery?  
  
Picture the Problem The energy stored in a capacitor whose capacitance is C and 
across which there is a potential difference V is given by 2

2
1 CVU = . Let C0 

represent the capacitance of the each of the two identical capacitors. 
 
(a) The energy stored in the parallel 
system is given by: 
 

2
eq2

1
parallel VCU =  

 

When the capacitors are connected in 
parallel, their equivalent capacitance 
is: 
 

000parallel 2CCCC =+=  
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Substituting for and simplifying 

yields: 
eqC

 

( ) 2
0

2
02

1
parallel 2 VCVCU ==       (1) 

 

If just one capacitor is connected to 
the same battery the stored energy is: 
 

2
02

1
capacitor 1 VCU =                      (2) 

22
02

1

2
0

capacitor 1

parallel ==
VC

VC
U
U

 

or 
 capacitor 1parallel 2UU =  

 

Dividing equation (1) by equation 
(2) and simplifying yields: 
 

(b) The energy stored in the series 
system is given by: 
 

2
eq2

1
series VCU =  

 

When the capacitors are connected in 
series, their equivalent capacitance 
is: 
 

02
1

series CC =  
 

Substituting for and simplifying 

yields: 
eqC

 

( ) 2
04

12
02

1
2
1

series VCVCU ==   (3) 
 

Dividing equation (3) by equation 
(2) and simplifying yields: 2

1
2

02
1

2
04

1

capacitor 1

series ==
VC
VC

U
U  

or 
 capacitor 12

1
series UU =  

 

 
12 •• Two identical capacitors that have been discharged are connected in 
series across the terminals of a 100-V battery. When only one of the capacitors is 
connected across the terminals of this battery, the energy stored is U0. What is the 
total energy stored in the two capacitors when the series combination is connected 
to the battery? (a) 4U0, (b) 2U0, (c) U0, (d) U0/2, (e) U0/4 
 
Picture the Problem We can use the expression 2

2
1 CVU = to express the ratio of 

the energy stored in the single capacitor and in the identical-capacitors-in-series 
combination. 
 
Express the energy stored in the 
capacitors when they are connected 
to the 100-V battery: 

2
eq2

1 VCU =  
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Express the equivalent capacitance 
of the two identical capacitors 
connected in series: 
 

CCC
111

eq

+= ⇒ CC 2
1

eq =  

Substitute for to obtain: eqC

 
( ) 2

4
12

2
1

2
1 CVVCU ==  

 
Express the energy stored in one 
capacitor when it is connected to the 
100-V battery: 
 

2
2
1

0 CVU =  

Express the ratio of U to U0: 
 2

1
2

2
1

2
4
1

0

==
CV
CV

U
U

⇒ 02
1 UU =  

)(d  is correct. 

 
Estimation and Approximation 
 
13 •• [SSM] Disconnect the coaxial cable from a television or other device 
and estimate the diameter of the inner conductor and the diameter of the shield. 
Assume a plausible value (see Table 24–1) for the dielectric constant of the 
dielectric separating the two conductors and estimate the capacitance per unit 
length of the cable.  
 
Picture the Problem The outer diameter of a "typical" coaxial cable is about  
5 mm, while the inner diameter is about 1 mm. From Table 24-1 we see that a 
reasonable range of values for κ is 3-5. We can use the expression for the 
capacitance of a cylindrical capacitor to estimate the capacitance per unit length 
of a coaxial cable. 
 
The capacitance of a cylindrical 
dielectric-filled capacitor is given 
by: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

0

ln

2

R
R

LC ∈πκ  

where L is the length of the capacitor, 
R1 is the radius of the inner conductor, 
and R2 is the radius of the second 
(outer) conductor. 
 

Divide both sides by L to obtain an 
expression for the capacitance per 
unit length of the cable: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

1

2

0

ln2ln

2

R
Rk

R
RL

C κ∈πκ  
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If κ  = 3: 
 

( )
nF/m1.0

mm5.0
mm5.2lnC/mN10988.82

3
229

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
L
C  

 
If κ  = 5: 
 

( )
nF/m2.0

mm5.0
mm5.2lnC/mN10988.82

5
229

≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
L
C  

 
A reasonable range of values for C/L, 
corresponding to 3 ≤ κ  ≤ 5, is: nF/m0.2nF/m1.0 ≤≤

L
C  

 
14 •• You are part of an engineering research team that is designing a pulsed 
nitrogen laser. To create the high-energy densities needed to operate such a laser, 
the electrical discharge from a high-voltage capacitor is used. Typically, the 
energy requirement per pulse (i.e., per discharge) is 100 J. Estimate the 
capacitance required if the discharge is to creates a spark across a gap of about  
1.0 cm.  Assume that the dielectric breakdown of nitrogen is the same as the value 
for normal air. 
 
Picture the Problem The energy stored in a capacitor is given by .2

2
1 CVU =  

 
Relate the energy stored in a 
capacitor to its capacitance and the 
potential difference across it: 
 

2
2
1 CVU = ⇒ 2

2
V
UC =  

The potential difference across the 
spark gap is related to the width of 
the gap d and the electric field E in 
the gap: 
 

EdV =  

Substitute for V in the expression for 
C to obtain: 
 

22
2

dE
UC =  

Substitute numerical values and 
evaluate C: 

( )
( ) ( )

F22
cm0.1V/m103

J1002
226

μ=
×

=C  
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15 •• [SSM] Estimate the capacitance of the Leyden jar shown in the 
Figure 24-34. The figure of a man is one-tenth the height of an average man. 

 
Picture the Problem Modeling the Leyden jar as a parallel-plate capacitor, we 
can use the equation for the capacitance of a dielectric-filled parallel-plate 
capacitor that relates its capacitance to the area A of its plates and their separation 
(the thickness of the glass) d to estimate the capacitance of the jar. See Table 24-1 
for the dielectric constants of various materials. 
 
The capacitance of a dielectric-filled 
parallel-plate capacitor is given by: 
 

d
AC 0∈κ

=  

where κ is the dielectric constant. 
 

Let the plate area be the sum of the 
area of the lateral surface of the jar 
and its base: 
  

2
base

area
lateral 2 RRhAAA ππ +=+=  

where h is the height of the jar and R is 
its inside radius. 
 

Substitute for A and simplify to 
obtain: 
 

( )

( )
d

RhR
d

RRhC

+
=

+
=

2

2

0

2
0

∈πκ

ππ∈κ

 

 
If the glass of the Leyden jar is Bakelite of thickness 2.0 mm and the radius and 
height of the jar are 4.0 cm and 40 cm, respectively, then: 
 

( )( ) ( )[ ]
nF 2.3 

mm 0.2

cm 0.4cm 402
mN

C 10854.8cm 0.49.4 2

2
12

=
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−π
C  

 
Capacitance 
 
16 • An isolated conducting sphere that has a 10.0 cm radius has an electric 
potential of 2.00 kV (the potential far from the sphere is zero). (a) How much 
charge is on the sphere? (b) What is the self-capacitance of the sphere? (c) By 
how much does the self-capacitance change if the sphere’s electric potential is 
increased to 6.00 kV? 
 
Picture the Problem The charge on the spherical conductor is related to its radius 
and potential according to V = kQ/r and we can use the definition of capacitance 
to find the self-capacitance of the sphere. 
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(a) Relate the potential V of the 
spherical conductor to the charge 
on it and to its radius: 
 

r
kQV = ⇒

k
rVQ =  

Substitute numerical values and 
evaluate Q: 

( )( )

nC3.22

nC 252.22

C
mN108.988

kV2.00cm0.01

2

2
9

=

=
⋅

×
=Q

 

 
(b) Use the definition of capacitance 
to relate the self-capacitance of the 
sphere to its charge and potential: 
 

pF11.1
kV2.00

nC22.252
===

V
QC  

(c) It doesn’t. The self-capacitance of a sphere is a function of its radius.  
 
17 • The charge on one plate of a capacitor is +30.0 μC and the charge on 
the other plate is –30.0 μC. The potential difference between the plates is 400 V. 
What is the capacitance of the capacitor? 
  
Picture the Problem We can use its definition to find the capacitance of this 
capacitor. 
 
Use the definition of capacitance 
to obtain: 

nF0.75
V400
C0.30
===

μ
V
QC  

 
18 •• Two isolated conducting spheres of equal radius R have charges +Q 
and –Q, respectively. Their centers are separated by a distance d that is large 
compared to their radius. Estimate the capacitance of this unusual capacitor. 
 
Picture the Problem Let the separation of the spheres be d and their radii be R. 
Outside the two spheres the electric field is approximately the field due to point 
charges of +Q and −Q, each located at the centers of spheres, separated by 
distance d. We can derive an expression for the potential at the surface of each 
sphere and then use the potential difference between the spheres and the definition 
of capacitance and to estimate the capacitance of the two-sphere system. 
 
The capacitance of the two-sphere 
system is given by: 
 

V
QC
Δ

=  

where ΔV is the potential difference 
between the spheres. 
 

The potential at any point outside 
the two spheres is: 

( ) ( )
21 r
Qk

r
QkV −

+
+

=  
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 where r1 and r2 are the distances from 
the given point to the centers of the 
spheres. 
 

For a point on the surface of the 
sphere with charge +Q: 
 

δ+== drRr 21  and  
where R<δ  

Substitute to obtain: 
 

( ) ( )
δ+

−
+

+
=+ d

Qk
R

QkV Q  

 

d
kQ

R
kQV Q −=+  For δ << d: 

and 

d
kQ

R
kQV Q +−=−  

 
The potential difference between 
the spheres is: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎠
⎞

⎜
⎝
⎛ +
−

−−=

−=Δ −

dR
kQ

d
kQ

R
kQ

d
kQ

R
kQ

VVV QQ

112

 
Substitute for ΔV in the expression 
for C to obtain: 

d
R

R
dRdR

kQ

QC

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
⎟
⎠
⎞

⎜
⎝
⎛ −

=

1

2

11
2

112

0

0

∈π

∈π

 

 
For d >> R: RC 02 ∈π=  

 
The Storage of Electrical Energy  
 
19 • [SSM] (a) The potential difference between the plates of a 3.00-μF 
capacitor is 100 V. How much energy is stored in the capacitor? (b) How much 
additional energy is required to increase the potential difference between the 
plates from 100 V to 200 V? 
 
 
Picture the Problem Of the three equivalent expressions for the energy stored in 
a charged capacitor, the one that relates U to C and V is 2

2
1 CVU = . 
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(a) Express the energy stored in the 
capacitor as a function of C and V: 
 

2
2
1 CVU =  

Substitute numerical values and 
evaluate U: 
 

( )( ) mJ0.15V100F00.3 2
2
1 == μU  

(b) Express the additional energy 
required as the difference between 
the energy stored in the capacitor at 
200 V and the energy stored at  
100 V: 

( ) ( )
( )( )

mJ0.45

mJ0.15V200F00.3

V100V200Δ
2

2
1

=

−=

−=

μ

UUU

 

 
20 • The charges on the plates of a 10-μF capacitor are ±4.0 μC. (a) How 
much energy is stored in the capacitor? (b) If charge is transferred until the 
charges on the plates are equal to ±2.0 μC, how much stored energy remains? 

 
Picture the Problem Of the three equivalent expressions for the energy stored in 

a charged capacitor, the one that relates U to Q and C is 
C
QU

2

2
1

= . 

 
(a) Express the energy stored in the 
capacitor as a function of C and Q: 
 

C
QU

2

2
1

=  

Substitute numerical values and 
evaluate U: 
 

( ) J80.0
F10
C0.4

2
1 2

μ
μ
μ

==U  

(b) Express the energy remaining 
when half the charge is removed: 
 

( ) ( ) J 0.20
F10
C0.2

2
1 2

2
1 μ

μ
μ

==QU  

 
21 • (a) Find the energy stored in a 20.0-nF capacitor when to the charges 
on the plates are ±5.00 μC. (b) How much additional energy is stored if charges 
are increased from ±5.00 μC to ±10.0 μC? 
 
Picture the Problem Of the three equivalent expressions for the energy stored in 

a charged capacitor, the one that relates U to Q and C is 
C
QU

2

2
1

= . 

 
(a) Express the energy stored in the 
capacitor as a function of C and Q: 
 

C
QU

2

2
1

=  
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Substitute numerical values and 
evaluate U: 
 

( ) ( ) mJ625.0
nF0.20
C00.5

2
1C00.5

2

==
μμU

(b) Express the additional energy 
required as the difference between 
the energy stored in the capacitor 
when its charge is 5 μC and when 
its charge is 10 μC: 

( ) ( )
( )

mJ .881mJ 0.625 mJ 2.50

mJ625.0
nF0.20
C0.10

2
1

C00.5C0.10
2

=−=

−=

−=Δ

μ

μμ UUU

 

 
22 • What is the maximum electric energy density in a region containing 
dry air at standard conditions? 
  
Picture the Problem The energy per unit volume in an electric field varies with 
the square of the electric field according to 2

02
1 Eu ∈= . Under standard 

conditions, dielectric breakdown occurs at approximately E = 3.0 MV/m. 
 
Express the energy per unit volume 
in an electric field: 
 

2
02

1 Eu ∈=  

Substitute numerical values and 
evaluate u: 

3

2

2

2
12

2
1

J/m40

m
MV0.3

mN
C10854.8

≈

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −u
 

 
23 •• [SSM] An air-gap parallel-plate capacitor that has a plate area of  
2.00 m2 and a separation of 1.00 mm is charged to 100 V. (a) What is the electric 
field between the plates? (b) What is the electric energy density between the 
plates? (c) Find the total energy by multiplying your answer from Part (b) by the 
volume between the plates. (d) Determine the capacitance of this arrangement.  
(e) Calculate the total energy from 21

2U CV= , and compare your answer with 
your result from Part (c). 
 
Picture the Problem Knowing the potential difference between the plates, we 
can use E = V/d to find the electric field between them. The energy per unit 
volume is given by 2

02
1 Eu ∈= and we can find the capacitance of the parallel-

plate capacitor using .0 dAC ∈=  
 
 
(a) Express the electric field 
between the plates in terms of their 
separation and the potential 
difference between them: 

kV/m100
mm1.00
V100

===
d
VE  
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(b) Express the energy per unit 
volume in an electric field: 
 

2
02

1 Eu ∈=  

Substitute numerical values and 
evaluate u: ( )

33

2
2

2
12

2
1

mJ/m3.44mJ/m 27.44

kV/m001
mN

C10854.8

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −u
 

 
(c) The total energy is given by: 

( )( )( )
J

uAduVU

μ5.88

mm1.00m2.00mJ/m27.44 23

=

=

==

 

 
(d) The capacitance of a parallel-
plate capacitor is given by: 
 

d
AC 0∈

=  

 
Substitute numerical values and 
evaluate C: ( )

nF7.17nF 71.17

mm1.00

m2.00
mN

C108.854 2
2

2
12

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−

C  

 
(e) The total energy is given by: 
 

2
2
1 CVU =  

Substitute numerical values and 
evaluate U: 

( )( )
).(with agreement in  J,5.88

V100nF17.71 2
2
1

c

U

μ=

=
 

  
24 •• A solid metal sphere has radius of 10.0 cm and a concentric metal 
spherical shell has an inside radius of 10.5 cm. The solid sphere has a charge  
5.00 nC. (a) Estimate the energy stored in the electric field in the region between 
the spheres. Hint: You can treat the spheres essentially as parallel flat slabs 
separated by 0.5 cm. (b) Estimate the capacitance of this two-sphere system.  
(c) Estimate the total energy stored in the electric field from 21

2 /Q C  and compare 
it to your answer in Part (a). 
 
Picture the Problem The total energy stored in the electric field is the product of 
the energy density in the space between the spheres and the volume of this space. 
 
(a) The total energy U stored in 
the electric field is given by: 
 

uVU =                                 
where u is the energy density and V is 
the volume between the spheres. 
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The energy density of the field is: 
 

2
02

1 Eu ∈=                           
where E is the field between the 
spheres. 
 

The volume between the spheres 
is approximately: 
 

( )12
2

14 rrrV −≈ π  

Substitute for u and V to obtain: 
 

( )12
2

1
2

02 rrrEU −= ∈π             (1) 
 

The magnitude of the electric field 
between the concentric spheres is the 
sum of the electric fields due to each 
charge distribution: 
 

QQ EEE −+=  

Because the two surfaces are so close 
together, the electric field between 
them is approximately the sum of the 
fields due to two plane charge 
distributions: 
 

000 22 ∈
σ

∈
σ

∈
σ QQQE =+= −  

Substitute for σQ to obtain: 
 0

2
14 ∈π r
QE ≈  

 
Substitute for E in equation (1) and 
simplify: ( )

2
1

12

0

2

12
2

1

2

0
2

1
0

8

4
2

r
rrQ

rrr
r
QU

−
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈π

∈π
∈π

 

Substitute numerical values and evaluate U: 
 

( ) ( )

( )
J06.0J 102.56

cm0.10
mN

C10854.88

cm0.10cm5.10nC00.5 9

2
2

2
12

2

μ
π

=×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×

−
= −

−

U  
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(b) The capacitance of the two-
sphere system is given by: 
 

V
QC
Δ

=  

where ΔV is the potential difference 
between the two spheres. 
 

The electric potentials at the surfaces 
of the spheres are: 
 

10
1 4 r

QV
∈π

=  and 
20

2 4 r
QV
∈π

=  

Substitute for ΔV and simplify to 
obtain: 12

21
0

2010

4

44
rr

rr

r
Q

r
Q

QC
−

=
−

= ∈π

∈π∈π

 

 
Substitute numerical values and evaluate C: 
 

( )( ) nF2.0nF 2337.0
cm0.10cm5.10
cm5.10cm0.10

mN
C10854.84 2

2
12 ==

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −πC  

 
(c) Use CQ 2

2
1  to find the total 

energy stored in the electric field 
between the spheres: 
 

( ) J05.0
nF2337.0

nC5.00
2
1 2

μ=⎥
⎦

⎤
⎢
⎣

⎡
=U  

a result that agrees to within 5% with 
the exact result obtained in (a). 

 
25 •• A parallel-plate capacitor has plates of area 500 cm2 and is connected 
across the terminals of a battery.  After some time has passed, the capacitor is 
disconnected from the battery. When the plates are then moved 0.40 cm farther 
apart, the charge on each plate remains constant but the potential difference 
between the plates increases by 100 V. (a) What is the magnitude of the charge on 
each plate? (b) Do you expect the energy stored in the capacitor to increase, 
decrease, or remain constant as the plates are moved this way? Explain your 
answer. (c) Support your answer to Part (b), by determining the change in stored 
energy in the capacitor due to the movement of the plates. 
 
Picture the Problem (a) We can relate the charge Q on the positive plate of the 
capacitor to the charge density of the plate σ using its definition. The charge 
density, in turn, is related to the electric field between the plates according to 

E0∈σ = and the electric field can be found from E = ΔV/Δd. We can use 
VQU Δ=Δ 2

1 in Part (c) to find the increase in the energy stored due to the 
movement of the plates. 
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(a) Express the charge Q on the 
positive plate of the capacitor in 
terms of the plate’s charge density σ 
and surface area A: 
 

AQ σ=  

Relate σ to the electric field E 
between the plates of the capacitor: 
 

E0∈σ =  

Express E in terms of the change in 
V as the plates are separated a 
distance Δd: 
 

d
VE
Δ
Δ

=  

Substitute for σ and E to obtain: 
 d

VAEAQ
Δ
Δ

== 00 ∈∈  

 
Substitute numerical values and evaluate Q: 
 

( )( ) nC11nC1.11
cm0.40
V100cm500m/NC108.854 22212 ==⋅×= −Q  

 
(b) Because work has to be done to pull the plates farther apart, you would expect 
the energy stored in the capacitor to increase. 
 
(c) Express the change in the 
electrostatic energy in terms of the 
change in the potential difference: 
 

VQU Δ=Δ 2
1  

Substitute numerical values and 
evaluate ΔU: 

( )( ) J55.0V100nC11.1Δ 2
1 μ==U  

 
Combinations of Capacitors 
 
26 • (a) How many 1.00-μF capacitors connected in parallel would it take 
to store a total charge of 1.00 mC if the potential difference of across each 
capacitor is 10.0 V?  Diagram the parallel combination. (b) What would be the 
potential difference across this parallel combination? (c) If the capacitors in Part 
(a) are discharged, connected in series, and then energized until the potential 
difference across each is equal to 10.0 V, find the charge on each capacitor and 
the potential difference across the connection. 
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Picture the Problem We can apply the 
properties of capacitors connected in 
parallel to determine the number of 
1.00-μF capacitors connected in 
parallel it would take to store a total 
charge of 1.00 mC with a potential 
difference of 10.0 V across each 
capacitor. Knowing that the capacitors 
are connected in parallel (Parts (a) and 
(b)) we determine the potential 
difference across the combination. In 
Part (c) we can use our knowledge of 
how potential differences add in a 
series circuit to find the potential 
difference across the combination and 
the definition of capacitance to find the 
charge on each capacitor. 

 
 
1

2

100

99

 
 

 
(a) Express the number of capacitors 
n in terms of the charge q on each 
and the total charge Q: 
 

q
Qn =  

Relate the charge q on one 
capacitor to its capacitance C and 
the potential difference across it: 
 

CVq =  

Substitute for q to obtain: 
 CV

Qn =  

 
Substitute numerical values and 
evaluate n: ( )( ) 100

V0.10F00.1
mC00.1

==
μ

n  

 
(b) Because the capacitors are 
connected in parallel the potential 
difference across the combination is 
the same as the potential difference 
across each of them: 
 

V0.10
ncombinatio

 parallel ==VV  
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(c) With the capacitors connected in 
series, the potential difference across 
the combination will be the sum of 
the potential differences across the 
100 capacitors: 
  

( )

kV00.1

V0.10100
ncombinatio

 series

=

=V
 

Use the definition of capacitance to 
find the charge on each capacitor: 

( )( ) C0.10V10F1 μμ === CVq  

 
27 • A 3.00-μF capacitor and a 6.00-μF capacitor are discharged and then 
connected in series, and the series combination is then connected in parallel with 
an 8.00-μF capacitor. Diagram this combination. What is the equivalent 
capacitance of this combination? 
  

Picture the Problem The capacitor 
array is shown in the diagram. We can 
find the equivalent capacitance of this 
combination by first finding the 
equivalent capacitance of the 3.00-μF 
and 6.00-μF capacitors in series and 
then the equivalent capacitance of this 
capacitor with the 8.00-μF capacitor in 
parallel. 

µF3.00 µF6.00

Fµ8.00  
 
Express the equivalent capacitance 
for the 3.00-μF and 6.00-μF 
capacitors in series: 
 

F00.6
1

F00.3
11

63 μμ
+=

+C
 

Solve for C3+6: F00.263 μ=+C  
 

Find the equivalent capacitance of a 
2.00-μF capacitor in parallel with an  
8.00-μF capacitor: 

F00.10F00.8F00.282 μμμ =+=+C  

 
28 • Three capacitors are connected in a triangle as shown in Figure 24-35. 
Find an expression for the equivalent capacitance between points a and c in terms 
of the three capacitance values.  
 
Picture the Problem Because we’re interested in the equivalent capacitance 
across terminals a and c, we need to recognize that capacitors C1 and C3 are in 
series with each other and in parallel with capacitor C2. 
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Find the equivalent capacitance of C1 
and C3 in series: 
 

3131

111
CCC

+=
+

⇒
31

31
31 CC

CCC
+

=+  

Find the equivalent capacitance of 
C1+3 and C2 in parallel: 
 

31

31
2312eq CC

CCCCCC
+

+=+= +  

  
29 •• A 10.0-μF capacitor and a 20.0-μF capacitor are connected in parallel 
across the terminals of a 6.00-V battery. (a) What is the equivalent capacitance of 
this combination? (b) What is the potential difference across each capacitor?  
(c) Find the charge on each capacitor. (d) Find the energy stored in each capacitor. 
  
Picture the Problem Because the capacitors are connected in parallel we can add 
their capacitances to find the equivalent capacitance of the combination. Also, 
because they are in parallel, they have a common potential difference across them. 
We can use the definition of capacitance to find the charge on each capacitor. 
 
(a) Find the equivalent capacitance 
of the two capacitors in parallel: 
 

F0.30F0.20F0.10eq μμμ =+=C  

 

(b) Because capacitors in parallel 
have a common potential difference 
across them: 
 

V00.62010 === VVV  

( )( )
C0.60

V00.6F0.101010

μ

μ

=

== VCQ
 

(c) Use the definition of capacitance 
to find the charge on each capacitor: 

and 
( )( )

C120

V00.6F0.202020

μ

μ

=

== VCQ
 

 
( )( )

J 180

V 00.6C0.602
1

10102
1

10

μ

μ

=

== VQU
 

(d) Use QVU 2
1= to find the energy 

stored in each capacitor: 

and 
( )( )

J 360

V 00.6C0.1202
1

20202
1

20

μ

μ

=

== VQU
 

 
30 •• A 10.0-μF capacitor and a 20.0-μF capacitor are connected in parallel 
across the terminals of a 6.00-V battery. (a) What is the equivalent capacitance of 
this combination? (b) What is the potential difference across each capacitor?  
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(c) Find the charge on each capacitor. (d) Find the energy stored in each 
capacitor. 
  
Picture the Problem We can use the properties of capacitors in series to find the 
equivalent capacitance and the charge on each capacitor. We can then apply the 
definition of capacitance to find the potential difference across each capacitor. 
 
(a) Because the capacitors are 
connected in series they have equal 
charges: 
 

VCQQ eq2010 ==  

Express the equivalent capacitance 
of the two capacitors in series: 
 

F0.20
1

F0.10
11

eq μμ
+=

C
 

 
Solve for  to obtain: eqC

 

( )( ) F67.6
F0.20F0.10
F0.20F0.10

eq μ
μμ
μμ

=
+

=C  

 
(b) Because the capacitors are in 
series, they have the same charge. 
Substitute numerical values to obtain: 
 

( )( )
C0.40

V00.6F67.62010

μ

μ

=

== QQ
 

V00.4
F10.0
C0.40

10

10
10 ===

μ
μ

C
QV  

and 

V00.2
F20.0
C0.40

20

20
20 ===

μ
μ

C
QV  

 

(c) Apply the definition of 
capacitance to find the potential 
difference across each capacitor: 
 

( )( )
J 0.08

V 00.4C0.402
1

10102
1

10

μ

μ

=

== VQU
 

(d) Use QVU 2
1= to find the energy 

stored in each capacitor: 

and 
( )( )

J 0.04

V 00.2C0.402
1

20202
1

20

μ

μ

=

== VQU
 

 
31 •• Three identical capacitors are connected so that their maximum 
equivalent capacitance, which is 15.0 μF, is obtained. (a) Determine how the 
capacitors are connected and diagram the combination. (b) There are three 
additional ways to connect all three capacitors. Diagram these three ways and 
determine the equivalent capacitances for each arrangement.  
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Picture the Problem We can use the properties of capacitors connected in series 
and in parallel to find the equivalent capacitances for various connection 
combinations. 
 
(a) If their capacitance is to be a 
maximum, the capacitors must be 
connected in parallel: 
 

 
 

Find the capacitance of each 
capacitor: 
 

F0.153eq μ== CC  ⇒ F00.5 μ=C  

 

(b) (1) Connect the three capacitors      
in series: 
 

 

 
 

F00.5
1

F00.5
1

F00.5
11

eq μμμ
++=

C
  Because the capacitors are in series, 

their equivalent capacitance is the 
reciprocal of the sum of their 
reciprocals: 

and  
F67.1eq μ=C  

 
(2) Connect two in parallel, with the 
third in series with that combination: 
 

 
 

( ) F0.10F00.52
parallelin 

  twoeq, μμ ==C  Find the equivalent capacitance of 
the two capacitors that are in parallel 
and then the equivalent capacitance 
of the network of three capacitors: 

and 

F00.5
1

F0.10
11

eq μμ
+=

C
 

 
Solving for yields: eqC F33.3eq μ=C  

 
(3) Connect two in series, with the 
third in parallel with that 
combination: 
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F00.5
1

F00.5
11

seriesin  
   twoeq, μμ

+=
C

  Find the equivalent capacitance of 
the two capacitors connected in 
series: 

or  
F50.2

seriesin   
  twoeq, μ=C  

 
Find the capacitance equivalent to  
2.50 μF and 5.00 μF in parallel: 

F50.7F5.00F50.2eq μμμ =+=C  

 
32 •• For the circuit shown in Figure 24-36, the capacitors were each 
discharged before being connected to the voltage source. Find (a) the equivalent 
capacitance of the combination, (b) the charge stored on the positively charge 
plate of each capacitor, (c) the voltage across each capacitor, and (d) the energy 
stored in each capacitor. 
 
Picture the Problem We can use the properties of capacitors connected in series 
and in parallel to find the equivalent capacitance between the terminals and these 
properties and the definition of capacitance to find the charge on each capacitor. 
 
(a) Relate the equivalent capacitance 
of the two capacitors in series to 
their individual capacitances: 
 

F0.15
1

F00.4
11

154 μμ
+=

+C
 

Solving for C4+15 yields: F158.3154 μ=+C  
 

Find the equivalent capacitance of 
C4+15 in parallel with the 12.0-μF  
capacitor: 
 

F2.15F16.15

F12.0F158.3eq

μμ

μμ

==

+=C
 

(b) Use the definition of capacitance 
to find the charge stored on the  
12-μF capacitor: 
 

( )( )
mC40.2

V200F0.1212121212

=

=== μVCVCQ
 

 

Because the capacitors in series have 
the same charge: 
 

( )( )
mC632.0mC6316.0

V200F158.3154154

==

=== + μVCQQ
 

 
(c) Because the 12.0-μF capacitor is 
connected directly across the source, 
the voltage across it is: 
 

V 20012 =V  

 



                                                                                         Capacitance 
 

 

2311

V 158
F4.00
mC 6316.0

4

4
4 ===

μC
QV  Use the definition of capacitance to 

find V4 and V15: 
and 

V 24
F15.0
mC 6316.0

15

15
15 ===

μC
QV  

 
( )( )

mJ 9.49

V 158mC 0.63162
1

442
1

4

=

== VQU
 

(d) Use QVU 2
1= to find the energy 

stored in each capacitor: 
 ( )( )

mJ 3.31

V 24mC 0.63162
1

15152
1

15

=

== VQU
 

and 
( )( )

mJ 402

V 002mC 2.402
1

12122
1

12

=

== VQU
 

 
33 •• (a) Show that the equivalent capacitance of two capacitors in series 
can be written 

                                                       1 2
eq

1 2

C CC
C C

=
+

 

(b) Using only this formula and some algebra, show that  must always be less 
than  C

eqC
1 and C2, and hence must be less than the smaller of the two values. 

(c) Show that the equivalent capacitance of three capacitors in series is can be 
written 

                                            1 2 3
eq

1 2 2 3 1 3

C C CC
C C C C C C

=
+ +

 

(d) Using only this formula and some algebra, show that  must always be less 
than each of C

eqC
1, C2 and C3, and hence must be less than the least of the three 

values. 
 
Picture the Problem We can use the properties of capacitors in series to establish 
the results called for in this problem. 
 
(a) Express the equivalent 
capacitance of two capacitors in 
series: 
 

21

12

21eq

111
CC

CC
CCC

+
=+=  

Solve for  by taking the 

reciprocal of both sides of the 
equation to obtain: 

eqC

 

21

21
eq CC

CCC
+

=  

 



  Chapter 24    
 

 

2312 

(b) Divide numerator and 
denominator of this expression by C1 
to obtain: 
 

1

2

2
eq

1
C
C

CC
+

=  

 

Because 11
1

2 >+
C
C : 

 

2eq CC <  

Divide numerator and denominator 
of this expression by C2 to obtain: 
 2

1

1
eq

1
C
C

CC
+

=  

 

Because 11
2

1 >+
C
C : 

 

1eq CC < , showing that Ceq must always 

be less than both C1 and C2, and hence 
must be less than the smaller of the two 
values. 
 

(c) Using our result from part (a) for 
two of the capacitors, add a third 
capacitor C3 in series to obtain: 
 

321

213231

321

21

eq

11

CCC
CCCCCC

CCC
CC

C

++
=

+
+

=

 

 
Take the reciprocal of both sides of 
the equation to obtain: 

313221

321
eq CCCCCC

CCCC
++

=  

 
(d) Rewrite the result of Part (c) as 
follows: 
 

3
313221

21
eq C

CCCCCC
CCC ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

=  

Divide numerator and denominator 
of this expression by C1C2 to obtain: 
 

3

2

3

1

3

3

21

31

21

32

21

21
eq

1

1

1

C

C
C

C
C

C

CC
CC

CC
CC

CC
CC

C

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++
=

 

 

Because 11
2

3

1

3 >++
C
C

C
C

: 

 

3eq CC <  
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Proceed similarly to show that: 1eq CC < and 2eq CC < , showing that 

Ceq must always be less than C1, C2 and 
C3, and hence must be less than the 
smaller of the three values. 

  
34 •• For the circuit shown in Figure 24-37 find (a) the equivalent 
capacitance between the terminals, (b) the charge stored on the positively charge 
plate of each capacitor, (c) the voltage across each capacitor, and (d) the total 
stored energy. 
 
Picture the Problem Let Ceq1 represent the equivalent capacitance of the parallel 
combination and  the total equivalent capacitance between the terminals. We 
can use the equations for capacitors in parallel and then in series to find . 
Because the charge on  is the same as on the 0.300-μF capacitor and C

eqC

eqC

eqC eq1, 

we’ll know the charge on the 0.300-μF capacitor when we have found the total 
charge Qeq stored by the circuit. We can find the charges on the 1.00-μF and 
0.250-μF capacitors by first finding the potential difference across them and then 
using the definition of capacitance. 
 

0.300µF

1.00µF 0.250µF

0.300 µF

eq,1C
eqC

 
 
(a) Find the equivalent capacitance 
for the parallel combination: 
 

F1.25F0.250F00.1eq1 μμμ =+=C  

 
 

F25.1
1

F300.0
11

eq μμ
+=

C
 The 0.300-μF capacitor is in series 

with Ceq1. Their equivalent 
capacitance  is given by: eqC and 

F242.0F24194.0eq μμ ==C  

 

 

(b) Express the total charge stored 
by the circuit Qeq: 
 

( )(
C4194.2

V0.10 F24194.0
eq25.1300.0eq

μ
μ

=
= )

=== VCQQQ
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The 1.00-μF and 0.250-μF 
capacitors, being in parallel, have a 
common potential difference. 
Express this potential difference in 
terms of the 10.0 V across the system 
and the potential difference across 
the 0.300-μF capacitor:  V593.1

F300.0
C4194.2V0.10

V0.10

V0.10

3.0

3.0

3.025.1

=

−=

−=

−=

μ
μ

C
Q
VV

 

 
Using the definition of capacitance, 
find the charge on the 1.00-μF and  
0.250-μF capacitors: 

( )( )
C9.1

V935.1F00.100.100.100.1

μ

μ

=

== VCQ
 

and 
( )( )

C48.0

V935.1F250.0250.0250.0250.0

μ

μ

=

== VCQ
 

 
Because the voltage across the 
parallel combination of the 1.00-μF 
and 0.250-μF capacitors is 1.935 V, 
the voltage across the 0.300-μF 
capacitor is 8.065 V and: 
 

( )( )
C42.2

V065.8F300.0300.0300.0300.0

μ

μ

=

== VCQ
 

(c) From (b), the voltages across the 
0.300-μF capacitor and the parallel 
combination of the 1.00-μF and 
0.250-μF capacitors is: 
 

V 06.80.300 =V  

and 

V 9.1

V 06.8V 0.10250.000.1

=

−==VV
 

 
(d) The total stored energy is given 
by: 
 

2
eq2

1 VCU =  

Substitute numerical values and 
evaluate U: 

( )( ) J1.12V0.10F2419.0 2
2
1 μμ ==U  

 
35 •• Five identical capacitors of capacitance C0 are connected in a so-called 
″bridge″ network, as shown in Figure 24-38. (a) What is the equivalent 
capacitance between points a and b? (b) Find the equivalent capacitance between 
points a and b if the capacitor at the center is replaced by a capacitor that has a 
capacitance of 10 C0.  
 
Picture the Problem Note that there are three parallel paths between a and b. We 
can find the equivalent capacitance of the capacitors connected in series in the 
upper and lower branches and then find the equivalent capacitance of three 
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apacitors in parallel. 

itance 

s in the upper and lower 
ranch: 

c
 
(a) Find the equivalent capac
of the series combination of 
capacitor
b

00eq

111
CCC

+= ⇒ 02
1

eqC C=  

 

 tw
 
Now we have o capacitors with 
capacitance 02

1 C  in parallel with a 
capacitor whose capacitance is C0. 
Find their equivalent capacitance: 
 

002
1

002
1

eq 2CCCCC' =++=  

(b) If the central capacitance is 10C0, 
en: 

002
1

002
1

eq 1110 CCCCC' =++=  
th
 
36 •• You and your laboratory team have been given a project by your 
electrical engineering professor. Your team must design a network of capacitors 
that has a equivalent capacitance of 2.00 μF and breakdown voltage of 400 V. The 
restriction is that your team must use only 2.00-μF capacitors that have individual 

eakdown voltages of 100 V. Diagram the combination. 

n in the circuit diagram, the total 
capacitance between the terminals is 2.00 μF. 

br
 
Picture the Problem Place four of the capacitors in series. Then the potential 
across each is 100 V when the potential across the combination is 400 V. The 
equivalent capacitance of the series combination is 0.500 μF. If we place four 
such series combinations in parallel, as show

 
 
37 •• Find the different equivalent capacitances that can be obtained by 
using two or three of the following capacitors: a 1.00-μF capacitor, a 2.00-μF 
apacitor, and a 4.00-μF capacitor. 

wo in parallel in series with the third, and 
o in series in parallel with the third. 

c
 
Picture the Problem We can connect two capacitors in parallel, all three in 
parallel, two in series, three in series, t
tw
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Connect 2 in parallel to obtain: 
 

F00.3F2.00F00.1eqC μμμ =+=  

or 
F00.5F4.00F00.1eqC μμμ =+=  

or 
F00.6F4.00F00.2eq μμμ =+=C  

 
 all three in parallel to 

obtain: 
Connect

F00.7

F4.00F00.2F00.1eq

μ

μμμ

=

++=C
 

 
Connect two in series: ( )( ) F667.0

F00.2F00.1
F00.2F00.1 μ
μμ

μ μ
eq =

+
=C  

or 
( )( ) F800.0

F00.4F00.1
F00.4F00.1 μ
μμ

μ μ
eq =

+
=C  

or 
( )( ) F33.1

F00.4F00.2
F00.4F00.2

eq μ
μμ
μμ

=
+

=C  

 
onnecting all three in series yields: 

 
C

( )( )( )
( )( ) ( )( ) ( )( ) F571.0

F00.4F00.1F00.4F00.2F00.2F00.1
F00.4F00.2F00.1

eq μ
μμμμμμ

μμμ
=

++
=C  

 

mbination in series with 
e third: 

 

( )( )

F71.1

F00.4F00.2F00.1
F00.2F00.1F00.4

eq

μ

μμμ
μμμ

=

++
+

=C
 

Connect two in parallel, and the 
parallel co
th

or 
( )( )

F857.0

F00.4F00.2F00.1
F00.2F00.4F00.1

eq

μ

μμμ
μμμ

=

++
+

=C
 

or 
( )( )

F43.1

F00.4F00.2F00.1
F00.1F00.4F00.2

eq

μ

μμμ
μμμ

=

++
+

=C
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( )( )

F67.4

F00.4
F00.2F00.1
F00.2F00.1

eq

μ

μ
μμ
μμ

=

+
+

=C
 

Connect two in series, and the 
series combination in parallel 
with the third: 

or 
( )( )

F33.2

F00.1
F00.2F00.4
F00.2F00.4

eq

μ

μ
μμ
μμ

=

+
+

=C
 

or 
( )( )

F80.2

F00.2
F00.4F00.1
F00.4F00.1

eq

μ

μ
μμ
μμ

=

+
+

=C
 

 
38 ••• What is the equivalent capacitance (in terms of C which is the 
capacitance of one of the capacitors) of the infinite ladder of capacitors shown in 
Figure 24-39? 
 
Picture the Problem Let C be the 
capacitance of each capacitor in the 
ladder and let  be the equivalent 

capacitance of the infinite ladder less 
the series capacitor in the first rung. 
Because the capacitance is finite and 
non-zero, adding one more stage to the 
ladder will not change the capacitance 
of the network. The capacitance of the 
two capacitor combination shown to the 
right is the equivalent of the infinite 
ladder, so it has capacitance  also. 

eqC

eqC

 

 

  
The equivalent capacitance of the 
parallel combination of C and  is:  eqC
 

  C +Ceq  
 

The equivalent capacitance of the 
series combination of C and   
(C + ) is , so: eqC eqC
 

eqeq

111
CCCC +

+=  

Simply this expression to obtain a 
quadratic equation in : eqC
 

02
eq

2
eq =−+ CCCC  
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Solving for the positive value of  
yields: 

eqC

 

CCC 618.0 
2

15
eq =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=  

 
Parallel-Plate Capacitors 
 
39 • A parallel-plate capacitor has a capacitance of 2.00 μF and a plate 
separation of 1.60 mm. (a) What is the maximum potential difference between the 
plates, so that dielectric breakdown of the air between the plates does not occur? 
(b) How much charge is stored at this potential difference? 
 
Picture the Problem The potential difference V across a parallel-plate capacitor, 
the electric field E between its plates, and the separation d of the plates are related 
according to V = Ed. We can use this relationship to find Vmax corresponding to 
dielectric breakdown and the definition of capacitance to find the maximum 
charge on the capacitor.  
 
(a) Express the potential difference 
V across the plates of the capacitor 
in terms of the electric field between 
the plates E and their separation d: 
 

EdV =  

maxV  corresponds to : maxE ( )( )
kV4.80

mm1.60MV/m3.00max

=

=V
 

 
(b) Using the definition of 
capacitance, find the charge Q stored 
at this maximum potential difference: 

( )( )
mC60.9

kV80.4F00.2max

=

== μCVQ
 

 
40 • An electric field of 2.00 × 104 V/m exists between the circular plates 
of a parallel-plate capacitor that has a plate separation of 2.00 mm. (a) What is the 
potential difference across the capacitor plates? (b) What plate radius is required 
if the positively charged plate is to have a charge of 10.0 μC? 
 
Picture the Problem The potential difference V across a parallel-plate capacitor, 
the electric field E between its plates, and the separation d of the plates are related 
according to V = Ed. In Part (b) we can use the definition of capacitance and the 
expression for the capacitance of a parallel-plate capacitor to find the required 
plate radius. 
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(a) Express the potential difference V 
across the plates of the capacitor in 
terms of the electric field between 
the plates E and their separation d: 
 

EdV =  

Substitute numerical values and 
evaluate V: 
 

( )( )
V40.0

mm2.00V/m102.00 4

=

×=V
 

 
(b) Use the definition of capacitance 
to relate the capacitance of the 
capacitor to its charge and the 
potential difference across it: 
 

V
QC =  

The capacitance of a parallel-plate 
capacitor is given by: 
 

d
R

d
AC

2
00 π∈∈

==  

where R is the radius of the circular 
plates. 
 

Equate these two expressions for C: 
V
Q

d
R

=
2

0 π∈
⇒

V
QdR
π∈0

=  

 
Substitute numerical values and 
evaluate R: 

( )( )

( )

m24.4

V40.0
mN

C10854.8

mm00.2C0.10

2

2
12

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−π

μR

 

 
41 •• A parallel-plate, air-gap capacitor has a capacitance of 0.14 μF. The 
plates are 0.50 mm apart. (a) What is the area of each plate? (b) What is the 
potential difference between the plates if the positively charged plate has a charge 
of 3.2 μC? (c) What is the stored energy? (d) What is the maximum energy this 
capacitor can store before dielectric breakdown of the air between the plates 
occurs? 
 
Picture the Problem We can use the expression for the capacitance of a parallel-
plate capacitor to find the area of each plate and the definition of capacitance to 
find the potential difference when the capacitor is charged to 3.2 μC. We can find 
the stored energy using 2

2
1 CVU = and the definition of capacitance and the 

relationship between the potential difference across a parallel-plate capacitor and 
the electric field between its plates to find the charge at which dielectric 
breakdown occurs. Recall that Emax, air = 3.00 MV/m. 
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(a) The capacitance of a parallel-
plate capacitor is given by: 
 

d
AC 0∈

= ⇒
0∈

CdA =  

Substitute numerical values and 
evaluate A: 

( )( )

2

2

2

2
12

m9.7

m906.7

mN
C108.854

mm50.0F14.0

=

=

⋅
×

=
−

μA

 

 
(b) Using the definition of 
capacitance, find the potential 
difference across the capacitor when 
it is charged to 3.2 μC: 
 

V23V9.22
F0.14

C2.3
====

μ
μ

C
QV  

(c) Express the stored energy as a 
function of the capacitor’s 
capacitance and the potential 
difference across it: 
 

2
2
1 CVU =  

Substitute numerical values and 
evaluate U: 
 

( )( )
J37

J7.36V9.22F14.0 2
2
1

μ

μμ

=

==U
 

 
(d) The maximum energy this 
capacitor can store before dielectric 
breakdown of the air between the 
plates occurs is given by: 
 

2
max2

1
max CVU =  

Relate the maximum potential 
difference to the maximum 
electric field between the plates: 
 

dEV maxmax =  

Substituting for  yields: maxV 2
max

2
2
1

max ECdU =  
 

Substitute numerical values and evaluate : maxU
 

( )( ) ( ) J 16.0MV/m3.00mm0.50F14.0 22
2
1

max == μU  

 
42 •• Design a 0.100-μF parallel-plate capacitor that has air between its 
plates and that can be charged to a maximum potential difference of 1000 V 
before dielectric breakdown occurs. (a) What is the minimum possible separation 
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between the plates? (b) What minimum area must each plate of the capacitor 
have?  
 
Picture the Problem The potential difference across the capacitor plates V is 
related to their separation d and the electric field between them according to  
V = Ed. We can use this equation with Emax = 3.00 MV/m to find dmin. In Part (b) 
we can use the expression for the capacitance of a parallel-plate capacitor to find 
the required area of the plates. 
 
(a) Use the relationship between the 
potential difference across the plates 
and the electric field between them to 
find the minimum separation of the 
plates: 
 

mm333.0

MV/m3.00
V1000

max
min

=

==
E
Vd

 

 

(b) The capacitance of a parallel-
plate capacitor is given by: 
 

d
AC 0∈

= ⇒
0∈

CdA =  

 
Substitute numerical values and 
evaluate A: 

( )( ) 2
2212- m76.3

m/NC108.854
mm333.0F100.0

=
⋅×

=
μA  

 
Cylindrical Capacitors 
 
43 • In preparation for an experiment that you will do in your introductory 
nuclear physics lab, you are shown the inside of a Geiger tube. You measure the 
radius and the length of the central wire of the Geiger tube to be 0.200 mm and 
12.0 cm, respectively. The outer surface of the tube is a conducing cylindrical 
shell that has an inner radius of 1.50 cm. The shell is coaxial with the wire and has 
the same length (12.0 cm). Calculate  (a) the capacitance of your tube, assuming 
that the gas in the tube has a dielectric constant of 1.00, and (b) the value of the 
linear charge density on the wire when the potential difference between the wire 
and shell is 1.20 kV? 
 
Picture the Problem The capacitance of a cylindrical capacitor is given by 

( )120 ln2 RRLC ∈πκ=  where L is its length and R1 and R2 the radii of the inner 
and outer conductors. 
 
(a) The capacitance of the coaxial 
cylindrical shell is given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

0

ln

2

R
R

LC ∈πκ  
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Substitute numerical values and evaluate C: 
 

( )( )( ) pF55.1pF 546.1

mm0.200
cm50.1ln

m120.0m/NC10854.800.12 2212

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×

=
−πC  

 
(b) Use the definition of capacitance 
to express the charge per unit length: 
 

L
CV

L
Q
==λ  

Substitute numerical values and 
evaluate λ: 

( )( ) nC/m5.15
m0.120

kV20.1pF546.1
==λ  

 
44 •• A cylindrical capacitor consists of a long wire that has a radius R1, a 
length L and a charge +Q. The wire is enclosed by a coaxial outer cylindrical shell 
that has a inner radius R2, length L, and charge –Q. (a) Find expressions for the 
electric field and energy density as a function of the distance R from the axis.  
(b) How much energy resides in a region between the conductors that has a radius 
R, a thickness dR, and a volume 2πrL dR? (c) Integrate your expression from Part 
(b) to find the total energy stored in the capacitor. Compare your result with that 
obtained by using the formula ( )2 2U Q C=  in conjunction with the known 
expression for the capacitance of a cylindrical capacitor. 
 
Picture the Problem The diagram 
shows a partial cross-sectional view of 
the inner wire and the outer cylindrical 
shell. By symmetry, the electric field is 
radial in the space between the wire and 
the concentric cylindrical shell. We can 
apply Gauss’s law to cylindrical 
surfaces of radii R < R1, R1 < R < R2, 
and R > R2 to find the electric field and, 
hence, the energy density in these 
regions. 

R1

R2

–Q

+Q

R

 

 
(a) Apply Gauss’s law to a 
cylindrical surface of radius R < R1 
and length L to obtain: 
 

( ) 02
0

inside
1

==< ∈
π

QRLE RR  

and 
0

1
=<RRE  

 
Because E = 0 for R < R1: 0

1
=<RRu  
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Apply Gauss’s law to a cylindrical 
surface of radius R1 < R < R2 and 
length L to obtain: 
 

( )
00

inside2
21 ∈

λ
∈

π LQRLE RRR ==<<  

whereλ is the linear charge density. 

Solve for  to obtain: 
21 RRRE <<

RL
kQ

R
E RRR

2
2 0

21
==<< ∈π

λ  

 
The energy density in the region  
R1 < R < R2 is given by: 
 

2
02

1
2121 RRRRRR Eu <<<< = ∈  

 

Substituting for and 

simplifying yields: 
21 RRRE <<

22

2
0

2

2

02
1

2

02
1

2

22
21

LR
Qk

RL
kQ

R
ku RRR

∈

∈λ∈

=

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=<<

 

 

( ) 02
0

inside
2

==> ∈
π

QRLE RR  

and 
0

2
=>RRE  

 

Apply Gauss’s law to a cylindrical 
surface of radius R > R2 and length L 
to obtain: 
 

Because E = 0 for R > R2: 0
2
=>RRu  

 
(b) Express the energy residing in a 
cylindrical shell between the 
conductors of radius R, thickness dR, 
and volume 2π RL dR: 
 

( )

dR
RL

kQ

dr
LR

QkRL

dRRRLudU

2

22

2
0

222

2

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∈
=

=

π

π

 

 
(c) Integrate dU from R = R1 to  
R = R2 to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== ∫

1

2
22

ln
2

1
R
R

L
kQ

R
dR

L
kQU

R

R
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Use 2

2
1 CVU = and the expression for the capacitance of a cylindrical capacitor to 

obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

===
1

2
2

1

2

0

22

2
12

2
1 ln

ln

22

R
R

L
kQ

R
R

L

Q
C
QCVU

∈π

 

in agreement with the result from Part (b). 
 
45 ••• Three concentric, thin long conducting cylindrical shells have radii of 
2.00 mm, 5.00 mm, and 8.00 mm. The space between the shells is filled with air. 
The innermost and outermost shells are connected at one end by a conducting 
wire. Find the capacitance per unit length of this configuration. 
 
Picture the Problem Note that with the innermost and outermost cylinders 
connected together the system corresponds to two cylindrical capacitors 

connected in parallel. We can use ( )12

0

ln
2

RR
LC κ∈π

= to express the capacitance per 

unit length and then calculate and add the capacitances per unit length of each of 
the cylindrical shell capacitors. 
 
Relate the capacitance of a 
cylindrical capacitor to its length L 
and inner and outer radii R1 and R2: 
 

( )12

0

ln
2

RR
LC κ∈π

=  

Divide both sides of the equation by 
L to express the capacitance per unit 
length: 
 

( )12

0

ln
2

RRL
C κ∈π
=  

Express the capacitance per unit 
length of the cylindrical system: 
 

innerouter
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

L
C

L
C

L
C             (1) 

Substitute numerical values and evaluate the capacitance per unit length of the 
outer cylindrical shell combination: 
 

( )( )
( ) pF/m4.118

cm0.500cm0.800ln
00.1m/NC10854.82 2212

outer

=
⋅×

=⎟
⎠
⎞

⎜
⎝
⎛ −π

L
C  
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Substitute numerical values and evaluate capacitance per unit length of the 
inner cylindrical shell combination: 
 

( )( )
( ) pF/m7.60

cm0.200cm0.500ln
00.1m/NC10854.82 2212

inner

=
⋅×

=⎟
⎠
⎞

⎜
⎝
⎛ −π

L
C  

 
Substituting numerical results in 
equation (1) yields: 

pF/m179

pF/m7.60pF/m4.118

=

+=
L
C

 

 
46 ••• A goniometer is a precise instrument for measuring angles. A 
capacitive goniometer is shown in Figure 24-40a. Each plate of the variable 
capacitor (Figure 24-40b) consists of a flat metal semicircle that has an inner 
radius R1 and an outer radius R2. The plates share a common rotation axis, and the 
width of the air gap separating the plates is d. Calculate the capacitance as a 
function of the angle θ and the parameters given. 
  
Picture the Problem We can use the 
expression for the capacitance of a 
parallel-plate capacitor of variable area 
and the geometry of the figure to 
express the capacitance of the 
goniometer. 

 
 

The capacitance of the parallel-plate 
capacitor is given by: 
 

( )
d

AAC Δ−
= 0∈  

 
The area of the plates is: 
 ( ) ( )

22
2

1
2
2

2
1

2
2

θ
π
θπ RRRRA −=−=  

 
If the top plate rotates through an 
angle Δθ, then the area is reduced 
by: 
 

( ) ( )
22

2
1

2
2

2
1

2
2

θ
π
θπ Δ

−=
Δ

−=Δ RRRRA  
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Substitute for A and ΔA in the 
expression for C and simplify to 
obtain: 

( ) ( )

( )( )θθ∈

θθ∈

Δ−
−

=

⎥⎦
⎤

⎢⎣
⎡ Δ

−−−=

d
RR

RRRR
d

C

2

22
2

1
2
20

2
1

2
2

2
1

2
2

0

 

 
47 ••• A capacitive pressure gauge is shown in Figure 24-41. Each plate has 
an area A. The plates are separated by a material that has a dielectric constant κ, a 
thickness d, and a Young’s modulus Y. If a pressure increase of ΔP is applied to 
the plates, derive an expression for the change in capacitance. 
 
Picture the Problem Let C be the capacitance of the capacitor when the pressure 
is P and C′ be the capacitance when the pressure is P + ΔP.  We’ll assume that (a) 
the change in the thickness of the plates is small, and (b) the total volume of 
material between the plates is conserved.  We can use the expression for the 
capacitance of a dielectric-filled parallel-plate capacitor and the definition of 
Young’s modulus to express the change in the capacitance ΔC of the given 
capacitor when the pressure on its plates is increased by ΔP. 
 
Express the change in capacitance 
resulting from the decrease in 
separation of the capacitor plates by 
Δd: 
 

d
A

dd
A'CC'C 00 ∈κ∈κ

−
Δ−

=−=Δ  

 

AdA'd' =   Because the volume is constant: 
or 

A
dd

dA
d
dA' ⎟

⎠
⎞

⎜
⎝
⎛

Δ−
=⎟

⎠
⎞

⎜
⎝
⎛=

'
 

 
Substitute for A′ in the expression for 
ΔC and simplify to obtain: 

( )

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

Δ−
=

⎥
⎦

⎤
⎢
⎣

⎡
−

Δ−
=

−
Δ−

=

−⎟
⎠
⎞

⎜
⎝
⎛

Δ−Δ−
=Δ

1

1

2

2

2

2
0

02
2

0

00

dd
dC

dd
d

d
A

d
Ad

ddd
A

d
A

dd
d

dd
AC

∈κ

∈κ∈κ

∈κ∈κ

 

 
From the definition of Young’s 
modulus: 
 

Y
P

d
d

−=
Δ  ⇒ d

Y
Pd ⎟
⎠
⎞

⎜
⎝
⎛−=Δ  
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Substitute for Δd in the expression 
for ΔC to obtain: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+

=Δ

−

11

1

2

2

2
0

Y
PC

d
Y
Pd

d
d

AC ∈κ

 

 

Expand 
2

1
−

⎟
⎠
⎞

⎜
⎝
⎛ −

Y
P binomially to 

obtain: 
 

...3211
22

+⎟
⎠
⎞

⎜
⎝
⎛+−=⎟

⎠
⎞

⎜
⎝
⎛ −

−

Y
P

Y
P

Y
P  

Provided P << Y: 

Y
P

Y
P 211

2

−≈⎟
⎠
⎞

⎜
⎝
⎛ −

−

 

 
Substitute in the expression for ΔC 
and simplify to obtain: 
 

C
Y
P

Y
PCC 2121 −=⎥⎦

⎤
⎢⎣
⎡ −−=Δ  

 
Spherical Capacitors 
 
48 •• Model Earth as a conducting sphere.  (a) What is its self-capacitance?  
(b) Assume the magnitude of the electric field at Earth’s surface is 150 V/m. 
What charge density does this correspond to?  Express this value in fundamental 
charge units e per square centimeter 
 
Picture the Problem (a) We can use the definition of capacitance and the 
expression for the electric potential at the surface of Earth to find Earth’s self-
capacitance. In Part (b) we can use 0∈σ=E to find Earth’s surface charge 
density. 
 
(a) The self-capacitance of Earth is 
given by: V

QC = where Q is the charge on Earth 

and V is the potential at its surface. 
 

Because 
R

kQV = where R is the 

radius of Earth: 
 

k
R

R
kQ
QC ==  
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Substitute numerical values and 
evaluate C: 
 

mF 709.0

mF 7087.0

C
mN10988.8

km 6370

2

2
9

=

=
⋅

×
=C

 

 
(b) The electric field at the surface of 
Earth is related to Earth’s charge 
density: 
 

0∈
σ

=E ⇒ E0∈σ =  

Substitute numerical values and evaluate σ : 
 

2
3

19

2

222

2
12

cm
10829

C 10602.1
1

cm 10
m 1

m
nC328.1

m
V 150

mN
C10854.8

e

e

×=

×
×⎟

⎠
⎞

⎜
⎝
⎛×=⎟

⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×= −
−σ

 

 
49 •• [SSM] A spherical capacitor consists of  a thin  spherical shell that 
has a radius R1 and a thin, concentric spherical shell that has a radius R2, where  
R2 > R1. (a) Show that the capacitance is given by C = 4π∈0R1R2/(R2 – R1).  
(b) Show that when the radii of the shells are nearly equal, the capacitance 
approximately is given by the expression for the capacitance of a parallel-plate 
capacitor, C = ∈0A/d, where A is the area of the sphere and d = R2 – R1. 
 
Picture the Problem We can use the definition of capacitance and the expression 
for the potential difference between charged concentric spherical shells to show 
that ( ).4 12210 RRRRC −= ∈π  
 
(a) Using its definition, relate the 
capacitance of the concentric 
spherical shells to their charge Q and 
the potential difference V between 
their surfaces: 
 

V
QC =  

Express the potential difference 
between the conductors: 
 

21

12

21

11
RR

RRkQ
RR

kQV −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  
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Substitute for V and simplify to 
obtain: ( )

12

210

12

21

21

12

4
RR

RR

RRk
RR

RR
RRkQ

QC

−
=

−
=

−
=

∈π
 

 
(b) Because R2 = R1 + d: ( )

22
1

1
2

1

1121

RR

dRR
dRRRR

=≈

+=

+=

 

because d is small. 
 

Substitute to obtain: 
 d

A
d

RC 0
2

04 ∈∈π
=≈  

 
50 •• A spherical capacitor is composed of an inner sphere which has a 
radius R1 and a charge +Q and an outer concentric spherical thin shell which has a 
radius R2 and a charge –Q. (a) Find the electric field and the energy density as a 
function of r, where r is the distance from the center of the sphere, for 0 ≤ r < ∞. 
(b) Calculate the energy associated with the electrostatic field in a spherical shell 
between the conductors that has a radius r, a thickness dr, and a volume 4πr2 dr? 
(c) Integrate your expression from Part (b) to find the total energy and compare 
your result with the result obtained using 1

2U QV= . 
 
Picture the Problem The diagram 
shows a partial cross-sectional view of 
the inner and outer spherical shells. By 
symmetry, the electric field is radial. 
We can apply Gauss’s law to spherical 
surfaces of radii r < R1, R1 < r < R2, and 
r > R2 to find the electric field and, 
hence, the energy density in these 
regions. 

R1

r

R2

–Q

+Q

 
 

( ) 04
0

inside2 ==
∈

π
QrEr  

and, because Qinside = 0, 
0=rE  

 

(a) Apply Gauss’s law to a spherical 
surface of radius r < R1 to obtain: 
 

Because E = 0 for r < R1: 0=u  
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Apply Gauss’s law to a spherical 
surface of radius R1 < r  < R2 to 
obtain: 
 

( )
00

inside24
∈∈

π QQrEr ==  

 

Solve for rE  to obtain: 
2122

042
RrR

r
kQ

r
QEr ≤≤==
∈π

 

 
Express the energy density in the 
region R1 < r < R2: 

214

2
0

2

2

202
12

02
1

2

21

RrR
r

Qk

r
kQEu RrR

≤≤=

⎟
⎠
⎞

⎜
⎝
⎛== <<

∈

∈∈
 

 

( ) 04
0

inside2 ==
∈

π
QrEr  

and, because Qinside = 0,  
0=rE  

 

Apply Gauss’s law to a cylindrical 
surface of radius r > R2 to obtain: 
 

Because E = 0 for r > R2: 0=ru  

 
(b) Express the energy in the 
electrostatic field in a spherical shell 
of radius r, thickness dr, and volume 
4π r2dr between the conductors: 
 

( )

dr
r

kQ

dr
r

QkrdrrurdU

2

2

4

2
0

2
22

2

2
44

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

∈ππ
 

 
(c) Integrate dU from r = R1 to R2 
to obtain: 
 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−
== ∫

210

122

21

12
2

2

2

42
1

22

2

1

RR
RRQ

RR
RRkQ

r
drkQU

R

R

∈π

 

 
Note that the quantity in parentheses is 1/C , so we have .2

2
1 CQU =  

 
51 ••• An isolated conducting sphere of radius R has a charge Q distributed 
uniformly over its surface. Find the distance R′ from the center of the sphere such 
that half the total electrostatic energy of the system is associated with the electric 
field beyond that distance. 
 
Picture the Problem We know, from Gauss’s law, that the field inside the shell is 
zero. We can then express the energy in the electrostatic field in a spherical shell 
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of radius r, thickness dr, and volume 4π r2dr outside the given spherical shell and 
find the total energy in the electric field by integrating from R to ∞. If we then 
integrate the same expression from R to R′ we can find the distance R′ from the 
center of the sphere such that half the total electrostatic field energy of the system 
is within that distance. 
 
Apply Gauss’s law to a spherical 
shell of radius r > R to obtain: 
 

( )
00

inside24
∈∈

π QQrE Rr ==>  

Solve for  outside the spherical 
shell: 

RrE >

 

2r
kQE Rr =>  

Express the energy density in the 
region r > R: 4

2
0

22

202
12

02
1

2r
Qk

r
kQEu Rr

∈
∈∈ =⎟

⎠
⎞

⎜
⎝
⎛== >  

 
Express the energy in the 
electrostatic field in a spherical shell 
of radius r, thickness dr, and volume 
4πr2dr outside the spherical shell: 
 

( )

dr
r

kQ

dr
r

Qkr

drrurdU

2

2

4

2
0

2
2

2

2

2
4

4

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

∈
π

π

 

 
Integrate dU from R to ∞ to obtain: 
 R

kQ
r
drkQU

R 22

2

2

2

tot == ∫
∞

 

 
Integrate dU from R to R′  to 
obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −== ∫ '

11
22

2'

2

2

RR
kQ

r
drkQU

R

R

 

 
Set tot2

1 UU = to obtain: 
R

kQ
RR

kQ
4'

11
2

22

=⎟
⎠
⎞

⎜
⎝
⎛ − ⇒ RR 2'=  

 
Disconnected and Reconnected Capacitors 
 
52 •• A 2.00-μF capacitor is energized to a potential difference of 12.0 V. 
The wires connecting the capacitor to the battery are then disconnected from the 
battery and connected across a second, initially uncharged, capacitor. The 
potential difference across the 2.00-μF capacitor then drops to 4.00 V. What is the 
capacitance of the second capacitor? 
 
Picture the Problem Let C1 represent the capacitance of the 2.00-μF capacitor 
and C2 the capacitance of the 2nd capacitor. Note that when they are connected as 
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described in the problem statement they are in parallel and, hence, share a 
common potential difference. We can use the equation for the equivalent 
capacitance of two capacitors in parallel and the definition of capacitance to relate 
C2 to C1 and to the charge stored in and the potential difference across the 
equivalent capacitor. 
 
Using the definition of capacitance, 
find the charge on capacitor C1: 
 

( )( ) C0.24V0.12F00.211 μμ === VCQ  

Express the equivalent capacitance 
of the two-capacitor system and 
solve for C2: 
 

21eq CCC += ⇒ 1eq2 CCC −=  

Using the definition of capacitance, 
express  in terms of QeqC 2 and V2: 

 
2

1

2

2
eq V

Q
V
QC ==  

where V2 is the common potential 
difference (they are in parallel) across 
the two capacitors and Q1 and Q2 are 
the (equal) charges on the two 
capacitors. 
 

Substitute for  to obtain: eqC
1

2

1
2 C

V
QC −=  

 
Substitute numerical values and 
evaluate C2: 

F00.4F00.2
V00.4
C0.24

2 μμμ
=−=C  

 
53 •• [SSM] A 100-pF capacitor and a 400-pF capacitor are both charged 
to 2.00 kV. They are then disconnected from the voltage source and are connected 
together, positive plate to negative plate and negative plate to positive plate.  
(a) Find the resulting potential difference across each capacitor. (b) Find the 
energy dissipated when the connections are made. 
 
Picture the Problem (a) Just after the two capacitors are disconnected from the 
voltage source, the 100-pF capacitor carries a charge of 200 nC and the 400-pF 
capacitor carries a charge of 800 nC. After switches S1 and S2 in the circuit are 
closed, the capacitors are in parallel between points a and b, and the equivalent 
capacitance of the system is 400100eq CCC += . The plates to the right in the 

diagram below form a single conductor with a charge of 600 nC, and the plates to 
the left form a conductor with charge −Q = −600 nC. The potential difference 
across each capacitor is eqCQV = .  In Part (b) we can find the energy dissipated 
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when the connections are made by subtracting the energy stored in the system 
after they are connected from the energy stored in the system before they are 
connected. 

+200 nC 200 nC−

1 2

1

2

+800 nC 800 nC−

S S1 2

a b
200 nC−+200 nC

+800 nC800 nC−

C  = 100 pF

C  = 100 pF

C  = 400 pF

C  = 400 pF  
 
(a) When the switches are closed and 
the capacitors are connected together, 
their initial charges redistribute and 
the final charge on the two-capacitor 
system is 600 nC and the equivalent 
capacitance is 500 pF: 
 

 
 

−

eq

+600 nC600 nC

C   = 500 pF

 

The potential difference across each 
capacitor is the potential difference 
across the equivalent capacitor: 
 

kV 20.1
pF 500
nC 600

eq

===
C
QV  

 

(b) The energy dissipated when the 
capacitors are connected is the 
difference between the energy stored 
after they are connected and the 
energy stored before they were 
connected: 
 

afterbeforedissipated UUU −=             (1) 

( ) i212
1

222
1

112
1

21before

VQQ
VQVQ

UUU

+=

+=

+=
 

beforeU  is given by: 

where Vi is the charging voltage. 
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afterU  is given by: 
 

QVU 2
1

after =  
where Q is the total charge stored after 
the capacitors have been connected and 
V is the voltage found in Part (a). 
 

Substitute for  and  in 
equation (1) and simplify to obtain: 

beforeU afterU

 

( ) QVVQQU 2
1

i212
1

dissipated −+=  

Substitute numerical values and evaluate : dissipatedU
 

( )( ) ( )( ) J 640kV 20.1nC 600kV 00.2nC 800nC 200 2
1

2
1

dissipated μ=−+=U  
 
54 •• Two capacitors, one that has a capacitance of 4.00 μF and one that has 
a capacitance of 12.0 μF, are first discharged and then are connected in series.  
The series combination is then connected across the terminals of a 12.0-V battery. 
Next they are carefully disconnected so that they are not discharged and they are 
then reconnected to each other—positive plate to positive plate and negative plate 
to negative plate. (a) Find the potential difference across each capacitor after they 
are reconnected. (b) Find the energy stored in the capacitors before they are 
disconnected from the battery, and find the energy stored after they are 
reconnected. 
 
Picture the Problem Let C1 represent the capacitance of the 4.00-μF capacitor 
and C2 the capacitance of the 12.0-μF capacitor. (a) Just after the two capacitors 
are disconnected from the battery, they both carry charge Q.  After switches S1 
and S2 in the circuit are closed, the capacitors are in parallel between points a and 
b, and each will have the charge it acquired while they were connected in series 
across the battery. We can use the definition of capacitance and the equivalent 
capacitance of the two capacitors to find the common potential difference across 
them. In Part (b) we can use 2

2
1 CVU = to find the initial and final energy stored 

in the capacitors. 
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−

1 2

1

2

−

S S1 2

a b
−

−

+Q +QQ Q

12.0 V

μ μ

12.0 V

C  = 4.00   F C  = 12.0   F eqC'

+Q Q−

 ⇔

C

C

Q

Q+Q

+Q

eq

+2Q −2Q

(1) (2)

(3)

(4)

C

 
 
(a) From diagram (4): 
 eq

0.1200.4
2
C

QVV ==                       (1) 

where Q is the charge on each capacitor 
before they are disconnected. 
 

Find the equivalent capacitance of 
the two capacitors when they are 
connected in parallel: 
 

F16.0

F12.0F00.421eq

μ

μμ

=

+=+= CCC
 

 

Express the charge Q on each 
capacitor before they are 
disconnected: 
 

VC'Q eq=  

Express the equivalent capacitance 
of the two capacitors connected in 
series: 
 

( )( )

F00.3
F12.0F4.00
F0.12F00.4

21

21
eq

μ
μμ
μμ

=
+

=
+

=
CC

CCC'
 

Substitute to find Q: ( )( ) C0.36V0.12F00.3 μμ ==Q  
 

Substitute numerical values for Q 
and Ceq in equation (1) and evaluate 
V4.00 = V12.0: 
 

( ) V50.4
F0.16
C0.362

0.1200.4 ===
μ
μVV  

(b) The energy stored in the capacitors 
initially is: 
 

( )( )
J216

V0.12F00.3 2
2
12

ieq2
1

i

μ

μ

=

== VC'U
 

 



  Chapter 24    
 

 

2336 

The energy stored in the capacitors 
when they have been reconnected is: 

( )( )
J162

V50.4F0.16 2
2
12

feq2
1

f

μ

μ

=

== VCU
 

 
55 •• A 1.2-μF capacitor is charged to 30 V. After charging, the capacitor is 
disconnected from the voltage source and is connected across the terminals of a 
second capacitor that had previously been discharged. The final voltage across the 
1.2-μF capacitor is 10 V. (a) What is the capacitance of the second capacitor?  
(b) How much energy was dissipated when the connection was made? 
 
Picture the Problem Let C1 represent the capacitance of the 1.2-μF capacitor and 
C2 the capacitance of the 2nd capacitor. Note that when they are connected as 
described in the problem statement they are in parallel and, hence, share a 
common potential difference. We can use the equation for the equivalent 
capacitance of two capacitors in parallel and the definition of capacitance to relate 
C2 to C1 and to the charge stored in and the potential difference across the 
equivalent capacitor. In Part (b) we can use 2

2
1 CVU = to find the energy before 

and after the connection was made and, hence, the energy dissipated when the 
connection was made. 
 
(a) Using the definition of 
capacitance, find the charge on 
capacitor C1: 
 

( )( ) C36V30F2.111 μμ === VCQ  

Because the capacitors are in 
parallel: 
 

21eq CCC += ⇒ 1eq2 CCC −=   (1) 

2

1

2

2
eq V

Q
V
QC ==  

 

Using the definition of capacitance, 
express  in terms of the charge 

Q
eqC

2 on the second capacitor and the 
common potential difference V2 
across the two capacitors: 
 
Substituting for in equation (1) 

yields: 
eqC

1
2

1
2 C

V
QC −=  

 
Substitute numerical values and 
evaluate C2: 
 

F4.2F2.1
V10
C36

2 μμμ
=−=C  
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(b) The energy dissipated when the 
connections are made in terms of the 
energy stored in the capacitors 
before and after their connection is 
given by: 
 

( )2
feq

2
112

1

2
feq2

12
112

1

afterbeforedissipated

VCVC

VCVC

UUU

−=

−=

−=

 

Substitute numerical values and evaluate : dissipatedU

 
( )( )[ ( )( ) ] mJ4.0V10F6.3V30F2.1 22

2
1

dissipated =−= μμU  

 
56 •• A 12-μF capacitor and a capacitor of unknown capacitance are both 
charged to 2.00 kV. After charging, the capacitors are disconnected from the 
voltage source. The capacitors are then connected to each other⎯positive plate to 
negative plate and negative plate to positive plate. The final voltage across the  
12-μF capacitor is 1.00 kV. (a) What is the capacitance of the second capacitor? 
(b) How much energy was dissipated when the connection was made?  
 
Picture the Problem Let C1 represent the capacitance of the 12-μF capacitor and 
C2 the capacitance of the second capacitor. (a) Just after the two capacitors are 
disconnected from the voltage source, the 12-μF capacitor carries a charge of  
Q1i = 24 mC and the unknown capacitor carries a charge Q2i. After switches S1 
and S2 in the circuit are closed, the capacitors are in parallel between points a and 
b, and the equivalent capacitance of the system is 21eq CCC += . The plates to the 
right in the diagram below form a single conductor with a charge of , and 
the plates to the left form a conductor with charge 

2i1i QQ −

2f1f QQ + , where Q1i, Q2i, Q1f 

and Q2f are all positive . Because they are in parallel, the potential difference 
across both C1 and C2 when they are connected is 1.00 kV.  In Part (b) we can find 
the energy dissipated when the connections are made by subtracting the energy 
stored in the system after they are connected from the energy stored in the system 
before they are connected. 

− −

S S1 2

a b
−

−

C   = 12   F

μ

μ C

Q+Q

C   = 12   F

Q +Q

C

1 2

1

2

2i 2iQ1i 1iQ

Q Q

2i 2i

1i 1i

−

 Ceq

Q Q1i Q2i 1f Q2f+
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2f1f2i1i QQQQ +=−  (a) When the switches are closed and 
the capacitors are connected together, 
their initial charges redistribute. 
Apply conservation of charge to 
obtain: 

or 
f2f1i2i1 VCVCVCVC +=−  

 

 
Solving for C2 yields: 
 1

fi

fi
2 C

VV
VVC

+
−

=  

 
Substitute numerical values and 
evaluate C2: 
 

( )

F 0.4

F 12
kV 00.1kV 00.2
kV 00.1kV 00.2

2

μ

μ

=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=C
 

 
(b) The energy dissipated when the 
connections are made is the 
difference between the initial and 
final energies stored by the system: 

fidissipated UUU −=                     (1) 

( ) 2
i212

12
i22

12
i12

1
i VCCVCVCU +=+=  Ui and Uf are given by: 

and 
2

feq2
1

f VCU =  

 
Because C1 and C2 are in parallel: 
 

21eq CCC +=  

Substituting for Ceq yields: 
 

( ) 2
f212

1
f VCCU +=  

Substitute for Ui and Uf in equation (1) 
to obtain: 
 

( ) ( )
( )( )2

f
2

i212
1

2
f212

12
i212

1
dissipated

VVCC

VCCVCCU

−+=

+−+=
 

 
Substitute numerical values and evaluate : dissipatedU

 
( ) ( ) ( )[ ] J24kV 00.1kV 00.2F 4.0F12 22

2
1

dissipated =−+= μμU  

 
57 •• Two capacitors, one that has a capacitance of 4.00 μF and one that has 
a capacitance of 12.0 μF, are connected in parallel.  The parallel combination is 
then connected across the terminals of a 12.0-V battery. Next they are carefully 
disconnected so that they are not discharged.  They are then reconnected to each 
other—the positive plate of each capacitor connected to the negative plate of the 
other. (a) Find the potential difference across each capacitor after they are 
reconnected. (b) Find the energy stored in the capacitors before they are 
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disconnected from the battery, and find the energy stored after they are 
reconnected. 
 
Picture the Problem When the capacitors are reconnected, each will have a 
charge equal to the difference between the charges they acquired while they were 
connected in parallel across the 12.0-V battery. We can use the definition of 
capacitance and their equivalent capacitance to find the common potential 
difference across them. In Part (b) we can use 2

2
1 CVU = to find the initial and 

final energy stored in the capacitors. 
 

21

f

eq

f
0.1200.4f CC

Q
C
QVVV

+
====  (1) 

where  is the common charge on the 
capacitors after they are reconnected. 

fQ

 

(a) Using the definition of 
capacitance, express the potential 
difference across the capacitors 
when they are reconnected: 

Express the final charge  on 
each capacitor: 

fQ

 

12f QQQ −=  

Use the definition of capacitance to 
substitute for Q2 and Q1: 
 

( )VCCVCVCQ 1212f −=−=  

Substitute in equation (1) to obtain: 
 

V
CC
CCV

21

12
f +

−
=  

 
Substitute numerical values and 
evaluate : fV ( )

V0.6

V0.12
F00.4F0.12
F00.4F0.12

0.1200.4f

=

+
−

=

==

μμ
μμ

VVV

 

 
(b) The energy stored in the 
capacitors initially is given by: 
 

( )21
2

2
12

22
12

12
1

i CCVVCVCU +=+=  
 

Substitute numerical values and 
evaluate : iU

( ) ( )
mJ15.1

F00.4F0.12V0.12 2
2
1

i

=

+= μμU
 

 
The energy stored in the capacitors 
when they have been reconnected is 
given by: 
 

( )21
2

f2
12

f22
12

f12
1

f CCVVCVCU +=+=  
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Substitute numerical values and 
evaluate : fU
 

( ) ( )
mJ29.0

F00.4F0.12V0.6 2
2
1

f

=

+= μμU
 

 
58 •• A 20-pF capacitor is charged to 3.0 kV and then removed from the 
battery and connected to an uncharged 50-pF capacitor. (a) What is the new 
charge on each capacitor? (b) Find the energy stored in the 20-pF capacitor before 
it is disconnected from the battery, and the energy stored in the two capacitors 
after they are connected to each other. Does the stored energy increase or decrease 
when the two capacitors are connected to each other? 
 
Picture the Problem Let the numeral 1 refer to the 20-pF capacitor and the 
numeral 2 to the 50-pF capacitor. We can use conservation of charge and the fact 
that the connected capacitors will have the same potential difference across them 
to find the charge on each capacitor. We can decide whether stored energy 
increases or decreases when the two capacitors are connected by calculating the 
change in the electrostatic energy during this process. 
 

f11f VCQ =                                 (1) 
and 

f22f VCQ =                                (2) 
 

(a) The final charges on the capacitors 
are given by: 
 

2f1f1i QQQ +=                          
or 

f2f11i1 VCVCVC +=  

Using the fact that charge is 
conserved when the capacitors are 
connected, relate the charge Q1i 
initially on the 20-pF capacitor to 
the charges on the two capacitors 
when they have been connected: 
 
Solving for Vf yields: 
 1i

21

1
f V

CC
CV
+

=   

 
Substitute for Vf in equations (1) 
and (2) to obtain: 1i

21

2
1

1f V
CC

CQ
+

=  

and 

1i
21

21
2f V

CC
CCQ
+

=  

 

 

Substitute numerical values and 
evaluate Q1f: 
 

( ) ( )

nC 17nC 1.17

kV 0.3
pF 50pF 20

pF 20 2

1f

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
=Q
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Substitute numerical values and 
evaluate Q2f: 
 

( )( ) ( )

nC 43nC 9.42

kV 0.3
pF 50pF 20
pF 50pF 20

2f

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=Q
 

 
(b) The energy stored in the 20-pF 
capacitor before it is disconnected 
from the battery is given by: 
  

( )( ) J 90kV 0.3pF 20 2
2
1

2
1i12

1
1ii

μ==

== VCUU
 

 
The energy stored in the two 
capacitors after they are connected 
to each other is given by: 
 

2

2
2f

1

2
1f

2f1ff 22 C
Q

C
QUUU +=+=  

 

Substitute numerical values and 
evaluate Uf: 

( )
( )

( )
( ) J 62

pF 502
nC 2.94

pF 202
nC 1.17 22

f μ=+=U  

 
Because Uf < Ui, the stored energy decreases when the two capacitors are 
connected. 
 
59 •• [SSM] Capacitors 1, 2 and 3, have capacitances equal to 2.00 μF, 
4.00 μF, and 6.00 μF, respectively. The capacitors are connected in parallel, and 
the parallel combination is connected across the terminals of a 200-V source. The 
capacitors are then disconnected from both the voltage source and each other, and 
are connected to three switches as shown in Figure 24-42. (a) What is the 
potential difference across each capacitor when switches S1 and S2 are closed but 
switch S3 remains open? (b) After switch S3 is closed, what is the final charge on 
the leftmost plate of each capacitor? (c) Give the final potential difference across 
each capacitor after switch S3 is closed. 
  
Picture the Problem Let lower case qs refer to the charges before S3 is closed 
and upper case Qs refer to the charges after this switch is closed. We can use 
conservation of charge to relate the charges on the capacitors before S3 is closed 
to their charges when this switch is closed. We also know that the sum of the 
potential differences around the circuit when S3 is closed must be zero and can 
use this to obtain a fourth equation relating the charges on the capacitors after the 
switch is closed to their capacitances. Solving these equations simultaneously will 
yield the charges Q1, Q2, and Q3. Knowing these charges, we can use the 
definition of capacitance to find the potential difference across each of the 
capacitors. 
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(a) With S1 and S2 closed, but S3 
open, the charges on and the potential 
differences across the capacitors do 
not change. Hence: 
 

V200321 === VVV  

1212 QQqq −=− , (b) When S3 is closed, the charges 
can redistribute; express the 
conditions on the charges that must 
be satisfied as a result of this 
redistribution: 

2323 QQqq −=− , 
and 

3131 QQqq −=− . 

 
Express the condition on the 
potential differences that must be 
satisfied when S3 is closed: 
 

0321 =++ VVV  
where the subscripts refer to the three 
capacitors. 

Use the definition of capacitance to 
eliminate the potential differences: 
 

0
3

3

2

2

1

1 =++
C
Q

C
Q

C
Q                      (1) 

( )( ) C400V200F00.211 μμ === VCq , Use the definition of capacitance to 
find the initial charge on each 
capacitor: 
 

( )( ) C800V200F00.422 μμ === VCq , 
and 

( )( ) C1200V200F00.633 μμ === VCq  
 

Let q = q1. Then: q2 = 2Q and q3 = 3Q 
 

12 QQQ +=                                (2) Express Q2 and Q3 in terms of Q1 
and Q: and 

QQQ 213 +=                              (3) 
 

02

3

1

2

1

1

1 =
+

+
+

+
C

QQ
C

QQ
C
Q  Substitute in equation (1) to obtain: 

or 

0
F00.6

2
F00.4F00.2

111 =
+

+
+

+
μμμ
QQQQQ  

 
Solve for and evaluate Q1 to obtain: ( ) C255C40011

7
11
7

1 μμ −=−=−= QQ  

 
Substitute in equation (2) to obtain: C145C 255C4002 μμμ =−=Q  
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Substitute in equation (3) to obtain: ( ) C545C4002C2553 μμμ =+−=Q  

 

V127
F00.2
C255

1

1
1 −=

−
==

μ
μ

C
QV , (c) Use the definition of capacitance 

to find the potential difference across 
each capacitor with S3 closed: 

V4.36
F00.4

C145

2

2
2 ===

μ
μ

C
QV ,  

and 

V9.90
F00.6
C545

3

3
3 ===

μ
μ

C
QV  

 
60 •• A capacitor has a capacitance C and a charge Q on its positively 
charged plate. A student connects one terminal of the capacitor to a terminal of an 
identical capacitor whose plates are electrically neutral. When the remaining two 
terminals are connected, charge flows until electrostatic equilibrium is 
reestablished and both capacitors have charge Q/2 on them. Compare the total 
energy initially stored in the one capacitor to the total energy stored in the two 
when electrostatic equilibrium is reestablished. If there is less energy afterward, 
where do you think the missing energy went? Hint: Wires that transport charge 
can heat up, which is called Joule heating and is discussed in detail in Chapter 
25. 
 
Picture the Problem We can use the expression for the energy stored in a 
capacitor to express the ratio of the energy stored in the system after the discharge 
of the first capacitor to the energy stored in the system prior to the discharge. 
 
Express the energy U initially stored 
in the capacitor whose capacitance is 
C: 
 

C
QU
2

2

=  

The energy U′ stored in the two 
capacitors after the first capacitor 
has discharged is: C

Q
C

Q

C

Q

U'
42

2
2
2 2

22

=
⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛

=  

 
Express the ratio of U′ to U: 
 

2
1

2

4
2

2

==

C
Q
C

Q

U
U'  ⇒ UU 2

1'=  

 
The missing energy was converted into thermal energy by the resistance of the 
connecting wires. 
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Dielectrics 
 
61 • You are a laboratory assistant in a physics department that has budget 
problems. Your supervisor wants to construct cheap parallel-plate capacitors for 
use in introductory laboratory experiments. The design uses polyethylene, which 
has a dielectric constant of 2.30, between two sheets of aluminum foil. The area of 
each sheet of foil is 400 cm2 and the thickness of the polyethylene is 0.300 mm. 
Find the capacitance of this arrangement. 
 
Picture the Problem The capacitance of a parallel-plate capacitor filled with a 

dielectric of constant κ is given by 
d

AC 0∈κ
= . 

 
Relate the capacitance of the 
parallel-plate capacitor to the area 
of its plates, their separation, and 
the dielectric constant of the 
material between the plates: 
 

d
AC 0∈κ

=  

Substitute numerical values and evaluate C: 
 

( ) ( )
nF72.2

mm0.300

cm400
mN

C108.8542.30 2
2

2
12

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−

C  

 
62 •• The radius and the length of the central wire in a Geiger tube are  
0.200 mm and 12.0 cm, respectively. The outer surface of the tube is a conducing 
cylindrical shell that has an inner radius of 1.50 cm. The shell is coaxial with the 
wire and has the same length (12.0 cm).The tube is filled with a gas that has a 
dielectric constant of 1.08 and a dielectric strength of 2.00 × 106 V/m. (a) What is 
the maximum potential difference that can be maintained between the wire and 
shell? (b) What is the maximum charge per unit length on the wire? 
 
Picture the Problem The capacitance of a cylindrical capacitor is given by 

( )120 ln2 rrLC ∈πκ= , where L is its length and r1 and r2 the radii of the inner 
and outer conductors. We can use this expression, in conjunction with the 
definition of capacitance, to express the potential difference between the wire and 
the cylindrical shell in the Geiger tube. Because the electric field E in the tube is 
related to the linear charge density λ on the wire according to ,2 rkE κλ=  we can 
use this expression to find 2kλ/κ for E = Emax. In Part (b) we’ll use this 
relationship to find the charge per unit length λ on the wire. 
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(a) Use the definition of capacitance 
and the expression for the capacitance 
of a cylindrical capacitor to express 
the potential difference between the 
wire and the cylindrical shell in the 
tube: 
 

( )

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

==Δ

r
Rk

r
R
rR

L
Q

C
QV

ln2ln
4

2
ln

2

0

0

κ
λ

κ∈π
λ

∈πκ
 

where λ is the linear charge density, κ 
is the dielectric constant of the gas in 
the Geiger tube, r is the radius of the 
wire, and R the radius of the coaxial 
cylindrical shell of length L. 
 

Express the electric field at a 
distance r greater than its radius from 
the center of the wire: 
 

r
kE
κ
λ2

= ⇒ Erk
=

κ
λ2              (1) 

Substituting for 
κ
λk2 yields: ⎟

⎠
⎞

⎜
⎝
⎛=

r
RErV lnΔ  

Noting that E is a maximum at r = 0.200 mm, substitute numerical values 
and evaluate ΔVmax: 
 

( )( ) kV73.1
mm0.200
cm1.50lnmm0.200V/m102.00Δ 6

max =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=V  

 
(b) Solve equation (1) for λ: 

k
rE

2
maxκλ =  

 
Substitute numerical values and 
evaluate λ: 

( )( )( )
( )
nC/m0.24

/CmN108.9882
mm200.0V/m1000.208.1

229

6

=

⋅×
×

=λ
 

 
 

63 •• You are a materials science engineer and your group has fabricated a 
new dielectric, that has an exceptionally large dielectric constant of 24 and a 
dielectric strength of 4.0 × 107 V/m. Suppose you want to use this material to 
construct a 0.10-μF parallel plate capacitor that can withstand a potential 
difference of 2.0 kV. (a) What is the minimum plate separation required to do 
this? (b) What is the area of each plate at this separation? 
 
Picture the Problem We can use the relationship between the electric field 
between the plates of a capacitor, their separation, and the potential difference 
between them to find the minimum plate separation. We can use the expression 
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for the capacitance of a dielectric-filled parallel-plate capacitor to determine the 
necessary area of the plates. 
 
(a) Relate the electric field of the 
capacitor to the potential 
difference across its plates: 
 

d
VE = ⇒

E
Vd =  

where d is the plate separation. 

Noting that  corresponds to 
, evaluate : 

mind

maxE mind
m50

V/m104.0
V2000

7
max

min μ=
×

==
E
Vd  

 
(b) Relate the capacitance of a 
parallel-plate capacitor to the area of 
its plates: 
 

d
AC 0∈κ

= ⇒
0∈κ

CdA =  

 

Substitute numerical values and 
evaluate A: 

( )( )
( )

222

2212-

cm240m1035.2

m/NC108.85424
m50F10.0

=×=

⋅×
=

−

μμA
 

 
64 •• A parallel-plate capacitor has plates separated by a distance d. The 
capacitance of this capacitor is C0  when no dielectric is in the space between the 
plates. However, the space between the plates is completely filled by two different 
dielectrics. One dielectric has a thickness 1

4 d  and a dielectric constant κ1, and the 
other dielectric has a thickness 3

4 d  and a dielectric constant κ2. Find the 
capacitance of this capacitor. 
 
Picture the Problem We can model this system as two capacitors in series, one 
of thickness d4

1 and the other of thickness d4
3 and use the equation for the 

equivalent capacitance of two capacitors connected in series. Let the capacitance 
of the capacitor whose dielectric constant is κ1 be C1 and the capacitance of the 
capacitor whose dielectric constant is κ2 be C2. 
 
Express the equivalent capacitance 
of the two capacitors connected in 
series: 
 

21eq

111
CCC

+= ⇒ 
21

21
eq CC

CCC
+

=  

 

Relate the capacitance of C1 to its 
dielectric constant and thickness: 
 

d
A

d
AC 01

4
1

01
1

4 ∈κ∈κ
==  

Relate the capacitance of C2 to its 
dielectric constant and thickness: d

A
d

AC
3

4 02

4
3

02
2

∈κ∈κ
==  
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Substitute for C1 and C2 and simplify to obtain: 
 

0
21

210

21

21

0
21

21

0
21

21

0201

0201

eq

3
4

3
4

3

4

33
3

3
4

3
44

3
44

C
d

A

AdA

dd

dd

d
A

d
A

d
A

d
A

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=⎟
⎠
⎞

⎜
⎝
⎛

+
=

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=
+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

κκ
κκ∈

κκ
κκ

∈
κκ

κκ

∈κκ

κκ

∈κ∈κ

∈κ∈κ

 

 
65 •• Two capacitors each have two conducting plates of surface area A and 
an air gap of width d. They are connected in parallel, as shown in Figure 24-43 
and each has a charge Q on the positively charged plate.  A slab that has a width 
d, an area A, and a dielectric constant κ is inserted between the plates of one of the 
capacitors. Calculate the new charge Q′ on the positively charged plate of that 
capacitor after electrostatic equilibrium is re-established. 
 
Picture the Problem Let the charge on the capacitor with the air gap be Q1 and 
the charge on the capacitor with the dielectric gap be Q2.  If the capacitances of 
the capacitors were initially C, then the capacitance of the capacitor with the 
dielectric inserted is C' = κC.  We can use the conservation of charge and the 
equivalence of the potential difference across the capacitors to obtain two 
equations that we can solve simultaneously for Q1 and Q2. 
 
Apply conservation of charge during 
the insertion of the dielectric to 
obtain: 
 

QQQ 221 =+                            (1) 

Because the capacitors have the 
same potential difference across 
them: 
 

C
Q

C
Q

κ
21 =                                   (2) 

 

Solve equations (1) and (2) 
simultaneously to obtain: 
 

κ+
=

1
2

1
QQ  and 

κ
κ

+
=

1
2

2
QQ  

 
66 •• A parallel-plate capacitor has a plate separation d has a capacitance 
equal to C0 where there is only empty space in the space between the plates.  A 
slab of thickness t, where t < d, that has a dielectric constant κ is placed in the 
space between the plates completely covering one of the plates.  What is the 
capacitance with the slab inserted? 
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Picture the Problem We can model this system as two capacitors in series, C1 of 
thickness t and C2 of thickness d − t and use the equation for the equivalent 
capacitance of two capacitors connected in series. 
 
Express the equivalent capacitance 
of the two capacitors connected in 
series: 
 

21eq

111
CCC

+= or 
21

21
eq CC

CCC
+

=  

 

Relate the capacitance of C1 to its 
dielectric constant and thickness: 
 

t
AC 0

1
∈κ

=  

Relate the capacitance of C2 to its 
dielectric constant and thickness: 
 

td
AC
−

= 0
2

∈  

Substitute for C1 and C2 and simplify to obtain: 
 

( ) ( ) 00

00
00

00

eq 1

1

1

1

C
ttd

dA
ttd

A

tdt

tdtA

tdt

tdt

td
A

t
A

td
A

t
A

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

=
+−

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

−
+

⎟
⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛

=

κ
κ∈

κ
κ

∈κ

κ

∈κ

κ

∈∈κ

∈∈κ

 

 
67 •• The membrane of the axon of a nerve cell can be modeled as a thin 
cylindrical shell of radius 1.00 × 10–5 m, having a length of 10.0 cm and a 
thickness of 10.0 nm. The membrane has a positive charge on one side and a 
negative charge on the other, and the membrane acts as a parallel-plate capacitor 
of area 2πrL and separation d. Assume the membrane is filled with a material 
whose dielectric constant is 3.00. (a) Find the capacitance of the membrane. If the 
potential difference across the membrane is 70.0 mV, find (b) the charge on the 
positively charged side of the membrane. 
 
Picture the Problem Because d << r, we can model the membrane as a parallel-
plate capacitor. We can use the definition of capacitance to find the charge on 
each side of the membrane in Part (b). 
 
(a) Express the capacitance of a 
parallel-plate capacitor: 
 

d
AC 0∈κ

=  

Substitute for the area of the plates: 
 kd

rL
d

rLC
2

2 0 κ∈πκ
==  
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Substitute numerical values and 
evaluate C: 

( )( )( )
( )( )

nF7.16nF 69.16

nm0.10/CmN108.9882
m0.100m101.003.00

229

5

==

⋅×
×

=
−

C
 

 
(b) Use the definition of capacitance 
to find the charge on each side of the 
membrane: 
 

( )( )
nC1.17

mV70.0nF16.69

=

==CVQ
 

 
68 •• The space between the plates of the capacitor that is connected across 
the terminals of a battery is filled with a dielectric material.  Determine the 
dielectric constant of the material if the induced bound–charge-per-unit-area on it 
is (a) 80 percent of the free–charge-per-unit-area on the plates, (b) 20 percent of 
the free–charge-per-unit-area on the plates, and (c) 98 percent of the free–charge-
per-unit-area on the plates.   
 
Picture the Problem The bound charge density is related to the dielectric 

constant and the free charge density by the equation fb
11 σ
κ

σ ⎟
⎠
⎞

⎜
⎝
⎛ −= . 

 
Solve the equation relating σb, σf, 
and κ  for κ to obtain: 
 

fb1
1
σσ

κ
−

=  

(a) Evaluate this expression for  
σb/σf = 0.80: 
 

0.5
80.01

1
=

−
=κ  

(b) Evaluate this expression for  
σb/σf = 0.20: 
 

3.1
20.01

1
=

−
=κ  

(c) Evaluate this expression for  
σb/σf = 0.98: 

50
98.01

1
=

−
=κ  

 
69 •• The positively charge plate of a parallel-plate capacitor has a charge 
equal to Q.  When the space between the plates is evacuated of air, the electric 
field strength between the plates is 2.5 × 105 V/m. When the space is filled with a 
certain dielectric material, the field strength between the plates is reduced to  
1.2 × 105 V/m. (a) What is the dielectric constant of the material? (b) If  
Q = 10 nC, what is the area of the plates? (c) What is the total induced bound 
charge on either face of the dielectric material? 
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Picture the Problem We can use the definition of the dielectric constant to find 
its value. In Part (b) we can use the expression for the electric field in the space 
between the charged capacitor plates to find the area of the plates and in Part (c) 
we can relate the surface charge densities to the induced charges on the plates. 
 
(a) Using the definition of the 
dielectric constant, relate the electric 
field without a dielectric E0 to the 
field with a dielectric E: 
 

κ
0EE = ⇒ 

E
E0=κ  

Solve for and evaluate κ : 
 1.208.2

V/m101.2
V/m102.5

5

5

==
×
×

=κ  

 
(b) Relate the electric field in the 
region between the plates to the 
surface charge density of the plates: 
 

00
0 ∈∈

σ AQE == ⇒
00 ∈E

QA =  

Substitute numerical values and 
evaluate A: ( )

223

2

2
125

cm45m1052.4

mN
C108.854V/m102.5

nC10

=×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

××
=

−

−

A

 

fb
11 σ
κ

σ ⎟
⎠
⎞

⎜
⎝
⎛ −=  (c) Relate the surface charge 

densities to the induced charges 
on the plates: or 

 

κσ
σ 11

f

b

f

b −==
Q
Q

⇒ fb
11 QQ ⎟
⎠
⎞

⎜
⎝
⎛ −=

κ
 

 
Substitute numerical values and 
evaluate : bQ ( ) nC2.5nC10

08.2
11b =⎟

⎠
⎞

⎜
⎝
⎛ −=Q  

 
70 •• Find the capacitance of the parallel-plate capacitor shown in Figure 
24-44. 
 
Picture the Problem We can model this parallel-plate capacitor as a combination 
of two capacitors C1 and C2 in series with capacitor C3 in parallel. 
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s3 CCC +=                               (1) 
where 

21

21
s CC

CCC
+

=                             (2) 

 

Express the capacitance of two 
series-connected capacitors in 
parallel with a third: 
 

( )
d

A
d

AC 01

2
1

2
1

01
1

∈κ∈κ
== , Express each of the capacitances C1, 

C2, and C3 in terms of the dielectric 
constants, plate areas, and plate 
separations: 

( )
d

A
d

AC 02

2
1

2
1

02
2

∈κ∈κ
== , 

and 
( )

d
A

d
AC

2
032

1
03

3
∈κ∈κ

==  

 

 

Substitute in equation (2) to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛

+
=

+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

d
A

d
A

d
A

d
A

d
A

C

0

21

21

0201

0201

s

∈
κκ
κκ

∈κ∈κ

∈κ∈κ

 

 
Substitute in equation (1) to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+=

⎟
⎠
⎞

⎜
⎝
⎛

+
+=

d
A

d
A

d
AC

2
2

2

0

21

21
3

0

21

2103

∈
κκ
κκκ

∈
κκ
κκ∈κ

 

 
General Problems 
 
71 • You are given four identical capacitors and a 100-V battery. When 
only one of the capacitors is connected to this battery the energy stored is U0. 
Combine the four capacitors in such a way that the total energy stored in all four 
capacitors is U0? Describe the combination and explain your answer. 
 
Picture the Problem We can use the expression 2

eq2
1

0 VCU = to express the total 

energy stored in the combination of four capacitors in terms of their equivalent 
capacitance . eqC

 
The energy stored in one capacitor 
when it is connected to the 100-V 
battery is: 
 

2
2
1

0 CVU =  
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When the four capacitors are 
connected to the battery in some 
combination,  the total energy stored 
in them is: 
 

2
eq2

1 VCU =  

Equate U and U0 and solve for : eqC

 

2
2
12

eq2
1 CVVC = ⇒ CC =eq  

The equivalent capacitance C′ of two 
capacitors of capacitance C 
connected in series is their product 
divided by their sum: 
 

C
CC

CC' 2
1

2

=
+

=  

If we connect two of the capacitors 
in series in parallel with the other 
two capacitors connected in series, 
their equivalent capacitance will be: 
 

CCCC'C'C =+=+= 2
1

2
1

eq  

A series combination of two of the 
capacitors connected in parallel with a 
series combination of the other two 
capacitors will result in total energy U0 
stored in all four capacitors. The circuit 
diagram is shown to the right. 
 

C C

C C

V  
 
72 • Three capacitors have capacitances of 2.00 μF, 4.00 μF, and 8.00 μF. 
Find the equivalent capacitance if (a) the capacitors are connected in parallel and 
(b) if the capacitors are connected in series. 
 
Picture the Problem We can use the equations for the equivalent capacitance of 
three capacitors connected in parallel and in series to find these equivalent 
capacitances.  
 
(a) Express the equivalent capacitance 
of three capacitors connected in 
parallel: 
 

321eq CCCC ++=  

Substitute numerical values and 
evaluate : eqC F00.14

F00.8F00.4F00.2eq

μ

μμμ

=

++=C
 

 



                                                                                         Capacitance 
 

 

2353

(b) The equivalent capacitance of the 
three capacitors connected in series 
is given by: 
 

313221

321
eq CCCCCC

CCCC
++

=  

Substitute numerical values and evaluate : eqC

 
( )( )( )

( )( ) ( )( ) ( )( )
F14.1

F00.8F00.2F00.8F00.4F00.4F00.2
F00.8F00.4F00.2

eq

μ

μμμμμμ
μμμ

=

++
=C

 

 
73 • A 1.00-μF capacitor is connected in parallel with a 2.00-μF capacitor, 
and this combination is connected in series with a 6.00-μF capacitor. What is the 
equivalent capacitance of this combination? 
  
Picture the Problem We can first use the equation for the equivalent capacitance 
of two capacitors connected in parallel and then the equation for two capacitors 
connected in series to find the equivalent capacitance. 
 
Find the equivalent capacitance of a 
1.00-μF capacitor connected in 
parallel with a 2.00-μF capacitor: 
 

F00.3
F00.2F00.1

21eq,1

μ
μμ

=
+=

+= CCC

 

Find the equivalent capacitance of a 
3.00-μF capacitor connected in series 
with a 6.00-μF capacitor: 

( )( )

F2.00

F6.00F3.00
F6.00F3.00

6eq,1

6eq,1
eq,2

μ

μμ
μμ

=

+
=

+
=

CC
CC

C
 

 
74 • The voltage across a parallel-plate capacitor that has a plate separation 
equal to 0.500 mm is 1.20 kV. The capacitor is disconnected from the voltage 
source and the separation between the plates is increased until the energy stored in 
the capacitor has been doubled. Determine the final separation between the plates. 
 
Picture the Problem The charge Q and the charge density σ are independent of 
the separation of the plates and do not change during the process described in the 
problem statement. Because the electric field E depends on σ, it too is constant. 
We can use 2

2
1 CVU = and the relationship between V and E, together with the 

expression for the capacitance of a parallel-plate capacitor, to show that U ∝ d. 
 
Express the energy stored in the 
capacitor in terms of its capacitance 
C and the potential difference across 
its plates: 

2
2
1 CVU =                                   (1) 
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Express V in terms of E: EdV =  
where d is the separation of the plates. 
 

Express the capacitance of a 
parallel-plate capacitor: 
 

d
AC 0∈κ

=  

Substitute for C and V in equation 
(1) to obtain: 
 

( ) ( )dAEEd
d

AU 2
02

120
2
1 ∈κ∈κ

==  

 
Because U ∝ d, to double U one 
must double d. Hence: 

( ) mm1.00mm0.50022f === dd  

75 •• Determine the equivalent capacitance, in terms of C0, of each of the 
combinations of capacitors shown in Figure 24-45. 
 
Picture the Problem We can use the equations for the equivalent capacitance of 
capacitors connected in parallel and in series to find the single capacitor that will 
store the same amount of charge as each of the networks shown above. 
 
(a) Find the capacitance of the two 
capacitors in parallel: 
 

000eq,1 2CCCC =+=  

Find the capacitance equivalent to 
2C0 in series with C0: 
 

( )
03

2

00

00

0eq,1

0eq,1
eq,2 2

2 C
CC
CC

CC
CC

C =
+

=
+

=  

 
(b) Find the capacitance of two 
capacitors of capacitance C0 in 
parallel: 
 

0eq,1 2CC =  

Find the capacitance equivalent to 
2C0 in series with 2C0: 
 

( )( )
0

00

00

0eq,1

0eq,1
eq,2 22

22 C
CC
CC

CC
CC

C =
+

=
+

=  

 
(c) Find the equivalent capacitance 
of three equal capacitors connected 
in parallel: 

0000eq 3CCCCC =++=  

 
76 •• Figure 24-46 shows four capacitors connected in the arrangement 
known as a capacitance bridge. The capacitors are initially uncharged. What must 
the relation between the four capacitances be so that the potential difference 
between points c and d remains zero when a voltage V is applied between points a 
and b? 
 



                                                                                         Capacitance 
 

 

2355

Picture the Problem Note that with V applied between a and b, C1 and C3 are in 
series, and so are C2 and C4. Because in a series combination the potential 
differences across the two capacitors are inversely proportional to the 
capacitances, we can establish proportions involving the capacitances and 
potential differences for the left- and right-hand side of the network and then use 
the condition that Vc = Vd to eliminate the potential differences and establish the 
relationship between the capacitances. 
 
Letting Q represent the charge on 
capacitors 1 and 2, relate the 
potential differences across the 
capacitors to their common charge 
and capacitances: 
 

1
1 C

QV =  and 
3

3 C
QV =  

 

Divide the first of these equations 
by the second to obtain: 
 

1

3

3

1

C
C

V
V

=                                    (1) 

Proceed similarly to obtain: 
 2

4

4

2

C
C

V
V

=                                    (2) 

 
Divide equation (1) by equation 
(2) to obtain: 
 

41

23

23

41

CC
CC

VV
VV

=                             (3) 

If Vc = Vd then we must have: 21 VV = and 43 VV =  
 

Substitute in equation (3) and 
rearrange to obtain: 

4132 CCCC =  

 
77 •• The plates of a parallel-plate capacitor are separated by distance d, and 
each plate has area A.  The capacitor is charged to a potential difference V and 
then disconnected from the voltage source. The plates are then pulled apart until 
the separation is 3d. Find (a) the new capacitance, (b) the new potential 
difference, and (c) the new stored energy. (d) How much work was required to 
change the plate separation from d to 3d? 
 
Picture the Problem We can use the expression for the capacitance of a parallel-
plate capacitor as a function of A and d to determine the effect on the capacitance 
of doubling the plate separation. We can use EdV =  to determine the effect on 
the potential difference across the capacitor of doubling the plate separation. 
Finally, we can use 2

2
1 CVU = to determine the effect of doubling the plate 

separation on the energy stored in the capacitor. 
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(a) The capacitance of a capacitor 
whose plates are separated by a 
distance 3d is given by: 
 

d
AC

3
0

new
∈

=  

(b) Express the potential difference 
across a parallel-plate capacitor 
whose plates are separated by a 
distance d: 
 

EdV =  
where the electric field E depends 
solely on the charge on the capacitor 
plates. 

Express the new potential difference 
across the plates resulting from 
tripling their separation: 
 

( ) ( ) VEddEV 333new ===  

(c) Relate the energy stored in a 
parallel-plate capacitor to the 
separation of the plates: 
 

202

2
1

2
1 V

d
ACVU ∈

==  

When the plate separation is tripled 
we have: 
 

( )
d
AVV

d
AU

2
33

32
1 2

020
new

∈∈
==  

 
(d) Relate the work required to 
change the plate separation from d to 
3d to the change in the electrostatic 
potential energy of the system: 

d
AV

d
AV

d
AV

UUW

2
0

2
0

2
0

inew

2
1

2
3

∈

∈∈

=

−=

−=

 

  
78 •• A parallel-plate capacitor has capacitance C0  when there is no 
dielectric in the space between the plates. The space between the plates is then 
filled with a material that has a dielectric constant of κ. When a second capacitor 
of capacitance C′ is connected in series with the first, the capacitance of the series 
combination is C0. Find C′ in terms of C0. 
 
Picture the Problem We can use the equation for the equivalent capacitance of 
two capacitors in series to relate C0 to C′ and the capacitance of the dielectric-
filled parallel-plate capacitor and then solve the resulting equation for C′. 
 
Express the equivalent capacitance 
of the system in terms of C′ and C, 
where C is the dielectric-filled 
capacitor: 
 

CC
C'CC
+

=
'0 ⇒

0

0

CC
CCC'

−
=  
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Express the capacitance of the 
dielectric-filled capacitor: 
 

0
0 C

d
AC κ∈κ
==  

Substitute for C in the equation for C′ 
and simplify to obtain: 

( )
0

00

00

1
C

CC
CCC'

−
=

−
=

κ
κ

κ
κ  

 
79 •• [SSM] A parallel combination of two identical 2.00-μF parallel-
plate capacitors (no dielectric is in the space between the plates) is connected to a 
100-V battery. The battery is then removed and the separation between the plates 
of one of the capacitors is doubled. Find the charge on the positively charged plate 
of each of the capacitors. 
 
Picture the Problem When the battery is removed, after having initially charged 
both capacitors, and the separation of one of the capacitors is doubled, the charge 
is redistributed subject to the condition that the total charge remains constant; that 
is, Q = Q1 + Q2 where Q is the initial charge on both capacitors and Q2 is the 
charge on the capacitor whose plate separation has been doubled. We can use the 
conservation of charge during the plate separation process and the fact that, 
because the capacitors are in parallel, they share a common potential difference. 
 
Find the equivalent capacitance of 
the two 2.00-μF parallel-plate 
capacitors connected in parallel: 
 

F00.4F00.2F00.2eq μμμ =+=C  

Use the definition of capacitance to 
find the charge on the equivalent 
capacitor: 
 

( )( ) C400V100F00.4eq μμ === VCQ  

Relate this total charge to charges 
distributed on capacitors 1 and 2 
when the battery is removed and the 
separation of the plates of capacitor 
2 is doubled: 
 

21 QQQ +=                               (1) 

Because the capacitors are in 
parallel: 
 

21 VV = and 
2

2

22
1

2

2

2

1

1 2
' C

Q
C

Q
C
Q

C
Q

===  

Solve for Q1 to obtain: 
2

2

1
1 2 Q

C
CQ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                           (2) 
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Substitute equation (2) in equation 
(1) and solve for Q2 to obtain: 
 

( ) 12 21
2 +
=

CC
QQ  

Substitute numerical values and 
evaluate Q2: 
 

( ) C133
1F00.2F00.22

C400
2 μ

μμ
μ

=
+

=Q

Substitute numerical values in 
equation (1) or equation (2) and 
evaluate Q1: 

C2671 μ=Q  

 
80 •• An parallel-plate capacitor with no dielectric in the space between the 
plates has a capacitance C0 and a plate separation d. Two dielectric slabs that have 
dielectric constants of κ1 and κ2 respectively are then inserted between the plates 
as shown in Figure 24-47.  Each slab is has a thickness 1

2 d  and has area A, the 
same area as each capacitor plate. When the charge on the positively charged 
capacitor plate is Q, find (a) the electric field in each dielectric, and (b) the 
potential difference between the plates. (c) Show that the capacitance of the 
system after the slabs are inserted is given by ( )1 2 1 2 o2 Cκ κ κ κ+⎡ ⎤⎣ ⎦ . (d) Show that 

( )1 2 1 2 o2 Cκ κ κ κ+⎡⎣ ⎤⎦  is the equivalent capacitance of a series combination of two 
capacitors, each having plates of area A and a gap width equal to d/2. The space 
between the plates of one is filled with a material that has a dielectric constant 
equal to κ1 and the space between the plates of the other is filled with a material 
that has a dielectric constant equal to κ2. 
 
Picture the Problem We can relate the electric field in the dielectric to the 
electric field between the capacitor’s plates in the absence of a dielectric using  
E = E0/κ.  In Part (b) we can express the potential difference between the plates as 
the sum of the potential differences across the dielectrics and then express the 
potential differences in terms of the electric fields in the dielectrics. In Part (c) we 
can use our result from (b) and the definition of capacitance to express the 
capacitance of the dielectric-filled capacitor. In Part (d) we can confirm the result 
of Part (c) by using the addition formula for capacitors in series. 
 
(a) Express the electric field E in a 
dielectric of constant κ in terms of 
the electric field E0 in the absence of 
the dielectric: 
 

κ
0EE =  

Express the electric field E0 in the 
absence of the dielectrics: 
 

A
QE
00

0 ∈∈
σ

==  
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Substitute for E0 to obtain: 
 A

QE
0∈κ

=  

 
Use this relationship to express the 
electric fields in dielectrics whose 
constants are κ1 and κ2: 
 

A
QE

01
1 ∈κ
= and 

A
QE

02
2 ∈κ
=  

 

(b) Express the potential difference 
between the plates as the sum of the 
potential differences across the 
dielectrics: 
 

21 VVV +=  

A
QddEV

01
11 22 ∈κ

==  

and 

A
QddEV

02
22 22 ∈κ

==  

 

Relate the potential differences to the 
electric fields and the thicknesses of 
the dielectrics: 
 

Substitute for V1 and V2 and simplify 
to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

210

0201

11
2

22

κκ∈

∈κ∈κ

A
Qd

A
Qd

A
QdV

 

 
(c) Use the definition of capacitance 
to obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==

21

21
0

21

210

21

21

0

210

2

22

11
2

κκ
κκ

κκ
κκ∈

κκ
κκ

∈

κκ∈

C

d
A

d

A

A
Qd

Q
V
QC

 

where dAC 00 ∈= . 
 

(d) Express the equivalent 
capacitance C of capacitors C1 and 
C2 in series: 
 

21

21

CC
CCC
+

=  
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Express C1:  
01

0101
1 22

2
C

d
A

d
AC κ∈κ∈κ

===  

 
Express C2:  

02
0202

2 22
2

C
d

A
d

AC κ∈κ∈κ
===  

 
Substitute for C1 and C2 and 
simplify to obtain: 

( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

=
21

21
0

0201

0201 2
22
22

κκ
κκ

κκ
κκ C

CC
CCC , 

a result in agreement with Part (c). 
 
81 •• The plates of a parallel-plate capacitor are separated by distance d0, 
and each plate has area A. A metal slab of thickness d and area A is inserted 
between the plates in such a way that the slab is parallel with the capacitor plates.  
(a) Show that the new capacitance is given by ( )0 0A d d∈ − , regardless of the 
distance between the metal slab and the positively charged plate. (b) Show that 
this arrangement can be modeled as a capacitor that has plate separation a in series 
with a capacitor of separation b, where a + b + d = d0. 
 
Picture the Problem Recall that within a conductor E = 0. We can use the 
definition of capacitance to express C in terms of the charge on the capacitor Q 
and the potential difference across the plates V. We can then express V in terms of 
E and the thickness of the air gap between the plates. Finally, we can express the 
electric field between the plates in terms of the charge on them and their area. 
Substitution in our expression for C will give us C in terms of d0 – d. In Part (b) 
we can use the expression for the equivalent capacitance of two capacitors 
connected in series to derive the same expression for C. 
 
(a) Use its definition to express the 
capacitance of this parallel-plate 
capacitor: 
 

V
QC = ⇒

C
QV =  

where Q is the charge on the capacitor. 

Relate the electric potential between 
the plates to the electric field 
between the plates: 
 

( )ddEV −= 0  

Substituting for V yields: ( )ddE
C
Q

−= 0 ⇒ ( )ddE
QC
−

=
0

 

 
Express the electric field E between 
the plates but outside the metal slab: 
 

A
QE
00 ∈∈

σ
==  
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Substitute for E and simplify to 
obtain: ( ) dd

A

dd
A

Q
QC

−
=

−
=

0

0

0
0

∈

∈

 

 
(b) Express the equivalent 
capacitance C of two capacitors C1 
and C2 connected in series: 
 

21

21

CC
CCC
+

=  

Express the capacitances C1 and C2 
of the plates separated by a and b, 
respectively: 
 

a
AC 0

1
∈

=  and 
b

AC 0
2

∈
=  

 

Substitute for C1 and C2 and simplify 
to obtain: 

ba
A

b
A

a
A

b
A

a
A

C
+

=
+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛

= 0

00

00

∈
∈∈

∈∈

 

 
Solve the constraint that 
a + b + d = d0 for a + b to obtain: 
 

ddba −=+ 0  

Substitute for a + b to obtain: 
dd

AC
−

=
0

0∈   

a result in agreement with Part (a). 
 
82 •• A parallel-plate capacitor that has plate area A is filled with two 
dielectrics of equal size, as shown in Figure 24-48. (a) Show that this system can 
be modeled as two capacitors that are connected in parallel and each have an area 
1
2 A. (b) Show that the capacitance is given by 1

2 (κ1 +κ2)C0, where C0 is the 
capacitance if there were no dielectric materials in the space between the plates.  
 
Picture the Problem We can express the ratio of Ceq to C0 to show that the 
capacitance with the dielectrics in place is (κ1 + κ2)/2 times greater than that of the 
capacitor in the absence of the dielectrics. 
 
(a) Because the capacitor plates are conductors, the potentials are the same across 
the entire upper and lower plates. Hence, the system is equivalent to two 
capacitors, each of area A2

1 , in parallel.  
 
(b) Relate the capacitance C0, in the 
absence of the dielectrics, to the 
plate area and separation: 

d
AC 0

0
∈

=  
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Express the equivalent capacitance 
of capacitors C1 and C2, each with 
plate area A2

1 , connected in parallel: 
 

( ) ( )

( )21
0

2
1

022
1

01

21eq

2
κκ

∈

∈κ∈κ

+=

+=

+=

d
A

d
A

d
A

CCC

 

 
Express the ratio of  to CeqC 0 and 

simplify to obtain: 
( )

( )212
1

0

21
0

0

eq 2 κκ∈

κκ∈

+=
+

=

d
A

d
A

C
C

 

 
83 •• A parallel-plate capacitor with no dielectric in the space between the 
plates has a plate area A and a gap width x. A charge Q is on the positively 
charged plate. (a) Find the stored electrostatic energy as a function of x. (b) Find 
the increase in energy dU due to an increase in plate separation dx from  
dU = (dU/dx) dx. (c) If F is the force exerted by one plate on the other, the work 
needed to move one plate a distance dx is F dx = dU. Show that F = Q2/(2∈0A). 
(d) Show that the force in Part (c) equals 1

2 EQ , where Q is the charge on one 
plate and E is the electric field between the plates. Give a conceptual explanation 
for the factor 1

2  in this result. 
 
Picture the Problem We can use U = Q2/2C and the expression for the 
capacitance as a function of plate separation to express U as a function of x. 
Differentiation of this result with respect to x will yield dU. Because the work 
done in increasing the plate separation a distance dx equals the change in the 
electrostatic potential energy of the capacitor, we can evaluate F from dU/dx. 
Finally, we can express F in terms of Q and E by relating E to x using E = V/x and 
using the definition of capacitance and the expression for the capacitance of a 
parallel-plate capacitor. 
 
(a) Relate the electrostatic energy U 
stored in the capacitor to its 
capacitance C: 
 

C
QU

2

2
1

=  

Express the capacitance as a function 
of the plate separation: 
 

x
AC 0∈

=  

Substitute for C to obtain: 
 x

A
QU

0

2

2∈
=  
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(b) Use the result obtained in (a) to 
evaluate dU: 

dx
A

Q

dxx
A

Q
dx
ddx

dx
dUdU

0

2

0

2

2

2

∈

∈

=

⎥
⎦

⎤
⎢
⎣

⎡
==

 

 
(c) Relate the work needed to move 
one plate a distance dx to the change 
in the electrostatic potential energy 
of the system: 
 

FdxdUW ==  

Solve for and evaluate F: 
A

Qx
A

Q
dx
d

dx
dUF

0

2

0

2

22 ∈∈
=⎥

⎦

⎤
⎢
⎣

⎡
==  

 
(d) Express the electric field between 
the plates in terms of their separation 
and their potential difference: 
 

x
VE =  

Use the definition of capacitance to 
eliminate V: 
 

Cx
QE =  

Use the expression for the 
capacitance of a parallel-plate 
capacitor to eliminate C: 
 

A
Q

x
x

A
QE

00 ∈∈ ==  

Substitute in our result from Part (c) 
to obtain: 

( ) QE
A

AEQF 2
1

0

0

2
==

∈
∈  

 
The field E is due to the sum of the fields from charges +Q and –Q on the 
opposite plates of the capacitor. Each plate produces a field .2

1 E  and the force is 
the product of charge Q and the field .2

1 E   
 
84 •• A rectangular parallel-plate capacitor that has a length a and a width b 
has a dielectric that has a width b partially inserted a distance x between the plates, 
as shown in Figure 24-49. (a) Find the capacitance as a function of x. Neglect edge 
effects. (b) Show that your answer gives the expected results for x = 0 and x = a. 
   
Picture the Problem We can model this capacitor as the equivalent of two 
capacitors connected in parallel. Let the numeral 1 denote the capacitor with the 
dielectric material whose constant is κ and the numeral 2 the air-filled capacitor. 
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(a) Express the equivalent 
capacitance of the two capacitors in 
parallel: 
 

( ) 21 CCxC +=                           (1) 

Use the expression for the 
capacitance of a parallel-plate 
capacitor to express C1: 
 

d
bx

d
AC 010

1
∈κ∈κ

==  

Express the capacitance C0 of the 
capacitor with the dielectric 
removed, i.e., x = 0: 
 

d
abC 0

0
∈

=  

Divide C1 by C0 and simplify to 
obtain: 
 a

x

d
ab

d
bx

C
C κ

∈

∈κ

==
0

0

0

1 ⇒ 01 C
a
xC κ

=  

 
Use the expression for the 
capacitance of a parallel-plate 
capacitor to express C2: 
 

( )
d

xab
d
AC −

== 020
2

∈∈  

( )

a
xa

d
ab

d
xab

C
C −

=

−

=
0

0

0

2

∈

∈

 

or, solving for C2, 

02 C
a

xaC −
=  

 

Divide C2 by C0 to obtain: 
 

Substitute for C1 and C2 in equation 
(1) and simplify to obtain: 
 

( )

( )[ ]

( )[ ]xa
d

b

xa
a

C

C
a

xaC
a
xxC

1

1

0

0

00

−+=

−+=

−
+=

κ∈

κ

κ

 

 
(b) Evaluate C for x = 0: ( ) [ ] 0

000 C
d
aba

d
bC ===

∈∈  

as expected. 
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Evaluate C for x = a: ( ) ( )[ ]

expected. as 
d

ab

aa
d

baC

0

0 1

∈κ

κ∈

=

−+=
 

 
85 ••• [SSM] An electrically isolated capacitor that has charge Q on its 
positively charged plate is partly filled with a dielectric substance as shown in 
Figure 24-51. The capacitor consists of two rectangular plates that have edge 
lengths a and b and are separated by distance d. The dielectric is inserted into the 
gap a distance x. (a) What is the energy stored in the capacitor? Hint: the 
capacitor can be modeled as two capacitors connected in parallel. (b) Because 
the energy of the capacitor decreases as x increases, the electric field must be 
doing work on the dielectric, meaning that there must be an electric force pulling 
it in. Calculate this force by examining how the stored energy varies with x.  
(c) Express the force in terms of the capacitance and potential difference V 
between the plates. (d) From where does this force originate? 
 
Picture the Problem We can model this capacitor as the equivalent of two 
capacitors connected in parallel, one with an air gap and other filled with a 
dielectric of constantκ. Let the numeral 1 denote the capacitor with the dielectric 
material whose constant is κ and the numeral 2 the air-filled capacitor. 
 
(a) Using the hint, express the energy 
stored in the capacitor as a function 
of the equivalent capacitance : eqC

 

eq

2

2
1

C
QU =  

 

The capacitances of the two 
capacitors are:  d

axC 0
1

∈κ
=  and ( )

d
xaaC −

= 0
2

∈  

 
Because the capacitors are in 
parallel,  is the sum of CeqC 1 and 

C2: 
 

( )

( )

( )[ ]ax
d

a

xax
d

a
d

xaa
d

axCCCeq

+−=

−+=

−
+=+=

10

0

00
21

κ∈

κ∈

∈∈κ

 

 
Substitute for  in the 

expression for U and simplify to 
obtain: 

eqC

 

( )[ ]axa
dQU

+−
=

12 0

2

κ∈
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(b) The force exerted by the electric 
field is given by: 
 

( )[ ]

( )[ ]{ }
( )
( )[ ] 2

0

2

1

0

2

0

2

12
1

1
2

12
1

axa
dQ

ax
dx
d

a
dQ

axa
dQ

dx
d
dx
dUF

+−
−

=

+−−=

⎥
⎦

⎤
⎢
⎣

⎡
+−

−=

−=

−

κ∈
κ

κ
∈

κ∈
 

 
(c) Rewrite the result in (b) to obtain: ( )

( )[ ]

( )

( )
d

Va

C
d

aQ

ax
d

a
d

aQ
F

2
eq

2
1

2

1

12

1

2
0

02

2
2

0

02

∈κ

∈κ

κ∈

∈κ

−
=

⎟
⎠
⎞

⎜
⎝
⎛−

=

+−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−

=

 

Note that this expression is independent 
of x. 
 

(d) The force originates from the fringing fields around the edges of the capacitor. 
The effect of the force is to pull the polarized dielectric into the space between the 
capacitor plates. 
 
86 ••• A spherical capacitor consists of an solid conducting sphere that has a 
radius a and a charge +Q and an concentric conducting spherical shell that has an 
inner radius b and a charge of Q. The space between the two is filled with two 
different dielectric materials of dielectric constants κ1 and κ2. The boundary 
between the two dielectrics occurs a distance 1

2 (a+b) from the center.  
(a) Calculate the electric field in the regions a < r < 1

2 (a + b) and 
1
2 (a + b) < r < b. (b) Integrate the expression l

rr
dEdV ⋅−=  to obtain the 

potential difference, V, between the two conductors. (c) Use C = Q/V to obtain an 
expression for the capacitance of this system. (d) Show that your answer from 
Part (c) simplifies to the expected one if the κ1 equals κ2.  

 
Picture the Problem (a) Gauss’s law tells us that, in the absence of dielectric 
materials, the electric field between the conductors is 2

0 rkQE = . In the 
dielectric materials, the field is reduced by the appropriate dielectric constant. 
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(a) The electric fields in the regions  
a < r < (a + b)/2 

and  
(a + b)/2 < r < b 

are given by: 
 

2
1

1 r
kQE
κ

= and 2
2

2 r
kQE
κ

=  

(b) Because the electric field is 
directed radially away from the 
center, the potential of the outer 
spherical shell is less than the 
potential of the inner sphere. Hence 
the difference in potential between 
the spheres is given by: 
 

( )

( )

( )

( )
∫∫

∫∫

+

−
+

−

+

+

+−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−=

−=

b

ba

ba

a

b

ba

ba

a

drrkQdrrkQ

drEdrE

VVV

2
1

2
1

2
1

2
1

2

2

2

1

21

21

κκ

 

 
Evaluating the integrals and simplifying yields: 
 

( )

( )

( ) ( )
ab

ba
ba

abkQ
ab

ba
ba

bakQ

bab
kQ

aba
kQ

r
kQ

r
kQV

b

ba

ba

a

21

21

21

21

2121

211211

2
1

2
1

κκ
κκ

κκ
κκ

κκκκ

+
+
−

=
+

+
−

=

⎟
⎠
⎞

⎜
⎝
⎛

+
−+⎟

⎠
⎞

⎜
⎝
⎛ −

+
=⎥⎦

⎤+⎥⎦
⎤=

+

+

 

 
(c) Use the definition of capacitance  
and simplify to obtain: 
 

( )

( )
( )( )baabk

baab

ab
ba

ba
bakQ

Q
V
QC

21

21

21

21

κκ
κκ

κκ
κκ

+−
+

=

+
+
−

==

 

 
(d) Letting κκκ == 21 , the result in 
Part (c) reduces to the expression for a 
spherical capacitor filled with just one 
dielectric material. In particular, if the 
capacitor is air filled (κ = 1.00), the 
expression for C is that for an air-filled 
spherical capacitor. 
 

( )
( )( )

( )

ab
ab

abk
ab

baabk
baabC

−
=

−
=

+−
+

=

κ∈π

κ
κκ

κκ

04

 

 
87 ••• A capacitance balance is shown in Figure 24-50. The balance has a 
weight attached to one side and a capacitor that has a variable gap width on the 
other side.  Assume the upper plate of the capacitor has negligible mass. When the 
capacitor potential difference between the plates is V0, the attractive force between 
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the plates balances the weight of the hanging mass. (a) Is the balance stable? That 
is, if we balance it out, and then move the plates a little closer together, will they 
snap shut or move back to the equilibrium point? (b) Calculate the value of V0 
required to balance an object of mass M, assuming the plates are separated by 
distance d0 and have area A.  HINT: A useful relation is that the force between the 
plates is equal to the derivative of the stored electrostatic energy with respect to 
the plate separation. 
  
Picture the Problem To avoid have to write dd (as in dddEF −= ) in relating 
the force on the electrostatic balance plates to the electric field in the region 
between them, let l be the variable separation of the plates. We can use the 
definition of the work done in charging the capacitor to relate the force on the 
upper plate to the energy stored in the capacitor. Solving this expression for the 
force and substituting for the energy stored in a parallel-plate capacitor will yield 
an expression that we can use to decide whether the balance is stable. We can use 
this same expression and a condition for equilibrium to find the voltage required 
to balance the object whose mass is M. 
 
(a) Express the work done in 
charging the capacitor (the energy 
stored in it) in terms of the force 
between the plates: 
 

lFddEdW −== ⇒
ld

dEF −=  

The energy stored in the capacitor is 
given by: 
 

2
0

02
0 2

1
2
1 VACVE ⎟

⎠
⎞

⎜
⎝
⎛==

l

∈
 

 
Differentiate E with respect to l to 
obtain: 

2
02

02
0

0

22
1 VAVA

d
dF ⎟

⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

lll

∈∈  

 or, changing back to the variable d, 
2

02
0

2
V

d
AF ⎟
⎠
⎞

⎜
⎝
⎛=
∈  

 
Because F increases as l decreases, a decrease in plate separation will unbalance 
the system. Hence, the balance is unstable. 

 
(b)  Apply  to the object 

whose mass is M when the plate 
separation is d

0=∑F

0 to obtain: 

0
2

2
2
0

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− V

d
AMg ∈

⇒
A

MgdV
0

0
2
∈

=

 
88 ••• You are an intern at an engineering company that makes capacitors 
used for energy storage in pulsed lasers. Your manger asks your team to construct 
a parallel-plate, air-gap capacitor that will store 100 kJ of energy. (a) What 
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minimum volume is required between the plates of the capacitor? (b) Suppose 
you have developed a dielectric that has a dielectric strength of 3.00 × 108 V/m 
and a dielectric constant of 5.00. What volume of this dielectric, between the 
plates of the capacitor, is required for it to be able to store 100 kJ of energy? 
 
Picture the Problem Recall that the dielectric strength of air is 3.00 MV/m. We 
can express the maximum energy to be stored in terms of the capacitance of the 
air-gap capacitor and the maximum potential difference between its plates. This 
maximum potential can, in turn, be expressed in terms of the maximum electric 
field (dielectric strength) possible in the air gap. We can solve the resulting 
equation for the volume of the space between the plates. In Part (b) we can 
modify the equation we derive in Part (a) to accommodate a dielectric with a 
constant other than 1. 
 
(a) Express the energy stored in the 
capacitor in terms of its capacitance 
and the potential difference across 
it: 
 

2
2
1 CVU =  

Express the capacitance of the air-
gap parallel-plate capacitor: d

AC 0∈
=  

 
Relate the potential difference 
across the plates to the electric 
field between them: 
 

EdV =  

Substitute for C and V in the 
expression for U to obtain: 

( )

( ) 2
02

12
02

1

20
2
1

EEAd

Ed
d

AU

υ∈∈

∈

==

⎟
⎠
⎞

⎜
⎝
⎛=

 

where υ = Ad is the volume between 
the plates. 
 

Solving for υ = υmax yields: 
 2

max0

max
max

2
E

U
∈

υ =                         (1) 

 
Substitute numerical values and 
evaluate maxυ : 
 

( )
( )( )

33

22212max

m1051.2

MV/m3m/NC108.85
kJ1002

×=

⋅×
=

−
υ
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(b) With the dielectric in place 
equation (1) becomes: 
 

2
max0

max
max

2
E

U
∈κ

υ =                           (2) 

Evaluate equation (2) with κ = 5.00 and Emax = 3.00 ×108 V/m: 
 

( )

( )

32
2

8
2

2
12

max m1002.5

m
V103.00

mN
C108.85400.5

kJ1002 −

−

×=

⎟
⎠
⎞

⎜
⎝
⎛ ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×

=υ  

 
89 ••• Consider two parallel-plate capacitors, C1 and C2, that are connected in 
parallel. The capacitors are identical except that C2 has a dielectric inserted 
between its plates. A 200 V battery is connected across the combination until 
electrostatic equilibrium is established, and then the battery is disconnected.  
(a) What is the charge on each capacitor? (b) What is the total stored energy of 
the capacitors? (c) The dielectric is removed from C2. What is the final stored 
energy of the capacitors? (d) What is the final voltage across the two capacitors? 
 
Picture the Problem We can use the definition of capacitance to find the charge 
on each capacitor in Part (a). In Part (b) we can express the total energy stored as 
the sum of the energy stored on the two capacitors by using our result from (a) for 
the charge on each capacitor. When the dielectric is removed in Part (c) each 
capacitor will carry half the charge carried by the capacitor system previously and 
we can proceed as in (b). Knowing the total charge stored by the capacitors, we 
can use the definition of capacitance to find the final voltage across the two 
capacitors in Part (d). 
 

( ) 1!1 V200 CVCQ ==  

and 
( ) 1122 V200 CVCVCQ κκ ===  

 

(a) Use the definition of capacitance 
to express the charge on each 
capacitor as a function of its 
capacitance: 
 
(b) Express the total stored energy of 
the capacitors as the sum of stored 
energy in each capacitor: 
 ( )

( ) ( )
( )( ) 1

24

1
2

2
1

2
12

1

2
12

12
12

1

2
22

12
12

1
21

1V1000.2

1V200

1

C

C

VC

VCVC

VCVCUUU

κ

κ

κ

κ

+×=

+=

+=

+=

+=+=

 

 



                                                                                         Capacitance 
 

 

2371

(c) With the dielectric removed, 
each capacitor carries charge Q/2. 
Express  the final energy stored by 
the capacitors under this condition: 
  1

2
1

2

1

2

2

2
2

1

2
1

f

4

42
1

42
1

2
1

2
1

C
Q

C
Q

C
Q

C
Q

C
QU

=

+=+=
 

 
Using the definition of capacitance, 
express the total charge carried by 
the capacitors with the dielectric in 
place in C2: 
 

( )
( ) ( )κ

κκ
+=

+=+=
+=+=

1V200
1

1

111

2121

C
VCVCVC

VCVCQQQ
 

Substitute for Q in the expression 
for Uf to obtain: 
 

( ) ( )[ ]

( ) ( )21
24

1

2
1

f

1V1000.1

4
1V200

κ

κ

+×=

+
=

C

C
CU

 

 
(d) Use the definition of capacitance 
to express the final voltage across the 
capacitors: 

( ) ( )

( )V1100

2
1V200

1

1

eq
f

κ

κ

+=

+
==

C
C

C
QV

 

 
90 ••• A capacitor is constructed of two coaxial conducting thin cylindrical 
shells of radii a and b (b > a), which have a length L >> b. A charge of +Q is on 
the inner cylinder, and a charge of –Q is on the outer cylinder. The region 
between the two cylinders is filled with a material that has a dielectric constantκ. 
(a) Find the potential difference between the cylinders. (b) Find the density of the 
free charge σf on the inner cylinder and the outer cylinder. (c) Find the bound 
charge density σb on the inner cylindrical surface of the dielectric and on the 
outer cylindrical surface of the dielectric. (d) Find the total stored energy. (e) If 
the dielectric will move without friction, how much mechanical work is required 
to remove the dielectric cylindrical shell? 
 
Picture the Problem We can use the definition of capacitance and the expression 
for the capacitance of a cylindrical capacitor to find the potential difference 
between the cylinders. In Part (b) we can apply the definition of surface charge 
density to find the density of the free charge σf  on the inner and outer cylindrical 
surfaces. We can use the fact that that Q and Qb are proportional to E and Eb to 
express Qb at a and b and then apply the definition of surface charge density to 
express σb(a) and σb(b). In Part (d) we can use QVU 2

1= to find the total stored 
electrostatic energy and in (e) find the mechanical work required from the change 
in energy of the system resulting from the removal of the dielectric cylindrical 
shell. 
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(a) Using the definition of 
capacitance, relate the potential 
difference between the cylinders to 
their charge and capacitance: 
 

C
QV =                                   

Express the capacitance of a 
cylindrical capacitor as a function of 
its radii a and b and length L: 
 

( )ab
LC

ln
2 0 κ∈π

=  

Substituting for C and simplifying 
yields: 
 

( ) ( )
L

abkQ
L

abQV
κκ∈π
ln2

2
ln

0

==  

 
(b) Apply the definition of surface 
charge density to obtain: ( )

aL
Qa
π

σ
2f =  

and 

( )
bL
Qb

π
σ

2f
−

=  

 

 

( ) ( )
κ
κ 1

b
−−

=
QaQ  

and 

( ) ( )
κ
κ 1

b
−

=
QbQ  

 

(c) Noting that Q and Qb are 
proportional to E and Eb, express Qb 
at a and b: 
 

Apply the definition of surface 
charge density to express σb(a) and 
σb(b): 
 

( ) ( )
( )

( )
κπ

κ
π
κ
κ

σ

aL
Q

aL

Q

A
aQa

2
1

2

1
b

b

−−
=

−−

==
 

and 

( ) ( )
( )

( )
κπ

κ
π
κ
κ

σ

bL
Q

bL

Q

A
bQb

2
1

2

1
b

b

−
=

−

==
 

 
(d) Express the total stored energy in 
terms of the charge stored and the 
potential difference between the 
cylinders: 
 

( )

( )
L

abkQ

L
abkQQQVU

κ

κ

ln

ln2

2

2
1

2
1

=

⎥⎦
⎤

⎢⎣
⎡==
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(e) Express the work required to 
remove the dielectric cylindrical 
shell in terms of the change in the 
potential energy of the system: 
 

UU'UW −=Δ=  
where U ′ = κU is the potential energy 
of the system with the dielectric shell in 
place. 

Substitute for U and U′ and simplify 
to obtain: 

( )
( ) ( )

L
abkQ

UUUW

κ
κ

κκ

ln1

1
2 −

=

−=−=
 

 
91 ••• Before Switch S is closed, as shown in Figure 24-51 the voltage across 
the terminals of the switch is 120 V and the voltage across the capacitor labeled 
C1 is 40.0 V.  The capacitance of C1 is 0.200 μF. The total energy stored in the 
two capacitors is 1.44 mJ. After closing the switch, the voltage across each 
capacitor is 80.0 V, and the energy stored by the two capacitors has dropped to 
960 μJ. Determine the capacitance of C2 and the charge on that capacitor before 
the switch was closed. 
 
Picture the Problem Note that, with switch S closed, C1 and C2 are in parallel 
and we can use 2

eq2
1

closed VCU = and 21eq CCC += to obtain an equation we can 

solve for C2. We can use the definition of capacitance to express Q2 in terms of V2 
and C2 and 2

222
12

112
1

open VCVCU += to obtain an equation from which we can 

determine V2.  
 
Express the energy stored in the 
capacitors after the switch is closed: 
 

2
eq2

1
closed VCU =  

Express the equivalent capacitance 
of C1 and C2 in parallel: 
 

21eq CCC +=  

Substitute for to obtain: eqC

 
( ) 2

212
1

closed VCCU +=  

Solving for C2 yields: 
12

closed
2

2 C
V

UC −=  

 
Substitute numerical values and 
evaluate C2: 
 

( )
( )

F100.0F200.0
V80

J9602
22 μμμ

=−=C

 
Express the charge on C2 when the 
switch is open: 

222 VCQ =                                  (1) 
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Express the energy stored in the 
capacitors with the switch open: 
 

2
222

12
112

1
open VCVCU +=  

Solving for V2 yields: 

2

2
11open

2

2
C

VCU
V

−
=  

 
Substitute for in equation (1) 
to obtain: 

2V

( )2
11open2

2

2
11open

22

2

2

VCUC

C
VCU

CQ

−=

−
=

 

 
Substitute numerical values and evaluate Q2: 
 

( ) ( ) ( )( )[ ] C0.16V0.40F200.0mJ44.12F100.0 2
2 μμμ =−=Q  

 
92 ••• An air-filled parallel-plate capacitor that has gap-width d has plates 
which each have an area A.  The capacitor is charged to a potential difference V 
and is then removed from the voltage source. A dielectric slab that has a dielectric 
constant of 2.00, a thickness d, and an area A2

1  is then inserted, as shown in 
Figure24-52. Let σ1 be the free charge density at the conductor–dielectric surface, 
and let σ2 be the free charge density at the conductor–air surface. (a) Explain why 
the electric field must have the same value inside the dielectric as in the free 
space between the plates. (b) Show that σ1 = 2σ2. (c) Show that the final 
capacitance (after the slab is inserted) is 1.50 times the capacitance when the 
capacitor is filled with air. (d) Show that the final potential difference is 2

3 V .  
(e) Show that energy stored after the slab is inserted is only two-thirds of the 
energy stored before insertion. 
 
Picture the Problem (b) We can express the electric fields in the dielectric and in 
the free space in terms of the charge densities and then use the fact that the 
electric field has the same value inside the dielectric as in the free space between 
the plates to establish that σ1 = 2σ2. In Parts (c) and (d) we can model the system 
as two capacitors in parallel to show that the equivalent capacitance is 3∈0A/(2d) 
and then use the definition of capacitance to show that the new potential 
difference is V3

2 . 
 
(a) The potential difference between the plates is the same for both halves (the 
plates are equipotential surfaces). Therefore, E = V/d must be the same 
everywhere between the plates. 
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(b) Relate the electric field in each 
region to σ and κ : 0∈κ

σ
=E ⇒ E0∈κσ =  

 
101011 2 EE ∈∈κσ ==  Express σ1 and σ2: 

and 
102022 EE ∈∈κσ ==  

 
Divide the 1st of these equations 
by the 2nd and simplify to obtain: 
 

21 2σσ =  

21eq CCC +=  (c) Model the partially dielectric-
filled capacitor as two capacitors 
in parallel to obtain: 

where 
( )

d
A

d
AC

2
02

1
0

1
∈κ∈κ

==  

and 
( )

d
A

d
AC

2
02

1
0

2
∈∈

==  

 

 

Substitute for C1 and C2 and 
simplify to obtain: 
 

filled-air
0

0000
eq

50.1
2

3
22

2
22

C
d

A
d
A

d
A

d
A

d
AC

==

+=+=

∈

∈∈∈∈κ

 

 
(d) Use the definition of capacitance 
to relate , , and : fV fQ fC f

f
f C

QV =  

 
Because the capacitors are in 
parallel: d

AVVCQQ 0
iif

∈
===  

 
Substitute for  and  and 
simplify to obtain: 

fQ fC V
d

d
A
AV

dC
AVV 3

2

0

0

f

0
f

2
3

=
⎟
⎠
⎞

⎜
⎝
⎛

==
∈
∈∈  

 
(e) The energy stored after the slab 
is inserted is given by: 
 

2
ff2

1
f VCU =  

Substituting for  and  and 
simplifying yields: 

fC fV

 

( )( ) i3
22

i3
12

3
2

i2
3

2
1

f UVCVCU ===  

The presence of the dielectric slab reduces the potential difference between the 
capacitor plates and, hence, the energy stored in the capacitor. 
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93 ••• A capacitor has rectangular plates of length a and width b. The top 
plate is inclined at a small angle, as shown in Figure 24-53. The plate separation 
varies from  y0 at the left to  2y0 at the right, where y0 is much less than a or b. 
Calculate the capacitance of this arrangement. HINT: Break the problem up into a 
parallel combination.  Choose strips of width dx and length b to approximate 
small (differential) capacitors (each having a value of dC).  Each will have a plate 
area of  bdx and separation distance y0 + (y0/a)x. Then argue that these 
differential capacitors are connected in parallel. 
 
Picture the Problem Choose a coordinate system in which the +x direction is the 
right and the origin is at the left edge of the capacitor. We can express an element 
of capacitance dC and then integrate this expression to find C for this capacitor. 
 
Express an element of capacitance 
dC of length b, width dx and 
separation d = y0 + (y0/a)x: 
 

( )dx
axy

bdx
d

bdC
+

==
10

00 ∈∈  

These elements are all in parallel, so 
the total capacitance is obtained by 
integration: 

( )2ln
1

1

0

0

00

0
0

y
abdx

axy
bC

y ∈∈
=

+
= ∫  

 
94 ••• Not all dielectrics that separate the plates of a capacitor are rigid. For 
example, the membrane of a nerve axon is a bi-lipid layer that has a finite 
compressibility. Consider a parallel-plate capacitor whose plate separation is 
maintained by a material that has a dielectric constant of 3.00, a dielectric 
strength of 40.0 kV/mm and a Young’s modulus1 for compressive stress of  
5.00 × 106 N/m2.  When the potential difference between the capacitor plates is 
zero, the thickness of the dielectric is equal to 0.200 mm and the capacitance of 
the capacitor is given by C0. (a) Derive an expression for the capacitance, as a 
function of the potential difference between the capacitor plates. (b) What is the 
maximum value of this potential difference? (Assume that the dielectric constant 
and the dielectric strength do not change under compression.)  
 
Picture the Problem The diagram below and to the left shows the dielectric-
filled parallel-plate capacitor before compression and the diagram to the right 
shows the capacitor when the plate separation has been reduced to x. We can use 
the definition of capacitance and the expression for the capacitance of a parallel-
plate capacitor to derive an expression for the capacitance as a function of voltage 
across the capacitor. We can find the maximum voltage that can be applied from 
the dielectric strength of the dielectric and the separation of the plates. In Part (c) 
we can find the fraction of the total energy that is electrostatic field energy and 

                                                           
1 Young’s modulus is discussed in Section 12-8. 
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the fraction that is mechanical stress energy by expressing either of these as a 
fraction of their sum. 

κ κ

Δ

d

x

x

 
 
(a) Use its definition to express the 
capacitance as a function of the 
voltage across the capacitor: 
 

( )
V
QVC =                                 (1) 

The limiting value of the capacitance 
is: 
 

d
AC 0

0
∈κ

=  

Substitute numerical values and 
evaluate C0: 
 

3

2
6

2

2
12

0

mN
C10133.0

mm200.0
mN

C10854.83

⋅
×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
=

−

−

A

A
C  

 

( )
x

AxC 0∈κ
=  Let x be the variable separation. 

Because κ is independent of x: 
and 

 ( ) ( ) V
x

AVxCxQ 0∈κ
==                

 
Substitute in equation (1) to obtain: 
 ( )

xd
A

x
A

V

V
x

A

VC

Δ−
=

==

0

0

0

∈κ

∈κ
∈κ

     (2) 

 
The force of attraction between the 
plates is given in Problem 95 (c): 
 

( )
A

xQF
0

2

2 ∈κ
=  
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Substitute to obtain: 

2

2
0

0

2
0

22 x
AV

A

V
x

A

F ∈κ
∈κ

∈κ

−=
⎟
⎠
⎞

⎜
⎝
⎛

=  

where the minus sign is used to indicate 
that the force acts to decrease the plate 
separation x. 
 

Apply Hooke’s law to relate the 
stress to the strain: 
 

xx
AFY

Δ
=  or 

YA
F

x
x
=

Δ  

 
Substitute for F to obtain: 

2

2
0

2Yx
V

x
x ∈κ

−=
Δ  

and 

Yd
V

Yx
Vx

22

2
0

2
0 ∈κ∈κ

−=−=Δ     (3) 

provided Δx << d 
 

The voltage across the capacitor is: 
 

( )( )
kV00.8

mm200.0kV/mm0.40max

=
== dEV

 

 
Substitute numerical values in equation (3) and evaluate Δx: 
 

( )

( )( ) mm108.50m1050.8
mm200.0N/m1000.52

kV00.8
mN

C10854.83
Δ 47
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2
2

2
12

−−

−

×=×=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

×
−=x  

 
Substitute in equation (2) to obtain: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

=
−

2

2
0

0

1

2

2
0

0

2

2
0

0
2

0

0

2
1

2
1

2
1

2
Yd

VC
Yd

VC

Yd
Vd

A

Yd
Vd

AVC ∈κ∈κ
∈κ

∈κ
∈κ
∈κ  

provided Δx << d. 
 
(b) Express the maximum voltage that can be applied in terms of the 
maximum electric field: 
 

( ) ( )( ) kV97.7mm108.50mm200.0kV/mm0.40Δ -4
maxmax =×−=−= xdEV  
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