b. decreases by a factor of 2.

d. decreases by a factor of $\sqrt{2}$.

	e. is not affected	•							
2.	If F is the force, x the displacement, and k a particular constant, for simple harmonic motion we must have								
	a. $F = -k/x^2$	b. F=	= k/x	c. F=(k/x2)1/2				
	d. $F = -kx^2$		ne of these.	0. r – (
		0	110 01 11000.						
3.	A particle moving time $t = 0$. The free is	with a simple hat equency of the m	armonic motion notion is 10 s ⁻¹ .	has its maximum dis At a time t = 0.65 s, t	placement of +18 cm at he position of the particle				
	a. +18 cm	b. zero	c13 cm	d18 cm	e. +7.3 cm				
4.	The instantaneous speed of a mass undergoing simple harmonic motion on the end of a spring depends on								
	a. the amplitude	of oscillation.	b. the fre	equency of oscillation). 				
	c. the period of	oscillation.		ne at which the spee	· .				
	e. all of these.			•					
5.	A particle moving in simple harmonic motion with a period $T=1.5$ s passes through the equilibrium point at time $t_0=0$ with a velocity of 1.00 m/s to the right. A time t later, the particle is observed to move to the left with a velocity of 0.50 m/s. (Note the change in direction of the velocity.) The smallest possible value of the time t is								
	a. 0.17 s	b. 0.33 s	c. 0.50 s	d. 0.25 s	e. 0.82 s				
6.	A particle with a r particle is at its ex At time t = 1.35 s,	xtreme positive d	lisplacement of	le harmonic motion. 18.0 cm. The period	At time $t = 0$, the of the motion is 0.600 s.				
	a1.9 m/s	b. zero	c. 0.84 m/s	d. +1.9 m/s	e0.84 m/s				
7	A hady mayor wi	ith aimple barma	nia wasian assa	malta a sa sila a sa sa sa sila a					
7.	A body moves with simple harmonic motion according to the equation								
		$x=(2l^2$	π) sin (4 π t + π /3)						
	where the units are SI. At $t = 2$ s, the speed of the body is								
	a. m/s	b. 1/π m/s	c. √3/π m/s	d. 4 m/s	e. 4√3 m/s				
					,				

period T. If the mass is doubled to 2m, the period of oscillation

a. increases by a factor of 2.

c. increases by a factor of $\sqrt{2}$.

8. A spring vibrates in simple harmonic motion according to the equation

$$x = 0.15 \cos \pi t$$

where the units are SI. The period of the motion is

- a. 0.67 s
- b. 1.0 s
- c. 2.0 s
- d. πs
- e. 3.2 s

A ball moves with simple harmonic motion between points A and B. The magnitude of the acceleration of the ball at point C is 5.00 m/s 2 . The magnitude of the acceleration of the ball at point D is

- a. 1.25 m/s²
- b. 2.50 m/s²
- c. 5.00 m/s^2
- d. 7.50 m/s²
- e. 10.0 m/s²
- 10. A particle moves in one dimension with simple harmonic motion according to the equation

$$d^2x/dt^2 = -4\pi^2x$$

where the units are SI. Its period is

- a. $4\pi^{2}$ s
- b. 2π s
- c. 1s
- d. $1/(2\pi)$ s
- e. $1/(4\pi^2)$ s
- 11. A particle moving in a circle of radius 15 cm makes 33.3 rev/min. If the particle starts on the positive x axis at time t=0, what is the x component of the particle's velocity at time t=1.2 s?
 - a. 45 cm/s
- b. -3.8 cm/s
- c. 26 cm/s
- d. -45 cm/s
- e. 13 cm/s

12.

The object in the diagram is in circular motion with frequency f. At t=0 it was at (A, 0). The y component of its velocity is given by

- a. $v_y^2 = v_{0y}^2 + 2a(y y_0)$
- b. $v_y = 2\pi fA \cos 2\pi ft$
- c. $v_v = A \sin ft$

- d. $v_v = 2\pi f A \sin 2\pi f t$
- e. $v_y = A \cos ft$

13.

The object in the diagram is in circular motion. with frequency f. At t = 0 it was at (A, 0). The y component of its acceleration is given by

a.
$$a_y = (v_y - v_{0y})/t$$

b.
$$a_y = -(2\pi f)^2 A \cos 2\pi f t$$
 c. $a_y = -(2\pi)^2 A \sin 2\pi t$

c.
$$a_v = -(2\pi)^2 A \sin 2\pi t$$

d.
$$a_y = -(2\pi f)^2 A \sin 2\pi f t$$

e.
$$a_v = -(2\pi)^2 A \cos 2\pi t$$

- 14. A body of mass M is executing simple harmonic motion with an amplitude of 8.0 cm and a maximum acceleration of 100 cm/s². When the displacement of this body from the equilibrium position is 6.0 cm, the magnitude of the acceleration is approximately
 - a. 8.7 cm/s²
- b. 21 cm/s²
- c. 35 cm/s²
- d. 17 cm/s²
- e. 1.3 m/s²
- 15. The energy of a simple harmonic oscillator could be doubled by increasing the amplitude by a factor of
 - a. 0.7
- b. 1.0
- c. 1.4
- d. 2.0
- e. 4.0
- 16. A 2.5-kg object is attached to a spring of force constant k = 4.5 kN/m. The spring is stretched 10 cm from equilibrium and released. What is the kinetic energy of the mass-spring system when the mass is 5.0 cm from its equilibrium postion?
 - a. 5.6 J
- b. 11 J
- c. 17 J
- d. 14 J
- e. 42 J
- 17. The displacement in simple harmonic motion is a maximum when the
 - a. acceleration is zero.

b. velocity is a maximum.

c. velocity is zero.

- d. kinetic energy is a maximum.
- e. potential energy is a minimum.

The kinetic energy of a body executing simple harmonic motion is plotted against time expressed in terms of the period T. At t=0, the displacement is zero. Which of the graphs most closely represents these conditions?

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

19. A 2-kg mass oscillates in one dimension with simple harmonic motion on the end of a massless spring on a horizontal frictionless table according to

$$x = (6/\pi) \cos(\frac{1}{2}\pi t + 3\pi)$$

where the units are SI. The total mechanical energy of this system is

- a. 1 J
- b. 3J
- c. 5J
- d. 7J
- e. 9J

A body on a spring is vibrating in simple harmonic motion about an equilibrium position indicated by the dashed line. The figure that shows the body with maximum acceleration is

Equilibrium

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

21. To double the period of a pendulum, the length

- a. must be increased by a factor of 2.
- b. must be decreased by a factor of 2.
- c. must be increased by a factor of $\sqrt{2}$.
- d. must be increased by a factor of 4.

e. need not be affected.

- 22. What must be the length of a simple pendulum with a period of 2.0 s if $g = 9.8 \text{ m/s}^2$?
 - a. 99 cm
- b. 97 m
- c. 6.2 cm
- d. 3.1 m
- e. 2.0 m

				•		
				e e		
•						
			. *		•	•
i.						
				•		
	•					
		1.0		•		
					·	
:			•			
					·	
				•		