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Chapter 11 
Gravity 
 
Conceptual Problems 
 
1 • [SSM] True or false: 
(a) For Kepler’s law of equal areas to be valid, the force of gravity must vary 
inversely with the square of the distance between a given planet and the Sun. 
(b) The planet closest to the Sun has the shortest orbital period. 
(c) Venus’s orbital speed is larger than the orbital speed of Earth. 
(d) The orbital period of a planet allows accurate determination of that planet’s 
mass. 
 
(a) False. Kepler’s law of equal areas is a consequence of the fact that the  
gravitational force acts along the line joining two bodies but is independent  
of the manner in which the force varies with distance. 
 
(b) True. The periods of the planets vary with the three-halves power of their 
distances from the sun. So the shorter the distance from the sun, the shorter the 
period of the planet’s motion. 
 
(c) True. Setting up a proportion involving the orbital speeds of the two planets in 
terms of their orbital periods and mean distances from the Sun (see Table 11-1) 
shows that EarthVenus 17.1 vv = . 
  
(d) False. The orbital period of a planet is independent of the planet’s mass. 
 
2 • If the mass of a small Earth-orbiting satellite is doubled, the radius of 
its orbit can remain constant if the speed of the satellite (a) increases by a factor 
of 8, (b) increases by a factor of 2, (c) does not change, (d) is reduced by a factor 
of 8, (e) is reduced by a factor of 2. 
 
Determine the Concept We can apply Newton’s 2nd law and the law of gravity to 
the satellite to obtain an expression for its speed as a function of the radius of its 
orbit. 

 
Apply Newton’s 2nd law to the 
satellite to obtain: ∑ ==

r
vm

r
GMmF

2

2radial  

where M is the mass of the object the  
satellite is orbiting and m is the mass of 
the satellite. 
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Solving for v yields: 
r

GMv =  

 
Thus the speed of the satellite is independent of its mass and )(c is correct. 

 
3 • [SSM] During what season in the northern hemisphere does Earth 
attain its maximum orbital speed about the Sun? What season is related to its 
minimum orbital speed? HINT: The major factor determining the seasons on 
Earth is not the variation in distance from the Sun. 
 
Determine the Concept Earth is closest to the Sun during winter in the northern 
hemisphere. This is the time of fastest orbital speed. Summer would be the time 
for minimum orbital speed. 
 
4 • Haley’s comet is in a highly elliptical orbit about the Sun with a period 
of about 76 y. Its last closest approach to the Sun occurred in 1987. In what years 
of the twentieth century was it traveling at its fastest or slowest orbital speed 
about the Sun?  
 
Determine the Concept Haley’s comet was traveling at its fastest orbital speed in 
1987, and at its slowest orbital speed 38 years previously in 1949. 
 
5 • Venus has no natural satellites. However artificial satellites have been 
placed in orbit around it. To use one of their orbits to determine the mass of 
Venus, what orbital parameters would you have to measure? How would you then 
use them to do the mass calculation? 
 
Determine the Concept To obtain the mass M of Venus you need to measure the 
period T and semi-major axis a of the orbit of one of the satellites, substitute the 
measured values into ( )GMaT 222 4π=  (Kepler’s 3rd law), and solve for M. 
 
6 • A majority of the asteroids are in approximately circular orbits in a 
″belt″ between Mars and Jupiter. Do they all have the same orbital period about 
the Sun? Explain. 
 
Determine the Concept No. As described by Kepler’s 3rd law, the asteroids 
closer to the Sun have a shorter ″year″ and are orbiting faster. 
 
7 • [SSM] At the surface of the moon, the acceleration due to the 
gravity of the moon is a.  At a distance from the center of the moon equal to four 
times the radius of the moon, the acceleration due to the gravity of the moon is (a) 
16a, (b) a/4, (c) a/3, (d) a/16, (e) None of the above. 
 
Picture the Problem The acceleration due to gravity varies inversely with the 
square of the distance from the center of the moon. 
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Express the dependence of the 
acceleration due to the gravity of the 
moon on the distance from its center: 
 

2
1
r

a' ∝  

Express the dependence of the 
acceleration due to the gravity of the 
moon at its surface on its radius: 
 

2
M

1
R

a ∝  

Divide the first of these expressions 
by the second to obtain:  
 

2

2
M

r
R

a
a'

=  

Solving for a′ and simplifying yields: 
( )

aa
R
Ra

r
Ra' 16

1
2

M

2
M

2

2
M

4
===  

and )(d is correct. 

 
8 • At a depth equal to half the radius of Earth, the acceleration due to 
gravity is about (a) g (b) 2g (c) g/2, (d) g/4, (e)  g/8, (f) You cannot determine the 
answer based on the data given. 
 
Picture the Problem We can use Newton’s law of gravity and the assumption of 
uniform density to express the ratio of the acceleration due to gravity at a depth 
equal to half the radius of Earth to the acceleration due to gravity at the surface of 
Earth. 
 
The acceleration due to gravity at a 
depth equal to half the radius of 
Earth is given by: 
 

( ) 22
2
1

4
2
1 r

GM'
r

GM'g r ==  

where M′ is the mass of Earth between 
the location of interest and the center of 
Earth. 
 

The acceleration due to gravity at the 
surface of Earth is given by: 
 

2r
GMg =  

Dividing the first of these equations 
by the second and simplifying yields: 
 M

M'

r
GM
r
GM'

g

g r 4
4

2

2
2
1

==                 (1) 
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Express M′ in terms of the average 
density of Earth ρ and the volume V′ 
of Earth between the location of 
interest and the center of Earth: 
 

( )[ ] 3
6
13

2
1

3
4 rrV'M' πρπρρ ===  

Express M in terms of the average 
density of Earth ρ and the volume V 
of Earth: 
 

( ) 3
3
43

3
4 rrVM πρπρρ ===  

Substitute for M and M′ in equation 
(1) and simplify to obtain: 
 

( )
2
1

3
3
4

3
6
14

2
1

==
r
r

g

g r

πρ
πρ  

and ( )c is correct. 

 
9 •• Two stars orbit their common center of mass as a binary star system.  
If each of their masses were doubled, what would have to happen to the distance 
between them in order to maintain the same gravitational force? The distance 
would have to  (a) remain the same (b) double (c) quadruple (d) be reduced by a 
factor of 2 (e) You cannot determine the answer based on the data given. 
 
Picture the Problem We can use Newton’s law of gravity to express the ratio of 
the forces and then solve this proportion for the separation of the stars that would 
maintain the same gravitational force. 
 
The gravitational force acting on the 
stars before their masses are doubled 
is given by: 
 

2g r
GmMF =  

The gravitational force acting on the 
stars after their masses are doubled is 
given by: 
 

( )( )
22g

422
r'

GmM
r'

MmGF' ==  

Dividing the second of these 
equations by the first yields: 

2

2

2

2

g

g 4
4

1
r'
r

r
GmM

r'
GmM

F
F'

===  

 
Solving for r′ yields: rr' 2= and ( )b is correct. 
 
10 •• If you had been working for NASA in the 1960’s and planning the trip 
to the moon, you would have determined that there exists a unique location 
somewhere between Earth and the moon, where a spaceship is, for an instant, 
truly weightless. [Consider only the moon, Earth and the Apollo spaceship, and 
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neglect other gravitational forces.] Explain this phenomenon and explain whether 
this location is closer to the moon, midway on the trip, or closer to Earth. 
 
Determine the Concept Between Earth and the moon, the gravitational pulls on 
the spaceship are oppositely directed. Because of the moon’s relatively small 
mass compared to the mass of Earth, the location where the gravitational forces 
cancel (thus producing no net gravitational force, a weightless condition) is 
considerably closer to the moon. 
 
11 •• [SSM] Suppose the escape speed from a planet was only slightly 
larger than the escape speed from Earth, yet it was considerably larger than Earth. 
How would the planet’s (average) density compare to Earth’s (average) density? 
(a) It must be more dense. (b) It must be less dense. (c) It must be the same 
density. (d) You cannot determine the answer based on the data given. 
 
Picture the Problem The densities of the planets are related to the escape speeds 
from their surfaces through RGMv 2e = . 
 
The escape speed from the planet is 
given by: 
 

planet

planet
planet

2
R

GM
v =  

 
The escape speed from Earth is given 
by: 
 

Earth

Earth
Earth

2
R

GMv =  

Expressing the ratio of the escape 
speed from the planet to the escape 
speed from Earth and simplifying 
yields: 
  

Earth

planet

planet

Earth

Earth

Earth

planet

planet

Earth

planet

2

2

M
M

R
R

R
GM

R
GM

v
v

==  

 
Because vplanet ≈ vEarth: 

Earth

planet

planet

Earth1
M
M

R
R

≈  

 
Squaring both sides of the equation 
yields: 
  

Earth

planet

planet

Earth1
M
M

R
R

≈  
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Express Mplanet and MEarth in terms of their densities and simplify to obtain: 
 

2
EarthEarth

2
planetplanet

3
Earth3

4
Earth

3
planet3

4
planet

planet

Earth

EarthEarth

planetplanet

planet

Earth

EarthEarth

planetplanet

planet

Earth1
R
R

R
R

R
R

V
V

R
R

V
V

R
R

ρ
ρ

πρ
πρ

ρ
ρ

ρ
ρ

===≈  

 
Solving for the ratio of the densities 
yields: 
 

2
planet

2
Earth

Earth

planet

R
R

≈
ρ
ρ

 

Because the planet is considerably 
larger than Earth: 
 

1
Earth

planet <<
ρ
ρ

 

and ( )b is correct. 

 
12 •• Suppose that, using telescope in your backyard, you discovered a 
distant object approaching the Sun, and were able to determine both its distance 
from the Sun and its speed.  How would you be able to predict whether the object 
will remain ″bound″ to the Solar System, or if it is an interstellar interloper and 
would come in, turn around and escape, never to return? 
 
Determine the Concept You could take careful measurements of its position as a 
function of time in order to determine whether its trajectory is an ellipse, a 
hyperbola, or a parabola. If the path is an ellipse, it will return; if its path is 
hyperbolic or parabolic, it will not return. Alternatively, by measuring its distance 
from the Sun, you can estimate the gravitational potential energy (per kg of its 
mass, and neglecting the planets) of the object, and by determining its position on 
several successive nights, the speed of the object can be determined. From this, its 
kinetic energy (per kg) can be determined. The sum of these two gives the 
comet’s total energy (per kg) and if it is positive, it will likely swing once around 
the Sun and then leave the Solar System forever. 
 
13 •• [SSM] Near the end of their useful lives, several large Earth-orbiting 
satellites have been maneuvered so as to burn up as they enter Earth’s 
atmosphere. These maneuvers have to be done carefully so large fragments do not 
impact populated land areas. You are in charge of such a project. Assuming the 
satellite of interest has on-board propulsion, in what direction would you fire the 
rockets for a short burn time to start this downward spiral? What would happen to 
the kinetic energy, gravitational potential energy and total mechanical energy 
following the burn as the satellite came closer and closer to Earth? 
 
Determine the Concept You should fire the rocket in a direction to oppose the 
orbital motion of the satellite. As the satellite gets closer to Earth after the burn, 
the potential energy will decrease as the satellite gets closer to Earth. However, 
the total mechanical energy will decrease due to the frictional drag forces 
transforming mechanical energy into thermal energy. The kinetic energy will 



Gravity 
        
1097

increase until the satellite enters the atmosphere where the drag forces slow its 
motion. 
 
14 •• During a trip back from the moon, the Apollo spacecraft fires its 
rockets to leave its lunar orbit.  Then it coasts  back to Earth where it enters the 
atmosphere at high speed, survives a blazing re-entry and parachutes safely into 
the ocean.  In what direction do you fire the rockets to initiate this return trip? 
Explain the changes in kinetic energy, gravitational potential and total mechanical 
energy that occur to the spacecraft from the beginning to the end of this journey. 
   
Determine the Concept Near the moon you would fire the rockets to accelerate 
the spacecraft with the thrust acting in the direction of your ship’s velocity at the 
time. When the rockets have shut down, as you leave the lunar orbit, your kinetic 
energy will initially decrease (the moon’s gravitational pull exceeds that of Earth), 
and your potential energy will increase. When you reach a certain point, Earth’s 
gravitational attraction will begin accelerating the ship and its kinetic energy will 
increase at the expense of the gravitational potential energy of the spacecraft-
Earth-moon system. The spacecraft will enter Earth’s atmosphere with its 
maximum kinetic energy. Eventually, landing in the ocean, the kinetic energy will 
be zero, the gravitational potential energy a minimum, and the total mechanical 
energy of the ship will have been dramatically reduced due to air drag forces 
producing heat and light during re-entry. 
 
15 •• Explain why the gravitational field inside a solid sphere of uniform 
mass is directly proportional to r rather than inversely proportional to r. 
 
Determine the Concept At a point inside the sphere a distance r from its center, 
the gravitational field strength is directly proportional to the amount of mass 
within a distance r from the center, and inversely proportional to the square of the 
distance r from the center. The mass within a distance r from the center is 
proportional to the cube of r. Thus, the gravitational field strength is directly 
proportional to r.  
 
16 •• In the movie 2001 A Space Odyssey, a spaceship containing two 
astronauts is on a long-term mission to Jupiter. A model of their ship could be a 
uniform pencil-like rod (containing the propulsion systems) with a uniform sphere 
(the crew habitat and flight deck) attached to one end. The design is such that the 
radius of the sphere is much smaller than the length of the rod. At a location a few 
meters away from the ship, on the perpendicular bisector of the rod-like section, 
what would be the direction of the gravitational field due to the ship alone (that is, 
assuming all other gravitational fields are negligible)? Explain your answer. At a 
large distance from the ship, what would be the dependence of its gravitational 
field on the distance from the ship? 
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Determine the Concept The pictorial representation shows the point of interest P 
and the gravitational fields rodgG and spheregG due to the rod and the sphere as well as 
the resultant field netgG . Note that the net field (the sum of rodgG and spheregG ) points 
slightly toward the habitat end of the ship. At very large distances, the rod-sphere 
mass distribution looks like a point mass and so the field’s distance dependence is 
an inverse square dependence. 

P

rodgr

spheregr

netgr

 
 
Estimation and Approximation 
 
17  • [SSM] Estimate the mass of our galaxy (the Milky Way) if the Sun 
orbits the center of the galaxy with a period of 250 million years at a mean 
distance of 30,000 c⋅y. Express the mass in terms of multiples of the solar mass 
MS. (Neglect the mass farther from the center than the Sun, and assume that the 
mass closer to the center than the Sun exerts the same force on the Sun as would a 
point particle of the same mass located at the center of the galaxy.) 
 
Picture the Problem To approximate the mass of the galaxy we’ll assume the 
galactic center to be a point mass with the sun in orbit about it and apply Kepler’s 
3rd law.  
 
Using Kepler’s 3rd law, relate the 
period of the sun T to its mean 
distance r from the center of the 
galaxy: 
 

3

s

galaxy

s

2

3

galaxy

2
2

4
4 r

M
M

G

Mr
GM

T

π
π

==  

 

Solve for 2

3

T
r and simplify to obtain: 

 

s

2
s

galaxy

s

2
s

galaxy

2

3

44
GM

M
M

M

M
M

G

T
r

ππ
==  

 
If we measure distances in AU and 
times in years: 
 ( )3

2

s

2

AU
y14

=
GM

π  

and 

 ( )
2

3

s

galaxy
2

3

y
AU

M
M

T
r

=  
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Substitute numerical values and evaluate Mgalaxy/Ms: 
 

( )
( )

11
26

3

23

11

15
4

s

galaxy 1008.1
y10250

AU
y

m 101.50
AU 1

y
m10461.9y103.00

×=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
⋅

×
×⋅×

=
c

c

M
M

 

or 

s
11

galaxy 1008.1 MM ×=  
 
18 •• Besides studying samples of the lunar surface, the Apollo astronauts 
had several ways of determining that the moon is not made of green cheese.  
Among these ways are measurements of the gravitational acceleration at the lunar 
surface.  Estimate the gravitational acceleration at the lunar surface if the moon 
were, in fact, a solid block of green cheese and compare it to the known value of 
the gravitational acceleration at the lunar surface. 
 
Picture the Problem The density of a planet or other object determines the 
strength of the gravitational force it exerts on other objects. We can use Newton’s 
law of gravity to express the acceleration due to gravity at the surface of the moon 
as a function of the density of the moon. Estimating the density of cheese will 
then allow us to calculate what the acceleration due to gravity at the surface of the 
moon would be if the moon were made of cheese. Finally, we can compare this 
value to the measured value of 1.62 m/s2. 
 
Apply Newton’s law of gravity to an 
object of mass m at the surface of the 
moon to obtain: 
 

2
moon

gg r
GmMmaF == ⇒ 2

moon
g r

GMa =  

 

Assuming the moon to be made of 
cheese, substitute for its mass to 
obtain: 
 

2
moon

mooncheese
cheeseg, r

VGa ρ
=  

 

Substituting for the volume of the 
moon and simplifying yields: 

mooncheese

2
moon

3
moon3

4
cheese

cheeseg,

3
4 rG

r
rG

a

ρπ

πρ

=

=
 

 
Substitute numerical values and evaluate ag: 
 

( ) ( )
2

6
3

36

33
2211

cheeseg,

m/s 39.0

m 10738.1
m

cm 10
g 10

kg 1
cm

g 80.0kg/mN 10673.6
3

4

=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××⋅×= −πa
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Express the ratio of ag,cheese to the 
measured value of ag,moon: 24.0

m/s 62.1
m/s 388.0

2

2

moong,

cheeseg, ==
a
a

 

or 

moong,cheeseg, 24.0 aa ≈  

 
19 •• You are in charge of the first manned exploration of an asteroid. You 
are concerned that, due to the weak gravitational field and resulting low escape 
speed, tethers might be required to bind the explorers to the surface of the 
asteroid. Therefore, if you do not wish to use tethers, you have to be careful about 
which asteroids to choose to explore. Estimate the largest radius the asteroid can 
have that would still allow you to escape its surface by jumping.  Assume 
spherical geometry and reasonable rock density.  
 
Picture the Problem The density of an asteroid determines the strength of the 
gravitational force it exerts on other objects. We can use the equation for the 
escape speed from an asteroid of mass Masteroid and radius asteroidR  to derive an 
expression for the radius of an asteroid as a function of its escape speed and 
density. We can approximate the escape speed from the asteroid by determining 
one’s push-off speed for a jump at the surface of Earth. 
 
The escape speed from an asteroid is 
given by: 

asteroid

asteroid
asteroide,

2
R

GMv =  

 
In terms of the density of the 
asteroid, ve,asteroid becomes: 

asteroidasteroid3
8

asteroid

3
asteroid3

4
asteroid

asteroide,
2

RG

R
RGv

ρπ

πρ

=

=
 

 
Solving for asteroidR  yields: 
 asteroid3

8

asteroide,
asteroid ρπG

v
R =              (1) 

Using a constant-acceleration 
equation, relate the height h to which 
you can jump on the surface of Earth 
to your push-off speed: 
 

ghvv 22
0

2 −=  
or, because v = 0, 

ghv 20 2
0 −= ⇒ ghv 20 =  

Letting v0 = ve,asteroid, substitute in 
equation (1) and simplify to 
obtain: 
 

asteroidasteroid3
8asteroid 4

32
ρπρπ G
gh

G
gh

R ==  
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Assuming that you can jump 0.75 m and that the average density of an asteroid is  
3.0 g/cm3, substitute numerical values and evaluate asteroidR : 
 

( )( )

( )
km 0.3

m
cm 10

g 10
kg 1

cm
g0.3kg/mN 10673.64

m 75.0m/s 81.93

3

36

33
2211

2

asteroid ≈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××⋅×

=
−π

R  

 
20 ••• One of the great discoveries in astronomy in the past decade is the 
detection of planets outside the Solar System. Since 1996, 100 planets have been 
detected orbiting stars other than the Sun. While the planets themselves cannot be 
seen directly, telescopes can detect the small periodic motion of the star as the star 
and planet orbit around their common center of mass. (This is measured using the 
Doppler effect, which is discussed in Chapter 15.) Both the period of this motion 
and the variation in the speed of the star over the course of time can be 
determined observationally. The mass of the star is found from its observed 
luminance and from the theory of stellar structure. Iota Draconis is the 8th 
brightest star in the constellation Draco. Observations show that a planet, with an 
orbital period of 1.50 y, is orbiting this star. The mass of Iota Draconis is 
1.05MSun. (a) Estimate the size (in AU) of the semimajor axis of this planet’s 
orbit. (b) The radial speed of the star is observed to vary by 592 m/s. Use 
conservation of momentum to find the mass of the planet. Assume the orbit is 
circular, we are observing the orbit edge-on, and no other planets orbit Iota 
Draconis. Express the mass as a multiple of the mass of Jupiter. 
 
Picture the Problem We can use Kepler’s 3rd law to find the size of the semi-
major axis of the planet’s orbit and the conservation of momentum to find its 
mass. 
 
(a) Using Kepler’s 3rd law, relate the period of this planet T to the length r 
of its semi-major axis and simplify to obtain: 
 

3

s

Draconis Iota

s

2

3

s

Draconis Iota

s

2

3

Draconis Iota

2
2

44
4 r

M
M

GMr

M
MG

Mr
GM

T

ππ
π

===  

 
If we measure time in years, 
distances in AU, and masses in terms 
of the mass of the sun: 
  

14

s

2

=
MG

π and 3

s

Draconis Iota

2 1 r

M
MT =  

 
Solving for r yields: 
 3

2

s

Draconis Iota T
M

Mr =  
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Substitute numerical values and 
evaluate r: ( ) AU33.1y50.105.1

3
2

s

s =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

M
Mr  

 
(b) Apply conservation of 
momentum to the planet (mass m and 
speed v) and the star (mass  
MIota Draconis and speed V) to obtain: 
 

VMmv Draconis Iota=  

Solve for m to obtain: 
 v

VMm Draconis Iota=                      (1) 

 
The speed v of the orbiting planet 
is given by: 
 

T
r

t
dv π2

=
Δ
Δ

=  

 
Substitute numerical values and 
evaluate v: 
 

m/s10648.2
h

s3600
d

h24
y

d365.24y1.50

AU
m101.50AU1.332

4

11

×=

×××

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

=
π

v
 

 
Substitute numerical values in 
equation (1) and evaluate m: ( )

( )( )( )
kg10336.2

0112.0kg1099.105.1

m/s102.648
m/s29605.1

28

30

4sun

×=

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

= Mm

 

 
Express m as a fraction of the mass 
MJ of Jupiter: 
 

3.21
kg1090.1
kg10336.2

27

28

J

=
×
×

=
M
m  

or 

J3.12 Mm =  
 

Remarks: A more sophisticated analysis, using the eccentricity of the orbit, 
leads to a lower bound of 8.7 Jovian masses.  (Only a lower bound can be 
established, as the plane of the orbit is not known.) 
 
21 ••• One of the biggest unresolved problems in the theory of the formation 
of the solar system is that, while the mass of the Sun is 99.9 percent of the total 
mass of the Solar System, it carries only about 2 percent of the total angular 
momentum. The most widely accepted theory of solar system formation has as its 
central hypothesis the collapse of a cloud of dust and gas under the force of 
gravity, with most of the mass forming the Sun. However, because the net angular 
momentum of this cloud is conserved, a simple theory would indicate that the Sun 
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should be rotating much more rapidly than it currently is. In this problem, you 
will show why it is important that most of the angular momentum was somehow 
transferred to the planets. (a) The Sun is a cloud of gas held together by the force 
of gravity. If the Sun were rotating too rapidly, gravity couldn’t hold it together. 
Using the known mass of the Sun (1.99 × 1030 kg) and its radius (6.96 × 108 m), 
estimate the maximum angular speed that the Sun can have if it is to stay intact. 
What is the period of rotation corresponding to this rotation rate? (b) Calculate the 
orbital angular momentum of Jupiter and of Saturn from their masses (318 and 
95.1 Earth masses, respectively), mean distances from the Sun (778 and 1430 
million km, respectively), and orbital periods (11.9 and 29.5 y, respectively). 
Compare them to the experimentally measured value of the Sun’s angular 
momentum of 1.91 × 1041 kg⋅m2/s. (c) If we were to somehow transfer all of 
Jupiter’s and Saturn’s angular momentum to the Sun, what would be the Sun’s 
new rotational period? The Sun is not a uniform sphere of gas, and its moment of 
inertia is given by the formula I = 0.059MR2. Compare this to the maximum 
rotational period of Part (a). 
 
Picture the Problem We can apply Newton’s law of gravity to estimate the 
maximum angular speed which the sun can have if it is to stay together and use 
the definition of angular momentum to find the orbital angular momenta of Jupiter 
and Saturn. In Part (c) we can relate the final angular speed of the sun to its initial 
angular speed, its moment of inertia, and the orbital angular momenta of Jupiter 
and Saturn. 
 
(a) Gravity must supply the 
centripetal force which keeps an 
element of the sun’s mass m rotating 
around it. Letting the radius of the 
sun be R, apply Newton’s law of 
gravity to an object of mass m on the 
surface of the Sun to obtain: 
 

2
2

R
GMmRm <ω  

or 

ω2R <
GM
R2 ⇒ 3R

GM
<ω  

where we’ve used the inequality 
because we’re estimating the maximum 
angular speed which the sun can have if 
it is to stay together. 
 

Substitute numerical values and evaluate ω: 
 

( )( )
( ) rad/s1028.6

m106.96
kg1099.1/kgmN10673.6 4

38

302211
−

−

×=
×

×⋅×
<ω  

Calculate the maximum period of 
this motion from its angular speed: 

h78.2
s3600

h1s1000.1

rad/s1028.6
22

4

4max

=××=

×
== −

π
ω
πT
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(b) Express the orbital angular 
momenta of Jupiter and Saturn: 
 

JJJJ vrmL = and SSSS vrmL =  
 

Express the orbital speeds of Jupiter 
and Saturn in terms of their periods 
and distances from the sun: 
 

J

J
J

2
T

rv π
=  and 

S

S
S

2
T

rv π
=  

 

Substitute to obtain: 

J

2
JJ

J
2

T
rmL π

= and 
S

2
SS

S
2

T
rmL π

=  

 
Substitute numerical values and evaluate LJ and LS: 
 

( ) ( )( )( )

/smkg1093.1

h
s3600

d
h24

y
d365.24y9.11

m10778kg1098.531823182

243

2924

J

2
JE

J

⋅×=

×××

××
==

ππ
T

rML
 

and 
( ) ( )( )( )

/smkg1085.7

h
s3600

d
h24

y
d365.24y5.29

m101430kg1098.51.9521.952

242

2924

S

2
SE

S

⋅×=

×××

××
==

ππ
T

rML
 

 
Express the angular momentum of 
the sun as a fraction of the sum of 
the angular momenta of Jupiter and 
Saturn: 
 

( )
%70.0

/smkg1085.73.19
/smkg1091.1

242

241

SJ

sun

=

⋅×+
⋅×

=
+ LL

L
 

 
(c) The Sun’s rotational period 
depends on its rotational speed: 
 f

Sun
2
ω
π

=T                                  (1) 

Relate the final angular momentum 
of the sun to its initial angular 
momentum and the angular momenta 
of Jupiter and Saturn: 
 

SJif LLLL ++=  
or 

SJiSunfSun LLII ++= ωω  

Solve for ωf to obtain: 
sun

SJ
if I

LL +
+= ωω  

 
Substitute for ωi and ISun: 

2
sunsun

SJ

Sun
f 059.0

2
RM

LL
T

+
+=

πω  

 



Gravity 
        
1105

Substitute numerical values and evaluate ωf: 
 

( )
( )( )

rad/s10798.4

m1096.6kg1099.1059.0
/smkg1085.73.19

h
s3600

d
h24d03

2

4

2830

242

f

−×=

××

⋅×+
+

××
=

πω
 

 
Substitute numerical values in 
equation (1) and evaluate TSun: 

h .643
h

s 3600
s

rad 10798.4

2
4

Sun

=

××
=

−

πT
 

 
Compare this to the maximum 
rotational period of Part (a). 
 

30.1
h 2.78
h 64.3

max

Sun ==
T
T  

or 

maxSun 30.1 TT =  
 
Kepler’s Laws 
 
22 • The new comet Alex-Casey has a very elliptical orbit with a period of 
127.4 y. If the closest approach of Alex-Casey to the Sun is 0.1 AU, what is its 
greatest distance from the Sun? 
  
Picture the Problem We can use the relationship between the semi-major axis 
and the distances of closest approach and greatest separation, together with 
Kepler’s 3rd law, to find the greatest separation of Alex-Casey from the sun. 
 
Letting x represent the greatest 
distance from the sun, express the 
relationship between x, the distance 
of closest approach, and its semi-
major axis R: 
 

2
AU1.0+

=
xR ⇒ AU1.02 −= Rx  (1)     

Apply Kepler’s 3rd law, with the 
period T measured in years and R in 
AU to obtain: 
 

32 RT = ⇒ 3 2TR =  

Substituting for R in equation (1) 
yields: 
 

AU1.023 2 −= Tx  

Substitute numerical values and 
evaluate x: 

( ) AU5.50AU1.0y4.12723 2 =−=x  
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23 • The radius of Earth’s orbit is 1.496 × 1011 m and that of Uranus is 2.87 
× 1012 m. What is the orbital period of Uranus? 
 
Picture the Problem We can use Kepler’s 3rd law to relate the orbital period of 
Uranus to the orbital period of Earth. 

 
Using Kepler’s 3rd law, relate the 
orbital period of Uranus to its mean 
distance from the sun:  
 

3
Uranus

2
Uranus CrT =  

. 
  

Using Kepler’s 3rd law, relate the 
orbital period of Earth to its mean 
distance from the sun:  
 

3
Earth

2
Earth CrT =  

Dividing the first of these equations 
by the second and simplifying yields: 
 

3
Earth

3
Uranus

3
Earth

3
Uranus

2
Earth

2
Uranus

r
r

Cr
Cr

T
T

==  

 
Solve for TUranus to obtain: 
 3

Earth

3
Uranus

EarthUranus r
rTT =  

 
Substitute numerical values and 
evaluate TUranus: 
 

( )

y0.84

m 10496.1
m 1087.2y 00.1

3

11

12

Uranus

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=T
 

 
24 • The asteroid Hektor, discovered in 1907, is in a nearly circular orbit of 
radius 5.16 AU about the Sun. Determine the period of this asteroid.  
 
Picture the Problem We can use Kepler’s 3rd law to relate the orbital period of 
Hektor to its mean distance from the sun. 
 
Using Kepler’s 3rd law, relate the 
orbital period of Hektor to its mean 
distance from the sun:  

3
Hector

2
Hector CrT = ⇒ 3

HectorHector CrT =  

where 3219

s

2

/ms102.9734 −×==
GM

C π .  
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Substitute numerical values and evaluate THector: 
 

( )

y8.11
d365.24

y1
h24

d1
s3600

h1s01713.3

AU
m101.50AU16.5/ms10973.2

8

311
3219

Hector

=××××=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××= −T

 

 
25 •• [SSM] One of the so-called ″Kirkwood gaps″ in the asteroid belt 
occurs at an orbital radius at which the period of the orbit is half that of Jupiter’s.  
The reason there is a gap for orbits of this radius is because of the periodic pulling 
(by Jupiter) that an asteroid experiences at the same place in its orbit every other 
orbit around the sun.  Repeated tugs from Jupiter of this kind would eventually 
change the orbit of such an asteroid – therefore all asteroids that would otherwise 
have orbited at this radius have presumably been cleared away from the area due 
to this resonance phenomenon.   How far from the sun is this particular 2:1 
″Kirkwood″ gap? 
 
Picture the Problem The period of an orbit is related to its semi-major axis (for 
circular orbits this distance is the orbital radius). Because we know the orbital 
periods of Jupiter and a hypothetical asteroid in the Kirkwood gap, we can use 
Kepler’s 3rd law to set up a proportion relating the orbital periods and average 
distances of Jupiter and the asteroid from the Sun from which we can obtain an 
expression for the orbital radius of an asteroid in the Kirkwood gap. 
 
Use Kepler’s 3rd law to relate 
Jupiter’s orbital period to its mean 
distance from the Sun: 
 

3
Jupiter

2
Jupiter CrT =  

Use Kepler’s 3rd law to relate the 
orbital period of an asteroid in the 
Kirkwood gap to its mean distance 
from the Sun: 
 

3
Kirkwood

2
Kirkwood CrT =  

Dividing the second of these 
equations by the first yields: 
 

3
Jupiter

3
Kirkwood

3
Jupiter

3
Kirkwood

2
Jupiter

2
Kirkwood

r
r

Cr
Cr

T
T

==  

 
Solving for rKirkwood yields: 

Jupiter3

2

Jupiter

Kirkwood
Kirkwood r

T
Tr ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=  
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Because the period of the orbit of an 
asteroid in the Kirkwood gap is half 
that of Jupiter’s: 
 

( )

m 1090.4

m 108.77

11

103

2

Jupiter

Jupiter2
1

Kirkwood

×=

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

T
T

r
 

 
26 •• The tiny Saturnian moon, Atlas, is locked into what is known as an 
orbital resonance with another moon, Mimas, whose orbit lies outside of Atlas’s.  
The ratio between periods of these orbits is 3:2 – that means, for every 3 orbits of 
Atlas, Mimas completes 2 orbits. Thus, Atlas, Mimas and Saturn are aligned at 
intervals equal to two orbital periods of Atlas.  If Mimas orbits Saturn at a radius 
of 186,000 km, what is the radius of Atlas’s orbit? 
 
Picture the Problem The period of an orbit is related to its semi-major axis (for 
circular orbits this distance is the orbital radius). Because we know the orbital 
periods of Atlas and Mimas, we can use Kepler’s 3rd law to set up a proportion 
relating the orbital periods and average distances from Saturn of Atlas and Mimas 
from which we can obtain an expression for the radius of Atlas’s orbit. 
 
Use Kepler’s 3rd law to relate Atlas’s 
orbital period to its mean distance 
from Saturn: 
 

3
Atlas

2
Atlas CrT =  

Use Kepler’s 3rd law to relate the 
orbital period of Mimas to its mean 
distance from Saturn: 
 

3
Mimas

2
Mimas CrT =  

Dividing the second of these 
equations by the first yields: 
 

3
Atlas

3
Mimas

3
Atlas

3
Mimas

2
Atlas

2
Mimas

r
r

Cr
Cr

T
T

==  

 
Solving for rAtlas yields: 

Mimas
3

2

Mimas

Atlas
Atlas r

T
Tr ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Because for every 3 orbits of Atlas, 
Mimas has completed 2: 
 

( )

km 1042.1

km 1086.1
3
2

5

53

2

Atlas

×=

×⎟
⎠
⎞

⎜
⎝
⎛=r

 

 
27 •• The asteroid Icarus, discovered in 1949, was so named because its 
highly eccentric elliptical orbit brings it close to the Sun at perihelion. The 
eccentricity e of an ellipse is defined by the relation rp = a(1 – e), where rp is the 
perihelion distance and a is the semimajor axis. Icarus has an eccentricity of 0.83 
and a period of 1.1 y. (a) Determine the semimajor axis of the orbit of Icarus.  
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(b) Find the perihelion and aphelion distances of the orbit of Icarus. 
 
Picture the Problem Kepler’s 3rd law relates the period of Icarus to the length of 
its semimajor axis. The aphelion distance ra is related to the perihelion distance rp 
and the semimajor axis by .2pa arr =+  

 
(a) Using Kepler’s 3rd law, relate the 
period T of Icarus to the length a of 
its semimajor axis: 

32 CaT = ⇒ 3
2

C
Ta =  

where 3219

s

2

/ms102.9734 −×==
GM

C π .  

 
Substitute numerical values and 
evaluate a: 

m106.1

/ms10973.2
h

s3600
d

h24
y

d365.24.1y1

11

3

3219

2

×=

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××

= −a

 
(b) Use the definition of the 
eccentricity of an ellipse to 
determine the perihelion distance of 
Icarus: 

( )
( )( )

m107.2m1071.2

83.01m1059.1

1

1010

11

p

×=×=

−×=

−= ear

 

 
Express the relationship between pr  
and ar  for an ellipse: 

arr 2pa =+ ⇒ pa 2 rar −=  

 
 

Substitute numerical values and 
evaluate ar : 

( )
m109.2

m1071.2m1059.12
11

1011
a

×=

×−×=r
 

 
28 •• A manned mission to Mars and its attendant problems due to the 
extremely long time the astronauts would spend weightless and without supplies 
have been extensively discussed. To examine this issue in a simple way, consider 
one possible trajectory for the spacecraft: the ″Hohmann transfer orbit.″  This 
orbit consists of an elliptical orbit tangent to the orbit of Earth at its perihelion and 
tangent to the orbit of Mars at its aphelion.  Given that Mars has a mean distance 
from the Sun of 1.52 times the mean Sun–Earth distance, calculate the time spent 
by the astronauts during the out-bound part of the trip to Mars. Many adverse 
biological effects (such as muscle atrophy, decreased bone density, etc.) have 
been observed in astronauts returning from near-Earth orbit after only a few 
months in space. As the flight doctor, are there any health issues you should be 
aware of?  
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Picture the Problem The Hohmann transfer orbit is shown in the diagram. We 
can apply Kepler’s 3rd law to relate the time-in-orbit to the period of the 
spacecraft in its Hohmann Earth-to-Mars orbit. The period of this orbit is, in turn, 
a function of its semi-major axis which we can find from the average of the 
lengths of the semi-major axes of Earth and Mars orbits. 
 

 
Using Kepler’s 3rd law, relate the 
period T of the spacecraft to the 
semi-major axis of its orbit: 
 

32 RT = ⇒ 3RT =  
where T is in years and R is in AU. 

Relate the out-bound transit time to 
the period of this orbit: 
 

3
2
1

2
1

bound-out RTt ==  

Express the semi-major axis of the 
Hohmann transfer orbit in terms of 
the mean sun-Mars and sun-Earth 
distances: 
 

AU1.26
2

AU1.00AU1.52
=

+
=R  

Substitute numerical values and 
evaluate tout-bound: 

( )

d258

y1
d365.24y707.0

AU26.1 3
2
1

bound-out

=

×=

=t

 

 
In order for bones and muscles to maintain their health, they need to be under 
compression as they are on Earth. Due to the long duration (well over a year) of the 
round trip, you would want to design an exercise program that would maintain the 
strength of their bones and muscles. 
 
29 •• [SSM] Kepler determined distances in the Solar System from his 
data. For example, he found the relative distance from the Sun to Venus (as 
compared to the distance from the Sun to Earth) as follows. Because Venus’s 
orbit is closer to the Sun than is Earth’s, Venus is a morning or evening star—its 
position in the sky is never very far from the Sun (see Figure 11-24). If we 
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consider the orbit of Venus as a perfect circle, then consider the relative 
orientation of Venus, Earth, and the Sun at maximum extension—when Venus is 
farthest from the Sun in the sky. (a) Under this condition, show that angle b in 
Figure 11-24 is 90º. (b) If the maximum elongation angle a between Venus and 
the Sun is 47º, what is the distance between Venus and the Sun in AU? (c) Use 
this result to estimate the length of a Venusian ″year.″ 
 
Picture the Problem We can use a property of lines tangent to a circle and radii 
drawn to the point of contact to show that b = 90°.  Once we’ve established that b 
is a right angle we can use the definition of the sine function to relate the distance 
from the Sun to Venus to the distance from the Sun to Earth. 
 
(a) The line from Earth to Venus' orbit is tangent to the orbit of Venus at the point 
of maximum extension. Venus will appear closer to the sun in earth’s sky when it 
passes the line drawn from Earth and tangent to its orbit. Hence °= 90b  
 
(b) Using trigonometry, relate the 
distance from the sun to Venus SVd  
to the angle a: 
 

add
d
da sinsin SESV

SE

SV =⇒=  

Substitute numerical values and 
evaluate SVd : 
 

( )
AU73.0

AU731.074sinAU00.1SV

=

=°=d
 

 
(c) Use Kepler’s 3rd law to relate 
Venus’s orbital period to its mean 
distance from the Sun: 
 

3
Venus

2
Venus CrT =  

Use Kepler’s 3rd law to relate Earth’s 
orbital period to its mean distance 
from the Sun: 
 

3
Earth

2
Earth CrT =  

Dividing the first of these equations 
by the second yields: 
 

3
Earth

3
Venus

3
Earth

3
Venus

2
Earth

2
Venus

r
r

Cr
Cr

T
T

==  

 
Solving for VenusT yields: 

Earth

3

Earth

Venus
Venus T

r
rT ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Using the result from part (b) yields: 
 ( )

y 63.0

y 00.1
AU 00.1
AU 731.0 3

Venus

=

⎟
⎠
⎞

⎜
⎝
⎛=T
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Remarks: The correct distance from the sun to Venus is closer to 0.723 AU. 
 
30 •• At apogee the moon is 406,395 km from Earth and at perigee it is 
357,643 km. What is the orbital speed of the moon at perigee and at apogee? Its 
orbital period is 27.3 d. 
 
Picture the Problem Because the gravitational force Earth exerts on the moon is 
along the line joining their centers, the net torque acting on the moon is zero and 
its angular momentum is conserved in its orbit about Earth. Because energy is 
also conserved, we can combine these two expressions to solve for either vp or va 
initially and then use conservation of angular momentum to find the other. 
 
Letting m be the mass of the moon, 
apply conservation of angular 
momentum to the moon at apogee 
and perigee to obtain: 
 

p
a

p
aaapp v

r
r

vrmvrmv =⇒=  

 

Apply conservation of energy to 
the moon-Earth system to obtain: 

a
a

p
p r

GMmmv
r

GMmmv −=− 2
2
12

2
1  

or 

a
a

p
p r

GMv
r

GMv −=− 2
2
12

2
1

 
 

Substitute for va to obtain: 
 

a
p

a

p

a
p

a

p

p
p

r
GMv

r
r

r
GMv

r
r

r
GMv

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

2
2

2
1

2

2
12

2
1

 

 
Solving for vp yields: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

app
p rrr

GMv
1

12

 
 

Substitute numerical values and evaluate vp: 
 

( ) ( ) km/s09.1

m10064.4
m10576.31

1
m10576.3

kg1098.5/kgmN10673.62

8

88

242211

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

×
×

+×
×⋅×

=
−

pv

 



Gravity 
        
1113

Substitute numerical values in 
equation (1) and evaluate va: ( )

m/s959

km/s1.09
m10064.4
m10576.3

8

8

=

×
×

=av
 

 
Newton’s Law of Gravity 

 
31 • [SSM] Jupiter’s satellite Europa orbits Jupiter with a period of  
3.55 d at an average orbital radius of 6.71 × 108 m. (a) Assuming that the orbit is 
circular, determine the mass of Jupiter from the data given. (b) Another satellite 
of Jupiter, Callisto, orbits at an average radius of 18.8 × 108 m with an orbital 
period of 16.7 d.  Show that this data is consistent with an inverse square force 
law for gravity (Note: DO NOT use the value of G anywhere in Part (b)). 
  
Picture the Problem While we could apply Newton’s Law of Gravitation and 2nd 
Law of Motion to solve this problem from first principles, we’ll use Kepler’s 3rd 
law (derived from these laws) to find the mass of Jupiter in Part (a). In Part (b) we 
can compare the ratio of the centripetal accelerations of Europa and Callisto to 
show that they are consistent with an inverse square law for gravity. 
 
(a) Assuming a circular orbit, apply 
Kepler’s 3rd law to the motion of 
Europa to obtain: 
 

3
E

J

2
2

E
4 R
GM

T π
= ⇒ 3

E2
E

2

J
4 R
GT

M π
=  

Substitute numerical values and evaluate MJ: 
 

( )
( )

kg1090.1

h
s3600

d
h24d3.55/kgmN10673.6

m106.714 27
2

2211

382

J ×=

⎟
⎠
⎞

⎜
⎝
⎛ ××⋅×

×
=

−

πM  

Note that this result is in excellent agreement with the accepted value of  
1.902×1027 kg.  
 
(b) Express the centripetal 
acceleration of both of the moons to 
obtain: 
  

2

2

2

2

lcentripeta
4

2

T
R

R
T

R

R
va π

π

=
⎟
⎠
⎞

⎜
⎝
⎛

==  

where R and T are the radii and periods 
of their motion. 
 

Using this result, express the 
centripetal accelerations of Europa 
and Callisto: 
 

2
E

E
2

E
4

T
Ra π

=  and 2
C

C
2

C
4

T
Ra π

=  
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Divide the first of these equations by 
the second and simplify to obtain:  

C

E
2

E

2
C

2
C

C
2

2
E

E
2

C

E

4

4

R
R

T
T

T
R

T
R

a
a

==
π

π

 

 
Substitute for the periods of Callisto 
and Europa using Kepler’s 3rd law to 
obtain: 
 

2
E

2
C

C

E
3
E

3
C

C

E

R
R

R
R

CR
CR

a
a

==  

 
This result, together with the fact that the gravitational force is directly 
proportional to the acceleration of the moons, demonstrates that the gravitational 
force varies inversely with the square of the distance. 
 
32 • Some people think that shuttle astronauts are ″weightless″ because 
they are ″beyond the pull of Earth’s gravity. ″ In fact, this is completely untrue. 
(a) What is the magnitude of the gravitational field in the vicinity of a shuttle 
orbit? A shuttle orbit is about 400 km above the ground. (b) Given the answer in 
Part (a), explain why shuttle astronauts do suffer from adverse biological affects 
such as muscle atrophy even though they are actually not ″weightless″? 
 
Determine the Concept The weight of anything, including astronauts, is the 
reading of a scale from which the object is suspended or on which it rests. That is, 
it is the magnitude of the normal force acting on the object. If the scale reads zero, 
then we say the object is ″weightless.″ The pull of Earth’s gravity, on the other 
hand, depends on the local value of the acceleration of gravity and we can use 
Newton’s law of gravity to find this acceleration at the elevation of the shuttle. 
 
(a) Apply Newton’s law of 
gravitation to an astronaut of mass m 
in a shuttle at a distance h above the 
surface of Earth: 
 

( )2
E

E
shuttle Rh

GmMmg
+

=  

Solving for shuttleg  yields: 
( )2

E

E
shuttle Rh

GMg
+

=  

 
Substitute numerical values and evaluate shuttleg : 
 

( )( )
( )

2
2

242211

shuttle m/s71.8
km6370km400

kg1098.5/kgmN10673.6
=

+
×⋅×

=
−

g  
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(b) In orbit, the astronauts experience only one (the gravitational force) of the two 
forces (the second being the normal force – a compressive force – exerted by 
Earth) that normally acts on them. Lacking this compressive force, their bones and 
muscles, the absence of an exercise program, will weaken. In orbit the astronauts 
are not weightless, they are normal-forceless. 
 
33 • [SSM] The mass of Saturn is 5.69 × 1026 kg. (a) Find the period of 
its moon Mimas, whose mean orbital radius is 1.86 × 108 m. (b) Find the mean 
orbital radius of its moon Titan, whose period is 1.38 × 106 s. 
  
Picture the Problem While we could apply Newton’s Law of Gravitation and 2nd 
Law of Motion to solve this problem from first principles, we’ll use Kepler’s 3rd 
law (derived from these laws) to find the period of Mimas and to relate the periods 
of the moons of Saturn to their mean distances from its center.  

 
(a) Using Kepler’s 3rd law, relate the 
period of Mimas to its mean distance 
from the center of Saturn: 
 

3
M

S

2
2

M
4 r

GM
T π

=  ⇒ 3
M

S

2

M
4 r
GM

T π
=             

 

Substitute numerical values and evaluate TM: 
 

( )
( )( ) h 22.7s1018.8

kg1069.5/kgmN106726.6
m1086.14 4

262211

382

M ≈×=
×⋅×

×
= −

πT  

 
(b) Using Kepler’s 3rd law, relate the 
period of Titan to its mean distance 
from the center of Saturn: 
 

3
T

S

2
2

T
4 r

GM
T π

= ⇒ 3
2

S
2

T
T 4π

GMTr =  

Substitute numerical values and evaluate rT: 
 

( ) ( )( ) m1022.1
4

kg1069.5/kgmN106726.6s1038.1 93
2

26221126

T ×=
×⋅××

=
−

π
r  

 
34 • Calculate the mass of Earth from the period of the moon,  
T = 27.3 d; its mean orbital radius, rm = 3.84 × 108 m; and the known value of G. 
 
Picture the Problem While we could apply Newton’s law of gravitation and 2nd 
law of motion to solve this problem from first principles, we’ll use Kepler’s 3rd 
law (derived from these laws) to relate the period of the moon to the mass of 
Earth and the mean Earth-moon distance.  
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Using Kepler’s 3rd law, relate the 
period of the moon to its mean 
orbital radius: 
 

3
m

E

2
2

m
4 r

GM
T π

= ⇒ 3
m2

m

2

E
4 r
GT

M π
=  

Substitute numerical values and evaluate ME: 
 

( )
( )

kg1002.6

h
s3600

d
h24d3.27/kgmN106.6726

m103.844 24
2

2211

382

E ×=

⎟
⎠
⎞

⎜
⎝
⎛ ××⋅×

×
=

−

πM  

 
Remarks: This analysis neglects the mass of the moon; consequently the mass 
calculated here is slightly too large. 
 
35 • Suppose you leave the Solar System and arrive at a planet that has the 
same mass-to-volume ratio as Earth but has 10 times Earth’s radius. What would 
you weigh on this planet compared with what you weigh on Earth? 
 
Picture the Problem Your weight is the local gravitational force exerted on you. 
We can use the definition of density to relate the mass of the planet to the mass of 
Earth and the law of gravity to relate your weight on the planet to your weight on 
Earth. 

 
Using the definition of density, relate 
the mass of Earth to its radius: 
 

3
E3

4
EE RVM πρρ ==  

Relate the mass of the planet to its 
radius: ( )3

E3
4

3
P3

4
PP

10R

RVM

πρ

πρρ

=

==
 

 
Divide the second of these equations 
by the first to express MP in terms of 
ME: 

( )
3
E3

4

3
E3

4

E

P 10
R
R

M
M

πρ
πρ

ρ= ⇒ E
3

P 10 MM =  

 
Letting w′ represent your weight on 
the planet, use the law of gravity to 
relate w′ to your weight on Earth: 

( )
( )

w
R

GmM
R

MGm
R

GmMw'

1010

10
10

2
E

E

2
E

E
3

2
P

P

==

==
 

 
Your weight would be ten times your weight on Earth. 
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36 • Suppose that Earth retained its present mass but was somehow 
compressed to half its present radius. What would be the value of g at the surface 
of this new, compact planet? 
 
Picture the Problem We can relate the acceleration due to gravity of a test object 
at the surface of the new planet to the acceleration due to gravity at the surface of 
Earth through use of the law of gravity and Newton’s 2nd law of motion. 

 
Letting a represent the acceleration 
due to gravity at the surface of this 
new planet and m the mass of a test 
object, apply Newton’s 2nd law and 
the law of gravity to obtain:  
 

( )∑ == ma
R

GmM
F 2

E2
1

E
radial ⇒

( )2
E2

1

E

R
GM

a =  

 

Simplify this expression to obtain: 2
2
E

E m/s2.3944 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= g

R
GMa  

 
37 • A planet orbits a massive star. When the planet is at perihelion, it has a 
speed of 5.0 × 104 m/s and is 1.0 × 1015 m from the star. The orbital radius 
increases to 2.2 × 1015 m at aphelion. What is the planet’s speed at aphelion? 
 
Picture the Problem We can use conservation of angular momentum to relate the 
planet’s speeds at aphelion and perihelion. 

 
Using conservation of angular 
momentum, relate the angular 
momenta of the planet at aphelion  
and perihelion: 
 

pa LL =  

or 

aapp rmvrmv = ⇒
a

pp
a r

rv
v =  

Substitute numerical values and 
evaluate va: 

( )( )

m/s103.2

m102.2
m101.0m/s105.0

4

15

154

a

×=

×
××

=v
 

 
38 • What is the magnitude of the gravitational field at the surface of a 
neutron star whose mass is 1.60 times the mass of the Sun and whose radius is 
10.5 km? 
 
Picture the Problem We can use Newton’s law of gravity to express the 
gravitational force acting on an object at the surface of the neutron star in terms of 
the weight of the object. We can then simplify this expression be dividing out the 
mass of the object … leaving an expression for the magnitude of the gravitational 
field at the surface of the neutron star. 
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Apply Newton’s law of gravity to an 
object of mass m at the surface of the 
neutron star to obtain: 
 

mg
R

mGM
=2

StarNeutron 

StarNeutron  

where g represents the magnitude of the 
gravitational field at the surface of the 
neutron star. 
 

Solve for g and substitute for the 
mass of the neutron star: 
 

( )
2

StarNeutron 

sun
2

StarNeutron 

StarNeutron 60.1
R

MG
R

GMg ==  

 
Substitute numerical values and evaluate g: 
 

( )( )
( )

212
2

302211

m/s1093.1
km10.5

kg1099.1/kgmN10673.660.1
×=

×⋅×
=

−

g  

 
39 •• The speed of an asteroid is 20 km/s at perihelion and 14 km/s at 
aphelion. (a) Determine the ratio of the aphelion to perihelion distances. (b) Is this 
asteroid farther from the Sun or closer to the Sun than Earth, on average? Explain. 
 
Picture the Problem We can use conservation of angular momentum to relate the 
asteroid’s aphelion and perihelion distances. 

 
(a) Using conservation of angular 
momentum, relate the angular 
momenta of the asteroid at aphelion 
and perihelion: 
 

0pa =− LL  

or 

0ppaa =− rmvrmv ⇒
a

p

p

a

v
v

r
r

=  

Substitute numerical values and 
evaluate the ratio of the asteroid’s 
aphelion and perihelion distances: 
 

4.1
km/s14
km/s20

p

a ==
r
r  

(b) It is farther from the Sun than Earth. Kepler’s third law ( 3
av

2 CrT = ) tells us 
that longer orbital periods together with larger orbital radii means slower orbital 
speeds, so the speed of objects orbiting the Sun decreases with distance from the 
Sun. The average orbital speed of Earth, given by ESES2 Trv π= , is approximately 
30 km/s. Because the given maximum speed of the asteroid is only 20 km/s, the 
asteroid is further from the Sun. 
 
40 •• A satellite with a mass of 300 kg moves in a circular orbit  
5.00 × 107 m above Earth’s surface. (a) What is the gravitational force on the 
satellite? (b) What is the speed of the satellite? (c) What is the period of the 
satellite? 
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Picture the Problem We’ll use the law of gravity to find the gravitational force 
acting on the satellite. The application of Newton’s 2nd law will lead us to the 
speed of the satellite and its period can be found from its definition. 

 
(a) Letting m represent the mass of 
the satellite and h its elevation, use 
the law of gravity to express the 
gravitational force acting on it: 
 

( )2
E

E
g hR

GmMF
+

=  

 

Because :2
EE gRGM =  

( )2
E

2
E

g hR
gmRF

+
=  

 
Divide the numerator and 
denominator of this expression 
by 2

ER to obtain: 

2

E

g

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
h

mgF  

 
Substitute numerical values and 
evaluate Fg: 

( )( )

N6.37

N58.37

m106.37
m105.001

N/kg9.81kg300
2

6

7g

=

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

+

=F

 

 
(b) Using Newton’s 2nd law, relate 
the gravitational force acting on the 
satellite to its centripetal 
acceleration: 
 

r
vmF

2

g = ⇒
m

rF
v g=  

Substitute numerical values and evaluate v: 
 

( )( ) km/s2.66km/s2.657
kg300

m105.00m106.37N37.58 76

==
×+×

=v  

 
(c) The period of the satellite is 
given by: 
 

v
rT π2

=  

Substitute numerical values and 
evaluate T: 

( )

h0.37
s3600

h1s10333.1

m/s102.657
m105.00m106.372

5

3

76

=××=

×
×+×

=
πT
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41 •• [SSM]  A superconducting gravity meter can measure changes in 
gravity of the order Δg/g = 1.00 × 10–11. (a) You are hiding behind a tree holding 
the meter, and your 80-kg friend approaches the tree from the other side. How 
close to you can your friend get before the meter detects a change in g due to his 
presence? (b) You are in a hot air balloon and are using the meter to determine the 
rate of ascent (assume the balloon has constant acceleration). What is the smallest 
change in altitude that results in a detectable change in the gravitational field of 
Earth? 
 
Picture the Problem We can determine the maximum range at which an object 
with a given mass can be detected by substituting the equation for the 
gravitational field in the expression for the resolution of the meter and solving for 
the distance. Differentiating g(r) with respect to r, separating variables to obtain 
dg/g, and approximating Δr with dr will allow us to determine the vertical change 
in the position of the gravity meter in Earth’s gravitational field is detectable. 

 
(a) Express the gravitational field 
of Earth: 2

E

E
E R

GMg =  

 
Express the gravitational field due to 
the mass m (assumed to be a point 
mass) of your friend and relate it to 
the resolution of the meter: 

( )

2
E

E11

E
11

2

1000.1

1000.1

R
GM

g
r

Gmrg

−

−

×=

×==
 

 
Solving for r yields: 

E

11

E
1000.1

M
mRr ×

=  

 
Substitute numerical values and 
evaluate r: ( ) ( )

m37.7

kg105.98
kg801000.1m106.37 24

11
6

=

×
×

×=r
 

 
(b) Differentiate g(r) and simplify to 
obtain: 

g
rr

Gm
rr

Gm
dr
dg 222

23 −=⎟
⎠
⎞

⎜
⎝
⎛−=

−
=  

 
Separate variables to obtain: 11102 −=−=

r
dr

g
dg  

 
Approximating dr with Δr, evaluate 
Δr with r = RE: 

( )( )
m9.31

m1037.61000.1Δ 611
2
1

μ=

××−= −r
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42 •• Suppose that the attractive interaction between a star of mass M and a 
planet of mass m << M is of the form F = KMm/r, where K is the gravitational 
constant. What would be the relation between the radius of the planet’s circular 
orbit and its period? 
  
Picture the Problem We can use the law of gravity and Newton’s 2nd law to 
relate the force exerted on the planet by the star to its orbital speed and the 
definition of the period to relate it to the radius of the orbit. 

 
The period of the planet is related 
to its orbital speed: 
 

v
rT π2

=                                      (1) 

Using the law of gravity and 
Newton’s 2nd law, relate the force 
exerted on the planet by the star to 
its centripetal acceleration: 
 

r
vm

r
KMmF

2

net == ⇒ KMv =  

Substitute for v in equation (1) to 
obtain: r

KM
T π2

=  

 
43 •• [SSM] Earth’s radius is 6370 km and the moon’s radius is  
1738 km. The acceleration of gravity at the surface of the moon is 1.62 m/s2. 
What is the ratio of the average density of the moon to that of Earth? 
 
Picture the Problem We can use the definitions of the gravitational fields at the 
surfaces of Earth and the moon to express the accelerations due to gravity at these 
locations in terms of the average densities of Earth and the moon. Expressing the 
ratio of these accelerations will lead us to the ratio of the densities. 
 
Express the acceleration due to 
gravity at the surface of Earth in 
terms of Earth’s average density: 

EE3
4

2
E

3
E3

4
E

2
E

EE
2
E

E
E

RG
R

RG
R

VG
R

GMg

πρ

πρρ

=

===
 

 
The acceleration due to gravity at the 
surface of the moon in terms of the 
moon’s average density is: 
 

MM3
4

M RGg πρ=  

Divide the second of these equations 
by the first to obtain: EE

MM

E

M

R
R

g
g

ρ
ρ

= ⇒
ME

EM

E

M

Rg
Rg

=
ρ
ρ  
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Substitute numerical values and 

evaluate 
E

M

ρ
ρ : 

( )( )
( )( )

605.0

m101.738m/s9.81
m106.37m/s1.62

62

62

E

M

=

×
×

=
ρ
ρ

 

 
Gravitational and Inertial Mass 

44 • The weight of a standard object defined as having a mass of exactly 
1.00… kg is measured to be 9.81 N. In the same laboratory, a second object 
weighs 56.6 N. (a) What is the mass of the second object? (b) Is the mass you 
determined in Part (a) gravitational or inertial mass? 
 
Picture the Problem Newton’s 2nd law of motion relates the weights of these two 
objects to their masses and the acceleration due to gravity. 
 
(a) Apply Newton’s 2nd law to the 
standard object: 
 

gmwF 11net ==  

Apply Newton’s 2nd law to the 
object of unknown mass: 
 

gmwF 22net ==  

Eliminate g between these two 
equations and solve for m2: 

1
1

2
2 m

w
wm =  

 
Substitute numerical values and 
evaluate m2: 

( ) kg77.5kg1.00
N9.81
N56.6

2 ==m  

 
(b) Because this result is determined by the effect on 2m of Earth’s gravitational 
field, it is the gravitational mass of the second object.  
 
45   • The Principle of Equivalence states that the free-fall acceleration of 
any object in a gravitational field is independent of the mass of the object. This 
can be deduced from the law of universal gravitation, but how well does it hold up 
experimentally? The Roll-Krotkov-Dicke experiment performed in the 1960s 
indicates that the free-fall acceleration is independent of mass to at least 1 part in 
1012. Suppose two objects are simultaneously released from rest in a uniform 
gravitational field. Also, suppose one of the objects falls with a constant 
acceleration of exactly 9.81 m/s2 while the other falls with a constant acceleration 
that is greater than 9.81 m/s2 by one part in 1012. How far will the first object have 
fallen when the second object has fallen 1.00 mm farther than it has? Note that 
this estimate provides only an upper bound on the difference in the accelerations; 
most physicists believe that there is no difference in the accelerations. 
 



Gravity 
        
1123

Picture the Problem Noting that g1 ~ g2 ~ g, let the acceleration of gravity on the 
first object be g1, and on the second be g2. We can use a constant-acceleration 
equation to express the difference in the distances fallen by each object and then 
relate the average distance fallen by the two objects to obtain an expression from 
which we can approximate the distance they would have to fall before we might 
measure a difference in their fall distances greater than 1 mm. 
 
Express the difference Δd in the 
distances fallen by the two objects in 
time t: 
 

21 ddd −=Δ  

Express the distances fallen by each 
of the objects in time t: 
 

2
12

1
1 tgd = and 2

22
1

2 tgd =  
 

Substitute for d1 and d2 to obtain: 
 

( ) 2
212

12
22

12
12

1 tggtgtgd −=−=Δ  
 

Relate the average distance d fallen 
by the two objects to their time of 
fall: 
  

2
2
1 gtd =  ⇒ 

g
dt 22 =  

 

Substitute for t2 to obtain: 
 g

gd
g
dgd Δ

=Δ≈Δ
2

2
1 ⇒

g
gdd

Δ
Δ=  

 
Substitute numerical values and 
evaluate d: 

( )( ) m1010m10 9123 == −d  

 
Gravitational Potential Energy 
 
46 • (a) If we take the potential energy of a 100-kg and Earth to be zero 
when the two are separated by an infinite distance, what is the potential energy 
when the object is at the surface of Earth? (b) Find the potential energy of the 
same object at a height above Earth’s surface equal to Earth’s radius.  
(c) Find the escape speed for a body projected from this height. 
 
Picture the Problem Choosing the zero of gravitational potential energy to be at 
infinite separation yields, as the potential energy of a two-body system in which 
the objects are separated by a distance r, ( ) rGMmrU −= , where M and m are the 
masses of the two bodies. In order for an object to just escape a gravitational field 
from a particular location, it must have enough kinetic energy so that its total 
energy is zero. 
 
(a) Letting U(∞) = 0, express the 
gravitational potential energy of 
Earth-object system:  

( )
r

mGMrU E−=                       (1) 
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Substitute for GME and simplify to 
obtain: ( ) E

E

2
E

E

E
E mgR

R
mgR

R
mGMRU −=−=−=  

 
Substitute numerical values and evaluate U(RE): 
 

( ) ( )( )( ) J106.25m106.37kg/N9.81kg100 96
E ×−=×−=RU  

 
(b) Evaluate equation (1) with  
r = 2RE: ( )

E2
1

E

2
E

E

E
E 22

2

mgR
R

mgR
R

mGMRU

−=

−=−=
 

 
Substitute numerical values and evaluate U(2RE): 
 

( ) ( )( )( ) J1012.3J10124.3m106.37kg/N9.81kg1002 996
2
1

E ×−=×−=×−=RU  

 
(c) Express the condition that an 
object must satisfy in order to escape 
from Earth’s gravitational field from 
a height RE above its surface: 

( ) ( ) 022 EEe =+ RURK  
or 

( ) 02 E
2
e2

1 =+ RUmv  

 
Solving for ve yields: ( )

m
RUv E

e
22−

=  

 
Substitute numerical values and 
evaluate ve: 

( ) km/s7.90
kg100

J103.1242 9

e =
×−−

=v

 
47 • [SSM] Find the escape speed for a projectile leaving the surface of 
the moon. The acceleration of gravity on the moon is 0.166 times that on Earth 
and the moon’s radius is 0.273 RE. 
 
Picture the Problem The escape speed from the moon or Earth is given by 

RGMv 2e = , where M and R represent the masses and radii of the moon or 
Earth. 
 
Express the escape speed from the 
moon: mm

m

m
e.m 22 Rg

R
GMv ==       (1) 
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Express the escape speed from Earth: 
EE

E

E
e.E 22 Rg

R
GMv ==         (2) 

 
Divide equation (1) by equation (2) 
to obtain: 

EE

mm

EE

mm

e.E

e.m

Rg
Rg

Rg
Rg

v
v

==  

 
Solving for ve,m yields: 

e.E
EE

mm
e.m v

Rg
Rgv =  

 
Substitute numerical values and 
evaluate ve,m: 

( )( )( )
km/s38.2

km/s2.11273.0166.0e.m

=

=v
 

 
48 •• What initial speed would a particle have to be given at the surface of 
Earth if it is to have a final speed that is equal to its escape speed when it is very 
far from Earth? Neglect any effects due to air resistance. 
 
Picture the Problem Let the zero of gravitational potential energy be at infinity, 
m represent the mass of the particle, and the subscript E refer to Earth. When the 
particle is very far from Earth, the gravitational potential energy of the  
Earth-particle system is zero. We’ll use conservation of energy to relate the initial 
potential and kinetic energies of the particle-Earth system to the final kinetic 
energy of the particle.  
 
Use conservation of energy to 
relate the initial energy of the 
system to its energy when the 
particle is very far away: 
 

0ifif =−+− UUKK  
or, because Uf = 0, 

( ) ( ) ( ) 0EE =−−∞ RURKK         (1) 
 

Substitute in equation (1) to 
obtain: 

0
E

E2
i2

12
2
1 =+−∞ R

mGMmvmv  

or, because 2
EE gRGM = , 

0E
2
i2

12
2
1 =+−∞ mgRmvmv  
 

Solving for vi yields: 
E

2
i 2gRvv += ∞  
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Substitute numerical values and evaluate vi: 
 

( ) ( )( ) km/s8.15m106.37m/s9.812m/s1011.2 6223
i =×+×=v  

 
49 •• While trying to work out its budget for the next fiscal years, NASA 
would like to report to the nation a rough estimate of the cost (per kilogram) to 
launch a modern satellite into near-Earth orbit. You are chosen for this task, 
because you know physics and accounting. (a) Determine the energy, in kW⋅h, 
necessary to place 1.0-kg object in low-Earth orbit. In low-Earth orbit, the height 
of the object above the surface of Earth is much smaller than Earth’s radius. Take 
the orbital height to be 300 km. (b) If this energy can be obtained at a typical 
electrical energy rate of $0.15/kW⋅h, what is the minimum cost of launching a 
400-kg satellite into low-Earth orbit? Neglect any effects due to air resistance. 
 
Picture the Problem We can use the expression for the total energy of a satellite 
to find the energy required to place in a low-Earth orbit. 
 
(a) The total energy of a satellite in 
a low-Earth orbit is given by: 
 

g2
1

g UUKE =+=  

Substituting for Ug yields: 
r
mGME

2
satelliteEarth−=  

where r is the orbital radius and the minus 
sign indicates the satellite is bound to 
Earth. 
 

For a near-Earth orbit, r ≈ REarth 

and the amount of energy required 
to place the satellite in orbit 
becomes: 
 

Earth

satelliteEarth

2R
mGME =  

Substitute numerical values and evaluate E: 
 

( )( )( )
( )

hkW7.8

MJ3.6
hkW1MJ 31.31

m 1037.62
kg 0.1kg 1098.5kg/mN 10673.6

6

242211

⋅=

⋅
×=

×
×⋅×

−=
−

E
 

 
(b)  Express the cost of this project 
in terms of the mass of the satellite: 
 

satellitekg
energyrequiredrateCost m××=  
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Substitute numerical values and 
find the cost: 

( )

$500

kg400
kg

hkW7.8
h kW

$0.15Cost

≈

⋅
×

⋅
=

 

 
50 •• The science fiction writer Robert Heinlein once said, ″If you can get 
into orbit, then you’re halfway to anywhere.″ Justify this statement by comparing 
the minimum energy needed to place a satellite into low Earth orbit (h = 400 km) 
to that needed to set it completely free from the bonds of Earth’s gravity. Neglect 
any effects of air resistance. 
 
Picture the Problem We’ll consider a rocket of mass m which is initially on the 
surface of Earth (mass M and radius R) and compare the kinetic energy needed to 
get the rocket to its escape speed with its kinetic energy in a low circular orbit 
around Earth. We can use conservation of energy to find the escape kinetic energy 
and Newton’s law of gravity to derive an expression for the low-Earth orbit 
kinetic energy. 
 
Apply conservation of energy to 
relate the initial energy of the rocket 
to its escape kinetic energy: 
 

0ifif =−+− UUKK  

Letting the zero of gravitational 
potential energy be at infinity we 
have Uf = Kf = 0 and: 
 

0ii =−− UK  
or 

R
GMmUK =−= ie  

 
Apply Newton’s law of gravity to the 
rocket in orbit at the surface of Earth 
to obtain: 
 

R
vm

R
GMm 2

2 =  

Rewrite this equation to express the 
low-Earth orbit kinetic energy Ko of 
the rocket: 
 

R
GMmmvK

2
2

2
1

o ==  

Express the ratio of Ko to Ke and 
simplify to obtain: 

2
12

e

o ==

R
GMm

R
GMm

K
K  

  
Solving for Ke yields: 

oe 2KK = as asserted by Heinlein. 
 
51 •• [SSM] An object is dropped from rest from a height of 4.0 × 106 m 
above the surface of Earth. If there is no air resistance, what is its speed when it 
strikes Earth? 
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Picture the Problem Let the zero of gravitational potential energy be at infinity 
and let m represent the mass of the object. We’ll use conservation of energy to 
relate the initial potential energy of the object-Earth system to the final potential 
and kinetic energies.  
 
Use conservation of energy to relate 
the initial potential energy of the 
system to its energy as the object is 
about to strike Earth: 

0ifif =−+− UUKK  
or, because Ki = 0, 

( ) ( ) ( ) 0EEE =+−+ hRURURK      (1) 
where h is the initial height above 
Earth’s surface. 
 

Express the potential energy of the 
object-Earth system when the object 
is at a distance r  from the surface of 
Earth: 
 

( )
r

mGM
rU E−=  

Substitute in equation (1) to obtain: 0
E

E

E

E2
2
1 =

+
+−

hR
mGM

R
mGM

mv  

 
Solving for v yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

hR
hgR

hR
GM

R
GMv

E
E

E

E

E

E

2

2

 

 
Substitute numerical values and evaluate v: 
 

( )( )( ) km/s9.6
m100.4m106.37

m100.4m106.37m/s9.812
66

662

=
×+×

××
=v  

 
52 •• An object is projected upward from the surface of Earth with an initial 
speed of 4.0 km/s. Find the maximum height it reaches. 
 
Picture the Problem Let the zero of gravitational potential energy be at infinity, 
m represent the mass of the object, and h the maximum height reached by the 
object. We’ll use conservation of energy to relate the initial potential and kinetic 
energies of the object-Earth system to the final potential energy.  
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Use conservation of energy to relate 
the initial potential energy of the 
system to its energy as the object is 
at its maximum height: 

0ifif =−+− UUKK  
or, because Kf = 0, 

( ) ( ) ( ) 0EEE =+−+ hRURURK     (1) 
where h is the maximum height above 
Earth’s surface. 
 

Express the potential energy of the 
object-Earth system when the object 
is at a distance r  from the surface of 
Earth: 
 

( )
r

mGM
rU E−=  

Substitute in equation (1) to obtain: 0
E

E

E

E2
2
1 =

+
+−

hR
mGM

R
mGM

mv  

 
Solving for h yields: 

12
2

E

E

−
=

v
gR

Rh  

 
Substitute numerical values and 
evaluate h: ( )( )

( )
m104.9

1
m/s104.0

m106.37m/s9.812
m106.37

5

23

62

6

×=

−
×

×
×

=h

 

 
53 •• A particle is projected from the surface of Earth with a speed twice the 
escape speed. When it is very far from Earth, what is its speed? 
 
Picture the Problem Let the zero of gravitational potential energy be at infinity, 
m represent the mass of the particle, and the subscript E refer to Earth. When the 
particle is very far from Earth, the gravitational potential energy of Earth-particle 
system will be zero. We’ll use conservation of energy to relate the initial potential 
and kinetic energies of the particle-Earth system to the final kinetic energy of the 
particle.  
 
Use conservation of energy to relate 
the initial energy of the system to its 
energy when the particle is very far 
from Earth: 
 

0ifif =−+− UUKK  
or, because Uf = 0, 

( ) ( ) ( ) 0EE =−−∞ RURKK       (1) 
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Substitute in equation (1) to obtain: ( ) 02

E

E2
e2

12
2
1 =+−∞ R

mGM
vmmv  

or, because 2
EE gRGM = , 
02 E

2
e

2
2
1 =+−∞ mgRmvmv  
 

Solving for v∞ yields: ( )E
2
e22 gRvv −=∞  

 
Substitute numerical values and evaluate v∞: 
 

( ) ( )( )[ ] km/s4.19m106.37m/s9.81m/s1011.222 6223 =×−×=∞v  

 
54 ••• When we calculate escape speeds, we usually do so with the 
assumption that the body from which we are calculating escape speed is isolated.  
This is, of course, generally not true in the Solar system.  Show that the escape 
speed at a point near a system that consists of two massive spherical bodies is 
equal to the square root of the sum of the squares of the escape speeds from each 
of the two bodies considered individually. 
 
Picture the Problem The pictorial representation shows the two massive objects 
from which the object (whose mass is m), located at point P, is to escape. This 
object will have escaped the gravitational fields of the two massive objects 
provided, when its gravitational potential energy has become zero, its kinetic 
energy will also be zero. 

1M
2M

2r1r

P
m

 
 
Express the total energy of the 
system consisting of the two massive 
objects and the object whose mass is 
m: 
 

2

2

1

12
2
1

r
mGM

r
mGMmvE −−=  

When the object whose mass is m 
has escaped, E = 0 and: 
 2

2

1

12
e2

10
r

mGM
r

mGMmv −−=  

Solving for ve yields: 
 

2

2

1

12
e

22
r

GM
r

GMv +=  
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The terms on the right-hand side of 
the equation are the squares of the 
escape speeds from the objects 
whose masses are M1 and M2. Hence; 

2
e,2

2
e,1

2
e vvv +=  

 
55 ••• Calculate the minimum necessary speed, relative to Earth, for a 
projectile launched from the surface of Earth to escape the solar system.  The 
answer will depend on the direction of the launch.   Explain the choice of 
direction you’d make for the direction of the launch in order to minimize the 
necessary launch speed relative to Earth. Neglect Earth’s rotational motion and 
any effects due to air resistance. 
 
Picture the Problem The pictorial representation summarizes the initial positions 
of the Sun, Earth, and rocket.  

m

SunM
EarthM

Earthr
Sunr

 
 
From Problem 54, the escape speed 
from the Earth-Sun system is given 
by: 
 

Sun

Sun

Earth

Earth2
e

22
r

GM
r

GMv +=  

 

Solving for ve yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

Sun

Sun

Earth

Earth
e 2

r
M

r
MGv  

 
Substitute numerical values and evaluate ve: 
 

( ) km/s 6.43
m 10496.1

kg 1099.1
m 1037.6
kg 1098.5kg/mN 10673.62 11

30

6

24
2211

e =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

×
+

×
×

⋅×= −v  

 
What we have just calculated is the escape speed from Earth’s surface, at Earth’s 
orbit. Because the launch will take place from a moving Earth, we need to 
consider Earth’s motion and use it to our advantage. If we launch at sunrise from 
the Equator, zenith will be pointed directly along the direction of motion of Earth 
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and the required launch speed will be the minimum launch speed. 
 
Express the minimum launch speed 
in terms of the escape speed 
calculated above and Earth’s orbital 
speed: 
 

orbitalemin vvv −=  

The orbital speed of Earth is given 
by: 
 

orbital

orbital
orbital

2
T

rv π
=  

Substituting for vorbital yields: 
orbital

orbital
emin

2
T

rvv π
−=  

 
Substitute numerical values and evaluate vmin: 
 

( ) km/s 8.13

d
s 1064.8

y
d 365.24y 1

m 10496.12km/s 6.43 4

11

min =
×

××

×
−=

πv  

 
56 ••• An object is projected vertically from the surface of Earth at less than 
the escape speed. Show that the maximum height reached by the object is  
H = REH′/(RE – H′), where H′ is the height that it would reach if the gravitational 
field were constant. Neglect any effects due to air resistance. 
 
Picture the Problem Let m represent the mass of the body that is projected 
vertically from the surface of Earth. We’ll begin by using conservation of energy 
under the assumption that the gravitational field is constant to determine 
H′. We’ll apply conservation of energy a second time, with the zero of 
gravitational potential energy at infinity, to express H. Finally, we’ll solve these 
two equations simultaneously to express H in terms of H ′. 
 
Assuming the gravitational field to 
be constant and letting the zero of 
potential energy be at the surface of 
Earth, apply conservation of 
mechanical energy to relate the 
initial kinetic energy and the final 
potential energy of the object-Earth 
system: 
 

0ifif =−+− UUKK  
or, because Kf = Ui = 0, 

0fi =+− UK  
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Substitute for Ki and Uf to obtain: 
02

2
1 =+− mgH'mv ⇒

g
vH'
2

2

=   (1) 

Letting the zero of gravitational 
potential energy be at infinity, use 
conservation of mechanical energy to 
relate the initial kinetic energy and 
the final potential energy of the 
object-earth system: 
 

0ifif =−+− UUKK  
or, because Kf  = 0, 

0ifi =−+− UUK  

Substitute for Ki, Uf, and Ui and 
simplify to obtain: 

0
EE

2
2
1 =+

+
−−

R
GMm

HR
GMmmv  

or 

0
E

2
E

E

2
E2

2
1 =+

+
−−

R
gR

HR
gRv  

 
Solving for v2 yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=

HR
HgR

HRR
gRv

E
E

EE

2
E

2

2

112
 

 
Substitute in equation (1) to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
HR

HRH'
E

E ⇒
H'R

H'RH
−

=
E

E  

 
 
Gravitational Orbits 
 
57 •• A 100-kg spacecraft is in a circular orbit about Earth at a height 
h = 2RE. (a) What is the orbital period of the spacecraft? (b) What is the 
spacecraft’s kinetic energy? (c) Express the angular momentum L of the 
spacecraft about the center of Earth in terms of its kinetic energy K and find the 
numerical value of L. 
 
Picture the Problem We can use its definition to express the period of the 
spacecraft’s motion and apply Newton’s 2nd law to the spacecraft to determine its 
orbital speed. We can then use this orbital speed to calculate the kinetic energy of 
the spacecraft. We can relate the spacecraft’s angular momentum to its kinetic 
energy and moment of inertia. 
 
 



          Chapter 11 
      

1134 

(a) Express the period of the 
spacecraft’s orbit about Earth: 

( )
v
R

v
R

v
RT EE 6322 πππ

===  

where v is the orbital speed of the 
spacecraft. 
 

Use Newton’s 2nd law to relate the 
gravitational force acting on the 
spacecraft to its orbital speed: 
 

( ) E

2

2
E

E
radial 33 R

vm
R

mGMF == ⇒
3

EgRv =  

Substitute for v in our expression for 
T to obtain: 
 

g
RT E36 π=  

Substitute numerical values and 
evaluate T: 

h7.31
s3600

h1s102.631

m/s9.81
m106.37π36

4

2

6

=××=

×
=T

 

 
(b) Using its definition, express the 
spacecraft’s kinetic energy: 
 

( )E3
1

2
12

2
1 gRmmvK ==  

 

Substitute numerical values and 
evaluate K: 

( )( )( )
GJ 1.04GJ 1.041

m106.37m/s9.81kg100 62
6
1

==

×=K
 

 
(c) Express the kinetic energy of the 
spacecraft in terms of its angular 
momentum: 
 

I
LK
2

2

= ⇒ IKL 2=  

Express the moment of inertia of the 
spacecraft with respect to an axis 
through the center of Earth: 
 

( ) 2
E

2
E 93 mRRmI ==  

Substitute for I in the expression for 
L and simplify to obtain: 
 

( ) mKRKmRL 2392 E
2
E ==  

 

Substitute numerical values and evaluate L: 
 

( ) ( )( ) sJ108.72J101.041kg1002m106.373 1296 ⋅×=××=L  
 
58  •• The orbital period of the moon is 27.3 d, the average center-to-center 
distance between the moon and Earth is 3.82 × 108 m, the length of a year is 
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365.24 d, and the average center-to-center distance between Earth and the Sun is 
1.50 × 1011 m. Use this data to estimate the ratio of the mass of the Sun to the 
mass of Earth. Compare this to the measured ratio of 3.33 × 105. List some 
neglected factors that might account for any discrepancy. 
 
Picture the Problem We can use Kepler’s 3rd law to relate the periods of the 
moon and Earth, in their orbits about Earth and the Sun, to their mean center-to-
center distances from the objects about which they orbit. We can solve these 
equations for the masses of the Sun and Earth and then divide one by the other to 
establish a value for the ratio of the mass of the Sun to the mass of Earth. 
 
Using Kepler’s 3rd law, relate the 
period of the moon to its mean 
distance from Earth: 
 

3
m

E

2
2

m
4 r

GM
T π

=                            (1) 

where rm is the distance between the 
centers of Earth and the moon. 
 

Using Kepler’s 3rd law, relate the 
period of Earth to its mean distance 
from the Sun: 
 

3
E

s

2
2

E
4 r
GM

T π
=                            (2) 

where rE is the distance between the 
centers of Earth and the Sun. 
 

Solve equation (1) for ME: 3
m2

m

2

E
4 r
GT

M π
=                           (3) 

 
Solve equation (2) for Ms: 3

E2
E

2

s
4 r
GT

M π
=                            (4) 

 
Divide equation (4) by equation (3) 
and simplify to obtain: 

2

E

m

3

m

E

E

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

r
r

M
M  

 
Substitute numerical values and 
evaluate Ms/ME: 

5

23

8

11

E

s

1038.3

d24.365
d3.27

m1082.3
m1050.1

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=
M
M

 

 
Express the difference between this 
value and the measured value of 
3.33×105: 

%50.1
103.33

103.33103.38diff% 5

55

=
×

×−×
=

 

 
In this analysis we’ve neglected gravitational forces exerted by other planets and 
the Sun. 
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59 •• [SSM] Many satellites orbit Earth with maximum altitudes of  1000 
km or less. Geosynchronous satellites, however, orbit at an altitude of 3579 km 
above Earth’s surface. How much more energy is required to launch a  
500-kg satellite into a geosynchronous orbit than into an orbit 1000 km above the 
surface of Earth? 
 
Picture the Problem We can express the energy difference between these two 
orbits in terms of the total energy of a satellite at each elevation. The application 
of Newton’s 2nd law to the force acting on a satellite will allow us to express the 
total energy of each satellite as function of its mass, the radius of Earth, and its 
orbital radius. 
 
Express the energy difference: 1000geo EEE −=Δ                      (1) 

 
Express the total energy of an 
orbiting satellite: 

R
mGMmv

UKE

E2
2
1

tot

−=

+=
             (2) 

where R is the orbital radius. 
 

Apply Newton’s 2nd law to a satellite 
to relate the gravitational force to the 
orbital speed: 

R
vm

R
mGMF

2

2
E

radial ==  

 
 

Solving for v2 yields: 
R

gRv
2
E2 =  

 
Substitute in equation (2) to obtain: 

R
mgR

R
mgR

R
gRmE

2

2
E

2
E

2
E

2
1

tot −=−=  

 
Substituting in equation (1) and simplifying yields: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=+−=Δ

km 3579
1

km 1000
1

2

11
222

EE

2
E

geo1000

2
E

1000

2
E

geo

2
E

RR
mgR

RR
mgR

R
mgR

R
mgRE

 

 
Substitute numerical values and evaluate ΔE: 
 

( )( )( ) GJ50.3
m1095.9

1
m1037.7

1m106.37kg/N9.81kg500 66

26
2
1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

−
×

×=ΔE  
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60 ••• The idea of a spaceport orbiting Earth is an attractive proposition for 
launching probes and/or manned missions to the outer planets of the Solar 
System.  Suppose such a ″platform″ has been constructed, and orbits Earth at a 
distance of 450 km above Earth’s surface.  Your research team is launching a 
lunar probe in an orbit that has its perigee at the spaceport’s orbital radius, and its 
apogee at the moon’s orbital radius. (a) To launch the probe successfully, first 
determine the orbital speed for the platform. (b) Next you determine the necessary 
speed relative to the platform, for the probe’s launch, to attain the desired orbit.   
Assume that any effects due to the gravitational pull of the moon on the probe are  
negligible. In addition, assume that the launch takes place in a negligible amount 
of time. (c) You have the probe designed to radio back when it has reached 
apogee. How long after launch should you expect to receive this signal from the 
probe (neglect the second or so delay for the transit time of the signal back to the 
platform)? 
 
Picture the Problem We can use the fact that the kinetic energy of the orbiting 
platform equals half its gravitational potential energy to find the orbital speed of 
the platform. In Part (b), the required launch speed is the difference between the 
speed of the probe at perigee and the orbital speed of the platform. To find the 
speed of the probe at perigee, we can use conservation of mechanical energy and 
Kepler’s law of equal areas. Finally, in Part (c), we can use Kepler’s 3rd law to 
find the time after launch that you would expect to receive a signal from the probe 
announcing that it had reached apogee. 
 
(a) The kinetic energy of the orbiting 
platform equals half its gravitational 
potential energy: 
 

g2
1UK =  

Substitute for K and U to obtain: 
 r

mGMmv Earth2

2
1

2
1

=  

where m is the mass of the platform and 
r is the distance from the center of 
Earth to the platform. 
 

Solving for v yields: 
 r

GMv Earth=  

 
Substitute numerical values and evaluate v: 
 

( )( ) km/s 65.7
m10450.0m1037.6

kg 1098.5kg/mN 1067.6
 6 6

242211

=
×+×

×⋅×
=

−

v  

 
(b) The required launch speed is the 
difference between the speed of the 
probe at perigee and the orbital speed 
of the platform: 

vvv −= pplatform  torel                           (1) 
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Here the platform’s orbital radius will be the probe’s orbit’s perigee; the 
speed of launch will point in the direction the platform is moving at launch 
time. Neglecting everything in the universe but Earth and probe, apply 
conservation of energy from perigee to apogee to obtain:  
 

0
a

Earth

p

Earth2
a2

12
p2

1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−

r
GmM

r
GmMmvmv  

 
Simplify these expression to obtain: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

ap
Earth

p

a2
p

1121
rr

GM
v
vv   (2) 

 
Applying Kepler’s law of equal areas 
between perigee and apogee yields: 
 

aapp rvrv = ⇒ p
a

p
a v

r
r

v =  

 
Substituting for va in equation (2) 
yields: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

ap
Earth

a

p2
p

1121
rr

GM
r
r

v    (3) 

where  

km6820

km 450km 6370Earthp

=

+=+= hRr
 

and 
km 1084.3 5

a ×=r  
 

Because rp << ra, equation (3) 
becomes: 
 p

Earth

p
Earth

2
p

212
r

GM
r

GMv =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈  

 
Solving for vp yields: 
 

p

Earth
p

2
r

GMv ≈  

 
Substitute numerical values and evaluate vp: 
 

( )( ) km/s 8.10
km 6820

kg 1098.5kg/mN 10673.62 242211

p =
×⋅×

≈
−

v  

 
Substitute numerical values in 
equation (1) and evaluate  
vrel to platform: 
 

km/s 2.3

km/s 65.7km/s 8.10platform  torel

=

−=v
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(c) The time after launch that you 
should expect to receive this signal 
from the probe is half the period of 
the probe’s motion: 

Tt 2
1Δ =                                           (4) 

 
Apply Kepler’s 3rd law to the probe-
Earth system to obtain: 
 

3

Earth

2
2 4 a

GM
T π

= ⇒
Earth

324
GM

aT π
=  

where a is the semi-major axis. 
 

Substitute for T in equation (4) to 
obtain: 
 Earth

32

Δ
GM

at π
=  

 
Substitute numerical values and evaluate Δt: 
 

( )( )[ ]
( )( ) d 5.0 s 10304.4

kg 1098.5kg/mN 10673.6
m 100.456.37m 10844.3Δ 5

242211

368
2
12

≈×=
×⋅×

×++×
= −

πt  

 
The Gravitational Field ( gG ) 
 
61 • A 3.0-kg space probe experiences a gravitational force of 12 N    ̂ i  as it 
passes through point P. What is the gravitational field at point P? 
 
Picture the Problem The gravitational field at any point is defined by .mFg

GG
=  

 
Using its definition, express the 
gravitational field at a point in 
space: 

( ) ( )ii
m
Fg ˆN/kg4.0

kg3.0

ˆN12
===

G
G  

 
62 • The gravitational field at some point is given by jg ˆN/kg 105.2 6−×=

G . 
What is the gravitational force on a 0.0040-kg object located at that point? 
 
Picture the Problem The gravitational force acting on an object of mass m where 
the gravitational field is g

G
 is given by gmF GG

= .  
 
The gravitational force acting on 
the object is the product of the 
mass of the object and the 
gravitational field: 
 

gmF GG
=  
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Substitute numerical values and 
evaluate g

G
: 

( )( )
( )jN

jF
ˆ100.1

ˆN/kg102.5kg0040.0
8

6

−

−

×=

×=
G

 

 
63 •• [SSM] A point particle of mass m is on the x axis at x = L and an 
identical point particle is on the y axis at y = L. (a) What is the gravitational field 
at the origin? (b) What is the magnitude of this field? 
 
Picture the Problem We can use the definition of the gravitational field due to a 
point mass to find the x and y components of the field at the origin and then add 
these components to find the resultant field. We can find the magnitude of the 
field from its components using the Pythagorean theorem. 
 
(a) The gravitational field at the 
origin is the sum of its x and y 
components: 
  

yx ggg GGG
+=                                (1) 

Express the gravitational field due to 
the point mass at x = L: 
 

ig ˆ
2L

Gm
x =
G  

Express the gravitational field due to 
the point mass at y = L: 

jg ˆ
2L

Gm
y =
G  

 
Substitute in equation (1) to obtain: 

jiggg ˆˆ
22 L

Gm
L

Gm
yx +=+=
GGG

 

 
(b) The magnitude of g

G
is given by: 22

yx ggg +=
G

 

 
Substitute for gx and gy and simplify 
to obtain: 2

2

2

2

2 2
L

Gm
L

Gm
L

Gm
=⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=gG  

 
64 •• Five objects, each of mass M, are equally spaced on the arc of a 
semicircle of radius R as in Figure 11-25. An object of mass m is located at the 
center of curvature of the arc. (a) If M is 3.0 kg, m is 2.0 kg, and R is 10 cm, what 
is the gravitational force on the particle of mass m due to the five objects? (b) If 
the object whose mass is m is removed, what is the gravitational field at the center 
of curvature of the arc? 
 
Picture the Problem We can find the net force acting on m by superposition of 
the forces due to each of the objects arrayed on the circular arc. Once we have 
expressed the net force, we can find the gravitational field at the center of 
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curvature from its definition. Choose a coordinate system in which the +x 
direction is to the right and the +y direction is upward. 
 
(a) Express the net force acting on 
the object whose mass is m: 
 

jiF ˆˆ
yx FF +=

G
                          (1) 

Fx is given by: 
 

045cos45cos 2222 =°−°+−=
R

GMm
R

GMm
R

GMm
R

GMmFx  

 
Fy is given by: 
 

( )145sin245sin45sin 2222 +°=°+°+=
R

GMm
R

GMm
R

GMm
R

GMmFy  

 
Substitute numerical values and evaluate Fy: 
 

( )( )
( )

( )( ) N1067.9145sin2kg0.2
m10.0

kg0.3kg/mN10673.6 8
2

2211
−

−

×=+°
⋅×

=yF  

 
Substitute in equation (1) to obtain: 
 

( )jiF ˆN107.9ˆ0 8−×+=
G

 

 
(b) Using its definition, express g

G
at 

the center of curvature of the arc: 
( )

( )j

ji
m
Fg

ˆN/kg108.4

kg0.2

ˆN1067.9ˆ0

8

8

−

−

×=

×+
==

G
G

 

 
65 •• A point particle of mass m1 = 2.0 kg is at the origin and a second point 
particle of mass m2 = 4.0 kg is on the x axis at x = 6.0 m.  Find the gravitational 
field g at (a) x = 2.0 m and (b) x = 12 m. (c) Find the point on the x axis for which  
g = 0. 
 
Picture the Problem The configuration 
of point masses is shown to the right. 
The gravitational field at any point can 
be found by superimposing the fields 
due to each of the point masses. 
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(a) Express the gravitational field at 
x = 2.0 m as the sum of the fields due 
to the point masses m1 and m2: 
 

21 ggg
GGG

+=                                (1) 

Express 1gG and :2gG  ig ˆ
2
1

1
1 x

Gm
−=

G  and ig ˆ
2
2

2
2 x

Gm
=

G  

 
Substitute in equation (1) to obtain: 
 

( )
( )imm

x
Gi

x
Gmi

x
Gmi

x
Gmi

x
Gmg ˆˆ

2
ˆˆˆ

24
1

12
1

2
1

2
2
1

1
2
2

2
2
1

1 −−=+−=+−=
G  

 
Substitute numerical values and evaluate g

G
: 

 

( )
( )[ ] ( ) iig ˆN/kg107.1ˆkg4.0kg0.2

m2.0
/kgmN10673.6 11

4
1

2

2211
−

−

×−=−
⋅×

−=
G  

 
(b) Express 1gG and 2gG : ig ˆ

2
1

1
1 x

Gm
−=

G
 and ig ˆ

2
2

2
2 x

Gm
−=

G
 

 
Substitute in equation (1) and simplify to obtain: 
 

( )
( )iiiiig ˆˆˆ

2
ˆˆ

214
1

2
2

2
2

2
2

2

1
2
2

2
2
1

1 mm
x
G

x
Gm

x
Gm

x
Gm

x
Gm

+−=−−=−−=
G  

 
Substitute numerical values and evaluate g

G
: 

 

( )
( )[ ] ( )iig ˆN/kg103.8ˆkg4.0kg0.2

m0.6
/kgmN10673.6 12

4
1

2

2211
−

−

×−=+
⋅×

−=
G  

 
(c) Express the condition that 
g
G

= 0: ( )
0

0.6 2
2

2
1 =

−
−

x
Gm

x
Gm  

or 

( )
0

0.6
0.40.2

22 =
−

−
xx

 

 
Solve this quadratic equation to 
obtain: 
 

m5.14andm48.2 −== xx  
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From the diagram it is clear that the 
physically meaningful root is the 
positive one at: 

m5.2=x  

 
66 •• Show that on the x axis the maximum value of g for the field of 
Example 11-7 occurs at points 2ax ±= . 
 
Picture the Problem To show that the maximum value of g for the field of 
Example 11-7 occurs at the points ,ax 2±=  we can differentiate gx with 
respect to x and set the derivative equal to zero. 
 
From Example 11-7: 

( ) 2/322

2
ax

GMxg x
+

−=  

 
Differentiate gx with respect to x and set the derivative equal to zero to find 
extreme values: 
 

( ) ( )[ ] extrema.for  032 2/52222/322 =+−+−=
−− axxaxGM

dx
dgx  

 
Solve for x to obtain: 

2
ax ±=  

 
Remarks: To establish that this value for x corresponds to a relative 
maximum, we need to either evaluate the second derivative of gx at  
x = ± a/ 2  or examine the graph of xg at x = ± a/ 2 for concavity 

downward. 
  
67 ••• [SSM] A nonuniform thin rod of length L lies on the x axis. One end 
of the rod is at the origin, and the other end is at x = L. The rod’s mass per unit 
length λ varies as λ = Cx, where C is a constant. (Thus, an element of the rod has 
mass dm = λ dx.) (a) What is the total mass of the rod? (b) Find the gravitational 
field due to the rod on the x axis at x = x0, where x0 > L. 
  
Picture the Problem We can find the mass of the rod by integrating dm over its 
length. The gravitational field at x0 > L can be found by integrating g

G
d at x0 over 

the length of the rod. 
 
(a) The total mass of the stick is 
given by: 

 
∫=
L

dxM
0

λ  
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Substitute for λ and evaluate the 
integral to obtain” 
 

2
2
1

0

CLxdxCM
L

== ∫  

(b) Express the gravitational field 
due to an element of the stick of 
mass dm: 

( ) ( )

( )
i

iig

ˆ

ˆˆ

2
0

2
0

2
0

xx
GCxdx

xx
dxG

xx
Gdmd

−
−=

−
−=

−
−=

λG

 

 
Integrate this expression over the 
length of the stick to obtain: ( )

i

ig

ˆln2

ˆ

00

0
2

0
2

0

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

−
−= ∫

Lx
L

Lx
x

L
GM

xx
xdxGC

LG

 

 
68 •• A uniform thin rod of mass M and length L lies on the positive x axis 
with one end at the origin. Consider an element of the rod of length dx, and mass 
dm, at point x, where 0 < x < L. (a) Show that this element produces a 
gravitational field at a point x0 on the x axis in the region x0 > L given 

by
    
dgx = −

GM
L x0 − x( )2 dx . (b) Integrate this result over the length of the rod to find 

the total gravitational field at the point x0 due to the rod. (c) Find the gravitational 
force on a point particle of mass m0 at x0. (d) Show that for x0 >> L, the field of 
the rod approximates the field of a point particle of mass M at x = 0. 
 
Picture the Problem The elements of the rod of mass dm and length dx produce a 
gravitational field at any point P located a distance x0 > L from the origin. We can 
calculate the total field by integrating the magnitude of the field due to dm from  
x = 0  to x = L.      
 
(a) Express the gravitational field at 
P due to the element dm: 

ig ˆ
2r

Gdmd x −=
G

 

 
Relate dm to dx: dx

L
Mdm =  

 
Express the distance r between dm 
and point P in terms of x and x0: 
 

xxr −= 0  

Substitute these results to express 
xdgG  in terms of x and x0: ( )

ig ˆ
2

0 ⎭
⎬
⎫

⎩
⎨
⎧

−
−= dx

xxL
GMd x

G
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(b) Integrate from x = 0  to x = L 
to find the total gravitational field 
at point P: 

( )

( ) i

i

ig

ˆ

ˆ1

ˆ

00

00

0
2

0

Lxx
GM

xxL
GM

xx
dx

L
GM

L

L

x

−
−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−

−=

−
−= ∫

G

 

 
(c) Use the definition of gravitational 
field and the result from Part (b) to 
express gF

G
 at x = x0: 

 

( ) igF ˆ
00

0
0g Lxx

GMmm
−

−==
GG

 

 

(d) Factor x0 from the denominator 
of the expression for xgG to obtain: 

ig ˆ

1
0

2
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=

x
Lx

GM
x
G  

 
For x0 >> L the second term in 
parentheses is very small and: ig ˆ

2
0x

GM
x −≈
G  

which is the gravitational field of a point 
mass M located at the origin. 

 
The Gravitational Field ( g

G
) due to Spherical Objects 

69 • A uniform thin spherical shell has a radius of 2.0 m and a mass of  
300 kg. What is the gravitational field at the following distances from the center 
of the shell: (a) 0.50 m, (b) 1.9 m, (c) 2.5 m? 
 
Picture the Problem The gravitational field inside a spherical shell is zero and 
the field at the surface of and outside the shell is given by 2rGMg = . 
 
(a) Because 0.50 m < R: ( ) 0m 50.0 =g  

 
(b) Because 1.9 m < R: ( ) 0m 9.1 =g  

 
(c) Because 2.5 m > R: 
 

( ) ( ) ( )
( )

N/kg102.3
m2.5

kg300/kgmN106.673m 5.2 9
2

2211

2
−

−

×=
⋅×

==
r

GMg  
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70 • A uniform thin spherical shell has a radius of 2.00 m and a mass of  
300 kg, and its center is located at the origin of a coordinate system. Another 
uniform thin spherical shell with a radius of 1.00 m and a mass of 150 kg is inside 
the larger shell with its center at 0.600 m on the x axis. What is the gravitational 
force of attraction between the two shells? 
  
Determine the Concept The gravitational force is zero. The gravitational field 
inside the 2.00 m shell due to that shell is zero; therefore,  it exerts no force on 
the 1.00 m-shell, and, by Newton’s 3rd law, that shell exerts no force on the larger 
shell. 
 
71 •• [SSM] Two widely separated solid spheres, S1 and S2, each have 
radius R and mass M.  Sphere S1 is uniform, whereas the density of sphere S2 is 
given by ρ(r) = C/r, where r is the distance from its center. If the gravitational 
field strength at the surface of S1 is g1, what is the gravitational field strength at 
the surface of S2? 
 
Picture the Problem The gravitational field strength at the surface of a sphere is 
given by ,2RGMg =  where R is the radius of the sphere and M is its mass. 
 
Express the gravitational field 
strength on the surface of S1: 
 

21 R
GMg =  

Express the gravitational field 
strength on the surface of S2: 22 R

GMg =  

 
Divide the second of these equations 
by the first and simplify to obtain: 1

2

2

1

2 ==

R
GM
R

GM

g
g

⇒ 21 gg =  

 
72 •• Two widely separated uniform solid spheres, S1 and S2, have equal 
masses but different radii, R1 and R2. If the gravitational field strength on the 
surface of S1 is g1, what is the gravitational field strength on the surface of S2? 
 
Picture the Problem The gravitational field strength at the surface of a sphere is 
given by ,2RGMg =  where R is the radius of the sphere and M is its mass. 
 
Express the gravitational field 
strength on the surface of S1: 
 

2
1

1 R
GMg =  

Express the gravitational field 
strength on the surface of S2: 2

2
2 R

GMg =  
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Divide the second of these equations 
by the first and simplify to obtain: 

2
2

2
1

2
1

2
2

1

2

R
R

R
GM
R

GM

g
g

== ⇒ 12
2

2
1

2 g
R
R

g =  

Remarks: The gravitational field strengths depend only on the masses and 
radii because the points of interest are outside spherically symmetric 
distributions of mass. 
 
73 •• Two concentric uniform thin spherical shells have masses M1 and M2 
and radii a and 2a, as in Figure 11-26. What is the magnitude of the gravitational 
force on a point particle of mass m (not shown) located (a) a distance 3a from the 
center of the shells? (b) a distance 1.9a from the center of the shells? (c) a 
distance 0.9a from the center of the shells? 
 
Picture the Problem The magnitude of the gravitational force is mgF =g where g 

inside a spherical shell is zero and outside is given by .2rGMg =  
 
(a) The gravitational force on a 
particle of mass m is given by: 
 

mgF =g  

At r = 3a, the masses of both 
spheres contribute to g: 

( ) ( )
( )

( )
2

21

2
21

g

9

3
3

a
MMGm

a
MMGmaF

+
=

+
=

 

 
(b) At r = 1.9a, g due to M2 is zero 
and: ( )

( ) 2
1

2
1

g 61.39.1
9.1

a
GmM

a
GMmaF ==  

 
(c) At r = 0.9a, g = 0 and: ( ) 09.0g =aF  

 
74 •• The inner spherical shell in Problem 73 is shifted so that its center is 
now on the x axis at x = 0.8a. What is the magnitude of the gravitational force on 
a particle of point mass m located on the x axis at (a) x = 3a, (b) x = 1.9a,  
(c) x = 0.9a? 
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Picture the Problem The configuration 
is shown on the right. The centers of 
the spheres are indicated by the center-
lines. The x coordinates of the mass m 
for Parts (a), (b), and (c) are indicated 
along the x axis. The magnitude of the 
gravitational force is mgF =g  where g 

inside a spherical shell is zero and 

outside is given by 2r
GMg = .  

 
(a) Express the gravitational force 
acting on the object whose mass is 
m:  
 

( )xx ggmF 21g +=                        (1) 

 

Find g1x at x = 3a: ( )
( ) 2

1
2
1

1 93
3

a
GM

a
GMag x ==  

 
Find g2x at x = 3a: ( )

( ) 2
2

2
2

2 84.48.03
3

a
GM

aa
GMag x =
−

=  

 
Substitute for ( )ag x 31  and ( )ag x 32  in 
equation (1) and simplify to obtain: 

( )

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +=

84.49

84.49
3

21
2

2
2

2
1

MM
a
Gm

a
GM

a
GMmaF

 

 
(b) Find g2x at x = 1.9a: ( )

( )

2
2

2
2

2

21.1

8.09.1
9.1

a
GM

aa
GMag x

=

−
=

 

 
Find g1x at x = 1.9a: ( ) 09.11 =ag x  

 
Substitute for ( )ag x 9.11  and ( )ag x 9.12  
and simplify to obtain: 

( ) 2
2

21.1
9.1

a
GmMmgaF ==  

 
(c) At x = 0.9a, g1x = g2x = 0 and: ( ) 09.0 =aF  
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75 •• [SSM] Suppose you are standing on a spring scale in an elevator that 
is descending at constant speed in a mine shaft located on the equator. (a) Show 
that the force on you due to Earth’s gravity alone is proportional to your distance 
from the center of the planet. (b) Assume that the mine shaft located on the 
equator and is vertical. Do not neglect Earth’s rotational motion. Show that the 
reading on the spring scale is proportional to your distance from the center of the 
planet. 
 
Picture the Problem There are two forces acting on you as you descend in the 
elevator and are at a distance r from the center of Earth; an upward normal force 
(FN) exerted by the scale, and a downward gravitational force (mg) exerted by 
Earth. Because you are in equilibrium (you are descending at constant speed) 
under the influence of these forces, the normal force exerted by the scale is equal 
in magnitude to the gravitational force acting on you. We can use Newton’s law 
of gravity to express this gravitational force. 
 
(a) Express the force of gravity 
acting on you when you are a 
distance r from the center of Earth: 
 

2
)(

r
mrGMFg =                               (1) 

Using the definition of density, 
express the density of Earth between 
you and the center of Earth and the 
density of Earth as a whole: 
  

( )
( )

( )
3

3
4 r

rM
rV
rM

π
ρ ==  

 
 

The density of Earth is also given by: 
 3

3
4

E

E

E

R
M

V
M

π
ρ ==  

 
Equating these two expressions for ρ 
and solving for M(r) yields: ( )

3

E ⎟
⎠
⎞

⎜
⎝
⎛=

R
rMrM  

 
Substitute for M(r) in equation (1) 
and simplify to obtain: 

R
r

R
mGM

r

m
R
rGM

Fg 2
E

2

3

E

=
⎟
⎠
⎞

⎜
⎝
⎛

=      (2) 

 
Apply Newton’s law of gravity 
to yourself at the surface of Earth 
to obtain: 
 

2
E

R
mGMmg = ⇒ 2

E

R
GMg =  

where g is the magnitude of the 
gravitational field at the surface of 
Earth. 
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Substitute for g in equation (2) to 
obtain:  r

R
mgFg ⎟

⎠
⎞

⎜
⎝
⎛=  

That is, the force of gravity on you is 
proportional to your distance from the 
center of Earth. 
 

(b) Apply Newton’s 2nd law to your 
body to obtain: 

2
N ωmr

R
rmgF −=−  

where the net force ( )2ωmr− , directed 
toward the center of Earth, is the 
centripetal force acting on your body. 
 

Solving for FN yields: 2
N ωmrr

R
mgF −⎟

⎠
⎞

⎜
⎝
⎛=  

 
Note that this equation tells us that your effective weight increases linearly with 
distance from the center of Earth. However, due just to the effect of rotation, as 
you approach the center the centripetal force decreases linearly and, doing so, 
increases your effective weight. 
 
 
76 •• Suppose Earth were a nonrotating uniform sphere. As a reward for 
earning the highest lab grade, your physics professor chooses your laboratory 
team to participate in a gravitational experiment at a deep mine on the equator.  At 
this mine, there exists an elevator shaft going 15.0 km into Earth. Before making 
the measurement, you are asked to predict the decrease in the weight of a team 
member, who weighs 800 N at the surface of Earth, when she is at the bottom of 
the shaft.  The density of Earth’s crust actually increases with depth. Is your 
answer higher or lower than the actual experimental result? 
 
Picture the Problem We can find the loss in weight at this depth by taking the 
difference between the weight of the student at the surface of Earth and her 
weight at a depth d = 15.0 km. To find the gravitational field at depth d, we’ll use 
its definition and the mass of Earth that is between the bottom of the shaft and the 
center of Earth. We’ll assume (incorrectly) that the density of Earth is constant. 
 
The loss in weight of a team member 
is given by: 
 

( )RwRww −=Δ )( E                   (1) 
 

The mass M inside R =RE – d is 
given by: 
 

( )3
E3

4 dRVM −== ρπρ  
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Relate the mass of Earth to kits 
density and volume: 
 

3
E3

4
EE RVM ρπρ ==  

 

Divide the first of these equations by 
the second to obtain: 

( ) ( )
3
E

3
E

3
E3

4

3
E3

4

E R
dR

R
dR

M
M −

=
−

=
ρπ

ρπ  

 
Solving for M yields: ( )

3
E

3
E

E R
dRMM −

=  

 
Express the gravitational field at  
R =RE – d: 

( )
( ) 3

E
2

E

3
EE

2 RdR
dRGM

R
GMg

−
−

==       (2) 

 
Express the gravitational field at  
R =RE: 2

E

E
E R

GMg =                               (3) 

 
Divide equation (2) by equation (3) 
to obtain: 

( )
( )

E

E

2
E

E

3
E

2
E

3
EE

E R
dR

R
GM

RdR
dRGM

g
g −

=
−

−

=  

 
Solving for g yields: 

E
E

E g
R

dRg −
=  

 
The weight of the student at  
R =RE – d is given by: 

( ) ( )

E
E

E
E

E

R
1 mgd

mg
R

dRRmgRw

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
==

 

 
Substitute for w(R) in equation (1) 
and simplify to obtain: 

E

E
E

E
E R

1
R

dmgmgdmgw =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=Δ  

 
Substitute numerical values and 
evaluate Δw: 

( )( ) N88.1
km6370

km15.0N800Δ ==w  
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If Earth’s crustal density actually increased with depth, this increase with depth 
would partially compensate for the decrease in the fraction of Earth’s mass 
between a descending team member and the center of Earth; with the result that 
the loss in weight would be lower than the actual experimental result. 
 
77 •• [SSM] A solid sphere of radius R has its center at the origin. It has a 
uniform mass density ρ0, except that there is a spherical cavity in it of radius  

Rr 2
1=  centered at Rx 2

1=  as in Figure 11-27. Find the gravitational field at 
points on the x axis for Rx > . Hint: The cavity may be thought of as a sphere of 
mass m = (4/3)π r3ρ0 plus a sphere of ″negative″ mass –m. 
 
Picture the Problem We can use the hint to find the gravitational field along the 
x axis. 
 
Using the hint, express ( )xg : ( ) spherehollowspheresolid ggxg +=  

 
Substitute for spheresolidg  and spherehollowg  and simplify to obtain: 

 

( )
( )

( ) ( )[ ]
( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

−
+=

−
+=

2
2
12

3
0

2
2
1

3
2
1

3
4

0
2

3
3
4

0
2

2
1

spherehollow
2

spheresolid

8
11

3
4

Rxx
RG

Rx
RG

x
RG

Rx
GM

x
GM

xg

πρ

πρπρ

 

 
78 ••• For the sphere with the cavity in Problem 77, show that the 
gravitational field is uniform throughout the cavity, and find its magnitude and 
direction there. 
 
Picture the Problem The diagram 
shows the portion of the solid sphere in 
which the hollow sphere is embedded. 

1gG is the field due to the solid sphere of 
radius R and density ρ0 and 2gG is the 
field due to the sphere of radius R2

1  
and negative density ρ0 centered at 

R2
1 . We can find the resultant field by 
adding the x and y components of 

1g
G and 2g

G . 

x

y

θ
 

⎟
⎠
⎞

⎜
⎝
⎛ 0,

2
R  ( )0,R

 ( )yx,

 1g
r

 2g
r

 1r  2r
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Use its definition to express 1g
G : 

m
Fg

1 =gG  

 
Substitute for the gravitational force to 
obtain: 

2

2

1 r
GM

m
r

GMm

==gG  

 
Substituting the product of its 
density and volume for the mass of 
the sphere and simplifying yields: 
 

3
4

3
4 0

2

3
0

2
0

1
rG

r
Gr

r
VG πρπρρ

===gG  

 

Find the x and y components of 1g
G : 

3
4cos 0

111
Gx

r
xggg x

πρθ −=⎟
⎠
⎞

⎜
⎝
⎛−=−=  

and 

3
4sin 0

111
Gy

r
yggg y

πρθ −=⎟
⎠
⎞

⎜
⎝
⎛−=−=  

where the negative signs indicate that 
the field points inward. 
 

Proceed similarly to express 2g
G : 

3
4 20

2
Grπρ

=gG  

 
Express the x and y components 
of :2g
G  

( )
3

4 2
1

0

2

2
1

22
RxG

r
Rx

gg x
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

πρ
 

and 

3
4 0

2
22

Gy
r
ygg y

πρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 
Add the x components and simplify 
to obtain the x component of the 
resultant field: 

( )

3
2

3
4

3
4

0

2
1

00

21

GR

RxGGx
ggg xxx

πρ

πρπρ

−=

−
+−=

+=

 

where the negative sign indicates that 
the field points inward. 
 

Add the y components and simplify 
to obtain the y component of the 
resultant field: 
 

0
3

4
3

4 00

21

=+−=

+=

GyGy

ggg yyy

πρπρ  
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Express g

G
in vector form: 

jijig ˆ0ˆ
3

2ˆˆ 0 +⎟
⎠
⎞

⎜
⎝
⎛−=+=

GRgg yx
πρG  

 
The magnitude of g

G
is: 

3
2 022 GRgg yx
πρ

=+=g
G  

 
79 ••• A straight, smooth tunnel is dug through a uniform spherical planet of 
mass density ρ0. The tunnel passes through the center of the planet and is 
perpendicular to the planet’s axis of rotation, which is fixed in space. The planet 
rotates with a constant angular speed ω so objects in the tunnel have no apparent 
weight. Find the required angular speed of the planet ω. 
 
Picture the Problem The gravitational field will exert an inward radial force on 
the objects in the tunnel. We can relate this force to the angular speed of the 
planet by using Newton’s 2nd law of motion. 
 
Letting r be the distance from the 
objects to the center of the planet, 
use Newton’s 2nd law to relate the 
gravitational force acting on the 
objects to their angular speed: 
 

2
gnet ωmrFF ==  

or 
2ωmrmg = ⇒

r
g

=ω              (1) 

Use its definition to express g: 
m
F

g g=  

 
Substitute for Fg to obtain: 

2

2g

r
GM

m
r

GMm

m
F

g ===  

 
Substituting the product of its 
density and volume for the mass of 
planet and simplifying yields: 
 

3
4

3
4 0

2

3
0

2
0 rG

r
Gr

r
VGg πρπρρ

===  

Substituting for g in equation (1) and 
simplifying yields: 

3
43

4
0

0
G

r

rG
πρ

πρ

ω ==  

 
80 ••• The density of a sphere is given by ρ (r) = C/r. The sphere has a radius 
of 5.0 m and a mass of 1.0 × 1011 kg. (a) Determine the constant C. (b) Obtain 
expressions for the gravitational field for the regions (1) r > 5.0 m and  
(2) r < 5.0 m. 
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Picture the Problem Because we’re given the mass of the sphere, we can find C 
by expressing the mass of the sphere in terms of C. We can use its definition to 
find the gravitational field of the sphere both inside and outside its surface. 
 
(a) Express the mass of a differential 
element of the sphere: 
 

( )drrdVdm 24πρρ ==  

Integrate to express the mass of the 
sphere in terms of C: ( ) CrdrCM ππ 2

m0.5

0

m504 == ∫  

 
Solving for C yields: 

( )π2m50
MC =  

 
Substitute numerical values and 
evaluate C: ( )

28

28
2

11

kg/m104.6

kg/m1037.6
m50

kg100.1

×=

×=
×

=
π

C
 

 
(b) Use its definition to express the 
gravitational field of the sphere at a 
distance from its center greater than 
its radius: 
 

2r
GMg =  

(1) For r > 5.0 m: 
 

( ) ( ) ( )
2

2

2

112211 /kgmN7.6kg101.0/kgmN106.673m 0.5
rr

rg ⋅
=

×⋅×
=>

−

 

 
Use its definition to express the 
gravitational field of the sphere at a 
distance from its center less than its 
radius: 

GC
r

drrC
G

r

dr
r
Cr

G
r

drr
Gg

r

rr

π
π

πρπ

2
4

44

2
0

2
0

2

2
0

2

==

==

∫

∫∫

 

 
(2) For r < 5.0 m: 
 

( ) ( )( ) N/kg27.0kg/m106.37/kgmN10673.62m 0.5 282211 =×⋅×=< −πrg  
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81 ••• [SSM] A small diameter hole is drilled into the sphere of Problem 80 
toward the center of the sphere to a depth of 2.0 m below the sphere’s surface. A 
small mass is dropped from the surface into the hole. Determine the speed of the 
small mass as it strikes the bottom of the hole. 
 
Picture the Problem We can use conservation of energy to relate the work done 
by the gravitational field to the speed of the small object as it strikes the bottom of 
the hole. Because we’re given the mass of the sphere, we can find C by 
expressing the mass of the sphere in terms of C. We can then use the definition of 
the gravitational field to find the gravitational field of the sphere inside its surface. 
The work done by the field equals the negative of the change in the potential 
energy of the system as the small object falls in the hole. 
 
Use conservation of energy to relate 
the work done by the gravitational 
field to the speed of the small object 
as it strikes the bottom of the hole: 

0if =Δ+− UKK  
or, because Ki = 0 and W = −ΔU, 

2
2
1 mvW = ⇒

m
Wv 2

=            (1) 

where v is the speed with which the 
object strikes the bottom of the hole 
and W is the work done by the 
gravitational field. 
 

Express the mass of a differential 
element of the sphere: 
 

( )drrdVdm 24πρρ ==  

Integrate to express the mass of 
the sphere in terms of C: ( ) CrdrCM ππ 2

m0.5

0

m504 == ∫  

 
Solving for C yields: 

( )π2m50
MC =  

 
Substitute numerical values and 
evaluate C: ( )

28
2

11

kg/m1037.6
m50

kg100.1
×=

×
=

π
C  

 
Use its definition to express the gravitational field of the sphere at a distance from 
its center less than its radius: 
 

GC
r

drrC
G

r

dr
r
Cr

G
r

drr
G

r
GM

m
F

g

rrr

π
ππρπ

2
444

2
0

2
0

2

2
0

2

2
g ======

∫∫∫
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Express the work done on the small 
object by the gravitational force 
acting on it: 
 

( )mgmgdrW m2
m3.0

m0.5

=−= ∫  

 

Substitute in equation (1) and 
simplify to obtain: 
 

( ) ( )

( ) GC
m

GCmv

π

π

m0.8

2m0.22

=

=
 

 
Substitute numerical values and evaluate v: 
 

( ) ( )( ) m/s0.1kg/m1037.6/kgmN10673.6m0.8 282211 =×⋅×= −πv  

 
82 ••• As a geologist for a mining company, you are working on a method for 
determining possible locations of underground ore deposits. Assume that where 
the company owns land the crust of Earth is 40.0 km thick and has a density of 
about 3000 kg/m3. Suppose a spherical deposit of heavy metals with a density of 
8000 kg/m3 and radius of 1000 m was centered 2000 m below the surface. You 
propose to detect it by determining its affect on the local surface value of g. Find 
Δg/g at the surface directly above this deposit, where Δg is the increase in the 
gravitational field due to the deposit. 
 
Picture the Problem The spherical deposit of heavy metals will increase the 
gravitational field at the surface of Earth. We can express this increase in terms of 
the difference in densities of the deposit and Earth and then form the quotient 
Δg/g. 
 
Express Δg due to the spherical 
deposit: 2r

MGg Δ
=Δ                               (1) 

 
Express the mass of the spherical 
deposit: 
 

( ) 3
3
43

3
4 RRVM ρππρρ Δ=Δ=Δ=  

Substitute in equation (1): 
2

3
3
4

r
RG

g
ρπ Δ

=Δ  

 
Express Δg/g: 

2

3
3
42

3
3
4

gr
RG

g
r

RG

g
g ρπ

ρπ
Δ

=

Δ

=
Δ  
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Substitute numerical values and evaluate Δg/g: 
 

( ) ( ) ( )
( )( )

5
2

332211
3
4

1056.3
m2000N/kg81.9

m1000kg/m5000/kgmN10673.6Δ −
−

×=
⋅×

=
π

g
g

 

 
83 ••• [SSM] Two identical spherical cavities are made in a lead sphere of 
radius R.  The cavities each have a radius R/2. They touch the outside surface of 
the sphere and its center as in Figure 11-28. The mass of a solid uniform lead 
sphere of radius R is M. Find the force of attraction on a point particle of mass m 
located at a distance d from the center of the lead sphere.  
 
Picture the Problem The force of attraction of the small sphere of mass m to the 
lead sphere of mass M is the sum of the forces due to the solid sphere ( SF

G
) and 

the cavities ( CF
G

) of negative mass. 
 
Express the force of attraction: CS FFF

GGG
+=                              (1) 

 
Use the law of gravity to express the 
force due to the solid sphere: 

iF ˆ
2S d

GMm
−=

G
 

 
Express the magnitude of the force 
acting on the small sphere due to one 
cavity: 

2
2

C

2
⎟
⎠
⎞

⎜
⎝
⎛+

=
Rd

GM'mF  

where M′ is the negative mass of a 
cavity. 
 

Relate the negative mass of a cavity 
to the mass of the sphere before 
hollowing: ( ) MR

RVM'

8
13

3
4

8
1

3

3
4

2

−=−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=−=

πρ

πρρ
 

 
Letting θ be the angle between the x 
axis and the line joining the center of 
the small sphere to the center of 
either cavity, use the law of gravity 
to express the force due to the two 
cavities: 
 

iF ˆcos

4
8

2
2

2
C θ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
Rd

GMmG
 

because, by symmetry, the y 
components add to zero. 
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Use the figure to express cosθ : 

4

cos
2

2 Rd

d

+

=θ  

 
Substitute for cosθ and simplify to 
obtain: 

i

iF

ˆ

4
4

ˆ

44
4

2/32
2

2
2

2
2

C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

Rd

GMmd

Rd

d
Rd

GMmG

 

 
Substitute in equation (1) and 
simplify: 

i

iiF

ˆ

4

41

ˆ

4
4

ˆ

2/32
2

3

2

2/32
2

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+

−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−=

Rd

d

d
GMm

Rd

GMmd
d

GMmG

 

 
84 ••• A globular cluster is a roughly spherical collection of up to millions of 
stars bound together by the force of gravity. Astronomers can measure the 
velocities of stars in the cluster to study its composition and to get an idea of the 
mass distribution within the cluster. Assuming that all of the stars have about the 
same mass and are distributed uniformly within the cluster, show that the mean 
speed of a star in a circular orbit around the center of the cluster should increase 
linearly with its distance from the center. 
   
Picture the Problem Let R be the size of the cluster, and N the total number of 
stars in it.  We can apply Newton’s law of gravity and the 2nd law of motion to 
relate the net force (which depends on the number of stars N(r) in a sphere whose 
radius is equal to the distance between the star of interest and the center of the 
cluster) acting on a star at a distance r from the center of the cluster to its speed. 
We can use the definition of density, in conjunction with the assumption of 
uniform distribution of the starts within the cluster, to find N(r) and, ultimately, 
express the orbital speed v of a star in terms of the total mass of the cluster. 
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Using Newton’s law of gravity and 
2nd law, express the force acting on a 
star at a distance r from the center of 
the cluster: 
 

( )
r
vM

r
MrGNrF

2

2

2

)( ==        (1) 

where N(r) is the number of stars 
within a distance r of the center of the 
cluster and M is the mass of an 
individual star. 
 

Using the uniform distribution 
assumption and the definition of 
density, relate the number of stars 
N(r) within a distance r of the center 
of the cluster to the total number N 
of stars in the cluster: 
 

( )
3

3
43

3
4 R

NM
r
MrN

ππ
ρ == ⇒ ( ) 3

3

R
rNrN =  

Substitute for N(r) in equation (1) to 
obtain: 
 

r
vM

R
r

r
GNM 2

3

3

2

2

=  

 
Solving for v yields: 

3R
GNMrv = ⇒ rv ∝  

 
The mean speed v of a star in a circular orbit about the center of the cluster 
increases linearly with distance r from the center. 
 
General Problems 

 
85 • The mean distance of Pluto from the Sun is 39.5 AU. Find the period 
of Pluto. 
 
Picture the Problem We can use Kepler’s 3rd law to relate Pluto’s period to its 
mean distance from the sun. 

 
Using Kepler’s 3rd law, relate the 
period of Pluto to its mean distance 
from the sun:  

3
Pluto

2
Pluto CrT = ⇒ 3

PlutoPluto CrT =  

where 3219

s

2

/ms102.9734 −×==
GM

C π .  
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Substitute numerical values and evaluate TPluto: 
 

( )

y249
d365.25

y1
h24

d1
s3600

h1s01864.7

AU
m101.50AU5.39/ms10973.2

9

311
3219

Pluto

=××××=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
××= −T

 

 
86 • Calculate the mass of Earth using the known values of G, g, and RE. 
 
Picture the Problem Consider an object of mass m at the surface of Earth. We 
can relate the weight of this object to the gravitational field of Earth and to the 
mass of Earth.  

 
Using Newton’s 2nd law, relate the 
weight of an object at the surface 
of Earth to the gravitational force 
acting on it: 
 

2
E

E

R
mGMmgw == ⇒

G
gRM

2
E

E =  

Substitute numerical values and 
evaluate ME: 

( )( )

kg1097.5

/kgmN106.673
m106.37kg/N9.81

24

2211

26

E

×=

⋅×
×

= −M
 

 
87 •• The force exerted by Earth on a particle of mass m a distance r  
(r > RE) from the center of Earth has the magnitude    mgRE

2 /r2, where  
g = GME/      RE

2 . (a) Calculate the work you must do to move the particle from 
distance r1 to distance r2. (b) Show that when r1 = RE and r2 = RE + h, the result 
can be written as       W = mgRE

2 1/ RE( )−1/ RE + h( )[ ]. (c) Show that when h << RE, 
the work is given approximately by W = mgh. 
 
Picture the Problem The work you must do against gravity to move the particle 
from a distance r1 to r2 is the negative of the change in the particle’s gravitational 
potential energy. 
 
(a) Relate the work you must do to 
the change in the gravitational 
potential energy of Earth-particle 
system: 
 

( ) ∫∫

∫

=°−=

⋅−=−=

2

1

2

1

2

1

gg

g

180cos

Δ

r

r

r

r

r

r

drFdrF

rdFUW GG
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Substitute for Fg and evaluate the 
integral to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−== ∫

21
E

12
E2E

11

112

1

rr
mGM

rr
mGM

r
drmGMW

r

r
 

 
(b) Substitute 2

EgR for GME, RE 
for r1, and RE + h for r2 to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
hRR

mgRW
EE

2
E

11    (1) 

 
(c) Rewrite equation (1) with a common denominator and simplify to obtain: 
 

( ) mgh

R
hmgh

hR
Rmgh

hRR
RhRmgRW ≈

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−+

=

E

E

E

EE

EE2
E

1

1  

provided h << RE. 
 
88 •• The average density of the moon is ρ = 3340 kg/m3. Find the minimum 
possible period T of a spacecraft orbiting the moon. 
 
Picture the Problem Let m represent the mass of the spacecraft. From Kepler’s 
3rd law we know that its period will be a minimum when it is in orbit just above 
the surface of the moon. We’ll use Newton’s 2nd law to relate the angular speed of 
the spacecraft to the gravitational force acting on it. 
 
Relate the period of the spacecraft to 
its angular speed: 
 

ω
π2

=T                                      (1) 

Using Newton’s 2nd law of motion, 
relate the gravitational force acting 
on the spacecraft when it is in orbit 
at the surface of the moon to the 
angular speed of the spacecraft: 
 

∑ == 2
M2

M

M
radial ωmR

R
mGMF  

Solving for ω and simplifying yields: ( )

ρπ

ρπω

G

R
RG

R
GM

3
4

3
M

3
M3

4

3
M

M

=

==
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Substitute for ω in equation (1) and 
simplify to obtain: GG

T
ρ

π
ρπ

π 32

3
4min ==  

 
Substitute numerical values and evaluate Tmin: 
 

( )( ) min 48h 1s6503
kg/m3340/kgmN10673.6

3
32211min ==

⋅×
= −

πT  

 
89 •• [SSM] A neutron star is a highly condensed remnant of a massive 
star in the last phase of its evolution. It is composed of neutrons (hence the name) 
because the star’s gravitational force causes electrons and protons to ″coalesce″ 
into the neutrons. Suppose at the end of its current phase, the Sun collapsed into a 
neutron star (it can’t in actuality because it does not have enough mass) of radius 
12.0 km, without losing any mass in the process.  (a) Calculate the ratio of the 
gravitational acceleration at the surface of the Sun following its collapse 
compared to its value at the surface of the Sun today. (b) Calculate the ratio of the 
escape speed from the surface of the neutron-Sun to its value today. 
 
Picture the Problem We can apply Newton’s 2nd law and the law of gravity to an 
object of mass m at the surface of the Sun and the neutron-Sun to find the ratio of 
the gravitational accelerations at their surfaces. Similarly, we can express the ratio 
of the corresponding expressions for the escape speeds from the two suns to 
determine their ratio. 
 
(a) Express the gravitational force 
acting on an object of mass m at the 
surface of the Sun: 
 

2
Sun

Sun
gg R

mGMmaF ==  

Solving for ag yields: 
 2

Sun

Sun
g R

GMa =                               (1) 

 
The gravitational force acting on an 
object of mass m at the surface of a 
neutron-Sun is: 
 

2
-Sunneutron

-Sunneutron
gg '

R
mGMmaF ==  

Solving for g'a yields: 

 
2

-Sunneutron

-Sunneutron
g' R

GMa =                       (2) 
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Divide equation (2) by equation (1) 
to obtain: 
 

2
Sun

Sun

2
Sun-neutron

Sun-neutron

2
Sun

Sun

2
Sun-neutron

Sun-neutron

g

g'

R
M

R
M

R
GM

R
GM

a
a

==  

 
Because Sun-Sunneutron MM = : 
 2

Sun-neutron

2
Sun

g

g'
R

R
a
a

=  

 
Substitute numerical values and 
evaluate the ratio :' gg aa  

9
2

3

8

g

g 1036.3
m 100.12
m 1096.6'

×=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×
×

=
a
a

 

 
(b) The escape speed from the 
neutron-Sun is given by: 
 

-Sunneutron

-Sunneutron
e' R

GMv =  

The escape speed from the Sun is 
given by: 
 

Sun

Sun
e R

GMv =  

Dividing the first of these equations 
by the second and simplifying yields: 
 

-Sunneutron

Sun

e

e'
R

R
v
v

=  

Substitute numerical values and 
evaluate :' ee vv   241

m 100.12
m 1096.6'

3

8

e

e =
×
×

=
v
v  

 
90 •• Suppose the Sun could collapse into a neutron star of radius 12.0 km 
as in Problem 89.  Your research team is in charge of sending a probe from Earth 
to study the transformed Sun, and the probe needs to end up in a circular orbit 
4500 km from the neutron-Sun’s center. (a) Calculate the orbital speed of the 
probe. (b) Later on plans call for construction of a permanent spaceport in that 
same orbit to study the neutron-Sun in great detail.  To transport equipment and 
supplies, scientists on Earth need you to determine the escape speed for rockets 
launched from the spaceport (relative to the spaceport) in the direction of the 
spaceport’s orbital velocity at takeoff time. What is that speed and how does it 
compare to the escape speed at the surface of Earth? 
 
Picture the Problem We can apply Newton’s 2nd law to the probe orbiting the 
Sun to determine its orbital speed. Using the escape-speed equation will allow us 
to find the escape speed for rockets launched from the spaceport. 
 
(a) Apply Newton’s 2nd law to the 
probe of mass m in orbit about the 
Sun: 

r
vm

r
GmMF

2
orbital

2
Sun

radial ==∑  

where r is the orbital radius. 
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Solving for orbitalv  yields: 
 r

GMv Sun
orbital =  

 
Substitute numerical values and evaluate orbitalv : 
 

( )( )

m/s 1043.5

m/s 10431.5
m 1050.4

kg 1099.1kg/mN 10673.6

6

6
6

302211

orbital

×=

×=
×

×⋅×
=

−

v
 

 
(b) The escape speed (relative to 
the spaceport) for rockets launched 
from the spaceport  is given by: 
 

orbitale
spaceport

  torel vvv −=                     (1)   

 

The escape speed at a distance r 
from the center of the neutron-Sun 
is given by: 

orbital

-Sunneutron-Sunneutron
e

2

22

v
r

GM
r

GMv

=

==

 
Substituting for ve in equation (1) 
yields: 
 ( ) orbital

orbitalorbital
spaceport

  torel

12

2

v

vvv

−=

−=
 

 
Substitute numerical values and evaluate 

spaceport
  torelv : 

 
( )( ) m/s 1025.2m/s 10431.512 66

spaceport
  torel ×=×−=v  

 
Express the ratio of 

spaceport
  torelv to Earthe,v : 

201
km/s 11.2

m/s 1025.2 6

Earthe,

spaceport
  torel

≈
×

=
v

v
 

 
91 •• A satellite is circling the moon (radius 1700 km) close to the surface at 
a speed v. A projectile is launched from the moon vertically up at the same initial 
speed v. How high will it rise? 
 
Picture the Problem We can use conservation of energy to establish a 
relationship between the height h to which the projectile will rise and its initial 
speed. The application of Newton’s 2nd law will relate the orbital speed, which is 
equal to the initial speed of the projectile, to the mass and radius of the moon. 
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Use conservation of energy to relate 
the initial energies of the projectile to 
its final energy: 

0ifif =−+− UUKK  
or, because Kf = 0, 

0
moon

moon

moon

moon2
2
1 =+

+
−−

R
mGM

hR
mGMmv  

 
Solving for h yields: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

= 1

2
1

1

moon

moon
2M

GM
Rv

Rh            (1) 

 
Use Newton’s 2nd law to relate the 
orbital speed of the satellite to the 
gravitational force acting on it: 
 

∑ ==
M

2

2
M

M
radial R

vm
R

mGMF  

Solve for v2 to obtain: 
M

M2

R
GMv =  

 
Substitute for v2 in equation (1) and 
simplify to obtain: Mm70.11

2
11

1
M ==

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
−

= RRh  

 
92 •• Black holes are objects whose gravitational field is so strong that not 
even light can escape.  One way of thinking about this is to consider a spherical 
object whose density is so large that the escape speed at its surface is greater than 
the speed of light c.  It turns out that if a star’s radius is smaller than a value called 
the Schwarzchild radius RS, then the star will be a black hole, that is, light 
originating from its surface cannot escape. (a) For a non-rotating black hole, the 
Schwarzchild radius depends only upon the mass of the black hole. Show that it is 
related to that mass M by RS = 2GM/c2. (b) For a black hole whose mass is ten 
solar masses, calculate the value of the Schwarzchild radius. 
 
Picture the Problem We can use the escape-speed equation, with ve = c, to derive 
the expression for the Schwarzchild radius of a non-rotating black hole. 
 
(a) The escape speed at a distance r 
from the center of a spherical object 
of mass M is given by: 
 

r
GMv 2

e =  

Setting ve = c yields: 
 

S

2
R
GMc = ⇒ 2S

2
c
GMR =  
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(b) For a black hole whose mass is 
ten solar masses: 

( )
2

Sun
2

Sun
S

20102
c

GM
c

MGR ==  

 
Substitute numerical values and evaluate RS: 
 

( )( )
( )

km 29.5
m/s 10998.2

kg 1099.1kg/mN 10673.620
28

302211

S =
×

×⋅×
=

−

R  

 
93 ••  In a binary star system, two stars follow circular orbits about their 
common center of mass. If the stars have masses m1 and m2 and are separated by a 

distance r, show that the period of rotation is related to r by ( )21

32
2 4

mmG
rT

+
=

π .     

 
Picture the Problem Let the origin of our coordinate system be at the center of 
mass of the binary star system and let the distances of the stars from their center 
of mass be r1 and r2. The period of rotation is related to the angular speed of the 
star system and we can use Newton’s 2nd law of motion to relate this speed to the 
separation of the stars. 
 
Relate the square of the period of the 
motion of the stars to their angular 
speed: 
 

2

2
2 4

ω
π

=T                                 (1) 

Using Newton’s 2nd law of motion, 
relate the gravitational force acting 
on the star whose mass is m2 to the 
angular speed of the system: 
 

( )∑ =
+

= 2
222

21

21
radial ωrm

rr
mGmF  

Solving for ω2 yields: 
( )2

212

12

rrr
Gm

+
=ω                       (2) 

 
From the definition of the center of 
mass we have: 

2211 rmrm =                                (3) 
where 21 rrr +=                        (4) 
 

Eliminate r1 from equations (3) and 
(4) and solve for r2 to obtain: 
 

21

1
2 mm

rmr
+

=  

Eliminate r2 from equations (3) and 
(4) and solve for r1 to obtain: 
 

21

2
1 mm

rmr
+

=  
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Substituting for r1 and r2 in equation 
(2) yields: 
 

( )
3

212

r
mmG +

=ω  

Finally, substitute for ω2 in equation 
(1) and simplify: ( ) ( )21

32

3
21

2
2 44

mmG
r

r
mmG

T
+

=
+

=
ππ  

 
94 •• Two particles of masses m1 and m2 are released from rest at a large 
separation distance. Find their speeds v1 and v2 when their separation distance is r. 
The initial separation distance is given as large, but large is a relative term. 
Relative to what distance is it large? 
 
Picture the Problem Because the two-particle system has zero initial energy and 
zero initial linear momentum; we can use energy and momentum conservation to 
obtain simultaneous equations in the variables r, v1 and v2. We’ll assume that 
initial separation distance of the particles and their final separation r is large 
compared to the size of the particles so that we can treat them as though they are 
point particles. 
 
Use conservation of energy to relate 
the speeds of the particles when their 
separation distance is r: 

fi EE =  
or 

r
mGm

vmvm 212
222

12
112

10 −+=   (1) 

 
Use conservation of linear 
momentum to obtain a second 
relationship between the speeds of 
the particles and their masses: 
 

fi pp =  
or 

22110 vmvm +=                          (2) 

Solve equation (2) for v1 and 
substitute in equation (1) to obtain: r

mGm
m
m

mv 21

1

2
2

2
2
2

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+          (3) 

 
Solve equation (3) for v2: 

( )21

2
1

2
2

mmr
Gmv

+
=  

 
Solve equation (2) for v1 and 
substitute for v2 to obtain: ( )21

2
2

1
2

mmr
Gmv

+
=  

 
95 •• [SSM] Uranus, the seventh planet in the Solar System, was first 
observed in 1781 by William Herschel. Its orbit was then analyzed in terms of  
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Kepler’s Laws.  By the 1840’s, observations of Uranus clearly indicated that its 
true orbit was different from the Keplerian calculation by an amount that could 
not be accounted for by observational uncertainty.  The conclusion was that there 
must be another influence other than the Sun and the known planets lying inside 
Uranus’s orbit.  This influence was hypothesized to be due to an eighth planet, 
whose predicted orbit was described in 1845 independently by two astronomers: 
John Adams (no relation to our president) and Urbain LeVerrier.  In September of 
1846, John Galle, searching in the sky at the place predicted by Adams and 
LeVerrier, made the first observation of Neptune. Uranus and Neptune are in orbit 
about the Sun with periods of 84.0 and 164.8 years, respectively.  To see the 
effect that Neptune had on Uranus, determine the ratio of the gravitational force 
between Neptune and Uranus to that between Uranus and the Sun, when Neptune 
and Uranus are at their closest approach to one another (i.e. when aligned with the 
Sun).  The masses of the Sun, Uranus and Neptune are 333,000, 14.5 and 17.1 
times that of Earth, respectively. 
 
Picture the Problem We can use the law of gravity and Kepler’s 3rd law to 
express the ratio of the gravitational force between Neptune and Uranus to that 
between Uranus and the Sun, when Neptune and Uranus are at their closest 
approach to one another. 
 
The ratio of the gravitational force 
between Neptune and Uranus to that 
between Uranus and the Sun, when 
Neptune and Uranus are at their 
closest approach to one another is 
given by: 
 

( )
( )2

UNS

2
UN

2
U

SU

2
UN

UN

S-Ug,

U-Ng,

rrM
rM

r
MGM
rr
MGM

F
F

−
=

−
=   (1) 

Applying Kepler’s 3rd law to Uranus 
yields: 
 

3
U

2
U CrT =                                            (2) 

Applying Kepler’s 3rd law to 
Neptune yields: 
 

3
N

2
N CrT =                                            (3) 

Divide equation (3) by equation (2) 
to obtain: 
 

3
U

3
N

3
U

3
N

2
U

2
N

r
r

Cr
Cr

T
T

== ⇒
32

U

N
UN ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

T
Trr  

 
Substitute for rN in equation (1) to 
obtain: 2

U

32

U

N
US

2
UN

S-Ug,

U-Ng,

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

r
T
TrM

rM
F
F
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Simplifying this expression yields: 
232

U

N
S

N

S-Ug,

U-Ng,

1
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

T
TM

M
F
F

 

 
Because MN = 17.1ME and MS = 333,000ME: 
 

232

U

N5

232

U

N
E

5

E

-SUg,

U-Ng,

11033.3

1.17

11033.3

1.17

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

=

T
T

T
TM

M
F
F

 

 

Substitute numerical values and evaluate 
S-Ug,

U-Ng,

F
F

: 

 
4

232
5

-SUg,

U-Ng, 102

1
y 0.84
y 8.1641033.3

1.17 −×≈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

=
F
F

 

 
Because this ratio is so small, during the time at which Neptune is closest to 
Uranus, the force exerted on Uranus by Neptune is much less than the force 
exerted on Uranus by the Sun. 
 
96 •• It is believed that, at the center of our galaxy, is a ″super-massive″ 
black hole.  One datum that leads to this conclusion is the important recent 
observation of stellar motion in the vicinity of the galactic center.  If one such star 
moves in an elliptical orbit with a period of 15.2 years and has a semi-major axis 
of 5.5 light-days (the distance light travels in 5.5 days), what is the mass around 
which the star moves in its Keplerian orbit? 
 
Picture the Problem We can apply Kepler’s 3rd law to the orbital motion of the 
star to find the effective mass around which it is moving. 
 
Using Kepler’s 3rd law, relate the 
orbital period of the star to the semi-
major axis of its orbit: 
 

3
2

2 4 a
GM

T π
= ⇒ 2

324
GT

aM π
=  

where M is the mass around which the 
star moves in its Keplerian orbit. 
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Substitute numerical values and evaluate M: 
 

( )

Sun
6

30
Sun36

36
27

2211

3
82

 107.3
kg 101.99

 1kg 10434.7

kg 10434.7

y
s 103.156y 2.15kg/mN 10673.6

m/s 10998.2
d

s 86400d 5.54

MM

M

×=
×

××=

×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×⋅×

⎟
⎠
⎞

⎜
⎝
⎛ ×××

=
−

π

 

 
97 •• [SSM] Four identical planets are arranged in a square as shown in 
Figure 11-29. If the mass of each planet is M and the edge length of the square is 
a, what must be their speed if they are to orbit their common center under the 
influence of their mutual attraction? 
 
Picture the Problem We can find the orbital speeds of the planets from their 
distance from the center of mass of the system and the period of their motion. 
Application of Kepler’s 3rd law will allow us to express the period of their motion 
T in terms of the effective mass of the system; which we can find from its 
definition.  

 
Express the orbital speeds of the 
planets in terms of their period T: 
 

T
Rv π2

=                                    (1) 

where R is the distance to the center of 
mass of the four-planet system. 
 

Apply Kepler’s 3rd law to express 
the period of the planets: 3

eff

24 R
GM

T π
=  

where Meff is the effective mass of the 
four planets.  
 

Substitute for T in equation (1) to 
obtain: 
 R

GM

R
GM

Rv eff

3

eff

24
2

==
π
π      (2) 

 
The distance of each planet from 
the effective mass is: 
 

2
aR =  

Find Meff from its definition: 
 MMMMM

11111

eff

+++=  

and 
MM 4

1
eff =  
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Substitute for R and Meff in equation 
(2) and simplify to obtain: 

a
GMv
4
2

=  

 
98 •• A hole is drilled from the surface of Earth to its center as in Figure 11-
30. Ignore Earth’s rotation and any effects due to air resistance, and model Earth 
as a uniform sphere. (a) How much work is required to lift a particle of mass m 
from the center of Earth to Earth’s surface? (b) If the particle is dropped from rest 
at the surface of Earth, what is its speed when it reaches the center of Earth? (c) 
What is the escape speed for a particle projected from the center of Earth? 
Express your answers in terms of m, g, and RE. 
 
Picture the Problem Let r represent the separation of the particle from the center 
of Earth and assume a uniform density for Earth. The work required to lift the 
particle from the center of Earth to its surface is the line integral of the 
gravitational force function. This function can be found from the law of gravity 
and by relating the mass of Earth between the particle and the center of Earth to 
Earth’s mass. We can use the work-kinetic energy theorem to find the speed with 
which the particle, when released from the surface of Earth, will strike the center 
of Earth. Finally, the energy required for the particle to escape Earth from the 
center of Earth is the sum of the energy required to get it to the surface of Earth 
and the kinetic energy it must have to escape from the surface of Earth.  
 
(a) Express the work required to lift 
the particle from the center of Earth 
to Earth’s surface: 

∫∫∫ =⋅−=⋅=
E

0
g

0
g

0

RRR

drFrdFrdFW
GGGG

  (1) 

where Fg is the gravitational force 
acting on the particle. 
 

Using the law of gravity, express the 
force acting on the particle as a 
function of its distance from the 
center of Earth: 
 

2g r
GmMF =                                      (2) 

where M is the mass of a sphere whose 
radius is r. 

Express the ratio of M to ME and 
simplify to obtain: 

( )
( ) 3

E

3

3
E3

4

3
3
4

E R
r

R
r

M
M

==
πρ
πρ

⇒ 3
E

3

E R
rMM =   

 
Substitute for M in equation (2) to 
obtain: r

R
mgr

R
mgRr

R
GmMF

E
3
E

2
E

3
E

E
g ===  

 
Substitute for Fg in equation (1) and 
evaluate the integral: E2

1

0E

E

gmRrdr
R
mgW

R

== ∫  
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(b) Use the work-kinetic energy 
theorem to relate the kinetic energy 
of the particle as it reaches the center 
of Earth to the work done on it in 
moving it to the surface of Earth: 
 

2
2
1 mvKW =Δ=  

 

Substituting for W yields: 
 

2
2
1

E2
1 mvgmR = ⇒ EgRv =  

 
(c) Express the total energy required 
for the particle to escape when 
projected from the center of Earth: 

2
esc2

12
e2

1
esc mvmvWE =+=  

where ve is the escape speed from the 
surface of Earth. 
 

Substituting for W yields: 2
esc2

12
e2

1
E2

1 mvmvgmR =+  
or, simplifying, 

2
esc

2
eE vvgR =+  

 

Because :2

E

2
e R

GMv =  

 

2
esc

E
E

2 v
R
GMgR =+                     (3) 

Apply Newton’s 2nd law to an object 
of mass m at the surface of Earth to 
obtain: 
 

2
ER

GMmmg = ⇒ E
E

gR
R

GM
=  

Substitute for GM/RE in equation (3) 
to obtain: 
 

2
escEE 2 vgRgR =+ ⇒ Eesc 3gRv =  

Remarks: This escape speed is approximately 122% of the escape speed from 
the surface of Earth. 
 
99 ••  A thick spherical shell of mass M and uniform density has an inner 
radius R1 and an outer radius R2. Find the gravitational field gr as a function of r 
for 0 < r < ∞. Sketch a graph of gr versus r. 
 
Picture the Problem We need to find the gravitational field in three regions:  
r < R1, R1 < r < R2, and r > R2. 
 
For r < R1: ( ) 01 =< Rrg  
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For r > R2, g(r) is the field due to the 
thick spherical shell of mass M 
centered at the origin: 
 

( ) 22 r
GMRrg =>  

For R1 < r < R2, g(r) is determined 
by the mass within the shell of radius 
r: 

( ) 221 r
GmRrRg =<<                 (1) 

where ( )3
1

3
3
4 Rrm −= πρ          (2) 

 
Express the density of the 
spherical shell: ( )3

1
3
23

4 RR
M

V
M

−
==

π
ρ  

 
Substitute for ρ in equation (2) and 
simplify to obtain: 

( )
3
1

3
2

3
1

3

RR
RrMm

−
−

=  

 
Substitute for m in equation (1) to 
obtain: ( ) ( )

( )3
1

3
2

2

3
1

3

RRr
RrGM

rg
−
−

=  

 
A graph of gr with R1 = 2, R2 = 3, and GM = 1 follows: 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3 4 5 6 7 8

r

g r

 
 
100 ••  (a) A thin uniform ring of mass M and radius R lies in the x = 0 plane 
and is centered at the origin. Sketch a plot of the gravitational field gx versus x for 
all points on the x axis. (b) At what point, or points, on the axis is the magnitude 
of gx a maximum? 
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Picture the Problem A ring of radius 
R is shown to the right. Choose a 
coordinate system in which the origin is 
at the center of the ring and x axis is as 
shown. An element of length dL and 
mass dm is responsible for the field dg 
at a distance x from the center of the 
ring. We can express the x component 
of dg and then integrate over the 
circumference of the ring to find the 
total field as a function of x.  

 

 
(a) Express the differential 
gravitational field at a distance x 
from the center of the ring in terms 
of the mass of an elemental segment 
of length dL:  
 

22 xR
Gdmdg

+
=  

Relate the mass of the element to 
its length: 
 

dLdm λ=  
where λ is the linear density of the ring. 

Substitute for dm to obtain: 
22 xR

dLGdg
+

=
λ  

 
By symmetry, the y and z 
components of g vanish. The x 
component of dg is: 
 

θλθ coscos 22 xR
dLGdgdg x +

==  

Refer to the figure to obtain: 
22

cos
xR

x
+

=θ  

 
Substituting for cosθ yields: 

( ) 2/3222222 xR
xdLG

xR
x

xR
dLGdg x

+
=

++
=

λλ  

 

Because 
R

M
π

λ
2

= : 
( ) 2/3222 xRR

xdLGMdg x
+

=
π
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Integrate to find g(x): ( )
( )

( )
x

xR

GM

dL
xRR

xGMxg
R

2/322

2

0
2/3222

+
=

+
= ∫

π

π
 

 
A graph of gx follows. The curve is normalized with R = 1 and GM = 1. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4

x

g x

 
(b) Differentiate g(x) with respect to x and set the derivative equal to zero to 
identify extreme values: 
 

( ) ( )
( ) ( ) ( ) extremafor  022/122

322
2
32/322

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+

−+
= xRx

xR
xRxGM

dx
dg  

 
Simplify to obtain: ( ) ( ) 03 2/12222/322 =+−+ RxxRx  

 
Solving for x yields: 

2
Rx ±=   

 
Because the curve is concave downward, we can conclude that this result 
corresponds to a maximum. Note that this result agrees with our graphical 
maximum. 
 
101 ••• Find the magnitude of the gravitational field a distance r from an 
infinitely long uniform thin rod whose mass per unit length is λ. 
 
Picture the Problem The diagram shows a segment of the wire of length dx and 
mass dm = λdx at a distance x from the origin of our coordinate system. We can 
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find the magnitude of the gravitational field at a distance r from the wire from the 
resultant gravitational force acting on a particle of mass m′ located at point P and 
then integrating over the length of the wire. 

 F
r

d

dxx

dm =   dx

P

r

0

θ  
2

2 r
x +

λ

 
 
Express the gravitational force acting 
on a particle of mass m′ at a distance 
r from the wire due to the segment of 
the wire of length dx: 
 

m'dgdF =  or 
m'
dFdg =  

Using Newton’s law of gravity, 
express dF: 
 

2R
dxGm'dF λ

=  

or, because 222 rxR += , 

22 rx
dxGm'dF

+
=

λ
 

 
Substitute and simplify to express 
the gravitational field due to the 
segment of the wire of length dx: 
 

22 rx
dxGdg

+
=

λ
 

By symmetry, the segment on the 
opposite side of the origin at the 
same distance from the origin will 
cancel out all but the radial 
component of the field, so the 
gravitational field will be given by: 

( ) dx
rx
rG

rx
r

rx
dxG
rx

dxGdg

2322

2222

22 cos

+
=

++
=

+
=

λ

λ

θλ

 

 
Integrate dg from x′ = −∞ to x′ = +∞ to obtain: 
 

( ) ( ) r
G

rx
x

r
Gdx

rx
rGdx

rx
rGg λλλλ 2

'
2'

'
2'

' 0
22

0
2/3222/322

=⎥
⎦

⎤
⎢
⎣

⎡

+
=

+
=

+
=

∞∞∞

∞−
∫∫  

 
102 ••• One question in early planetary science was whether each of the 
rings of Saturn was solid or was, instead, composed of individual chunks, each in 
its own orbit. There was a simple ring speed observation that resolved this issue. 
Here was the idea: astronomers would measure the speed of the inner and outer 
portion of the ring. If the inner portion of the ring moved more slowly than the 
outer portion, then the ring was solid; if the opposite was true, then it was actually 
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composed of separate chunks. Let’s see how this results from a theoretical 
viewpoint. Let the radial width of a given ring (there are many) be Δr, the average 
distance of that ring from the center of Saturn be represented by R, and designate 
the average speed of that ring by vavg . (a) If the ring is solid, show that the 
difference in speed between its outermost and innermost portions, Δv, is given by 

the approximate expression
R
rvvvv ΔΔ avginout ≈−= . Here, vout is the speed of the 

outermost portion of the ring, vin is the speed of the innermost portion. (b) If, 
however, the ring is composed of many small chunks, show that 

Δv ≈ −
1
2

vavg
Δr
R

⎛ 
⎝ 

⎞ 
⎠ . (Assume that Δr << R.) 

 
Picture the Problem We can use the relationship between the angular speed of 
an orbiting object and its tangential velocity to express the speeds vin and vout of 
the innermost and outermost portions of the ring. In Part (b) we can use Newton’s 
law of gravity, in conjunction with the 2nd law of motion, to relate the tangential 
speed of a chunk of the ring to the gravitational force acting on it. As in Part (a), 
once we know vin and vout, we can express the difference between them to obtain 
the desired results. 
 
(a) The difference between vout 
and vin is: 
 

inoutΔ vvv −=                                (1) 
 

The speed of a point in the ring at 
the average distance R from the 
center of Saturn under the 
assumption that the ring is solid 
and rotates with an angular speed 
ω  is given by: 
 

( ) RRv ω=  

Express the speeds vin and vout of 
the innermost and outermost 
portions of the ring: 

( )ωrRv Δ2
1

in −=  
and 

( )ωrRv Δ2
1

out +=  
 

Substituting for vin and vout in 
equation (1) and simplifying 
yields: 

( ) ( )

R
rvr

R
v

r

rRrRv

ΔΔΔ

ΔΔΔ

avg
avg

2
1

2
1

===

−−+=

ω

ωω
 

 
(b) Assume that a chunk of the ring 
is moving in a circular orbit around 
the center of Saturn under the force 
of gravity and apply Newton’s 2nd 
law to obtain: 

''

2

2radial R
vm

R
GMmF ==∑ ⇒

'R
GMv =  

where M is the mass of Saturn and R' the 
distance from its center. 
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Express vout by substituting for 
rR Δ2

1+ for R' and simplifying: 

21

2
1out

Δ
2
11

Δ
2
11Δ

−

⎟
⎠
⎞

⎜
⎝
⎛ +=

⎟
⎠
⎞

⎜
⎝
⎛ +

=
+

=

R
r

R
GM

R
rR

GM
rR

GMv

 

 

Expanding 
21Δ

2
11

−

⎟
⎠
⎞

⎜
⎝
⎛ +

R
r

 

binomially, discarding higher-order 
terms, and simplifying yields: 
 

)

⎟
⎠
⎞

⎜
⎝
⎛ −≈

+

⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−=

R
r

R
GM

R
r

R
GMv

Δ
4
11

 sorder termhigher 

Δ
2
1

2
11out

 

 
Proceed similarly to obtain, for vin: 

⎟
⎠
⎞

⎜
⎝
⎛ +≈

R
r

R
GMv Δ

4
11in  

 
Express the difference between vout and vin and simplify to obtain:   
 

⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −≈−=

R
r

R
GM

R
r

R
GM

R
r

R
GMvvv Δ

2
1Δ

4
11Δ

4
11Δ inout  

 

Because 
R

GMv =avg : ⎟
⎠
⎞

⎜
⎝
⎛−≈

R
rvv Δ

2
1Δ avg  

 
103  ••• [SSM] In this problem you are to find the gravitational potential 
energy of the thin rod in Example 11-8 and a point particle of mass m0 that is on 
the x axis at x = x0. (a) Show that the potential energy shared by an element of the 
rod of mass dm (shown in Figure 11-14) and the point particle of mass m0 located 
at Lx 2

1
0 ≥ is given by 

( ) s
s0

0

s0

0 dx
xxL

GMm
xx

dmGmdU
−

=
−

−=  

where U = 0 at x0 = ∞. (b) Integrate your result for Part (a) over the length of the 
rod to find the total potential energy for the system. Generalize your function 
U(x0) to any place on the x axis in the region x > L/2 by replacing x0 by a general 
coordinate x and write it as U(x). (c) Compute the force on m0 at a general point x 
using Fx = –dU/dx and compare your result with m0g, where g is the field at x0 
calculated in Example 11-8. 
 
Picture the Problem Let U = 0 at x = ∞. The potential energy of an element of 
the stick dm and the point mass m0 is given by the definition of gravitational 
potential energy: rdmGmdU 0−=  where r is the separation of dm and m0. 
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(a) Express the potential energy of 
the masses m0 and dm: s0

0

xx
dmGmdU

−
−=  

 
The mass dm is proportional to the 
size of the element sdx : 

sdxdm λ=  

where 
L
M

=λ . 

 
Substitute for dm and λ  to express 
dU in terms of xs: ( )s0

s0

s0

s0

xxL
dxGMm

xx
dxGmdU

−
−=

−
−=

λ  

 
(b) Integrate dU to find the total potential energy of the system: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ −=

−
−= ∫

−

2
2ln

2
ln

2
ln

0

00

00
0

2/

2/ s0

s0

Lx
Lx

L
GMm

LxLx
L

GMm
xx

dx
L

GMmU
L

L
 

 
(c) Because x0 is a general point along the x axis: 
 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

+
=−=

2

1

2

1

00

0

0
0 LxLxL

GMm
dx
dUxF  

 
Further simplification yields: ( )

422
0

0 Lx
GmmxF

−
−=  

 
This answer and the answer given in Example 11-8 are the same. 

 
104 ••• A uniform sphere of mass M is located near a thin, uniform rod of 
mass m and length L as in Figure 11-31.  Find the gravitational force of attraction 
exerted by the sphere on the rod. 
  
Picture the Problem Choose a mass element dm of the rod of thickness dx at a 
distance x from the origin. All such elements of the rod experience a gravitational 
force dF due to presence of the sphere centered at the origin. We can find the total 
gravitational force of attraction experienced by the rod by integrating dF from  
x = a to x = a + L.      
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Express the gravitational force dF  
acting on the element of the rod of 
mass dm: 
 

2x
GMdmdF =  

Express dm in terms of the mass m 
and length L of the rod: 

dx
L
mdm =  

 
Substitute for dm to obtain: 
 2x

dx
L

GMmdF =  

 
Integrate dF  from x = a to 
 x = a + L to find the total 
gravitational force acting on the rod: 

( )Laa
GMm

xL
GMmdxx

L
GMmF

La

a

La

a

+
=

⎥⎦
⎤

⎢⎣
⎡−==

++
−∫

12

 

 
105 •••  A thin uniform 20-kg rod with a length equal to 5.0 m is bent into a 
semicircle. What is the gravitational force exerted by the rod on a 0.10-kg point 
mass located at the center of curvature of the circular arc? 
 
Picture the Problem The semicircular 
rod is shown in the figure. We’ll use an 
element of length ( ) θπθ dLRd =  
whose mass dM is ( ) θπ dM . By 
symmetry, Fy = 0. We’ll first find dFx 
and then integrate over θ from −π/2 to 
π/2. 

 
 
Express dFx: θθ

π
π

cos22 d
L

GMm
R

GmdMdFx

⎟
⎠
⎞

⎜
⎝
⎛

==  

 
Integrate dFx over θ from −π/2 to 
π/2: 2

2/

2/
2

2cos
L
GMmd

L
GMmFx

πθθπ π

π

== ∫
−

 

 
Substitute numerical values and evaluate Fx: 
 

( )( )( )
( )

pN34
m5.0

kg0.10kg20/kgmN106.6732
2

2211

=
⋅×

=
−πFx  
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106 •••  Both the Sun and the moon exert gravitational forces on the oceans of 
Earth, causing tides.  (a) Show that the ratio of the force exerted on a point 
particle on the surface of Earth by the Sun to that exerted by the moon is 

    M s rm
2 / M mrs

2 . Here Ms and Mm represent the masses of the Sun and moon and rs 
and rm are the distances of the particle from Earth to the Sun and Earth to the 
moon, respectively.  Evaluate this ratio numerically. (b) Even though the Sun 
exerts a much greater force on the oceans than does the moon, the moon has a 
greater effect on the tides because it is the difference in the force from one side of 
Earth to the other that is important.  Differentiate the expression F = G m1m2/r2 to 
calculate the change in F due to a small change in r.  Show that dF/F = (–2 dr)/r.  
(c) The oceanic tidal bulge (that is, the elongation of the liquid water of the 
oceans causing two opposite high and two opposite low spots) is caused by the 
difference in gravitational force on the oceans from one side of Earth to the other. 
Show that for a small difference in distance compared to the average distance, the 
ratio of the differential gravitational force exerted by the Sun to the differential 
gravitational force exerted by the moon on Earth’s oceans is given by 

    ΔFs / ΔFm ≈ M s rm
3( )/ M mrs

3( ). Calculate this ratio. What is your conclusion? 
Which object, the moon or the Sun, is the main cause of the tidal stretching of the 
oceans on Earth? 
 
Picture the Problem We can begin by expressing the forces exerted by the Sun 
and the moon on a body of water of mass m and taking the ratio of these forces. In 
(b) we’ll simply follow the given directions and in (c) we can approximate 
differential quantities with finite quantities to establish the given ratio. 
 
(a) Express the force exerted by the 
sun on a body of water of mass m: 
 

2
S

S
S r

mGM
F =  

 
Express the force exerted by the 
moon on a body of water of mass m: 
 

2
m

m
m r

mGMF =  

 
Divide the first of these equations by 
the second and simplify to obtain: 2

Sm

2
mS

m

S

rM
rM

F
F

=  

 
Substitute numerical values and 
evaluate this ratio: 

( )( )
( )( )
177

m101.50kg107.36
m103.84kg101.99

21122

2830

m

S

=

××

××
=

F
F

 

 

(b) Find 
dr
dF : 

r
F

r
mGm

dr
dF 22

3
21 −=−=  
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Solve for the ratio 
F

dF : 
r

dr
F

dF 2−=  

 
(c) Express the change in force ΔF 
for a small change in distance Δr: 
 

r
r
FF Δ−=Δ 2  

 
Express SFΔ : 

S3
S

S
S

S

2
S

S

S Δ2Δ2Δ r
r

GmMr
r
r

GmM

F −=−=  

 
Express mFΔ : 

m3
m

m
m 2 r

r
GmMF Δ−=Δ  

 
Divide the first of these equations by 
the second and simplify: 

m

S
3

Sm

3
mS

m3
m

m

S3
S

S

m

S

r
r

rM
rM

r
r

M

r
r
M

F
F

Δ
Δ

=
Δ

Δ
=

Δ
Δ  

 

Because :1
m

S =
Δ
Δ

r
r  

 

3
Sm

3
mS

m

S

rM
rM

F
F

=
Δ
Δ  

Substitute numerical values and 
evaluate this ratio: 

( )( )
( )( )

454.0

m101.50kg107.36
m103.84kg101.99

31122

3830

m

S

=

××

××
=

Δ
Δ

F
F

 

 
Because the ratio of the forces is less than one, the moon is the main cause of the 
tidal stretching of the oceans on Earth. 

 
107 ••• United Federation Starship Excelsior is dropping two small robotic 
probes towards the surface of a neutron star for exploration. The mass of the star 
is the same as that of the Sun, but the star’s diameter is only 10 km. The robotic 
probes are linked together by a 1.0-m-long steel cord (which includes 
communication lines between the two probes), and are dropped vertically (that is, 
one always above the other). The ship hovers at rest above the star’s surface. As 
the Chief of Materials Engineering on the ship, you are concerned that the 
communication between the two probes, a crucial aspect of the mission, will not 
survive. (a) Outline your briefing session to the mission commander and explain 
the existence of a ″stretching force″ that will try to pull the robots apart as they 
fall toward the planet. (See Problems 105 and 106 for hints.) (b) Assume that the 
cord in use has a breaking tension of 25 kN and that the robots each have a mass 
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of 1.0 kg. How close will the robots be to the surface of the star before the cord 
breaks? 
 
Picture the Problem Let MNS be the mass of the neutron star and m the mass of 
each robot. We can use Newton’s law of gravity to express the difference in the 
tidal-like forces acting on the coupled robots. Expanding the expression for the 
force on the robot further from the neutron star binomially will lead us to an 
expression for the distance at which the breaking tension in the connecting cord 
will be exceeded. 
 
(a) The gravitational force is greater on the lower robot, so if it were not for the 
cable its acceleration would be greater than that of the upper robot and they would 
separate. In opposing this separation the cable is stressed.  
 
(b) Letting the separation of the two 
robots be Δr, and the distance from 
the center of the star to the lower 
robot be r, use Newton’s law of 
gravity to express the difference in 
the forces acting on the robots: 
 

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

−=

Δ+
−=

−2

2
NS

2
2

2NS

2
N

2
NS

tide

11

1

11

r
r

r
mGM

r
rr

r
mGM

rr
mGM

r
mGMF S

 

 
Expand the expression in the square 
brackets binomially and simplify to 
obtain: 
 

r
r

r
r

r
r

Δ
=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−−≈⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−
−

2

21111
2

 

 
Substituting yields: 

r
r

mGMF Δ≈ 3
NS

tide
2  

 
Letting FB be the  breaking tension of 
the cord, substitute for Ftide and solve 
for the value of r corresponding to the 
breaking strain being exceeded: 
 

3 NS2 r
F

mGMr
B

Δ=  

Substitute numerical values and evaluate r: 
 

( )( )( ) ( ) m102.2m0.1
kN25

kg1.0kg1099.1/kgmN10673.62 53

302211

×=
×⋅×

=
−

r  

 
 


