Chapter 14
Oscillations

Conceptual Problems

1 . True or false:

(a) For a simple harmonic oscillator, the period is proportional to the square of the
amplitude.

(b) For a simple harmonic oscillator, the frequency does not depend on the
amplitude.

(c) If the net force on a particle undergoing one-dimensional motion is
proportional to, and oppositely directed from, the displacement from equilibrium,
the motion is simple harmonic.

(a) False. In simple harmonic motion, the period is independent of the amplitude.

(b) True. In simple harmonic motion, the frequency is the reciprocal of the period
which, in turn, is independent of the amplitude.

() True. This is the condition for simple harmonic motion

2 e If the amplitude of a simple harmonic oscillator is tripled, by what
factor is the energy changed?

Determine the Concept The energy of a simple harmonic oscillator varies as the
square of the amplitude of its motion. Hence, tripling the amplitude increases the
energy by a factor of 9.

3 e« [SSM] An object attached to a spring exhibits simple harmonic
motion with an amplitude of 4.0 cm. When the object is 2.0 cm from the
equilibrium position, what percentage of its total mechanical energy is in the form
of potential energy? (a) One-quarter. (b) One-third. (¢) One-half. (d) Two-thirds.
(e) Three-quarters.

Picture the Problem The total energy of an object undergoing simple harmonic

motion is given by E, =1kA?, where k is the force constant and A is the

amplitude of the motion. The potential energy of the oscillator when it is a
distance X from its equilibrium position is U (X) =1kx*,

Express the ratio of the potential U (x)
energy of the object when it is

2.0 cm from the equilibrium position
to its total energy:

XZ
kAt A
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Evaluate this ratio forx=2.0cmand ~ y(2cm) (2.0cm) 1

A=4.0 cm: E, (40cm) 4

and| (a) |is correct.

4 o An object attached to a spring exhibits simple harmonic motion with
an amplitude of 10.0 cm. How far from equilibrium will the object be when the
system’s potential energy is equal to its kinetic energy? (a) 5.00 cm. (b) 7.07 cm.
() 9.00 cm. (d) The distance can’t be determined from the data given.

Determine the Concept Because the object’s total energy is the sum of its kinetic
and potential energies, when its potential energy equals its kinetic energy, its

potential energy (and its kinetic energy) equals one-half its total energy.

Equate the object’s potential energy U=1E,,
to one-half its total energy:

Substituting for U and Eqo, yields:

Substitute the numerical value of A . 10.0cm
and evaluate X to obtain: \/5

and | (b) |is correct.

5 o Two identical systems each consist of a spring with one end attached
to a block and the other end attached to a wall. The springs are horizontal, and the
blocks are supported from below by a frictionless horizontal table. The blocks are
oscillating in simple harmonic motions such that the amplitude of the motion of
block A is four times as large as the amplitude of the motion of block B. How do
their maximum speeds compare? (&) V, ... =Vgiws (0 Vs = 2V5 mae »

(C) Vp e =4V (d) This comparison cannot be done by using the data given.

Bmax ?

Determine the Concept The maximum speed of a simple harmonic oscillator is
the product of its angular frequency and its amplitude. The angular frequency of a
simple harmonic oscillator is the square root of the quotient of the force constant
of the spring and the mass of the oscillator.

Relate the maximum speed of system Vo max = @O Ay
A to the amplitude of its motion:

Relate the maximum speed of system Vi mae = @p A
B to the amplitude of its motion:
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Divide the first of these equations by VA max _ 0 A,
the second to obtain: Vo  ©OpAg
Because the systems differ only in VA max _ i
amplitude, @, = @, and: Vo Ag

. . . . . V 4A
S'ubstltutlng for Ax and simplifying ame _ s gy gy
ylelds: VB max AB

(c) |is correct.

6 Two systems each consist of a spring with one end attached to a block

and the other end attached to a wall. The springs are horizontal, and the blocks are
supported from below by a frictionless horizontal table. The blocks are oscillating
in simple harmonic motions with equal amplitudes. However, the force constant
of spring A is four times as large as the force constant of spring B. How do their
maximum speeds compare? () V =V (b) v =2v

(©) V0 =4V (d) This comparison cannot be done by using the data given.

A max Bmax ° A max Bmax *

Bmax *

Determine the Concept The maximum speed of a simple harmonic oscillator is
the product of its angular frequency and its amplitude. The angular frequency of a
simple harmonic oscillator is the square root of the quotient of the force constant
of the spring and the mass of the oscillator.

Relate the maximum speed of system K,

A to its force constant: Vi = Op Py = m_AAA

Relate the maximum speed of system Ky
\" = Wy AB = m—AB

A max

B to its force constant: B max

Divide the first of these equations by K, A
th implify to obtain: m, *
e second and simplify to obtain am _ VM4 my k_A A
VB max kiBA mA kB AB
B
mB
Because the systems differ only in Vo K,
their force constants: Vi B E
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Substituting for ka and simplifying Voo 4k, ey
_—= ==

yields: Vv Ky Amax =2

B max
B max

(b) |is correct.

7 e« [SSM] Two systems each consist of a spring with one end attached
to a block and the other end attached to a wall. The identical springs are
horizontal, and the blocks are supported from below by a frictionless horizontal
table. The blocks are oscillating in simple harmonic motions with equal
amplitudes. However, the mass of block A is four times as large as the mass of
block B. How do their maximum speeds compare? (a) Vv =V

(b) v

using the data given.

A max B max

=2V5 000 (©) V a mae =5 Vema » (d) This comparison cannot be done by

A max

Determine the Concept The maximum speed of a simple harmonic oscillator is
the product of its angular frequency and its amplitude. The angular frequency of a
simple harmonic oscillator is the square root of the quotient of the force constant
of the spring and the mass of the oscillator.

Relate the maximum speed of system

kA
A to its force constant: Vi = @a Ay = m_AAA
Relate the maximum speed of system A Kg A
B to its force constant: Vomax = @pFp = m_B B
Divide the first of these equations by K, A
th implify to obtain: m. A
e second and simplify to obtain ame _ VMy [y k, A,
VB max kB mA kB AB
/7 A,
mB
Because the systems differ only in Vp o My
the masses attached to the springs: Vg B m_A
Substituting for ms and simplifying V, my
- —Sm = =TV, =3 Vs
y1elds. Vi o 4mB max max

(c) |is correct.

8 e Two systems each consist of a spring with one end attached to a block
and the other end attached to a wall. The identical springs are horizontal, and the
blocks are supported from below by a frictionless horizontal table. The blocks are
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oscillating in simple harmonic motions with equal amplitudes. However, the mass
of block A is four times as large as the mass of block B. How do the magnitudes
of their maximum acceleration compare? (a) a (b) a =2a

(€) A4 max =38 mae» (@) @4 ax = 58500, » (€) This comparison cannot be done by

Amax — Bmax ’ A max B max °

using the data given.

Determine the Concept The maximum acceleration of a simple harmonic
oscillator is the product of the square of its angular frequency and its amplitude.
The angular frequency of a simple harmonic oscillator is the square root of the
quotient of the force constant of the spring and the mass of the oscillator.

Relate the maximum acceleration of — 0 A = k_A A
system A to its force constant: A m A A

Relate the maximum acceleration of

system B to its force constant: - my

Divide the first of these equations by ky A

the second and simplify to obtain: a,,.. m " _my k, A,
max ki AB mA kB AB

Because the systems differ only in Apmax _ Mg
the masses attached to the springs: Qg My
Substituting for my and simplifying AQamax _ Mg 1
. —___Z:aAmax_zaBmax
yields: Qg 4Mg

(d) |is correct.

9 e« [SSM] In general physics courses, the mass of the spring in simple
harmonic motion is usually neglected because its mass is usually much smaller
than the mass of the object attached to it. However, this is not always the case. If
you neglect the mass of the spring when it is not negligible, how will your
calculation of the system’s period, frequency and total energy compare to the
actual values of these parameters? Explain.

Determine the Concept Neglecting the mass of the spring, the period of a simple
harmonic oscillator is given by T =27/w =27./m/k where m is the mass of the
oscillating system (spring plus object) and its total energy is given by E,,, =1KA”.

total —
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Neglecting the mass of the spring results in your using a value for the mass of the
oscillating system that is smaller than its actual value. Hence your calculated
value for the period will be smaller than the actual period of the system.

Because @ =,/k/m , neglecting the mass of the spring will result in your using a

value for the mass of the oscillating system that is smaller than its actual value.
Hence your calculated value for the frequency of the system will be larger than
the actual frequency of the system.

Because the total energy of the oscillating system is the sum of its potential and
kinetic energies, ignoring the mass of the spring will cause your calculation of the
system’s kinetic energy to be too small and, hence, your calculation of the total
energy to be too small.

10 = Two mass—spring systems oscillate with periods T, and Tg. If
Ta =2Tg and the systems’ springs have identical force constants, it follows that

the systems’ masses are related by (a) ma = 4mg, (b) m, =m, /\/5,
() ma =mg/2, (d) my = mg/4.

Picture the Problem We can use T =27z,/m/k to express the periods of the two

mass-spring systems in terms of their force constants. Dividing one of the
equations by the other will allow us to express my in terms of Mg.

Express the period of system A: m k T?
P P g T, =27 M8 o, = Sata
K, Arx
Relate the mass of system B to its KoTs
: d mB = 2
period: 47
Divide the first of these equations by k,T:
the second and simplify to obtain: my, _ 4z’ _ KT K
My KeTy  KyTy
4’

Because the force constants of the m T2 (T.Y
A _ A _ A
two systems are the same: T2
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Substituting for Ta and simplifying
yields:

2
ﬂ:[zﬂ _4mm, =am,
Mg Ty

(a) |is correct.

11 e+ Two mass—spring systems oscillate at frequencies fo and fg. If f5 = 2fg
and the systems’ springs have identical force constants, it follows that the

systems’ masses are related by (a) ma =4mg, (b) m, =m, /\/5 ,(c)m,=m,/2,
(d)y m, =m, /4.

Picture the Problem We can use f =2L\/Kto express the frequencies of the
z.\m

two mass-spring systems in terms of their masses. Dividing one of the equations
by the other will allow us to express My in terms of Mg.

Express the frequency of mass-spring 1 k

. . ) f,=— |[—
system A as a function of its mass: A or m,
Express the frequency of mass- 1 [k
spring system B as a function of its BT or m_B
mass:
Divide the second of these equations fy m,
by the first to obtain: H B m_B

. 2 2
Solve for mx: f, f, 1
m,=[-2|m,=|—2|m,=Im
A fA B 2 fB B 4B

(d) | is correct.

12 +=  Two mass—spring systems A and B oscillate so that their total
mechanical energies are equal. If my = 2mg, which expression best relates their

amplitudes? (a) Ax = Ag/4, (D) A, = AB/\/E , (€) Ax = Ag, (d) Not enough
information is given to determine the ratio of the amplitudes.

Picture the Problem We can relate the energies of the two mass-spring systems
through either E =1kA’or E =1mw”A’ and investigate the relationship between

their amplitudes by equating the expressions, substituting for mu, and expressing
A 1n terms of Ag.



1442 Chapter 14

Express the energy of mass-spring E, =1k, A =im,w; A;
system A:

Express the energy of mass-spring E, =1k, Al =im,m A
system B:

Divide the first of these equations by ~ E, . Im, o} A

the second to obtain: E, o Im, oA

Substitute for my and simplify:

Solve for Ax: A = [N A,
= ——2—

Without knowing how @, and ws, or ks and K, are related, we cannot simplify

this expression further. | (d) |is correct.

13 e [SSM] Two mass—spring systems A and B oscillate so that their total
mechanical energies are equal. If the force constant of spring A is two times the
force constant of spring B, then which expression best relates their amplitudes?

(@) Ax=Agp/4, (b)A, = AB/\/E , (€) Ax = Ag, (d) Not enough information is given
to determine the ratio of the amplitudes.

Picture the Problem We can express the energy of each system using
E=1 kA’ and, because the energies are equal, equate them and solve for A,.

Express the energy of mass-spring E, =1k, A
system A in terms of the amplitude
of its motion:

Express the energy of mass-spring E; =
system B in terms of the amplitude
of its motion:

Because the energies of the two | » 5 Ky
TKA =K Ag= A = A
systems are equal we can equate 2 2 K,

them to obtain:
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Substitute for ks and simplify to Ky

_ _A
obtain: Ax 2k, A 2

(b) | is correct.

14 e+« The length of the string or wire supporting a pendulum bob increases
slightly when the temperature of the string or wire is raised. How does this affect
a clock operated by a simple pendulum?

Determine the Concept The period of a simple pendulum depends on the square
root of the length of the pendulum. Increasing the length of the pendulum will
lengthen its period and, hence, the clock will run slow.

15 e+ A lamp hanging from the ceiling of the club car in a train oscillates
with period Ty when the train is at rest. The period will be (match left and right
columns)

1. greater than Ty when A. The train moves horizontally at
constant velocity.

2. less than Ty when B. The train rounds a curve at constant
speed.

3. equal to Tp when C. The train climbs a hill at constant
speed.

D. The train goes over the crest of a hill
at constant speed.

Determine the Concept The period of the lamp varies inversely with the square
root of the effective value of the local gravitational field.

1-B. The period will be greater than Ty when the train rounds a curve of radius R
with speed V.

2-D. The period will be less than Ty when the train goes over the crest of a hill of
radius of curvature R with constant speed.

3-A. The period will be equal to Ty when the train moves horizontally with
constant velocity.
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16 <=  Two simple pendulums are related as follows. Pendulum A has a
length L4 and a bob of mass mu; pendulum B has a length Lg and a bob of mass
mg. If the period of A is twice that of B, then (a) Lo = 2Lg and ma =2mg,

(b) La =4Lg and ma = mg, (C) Lo = 4L whatever the ratio ma/mg, (d) L, = \/ELB
whatever the ratio ma/msg.

Picture the Problem The period of a simple pendulum is independent of the mass
of its bob and is given by T =27,/L/g.

Express the period of pendulum A: L,
T, =27 |—

g

Express the period of pendulum B: Ls
TB =2 E

Divide the first of these equations by L, (T, ?
the second and solve for La/Lg: T T_
B

Substitute for T4 and solve for Ly to [ T
- L, = B
obtain: A

2
= j L, =4L;

B

(¢) |is correct.

17 e« [SSM] Two simple pendulums are related as follows. Pendulum A

has a length L and a bob of mass ma; pendulum B has a length Lg and a bob of
mass Mg. If the frequency of A is one-third that of B, then (a) Ly = 3Lg and

ma = 3mg, (b) Lo = 9L and my = mg, (C) Lo = 9L regardless of the ratio ma/mg,

@@L, = NE) L, regardless of the ratio ma/mg.

Picture the Problem The frequency of a simple pendulum is independent of the
mass of its bob and is given by f =2Lw/g/L.
V4

Express the frequency of pendulum 1 |g g
. fA =—. T = I-A = 252
A: 2z \ L, Az f,
Similarly, the length of pendulum B L — g
5=

is given by: 4t
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Divide the first of these equations by g ,
the second and simplify to obtain: L, 4’8y _f7 (fy
LB g fA2 fA
4’ f;
Substitute for fo to obtain: L f 2
N N T BT
Ly (5fs

(¢) |is correct.

18 e Two simple pendulums are related as follows. Pendulum A has a
length L and a bob of mass mu; pendulum B has a length Ly a bob of mass mg.
They have the same period. The only thing different between their motions is that
the amplitude of A’s motion is twice that of B’s motion, then (a) Ly = Lg and

ma = mg, (b) Lo = 2Lg and my = mg, (C) Lo = Lg whatever the ratio ma/mg,

(d) L, =3 L; whatever the ratio ma/mg.

Picture the Problem The period of a simple pendulum is independent of the mass
of its bob and is given by T = 27z,/L/g. For small amplitudes, the period is

independent of the amplitude.

Express the period of pendulum A: L,
T, =27 |—
g
Express the period of pendulum B: L
Ty =27 |—
g
Divide the first of these equations by L, (T, ?
the second and solve for La/Lg: L - T
B B
Because their periods are the same: L, (T, 2
S =1=| =1=L, =L
Ly \T, p

(c) |is correct.

19 oo True or false:

(a) The mechanical energy of a damped, undriven oscillator decreases
exponentially with time.

(b) Resonance for a damped, driven oscillator occurs when the driving frequency
exactly equals the natural frequency.
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(c) If the Q factor of a damped oscillator is high, then its resonance curve will be
narrow.

(d) The decay time 7 for a spring-mass oscillator with linear damping is
independent of its mass.

(e) The Q factor for a driven spring-mass oscillator with linear damping is
independent of its mass.

(a) True. Because the energy of an oscillator is proportional to the square of its
amplitude, and the amplitude of a damped, undriven oscillator decreases
exponentially with time, so does its energy.

(b) False. For a damped driven oscillator, the resonant frequency @' is given

2
by o' =, 1—[ J ,where ay is the natural frequency of the oscillator.

2Mma,

(c) True. The ratio of the width of a resonance curve to the resonant frequency
equals the reciprocal of the Q factor (A@/®, =1/Q). Hence, the larger Q is, the

narrower the resonance curve.

(d) False. The decay time for a damped but undriven spring-mass oscillator is
directly proportional to its mass.

(e) True. From Aw/w, =1/Q one can see that Q is independent of m.

20 e« Two damped spring-mass oscillating systems have identical spring and
damping constants. However, system A’s mass My is four times system B’s. How
do their decay times compare? (a) 7, =4z, (b) 7, =274, (C)7, =75, (d) Their
decay times cannot be compared, given the information provided.

Picture the Problem The decay time 7 of a damped oscillator is related to the
mass M of the oscillator and the damping constant b for the motion according to
r=m/b.

Express the decay time of System A: . m,
The decay time for System B is my
given by: s = E

Dividing the first of these equations
by the second and simplifying yields:
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Because their damping constants are T, M,

the same: T, m,

Substituting for m, yields: 7, 4m
g AY A =B 47, =4r,

TB mB

(a) |is correct.

21 = Two damped spring-mass oscillating systems have identical spring
constants and decay times. However, system A’s mass My is system B’s mass mg.
They are tweaked into oscillation and their decay times are measured to be the
same. How do their damping constants, b, compare? (a) b, =4b,, (b) b, =2b,,
(¢) b, =bg, (d) b, =1b,, (e) Their decay times cannot be compared, given the
information provided.

Picture the Problem The decay time 7 of a damped oscillator is related to the
mass M of the oscillator and the damping constant b for the motion according to
r=m/b.

Express the damping constant of m,
! b, =
System A: A T,
The damping constant for System B b, — my
is given by: B~ Z
Dividing the first of these equations m,

by the second and simplifying yields:

TB
Because their decay times are the b, m,
same: b, m,
Substituting for m, yields: b, 2my; 2= b —2b
bB mB A B

(b) |is correct.

22 e+ Two damped, driven spring-mass oscillating systems have identical
driving forces as well as identical spring and damping constants. However, the
mass of system A is four times the mass of system B. Assume both systems are
very weakly damped. How do their resonant frequencies compare?
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@ o, =0y, b) 0, =20, (C) ®, =10y, (d) ©, =+oy, (&) Their resonant
frequencies cannot be compared, given the information provided.

Picture the Problem For very weak damping, the resonant frequency of a spring-
mass oscillator is the same as its natural frequency and is given by

@, = +/k/m, where m is the oscillator’s mass and k is the force constant of the
spring.

Express the resonant frequency of K,
System A: /N m.
A
The resonant frequency of System B K
is given by: Wy = m
B
Dividing the first of these equations K,
by the second and simplifying yields: 7
’ PEEY o, _Nmy _ [kem,
Wy Kg Ky M,
mB
Because their force constants are the m
same: “a = 2
. a)B mA
Substituting for my yields: o, m,,

— 1 — 1
T T2 Oa T3

(c) |is correct.

23 e» [SSM] Two damped, driven spring-mass oscillating systems have
identical masses, driving forces, and damping constants. However, system A’s
force constant Ky is four times system B’s force constant kg. Assume they are
both very weakly damped. How do their resonant frequencies compare?

@ o, =a,, b) o, =20, () 0, =+wy, (d) o, =40, (¢) Their resonant
frequencies cannot be compared, given the information provided.

Picture the Problem For very weak damping, the resonant frequency of a spring-
mass oscillator is the same as its natural frequency and is given by

@, = 1/k/m, where m is the oscillator’s mass and K is the force constant of the
spring.
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Express the resonant frequency of K,
System A: Wy = m.
A
The resonant frequency of System B K,
is given by: Wy = m
B
Dividing the first of these equations K,
h implifyi ields: -
by the second and simplifying yields o, \m, [ m,
Wy Ky ks M,
mB
Because their masses are the same: ® k
A |Z2A
Wy Kg
Substituting for Kk, yields: 4k
On - /—B =20, =20,
a)B kB

(b) |is correct.

24 oo Two damped, driven simple-pendulum systems have identical
masses, driving forces, and damping constants. However, system A’s length is
four times system B’s length. Assume they are both very weakly damped. How
do their resonant frequencies compare? (a) @, = @,, (b) o, =20,

(€) o, =%y, (d) ®, =%, (€) Their resonant frequencies cannot be compared,
given the information provided.

Picture the Problem For very weak damping, the resonant frequency of a simple
pendulum is the same as its natural frequency and is given by @, =4/g/L, where
L is the length of the simple pendulum and g is the gravitational field.

Express the resonant frequency of g
System A: Wy = L
A
The resonant frequency of System B g
is given by: Wy = [T
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Dividing the first of these equations g
by the second and simplifying yields: L 3
A VA | TB
Wy g L,
LB
Substituting for L yields: ® L
A B _ % =>o, = %a)B
4L
Wy B

(c) |is correct.

Estimation and Approximation

25 - [SSM] Estimate the width of a typical grandfather clocks’ cabinet
relative to the width of the pendulum bob, presuming the desired motion of the
pendulum is simple harmonic.

Picture the Problem If the motion of
the pendulum in a grandfather clock is
to be simple harmonic motion, then its
period must be independent of the
angular amplitude of its oscillations.
The period of the motion for large-
amplitude oscillations is given by
Equation 14-30 and we can use this
expression to obtain a maximum value
for the amplitude of swinging
pendulum in the clock. We can then use
this value and an assumed value for the
length of the pendulum to estimate the

B wamplitude —_— |

width of the grandfather clocks’ w
cabinet.
Referring to the diagram, we see that W =Wy, +W,oiitude
the minimum width of the cabinet is and
determined by the width of the bob W W
. . — 1 + amplitude (1)
and the width required to

W W
. . bob bob
accommodate the swinging ° °

pendulum:
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Express W, i 10 terms of the Womplitage = 2L 8106

angular amplitude #and the length

of the pendulum L:

Substituting for W, .4 10 €quation W, 2Lsind @)
(1) yields: Wob Whob

Equat‘lon 14-30 gives us the perlhod T=T, 1+Lsin2 1 0+

of a simple pendulum as a function 2? 2

of its angular amplitude:

If T is to be approxupately equal to 1 sin? 1 0<0.001

To, the second term in the brackets 2

must be small compared to the first

term. Suppose that:

Solving for fyields: 6 < 2sin"'(0.0632) ~ 7.25°

If we assume that the length ofa Wi, 2(1.5m)sin7.25 N
grandfather clock’s pendulum is W, 0.10m

about 1.5 m and that the width of the
bob is about 10 cm, then equation (2)
yields:

26 - A small punching bag for boxing workouts is approximately the size
and weight of a person’s head and is suspended from a very short rope or chain.
Estimate the natural frequency of oscillations of such a punching bag.

Picture the Problem For the purposes of this estimation, model the punching bag
as a sphere of radius R and assume that the spindle about which it rotates to be 1.5
times the radius of the sphere. The natural frequency of oscillations of this

physical pendulum is given by f, =, :2L Mgb where M is the mass of the
T

pendulum, D is the distance from the point of support to the center of mass of the

punching bag, and | is its moment of inertia about an axis through the spindle

from which it is supported and about which it swivels.

Express the natural frequency of ¢ 1 [MgD
oscillation of the punching bag: LD WY i

(1

spindle
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From the parallel-axis theorem we L pingie = lem + Mh?

have: where h=1.5R+0.5R =2R
Substituting for I, and h yields: | pingte =% MR? + M (ZR)2 =4.4MR?
Substitute for lgpinate in equation (1) ‘¢ 1 Mg(2 R) 1 g

to obtain: "“2z\44MR* 27\ 22R
Assume that the radius of the 1 9.81 m/s*

punching bag is 10 cm, substitute Ay 2.2(0.10m) ~|1Hz

numerical values and evaluate fy:

27 For a child on a swing, the amplitude drops by a factor of 1/e in about
eight periods if no additional mechanical energy is given to the system. Estimate
the Q factor for this system.

Picture the Problem The Q factor for this system is related to the decay constant
7 through Q=w,r =277/T and the amplitude of the child’s damped motion

t/27

varies with time according to A= Age” We can set the ratio of two

displacements separated by eight periods equal to 1/e to determine 7 in terms of
T.

Express Q as a function of 7: Q=wr= 2t (1)
=W, T =—

The amplitude of the oscillations A=Ae
varies with time according to:

The amplitude after eight periods is: A = Ae T

Express and simplify the ratio Ag/A: A Aje 8T T
AT A

Set this ratio equal to 1/e and solve e =e! =7 =4T

for 7:

Substitute in equation (1) and _27(4T)
Q= =| 87

evaluate Q: T

28 e+ (@) Estimate the natural period of oscillation for swinging your arms as
you walk, when your hands are empty. (b) Now estimate the natural period of
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oscillation when you are carrying a heavy briefcase. (C) Observe other people as
they walk. Do your estimates seem reasonable?

Picture the Problem Assume that an average length for an arm is about 80 cm,
and that it can be treated as a uniform rod, pivoted at one end. We can use the
expression for the period of a physical pendulum to derive an expression for the
period of the swinging arm. When carrying a heavy briefcase, the mass is
concentrated mostly at the end of the rod (that is, in the briefcase), so we can treat
the arm-plus-briefcase system as a simple pendulum.

(a) Express the period of a uniform
rod pivoted at one end:

Express the moment of inertia of a
rod about an axis through its end:

Substitute the values for | and D in
the expression for T and simplify to
obtain:

Substitute numerical values and
evaluate T:

(b) Express the period of a simple
pendulum:

Assuming L' = 1.0 m, evaluate
the period of the simple
pendulum:

T=2x L
\/ MgD

where | is the moment of inertia of the
stick about an axis through one end, M
is the mass of the stick, and D (= L/2) is
the distance from the end of the stick to
its center of mass.

| = LML
1 2
T=2x 3M1L =2z 2L
| Mg(i L) g
T=2r 20'80m2 ~[1.55
3(9.81m/s

T'=27z\/E
g

where L' is slightly longer than the arm
length due to the size of the briefcase.

=2z |9 _D0s
9.81m/s

(c) From observation of people as they walk, these estimates seem reasonable.

Simple Harmonic Motion

29 o The position of a particle is given by X = (7.0 cm) cos 6t, where t is
in seconds. What are (@) the frequency, (b) the period, and (c) the amplitude of the
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particle’s motion? (d) What is the first time after t = O that the particle is at its
equilibrium position? In what direction is it moving at that time?

Picture the Problem The position of the particle is given by x = Acos(at + &)

where A is the amplitude of the motion, w is the angular frequency, and ¢ is a
phase constant. The frequency of the motion is given by f = /27 and the period

of the motion is the reciprocal of its frequency.

.. -1

(@) Us§ the definition of @ to O 6zs _ 3 00Hz
determine f: 2r 27

(b) Evaluate the reciprocal of the T = r_ v _ 0.333s
frequency: f 3.00Hz

(¢) Compare X = (7.0 cm) cos 6t to A=|7.0cm

x = Acos(wt + &) to conclude that:

(d) Express the condition that must
be satisfied when the particle is at its 2 2w
equilibrium position:

Substituting for o yields: t=—" —10.0833s

Differentiate X to find v(t): Ve d [(7.0cm)cos67t]
dt-

= (427 cm/s)sin 67t

Evaluate v(0.0833 s):

v(0.0833s) = (427 cm/s )sin 67(0.08335) < 0

Because v < 0, the particle is moving in the negative direction at t = 0.0833 s.

30 - What is the phase constant din X = Acos(a)t +0 )(Equation 14-4) if the
position of the oscillating particle at time t = 0 is (a) 0, (b) A, (¢) A, (d) A/2?

Picture the Problem The initial position of the oscillating particle is related to
the amplitude and phase constant of the motion by X, = Acoso where 0 < 0<27.



(a) For xo=0:
(b) For xo = —A:
(c) For xo = A:

(d) When x = A/2:
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RY/4

cos§=0= & =cos '(0)= —

(O

~A=Acosé= d=cos'(-1)=| x

A=Acosd = 5=cos_l(l)=E

é:A0055: o =cos” |z
2 2

31 - [SSM] A particle of mass m begins at rest from X = +25 c¢cm and
oscillates about its equilibrium position at X = 0 with a period of 1.5 s. Write
expressions for (@) the position X as a function of t, (b) the velocity vy as a
function of t, and (C) the acceleration ay as a function of t.

Picture the Problem The position of the particle as a function of time is given
by x = Acos(at + &). Its velocity as a function of time is v, = —Awsin(wt +J) and

its acceleration isa, = —Aw” cos(wt + ). The initial position and velocity give us

two equations from which to determine the amplitude A and phase constanto.

(a) Express the position, velocity,
and acceleration of the particle as a
function of t:

Find the angular frequency of the
particle’s motion:

Relate the initial position and

velocity to the amplitude and phase
constant:

Divide the equation for vy by the
equation for Xy to eliminate A:

Solving for ¢ yields:

X = Acos(cot+5) (1)
v, =—Awsin(at + ) )
a, =—Aw’ cos(wt + ) (3)
=2—7z=4—7[s‘l =4.19s™
T 3
X, = Acoso
and

V, = —wAsind

V, —wAsino
—=————=—otand
X, Acoso

o= tanl(— V—Oj = tanl[— L] =0
X, X,®
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Substitute in equation (1) to obtain: x=(2 SCm)cosK 4Tﬂ o j t}

=| (0.25m)cos|(4.257 )|

L n (2
(b) Substlmte in equation (2) to v, = —(25cm)(4—”sljsin{(4—”sljt}
obtain: 3 3
= —(1.0m/s)sin|(4.257" )t]
(c) Substitute in equation (3) to 4r .\ 4z
btain: a, =—(25cm) —s cos|| —s |t
0 : 3 3

| - (4.4 m/s’ )cos[(4-2 s”! )tJ

32 e Find (a) the maximum speed and (b) the maximum acceleration of the
particle in Problem 31. (¢) What is the first time that the particle is at X = 0 and
moving to the right?

Picture the Problem The maximum speed and maximum acceleration of the
particle in are given by v, = Aw and a_ = Aw’. The particle’s position is
given by X = Acos(wt+35) where A = 7.0 cm, @ = 6z s, and § = 0, and its
velocity is given by Vv = —Aa)sin(cat +0 )

(a) Express Vpmax in terms of A and w: Vo = Ao = (7.00m)(67r s )= 427w cm/s
=11.3m/s
(b) Express amax in terms of A and @: a =Aw’= (7_Ocm)(6ﬁs—1 )2

=2527% cm/s? =| 25m/s?

37
2

(C) When x = 0: cosat =0=>at = cos_1(0)=%,
Evaluate v for ot = % : V=—-Aow sin(%) =—Aw

That is, the particle is moving to the
left.
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Evaluate v for ot = 37” : V=—-Aw sin(%{j =Aw
That is, the particle is moving to the
right.
RY/4 RY/4 RY/4
Solve wt =—for t to obtain: t=—= =| 0.25s
2 20 2‘67r s )

33 e« Work Problem 33 with the particle initially at X = 25 cm and moving
with velocity Vo = +50 cm/s.

Picture the Problem The position of the particle as a function of time is given by
x = Acos(at +&). Its velocity as a function of time is given by v = —Awsin(at + &)

and its acceleration by a=-Aw®’ cos(a)t +0 ) The initial position and velocity give

us two equations from which to determine the amplitude A and phase constant o.

(a) Express the position, velocity, X= Acos(a)t +0 ) (1)
and acceleration of the particle as vV, = —Awsin(ot + &) (2)
functions of t: a, =—Aw’ cos(wt+5) (3)
Find the angular frequency of the w2 M 4196t
particle’s motion: T 3 '
Relate the initial position and X, = Acoso
velocity to the amplitude and phase and
constant: V, = —wAsind
Divide these equations to eliminate Yo _— ®Asin & — —otand
A: X, Acoso
Solving for dyields:
8 Y 5= tanl[— Yo j
X, @
Substitute numerical values and » 50cm/s
. O=tan | — -
evaluate & (25cm)4.192s7')

=—0.445rad
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Use either the X or Vo equation (X is A= Xo _ 25cm — 97 7em
used here) to find the amplitude: cosd  cos(—0.445rad) '
Substitute in equation (1) to obtain: x = (0.28m)cos|(4.257 Jt —0.45]

(b) Substitute numerical values in equation (2) to obtain:

v, =—(27.7 cm{%s’l)sin{(%s’ljt —~ 0.445} =| —(1.2m/s)sin|(4.257 Jt - 0.45]

(c) Substitute numerical values in equation (3) to obtain:

dr ? dr
ax=—(27.7crn Ts cos TS t—0.445

=| —(4.9m/s?cos|(4.257 Jt—0.45]

34 e« The period of a particle that is oscillating in simple harmonic motion
is 8.0 s and its amplitude is 12 cm. At t= 0 it is at its equilibrium position. Find
the distance it travels during the intervals (2) t=0tot=2.0s, (b)t=2.0sto
t=4.0s,(c)t=0tot=1.0s,and (d)t=1.0stot=2.0s.

Picture the Problem The position of the particle as a function of time is given
by X = Acos(a)t +0 ) We’re given the amplitude A of the motion and can use the
initial position of the particle to determine the phase constant 6. Once we’ve
determined these quantities, we can express the distance traveled Ax during any
interval of time.

Express the position of the particle as X= (lZcm)cos(a)t +0 ) (1)
a function of t:

Find the angular frequency of the o= 2z _ 2z T
particle’s motion: T 80s 4
Relate the initial position of the X, = Acoso

particle to the amplitude and phase

constant:

Solve for & S—cos[ X | cos[ D)7
A A) 2
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Substitute in equation (1) to obtain: x=(12 cm)cosK K Sljt n % }

Express the distance the particle travels in terms of tf and t;:

Ax =|(12 cm)cosﬁ%sl jtf + %} —(12 cm)CosH%sljti + %}
fremfo (353 )5]

(a) Evaluate Ax for tr=2.0s,t;=0s:

(lzcm){cos[(%s_lj(2.05)+%:|—COS{(%S_IJ(O)-F%}H= 12cm

(b) Evaluate Ax fort;=4.0s,t;=2.0s:

(12C1’H){COS{[%S_Ij(4.0$)+%}—COS{(%S_IJ(Z.OS)—F%}H= 12cm

(c) Evaluate Ax fort;=1.0s, t;=0:

(zom{nd (3095 - 5 Jor £}

=|(12em){-0.7071-0} = 8.5cm

AX =

AX =

AX =

(d) Evaluate Ax fort;=2.0s,t;=1.0s:

(12cm){cosK%s*j(z.0s)+ﬂ—cosK%s*j(l.0s)+ﬂH= 3.5cm

35 e The period of a particle oscillating in simple harmonic motion is 8.0 s.
At t =0, the particle is at rest at X = A = 10 cm. (a) Sketch X as a function of t.
(b) Find the distance traveled in the first, second, third, and fourth second after
t=0.

AX =

Picture the Problem The position of the particle as a function of time is given
by x = (10cm)cos(awt + 5). We can determine the angular frequency @ from the
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period of the motion and the phase constant ¢ from the initial position and
velocity. Once we’ve determined these quantities, we can express the distance
traveled AX during any interval of time.

Express the position of the particle as x = (10cm)cos(at + ) (1)
a function of t:

Find the angular frequency of the = 2r_ 27w _ 7
particle’s motion: T 80s 4
Find the phase constant of the
. P S=tan™| - | = tan _ 0 =0
I’nOthIl. Xoa) Xoa)
Substitute in equation (1) to obtain: x=(10 cm)cos[(—s ljt}
o
(a) A graph of X = (IOcm)cos (ZS jt} follows:
10
8 .
6 /
4
2 .
A
x
2
4 \ /
6 \ /
° N4
-10 T T T
0 1 2 3 4 5 6 7 8
t (s)
(b) Express the distance the particle travels in terms of tf and t;:
AX = (1 0 cm)cos{[% s”! jtf} - (1 0 cm)cos{(% s jti}
()

frofel o)
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Substitute numerical values in tr | t AX

equation (2) and evaluate AX in each (s) | (s) | (cm)

of the given time intervals to obtain: 110/|[209
2 L]]71
3121171
4131129

36 e Military specifications often call for electronic devices to be able to
withstand accelerations of up to 10g (10g =98.1 m/ s). To make sure that your
company’s products meet this specification, your manager has told you to use a
"shaking table,” which can vibrate a device at controlled and adjustable
frequencies and amplitudes. If a device is placed on the table and made to
oscillate at an amplitude of 1.5 cm, what should you adjust the frequency to in
order to test for compliance with the 10g military specification?

Picture the Problem We can use the expression for the maximum acceleration of
an oscillator to relate the 10g military specification to the compliance frequency.

Express the maximum acceleration a_ =Aw’
of an oscillator:

Express the relationship between the = 2nf
angular frequency and the frequency
of the vibrations:

Substitute for @ to obtain:
a, =47’Af’=f = L Y
2z N A
Substitute numerical values and 1 | 98.1m/s?
evaluate f: “oaV15%x102m 13Hz

37 e« [SSM] The position of a particle is given by X = 2.5 cos zt, where X
is in meters and t is in seconds. (a) Find the maximum speed and maximum
acceleration of the particle. (b) Find the speed and acceleration of the particle
when X = 1.5 m.

Picture the Problem The position of the particle is given by x = Acos@t, where

A =2.5m and w = rrad/s. The velocity is the time derivative of the position and
the acceleration is the time derivative of the velocity.
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(a) The velocity is the time
derivative of the position and the
acceleration is the time derivative of
the acceleration:

X=Acosot= V:%:—a)Asina)t

and a= % =—w’ Acos wt

The maximum value of sinat is +1 V. =Awo= (2_5 m)(;z g ): 7.9m/s
and the minimum value of sinat is
—1. A and w are positive constants:

The maximum value of cosat is +1 a =Aw’= (2_ 51’1’1)(72'8_1 )2

and the minimum value of cosat is >

1 =| 25m/s

(b) Use the Pythagorean identity v’ X’ T 2
) .. ——+—=1 =V A" —

sin? wt + cos® wt = 1to eliminate t w* A * A2 :>|V| @ X

from the equations for x and v:

Substitute numerical values and 2 2
V(I.5m)=(zrad/sh/(2.5m) —(1.5m
evaluate |v(l S m)| : | ( X ( )\/( F- )
=| 6.3m/s
Substitute X for Acosat in the a=-wx
equation for a to obtain:
Substitute numerical values and a= _(7[ rad /s)2 (1 5 m) —| —15my/s>

evaluate a:

38 eee (@) Show that Ay cos(at + O) can be written as A sin(at) + A, cos(at),
and determine A and A, in terms of Ag and 6. (b) Relate A. and A; to the initial
position and velocity of a particle undergoing simple harmonic motion.

Picture the Problem We can use the formula for the cosine of the sum of two
angles to write X = Ag cos(at + ) in the desired form. We can then evaluate x and
dx/dt at t = 0 to relate A, and A, to the initial position and velocity of a particle
undergoing simple harmonic motion.

(a) Apply the trigonometric identity X=A, cos(a)t +0 )

cos(at +5) = cos wt cos 5 —sin wtsin & = A [cos at cos & —sin et sin 5]

to obtain: =—A, sinosinwt + A, cosd cos wt

=| A sinot+ A, cosat

provided
A =-Ajsinoand A = A cosd
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(b) When t = 0: x(0)=| Ajcosd = A
Eval :
valuate dx/dt V= % _ %[As sin ot + A, cos a)t]

= Awcoswt — A wsin ot

Evaluate v(0) to obtain: V(0) = wA, =| —whA, sind

Simple Harmonic Motion as Related to Circular Motion

39 [SSM] A particle moves at a constant speed of 80 cm/s in a circle of
radius 40 cm centered at the origin. (a) Find the frequency and period of the x
component of its position. (b) Write an expression for the X component of its
position as a function of time t, assuming that the particle is located on the +y-axis
attime t=0.

Picture the Problem We can find the period of the motion from the time required
for the particle to travel completely around the circle. The frequency of the
motion is the reciprocal of its period and the X-component of the particle’s
position is given by X = Acos(cot+5). We can use the initial position of the

particle to determine the phase constant o.

(a) Use the definition of speed to T= 2nr _ 27[(0.40m) _314-[31s
find the period of the motion: v 0.80m/s ' '
Becfause the fr.equency and the fo 1 _ 1 0321y

period are reciprocals of each other: T 3.14s

(b) Express the X component of the X = Acos(a)t + 5) = Acos(27zft + 5) (1)
position of the particle:

The initial condition on the particle’s x(O) =0

position is:

Subs'tltute in the expression for X to 0= Acoss = & = cos”! (0) _r

obtain: 2

Substitute for A, @, and J in

O\ T
equation (1) to obtain: x=| (40 cm)cos[(Z.Os 1)t +E

| |
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40 - A particle moves in a 15-cm-radius circle centered at the origin and
completes 1.0 rev every 3.0 s. (2) Find the speed of the particle. (b) Find its
angular speed w. (C) Write an equation for the X component of the position of the
particle as a function of time t, assuming that the particle is on the —X axis at time
t=0.

Picture the Problem We can find the period of the motion from the time required
for the particle to travel completely around the circle. The angular frequency of
the motion is 27z times the reciprocal of its period and the X-component of the
particle’s position is given by X = Acos(a)t +0 ) We can use the initial position of

the particle to determine the phase constanto.

(a) Use the definition of speed to Ve 2 _ 27 (15cm) 3 lemss
express and evaluate the speed of T 3.0s
the particle:
b) Th 1 d of th ticl
() e angular speed of the particle w:2_7z: 2 _ 2—7zrad/s
is: T 3.0s 3
(c) Express the x component of the X= Acos(a)t +0 ) (1)
position of the particle:
The initial condition on the particle’s x(0)=-A
position is:
Substituting for X in equation (1) —A=Acosd = S=cos”' (— 1) =7

yields:

Substitute for A, o, and ¢ in equation 2T
X= (15cm)cos TS_ t+r7

(1) to obtain:

Energy in Simple Harmonic Motion

41 - A 2.4-kg object on a frictionless horizontal surface is attached to one
end of a horizontal spring of force constant k = 4.5 kN/m. The other end of the
spring is held stationary. The spring is stretched 10 cm from equilibrium and
released. Find the system’s total mechanical energy.

Picture the Problem The total mechanical energy of the object is given by
E,.. =+kA’, where A is the amplitude of the object’s motion.
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The total mechanical energy of the E, =1kA?

tot
system is given by:

o=

Substitute numerical values and E
evaluate E;.:

=1(4.5kN/m)(0.10m)* =| 23J

tot

42 Find the total energy of a system consisting of a 3.0-kg object on a
frictionless horizontal surface oscillating with an amplitude of 10 cm and a
frequency of 2.4 Hz at the end of a horizontal spring.

Picture the Problem The total energy of an oscillating object can be expressed in
terms of its kinetic energy as it passes through its equilibrium position:
E, =imv’ . Its maximum speed, in turn, can be expressed in terms of its

tot max *
angular frequency and the amplitude of its motion.

Express the total energy of the object E=Limv
in terms of its maximum kinetic
energy:

The maximum speed v, of the Voo = A =27Af

oscillating object is given by:

Substitute for v to obtain: E=1 m(2 7Af )2 = 2mArtf2
Substitute numerical values and E= 2(3,0 kg)(O,lOm)2 ’ (2.4 s”! )2
evaluate E: 347

43 [SSM] A 1.50-kg object on a frictionless horizontal surface oscillates
at the end of a spring of force constant kK = 500 N/m. The object’s maximum
speed is 70.0 cm/s. (a) What is the system’s total mechanical energy? (b) What is
the amplitude of the motion?

Picture the Problem The total mechanical energy of the oscillating object can be
expressed in terms of its kinetic energy as it passes through its equilibrium
position: E,, =imv’ . Its total energy is also given by E, =1kA’. We can

tot 2 tot

equate these expressions to obtain an expression for A.

(a) Express the total mechanical E=1imv,,
energy of the object in terms of its
maximum kinetic energy:
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Substitute numerical values and E =1(1.50kg)(0.700m/s)* = 0.3675J
evaluate E:

=1 0.368]

(b) Express the total mechanical
energy of the object in terms of the
amplitude of its motion:

Substitute numerical values and 2(0.3675]
) A= [~————7=1383cm
evaluate A: 500 N/m

44 - A 3.0-kg object on a frictionless horizontal surface is oscillating on the
end of a spring that has a force constant equal to 2.0 kN/m and a total mechanical
energy of 0.90 J. (a) What is the amplitude of the motion? (b) What is the
maximum speed?

2E

tot

E, =lkA’= A=

Picture the Problem The total mechanical energy of the oscillating object can be
expressed in terms of its kinetic energy as it passes through its equilibrium
2 . Its total energy is also given by E,, =1kA’. We can solve

max *

o o
position: E , =4mv

tot

the latter equation to find A and solve the former equation for Vi,x.

(a) Express the total mechanical
energy of the object as a function of fot 2 k
the amplitude of its motion:

Substitute numerical values and 2(0.907)
= [——=|3.0cm
evaluate A: 2000N/m
(b) Express the total mechanical ) 2E
.. ) E =Imv: —=v = [Z—

energy of the object in terms of its ot 2 T max T Tmax m
maximum speed:
Substitut ical val d

ubstitute numerical values an v - 2(0.90J e p—
evaluate Viax: ™\ 3.0kg
45 An object on a frictionless horizontal surface oscillates at the end of a

spring with an amplitude of 4.5 cm. Its total mechanical energy is 1.4 J. What is
the force constant of the spring?



Oscillations 1467

Picture the Problem The total mechanical energy of the object is given by
E, =1kA’. We can solve this equation for the force constant k and substitute the

numerical data to determine its value.

Express the total mechanical energy E —1KA2—k = 2E,,

. . ot T KA =K =—5"
of the oscillator as a function of the A
amplitude of its motion:
Substitute numerical values and P 2(1-4 J ) = [14 KN/m
evaluate k: (0.045 m)

46 = A 3.0-kg object on a frictionless horizontal surface oscillates at the end
of a spring with an amplitude of 8.0 cm. Its maximum acceleration is 3.5 m/s’.
Find the total mechanical energy.

Picture the Problem The total mechanical energy of the system is the sum of the

potential and kinetic energies. That is, E, =1kx*+1imv?. Newton’s 2" law

relates the acceleration to the displacement. That is, —kx = ma. In addition, when
X = A, v=0. Use these equations to solve E in terms of the given parameters m,
A and aax.

The total mechanical energy is the E. =+kx* +1imv?
sum of the potential and kinetic

energies. We don’t know Kk so we

need an equation relating K to one or

more of the given parameters:

The force exerted by the Sprlng Ckx=ma= k = _Mma
equals the mass of the object X
multiplied by its acceleration: When X = —A, @ = 8max. Thus,
_ mamax mamax
-A A
. - m
Substitute to obtain: E, =1 A nax x* +1my?
Whe'n X =A, v=0. Substitute to E. :%mamax A +0=1ma,_ A
obtain: A
Substitute numerical values and E, = %(3.0 kg)(3.5 m/s’ )(0.080 m)

evaluate E;.:

0.42])
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Simple Harmonic Motion and Springs

47 o

A 2.4-kg object on a frictionless horizontal surface is attached to a

horizontal spring that has a force constant 4.5 kN/m. The spring is stretched 10
cm from equilibrium and released. What are (a) the frequency of the motion,
(b) the period, (¢) the amplitude, (d) the maximum speed, and (e) the maximum

acceleration? (f) When does the object first reach its equilibrium position? What is

its acceleration at this time?

Picture the Problem The frequency of the object’s motion is given by

f= Lw/ k/m and its period is the reciprocal of f. The maximum velocity and

27

acceleration of an object executing simple harmonic motion are v

a_. = Aw’, respectively.

(a) The frequency of the motion is
given by:

Substitute numerical values and
evaluate f:

(b) The period of the motion to is the
reciprocal of its frequency:

(c) Because the object is released
from rest after the spring to which it
is attached is stretched 10 cm:

(d) The object’s maximum speed is
given by:

Substitute numerical values and
evaluate Vipax:

(e) The object’s maximum
acceleration is given by:

mx = Aw and
fo L [k
2z \m
_ 1 [4SkNm oo
27\ 2.4kg
=| 6.9Hz
1oL _014s55=[0.15s
f 6.89s
A=|10cm
V... = Ao =224A
Vo = 277(6.8957)(0.10m) = 4.33m/s
=| 4.3m/s
a‘max = Aa)z = a)vmax = 27vamax
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Substitute numerical values and a,. = 27[(6.89 s™! )(4.33 m/s)
evaluate apay: —[1.9%10% m/s?

(f) The object first reaches its t=1T=1(0.145s)=| 36 ms
equilibrium when:

Because the resultant force acting on a= @
the object as it passes through its

equilibrium position is zero, the

acceleration of the object is:

48 - A 5.00-kg object on a frictionless horizontal surface is attached to one
end of a horizontal spring that has a force constant k = 700 N/m. The spring is
stretched 8.00 cm from equilibrium and released. What are (a) the frequency of
the motion, (b) the period, (C) the amplitude, (d) the maximum speed, and (€) the
maximum acceleration? (f) When does the object first reach its equilibrium
position? What is its acceleration at this time?

Picture the Problem The frequency of the object’s motion is given by

f= %1/ k/m and its period is the reciprocal of f. The maximum speed and
T

acceleration of an object executing simple harmonic motion are vV, = A® and

a_. = Aw’, respectively.

(a) The frequency of the motion is . 1 |k
given by: "2\ m
Substitute numerical values and
Ny o o _ 1 [700Nm ) eesmy
evaluate f: 27\ 5.00kg
=|1.88Hz
(b) .The perlofl of the motion is the T= 11 2053105
reciprocal of its frequency: f 1.883s”
=1 0.531s
(c) Because the object is released A=|8.00cm

from rest after the spring to which it
is attached is stretched 8.00 cm:
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(d) The object’s maximum speed is v .. =Aw=2214A

given by:

Substitute numerical values and Vo = 27[(1 .883s™ )(0.0800 m)
evaluate Vpax: =0.9465m/s =| 0.947m/s
(e) The object’s maximum a. =Aw =ov, =274V
acceleration is given by:

Substitute numerical values and A, = 27r(1.883 s )(0.9465 m/s)
evaluate amax: 1 2m/s?

(f) The object first reaches its t=1T= %(()_53 105) =10.133s

equilibrium when:

Because the resultant force acting on the object as it passes through its

equilibrium point is zero, the acceleration of the objectis a =| 0.

49 . [SSM] A 3.0-kg object on a frictionless horizontal surface is
attached to one end of a horizontal spring, oscillates with an amplitude of 10 cm
and a frequency of 2.4 Hz. (a) What is the force constant of the spring? (b) What
is the period of the motion? (C) What is the maximum speed of the object?

(d) What is the maximum acceleration of the object?

Picture the Problem (a) The angular frequency of the motion is related to the
force constant of the spring through @® = k/m. (b) The period of the motion is the
reciprocal of its frequency. (C) and (d) The maximum speed and acceleration of an
object executing simple harmonic motion are v, =Aw and a, = A&’

respectively.

(@) Relgte the angular frequency of W = h — k=ma? =472 f2m

the motion to the force constant of m

the spring:

Substitute numerical values to k=4r?2 (2_4 g )2 (3.0kg) = 682 N/m
obtain:

=| 0.68kN/m




(b) Relate the period of the motion
to its frequency:

(c) The maximum speed of the
object is given by:

Substitute numerical values and
evaluate Vyax:

(d) The maximum acceleration of
the object is given by:

Substitute numerical values and
evaluate amax:
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1 1

f 2.4s

v .. =Aw=224A

Vo = 277(2.457)(0.10m)=1.51
=|1.5m/s

a,, =Ao’ =47 f’A

m/s

a,, =47*(2.4s")*(0.10m)=

23m/s?

50 - An 85.0-kg person steps into a car of mass 2400 kg, causing it to sink
2.35 cm on its springs. If started into vertical oscillation, and assuming no
damping, at what frequency will the car and passenger vibrate on these springs?

Picture the Problem We can find the frequency of vibration of the car-and-

passenger system using f :%1/%, where M is the total mass of the system.
V4

The force constant of the spring can be determined from the compressing force

and the amount of compression.

Express the frequency of the car-
and-passenger system:

The force constant is given by:

Substitute for K in the expression for
f to obtain:

Substitute numerical values and
evaluate f:

_ 1k
27\ M
_F_mg
AX  AX

where m is the person’s mass.

_ 1 | mg
27\ MAX

T2

=1 0.601Hz

1 \/ (85.0kg)(9.81m/s? )

(2485kg)(2.35%10 m)
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51 - A 4.50-kg object with an amplitude of 3.80 cm oscillates on a
horizontal spring. The object’s maximum acceleration is 26.0 m/s”. Find (@) the
force constant of the spring, (b) the frequency of the object, and () the period of
the motion of the object.

Picture the Problem (a) We can relate the force constant k to the maximum
acceleration by eliminating  between o’ =k/manda,_, = Aw’. (b) We can

find the frequency f of the motion by substituting Mam,/A forkin f = %1/ k/m.
Vs

(c) The period of the motion is the reciprocal of its frequency. Assume that
friction is negligible.

(a) Relate the angular frequency of 2
the motion to the force constant and m
the mass of the oscillator:

Relate the object’s maximum
acceleration to its angular frequency e A
and amplitude and solve for the
square of the angular frequency:

Substitute for @” to obtain: L
A

. . 2
Substitute numerical values and K= (4.50kg)(26.0m/s ): 3.03KN/m
evaluate k: 3.80x107° m
(b) Replace @ in equation (1) by 2 7f 1 A,
and solve for f to obtain: “ox\ A
Substitute numerical values and 2

. - L | 200w 63
evaluate f: 27\3.80x107° m
=|4.16Hz

(c) The period of the motion is the I S S 02405
reciprocal of its frequency: f 4.163s™ '

52 = An object of mass m is suspended from a vertical spring of force
constant 1800 N/m. When the object is pulled down 2.50 cm from equilibrium
and released from rest, the object oscillates at 5.50 Hz. (a) Find m. (b) Find the
amount the spring is stretched from its unstressed length when the object is in
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equilibrium. (c) Write expressions for the displacement X, the velocity vy, and the
acceleration ay as functions of time t.

Picture the Problem Choose a coordinate system in which upward is the +y
direction. We can find the mass of the object using m = k/ . We can apply a

condition for translational equilibrium to the object when it is at its equilibrium
position to determine the amount the spring has stretched from its natural length.
Finally, we can use the initial conditions to determine A and ¢ and express X(t)
and then differentiate this expression to obtain Vy(t) and ax(t).

(a) Express the angular frequency of e k k
the system in terms of the mass of the m @
object fastened to the vertical spring
and solve for the mass of the object:

Express " in terms of f: o’ =41’ f?
Substitute for @ to obtain: M k
Ar*f?
Substitute numerical values and Mo 1800 N/m _—1.507kg
evaluate m: 472 (5.505*1)
=| 1.51kg
(b) Letting AX represent the amount kAx—mg =0

the spring is stretched from its
natural length when the object is in
equilibrium, apply Z F, =0 to the

object when it is in equilibrium:

Solve for m to obtain:

kKAX — kg =0=>AXx= g

4% f? 4% f?
Substitute numerical values and 9.81m/s?
1 AX: sz—z 2 =| 8.21mm
evaluate AX: 47 (5.508_ )
(c) Express the position of the object x = Acos(at + &)

as a function of time:
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Use the 1initial conditions 5 S, 4(0)
Xo =—2.50 cm and vy = 0 to find & =tan | — WX, e =7
Evaluate w:
e @ a)=\/z= 1800N/m =34.56rad/s
m 1.507kg
Substitute to obtain: x=(2.50 cm)cos[(34.56rad/s)t +7]

=| —(2.50cm)cos|(34.6rad/s )t ]

Differentiate X(t) to obtain Vy: v, =(86.39cm/s)sin[(34.56 rad/s )t]
(86.4cm/s )sin(34.6 rad/s)t]

Differentiate v(t) to obtain ay: a, = (29.86 m/s’ )cos[(34.56 rad/s)t]
= (29.9m/s* Jcos|(34.6 rad/s )t]

53 e=  An object is hung on the end of a vertical spring and is released from
rest with the spring unstressed. If the object falls 3.42 cm before first coming to
rest, find the period of the resulting oscillatory motion.

Picture the Problem Let the system include the object and the spring. Then, the
net external force acting on the system is zero. Choose E; = 0 and apply the
conservation of mechanical energy to the system.

Express the period of the motion in T= 2 1)
terms of its angular frequency: @
Apply conservation of energy to the E,=E=0=U,+U_,,
system:
Substituting for U, and Ugpying yields:

¢ ¢ prine ¥ Oz—mgAx+§k(Ax)2:>a)=£: 29

m AX
Substituting for @ in equation (1) - 2n ) AX
yields: B 29 i E
AX

Substitute numerical values and

. T =om | 22em o625
evaluate T: 2(9.81m/s?
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54 e A suitcase of mass 20 kg is hung from two bungee cords, as shown in
Figure 14-27. Each cord is stretched 5.0 cm when the suitcase is in equilibrium.
If the suitcase is pulled down a little and released, what will be its oscillation
frequency?

Picture the Problem The diagram
shows the stretched bungee cords
supporting  the  suitcase  under .
equilibrium conditions. We can use

1 [k k ¢ “
f=—o ﬁ“to express the frequency

2 _ L
of the suitcase in terms of the effective
"spring” constant K. and apply the ic
condition for translational equilibrium
to the suitcase to find K. M

Mg

Express the frequency of the suitcase . 1 [k |
oscillator: T\ M 1

Apply Z F, =0 to the suitcase to kx +kx—Mg =0

or
2kx—Mg =0

or

obtain:

keffX —Mg = 0:keff = m
X

where Kerr = 2K

Substitute for K in equation (1) to ( 1 |g
obtain: “or\x
Substitute numerical values and 2
, f= 19 8Tm/s” 2 2Hz
evaluate f: 272\ 0.050m

55 e« A 0.120-kg block is suspended from a spring. When a small pebble of
mass 30 g is placed on the block, the spring stretches an additional 5.0 cm. With
the pebble on the block, the spring oscillates with an amplitude of 12 cm.

(2) What is the frequency of the motion? (b) How long does the block take to
travel from its lowest point to its highest point? (¢) What is the net force on the
pebble when it is at the point of maximum upward displacement?

Picture the Problem (a) The frequency of the motion of the stone and block
depends on the force constant of the spring and the mass of the stone plus block.
The force constant can be determined from the equilibrium of the system when
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the spring is stretched additionally by the addition of the stone to the mass.

(b) The time required for the block to travel from its lowest point to its highest
point is half its period. (c) When the block is at the point of maximum upward
displacement, it is momentarily at rest and the net force acting on it is its weight.

(a) Express the frequency of the 1 k

motion in terms of K and my: F= o m,, W)

where My 1s the total mass suspended
from the spring.

mg

Apply sz:O to the stone when it kAy—mg:O:>k:A—
y

is at its equilibrium position:

Substitute for k in equation (1) to ‘ 1 mg

obtain: Y Aym,,

Substitute numerical values and 1 (0_030 kg)(9.81 m/s’ )
evaluate f: ~ 27\ (0.050m)(0.15kg)

=0.997Hz=|1.0Hz

(b) The time to travel from its foiT = 1 1 _1050s
lowest point to its highest point is 2 2f 2‘0.997 s™! ) '

one-half its period:

(c) When the stone is at a point of F.=mg= (O.O30kg)(9.81m/s2)
maximum upward displacement: _[029N

56 e+ Referring to Problem 69, find the maximum amplitude of oscillation at
which the pebble will remain in contact with the block.

Picture the Problem We can use the maximum acceleration of the oscillator to
express amax in terms of A, k, and m. k can be determined from the equilibrium of
the system when the spring is stretched additionally by the addition of the stone to
the mass. If the stone is to remain in contact with the block, the block’s maximum
downward acceleration must not exceed g.
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Express the maximum acceleration a_ =Aw’
of the oscillator in terms of its
angular frequency and amplitude of

the motion:
Relate @’ to the force constant of the o = k
spring and the mass of the block- m,,
plus-stone:
. 2 .. k
Substitute for o to obtain: a_ =A (1)

Apply ZFY =0 to the stone when KAy —mg = 0=k _mg
it is at its equilibrium position: Ay
where Ay is the additional distance the

spring stretched when the stone was

placed on the block.
Substitute for k in equation (1) to mg
obtain: Bonax = Aym,,
Set amax = g and solve for Apax: A = Aym,, g= My Ay
mg m
Substitute numerical values and A - 0.15kg (0. 050 m) _25em
evaluate Apax: “ 10.030kg

57 = An object of mass 2.0 kg is attached to the top of a vertical spring that
is anchored to the floor. The unstressed length of the spring is 8.0 cm and the
length of the spring when the object is in equilibrium is 5.0 cm. When the object
is resting at its equilibrium position, it is given a sharp downward blow with a
hammer so that its initial speed is 0.30 m/s. (&) To what maximum height above
the floor does the object eventually rise? (b) How long does it take for the object
to reach its maximum height for the first time? (C) Does the spring ever become
unstressed? What minimum initial speed must be given to the object for the spring
to be unstressed at some time?

Picture the Problem (a) The maximum height above the floor to which the
object rises is the sum of its initial distance from the floor and the amplitude of its
motion. We can find the amplitude of its motion by relating it to the object’s
maximum speed. (b) Because the object initially travels downward, it will be
three-fourths of the way through its cycle when it first reaches its maximum
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height. (¢) We can find the minimum initial speed the object would need to be
given in order for the spring to become uncompressed by applying conservation
of mechanical energy.

() Relate h, the maximum height h=A+5.0cm (1)
above the floor to which the object
rises, to the amplitude of its motion:

Relate the maximum speed of the V... =Aw
object to the angular frequency and , k

. . . or, because " =—,
amplitude of its motion and solve for m

the amplitude: m
A = vmax ? (2)

Apply ZFy = 0 to the object when it KAy —mg = 0=k :%
y

is resting at its equilibrium position

to obtain:

Substitute for kK in equation (2): A [mAy [Ay
= Vmax - = Vmax _

mg g
Substituting for A in equation (1) Ay
g h=v__ [—+50cm

yields: ™\ g

Substitute numerical values and h = 0.30 m/s> 0.030m 5.0cm

evaluate h: 9.81m/s”
=|6.7cm

(b) The time required for the object t=3T

to reach its maximum height the first
time is three-fourths its period:

Express the period of the motion of m m Ay
. i T=2rn|—=27n |—=27n_|—
the oscillator: k mg g
Ay

Substitute for T in the expression for 3 Ay 3z [Ay
t to obtain: t= 2 2 == E
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Substitute numerical values and 37 [ 0.030m

. =— |———=|0.26s
evaluate t: 2 V9.81m/s>
(c) Because h < 8.0 cm, the spring is never uncompressed.
Using conservation of energy and AK+AU, +AU_ =0
letting U, be zero 5 cm above the or, because K¢ = U; = 0,
floor, relate the height to which the 1 mviz —mgAy +1 k( Ay)z
object rises, Ay, to its initial kinetic 1 5
energy: 2 (L_ yl) :0
Because Ay =L-Yy.: %mvi2 —mgAy + 4 k(Ay)2 -1 k(Ay)2 =0

and

Imv’ —mgAy =0=v, =/2gAy

Substitute numerical values and y = \/2(9.81m/sz X3.0cm) — 77 cm/s

evaluate v; That is, the minimum initial speed that

must be given to the object for the
spring to be uncompressed at some

time is | 77 cm/s

58 ees A winch cable has a cross-sectional area of 1.5 cm” and a length of
2.5 m. Young’s modulus for the cable is 150 GN/m?. A 950-kg engine block is
hung from the end of the cable. (a) By what length does the cable stretch?

(b) Treating the cable as a simple spring, what is the oscillation frequency of the
engine block at the end of the cable?

Picture the Problem We can relate the elongation of the cable to the load on it
using the definition of Young’s modulus and use the expression for the frequency
of a spring-mass oscillator to find the oscillation frequency of the engine block at
the end of the wire.

(a) Using the definition of Young’s y _ Stress _ F/A _Ft Mgt
modulus, relate the elongation of the strain ~ A/l// AY AY
cable to the applied stress:

Substitute numerical values and Al = (950 kg)(9.81m/s2 )(2.5 m)
evaluate A/: ~ (1.5em?)(150GN/m?)

=1.0355mm=| 1.0mm
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(b) Express the oscillation
frequency of the wire-engine block

system:

Express the effective "spring”
constant of the cable:

Substitute for Kesr to obtain:

Substitute numerical values and
evaluate f:

Simple Pendulum Systems

59 [SSM]
small amplitudes is 0.75 Hz.

Picture the Problem The frequency of a simple pendulum depends on its length

R L
27z \ M
F _Mg
TN AL
ot |9
27 N Al
1 [ 981mis®
27\ 1.0355mm

15Hz

and on the local gravitational field and is given by f = 2L\/% .
V2

The frequency of a simple pendulum

oscillating with small amplitude is
given by:

Substitute numerical values and
evaluate L:

60 o
1s 5.0 s.

Picture the Problem We can determine the required length of the pendulum from

! g:>L g

oz VL

Find the length of a simple pendulum if its frequency for

9.81 m/s’

L=—""" _ =[44cm

a72(0.7557'f

the expression for the period of a simple pendulum.

Express the period of a simple
pendulum:

Substitute numerical values and
evaluate L:

2
T:27z\/E:>L:T g
g 4

(5.05)(9.81m/s?)
4r?

L =

Find the length of a simple pendulum if its period for small amplitudes

6.2m
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61 - What would be the period of the pendulum in Problem 60 if the
pendulum were on the moon, where the acceleration due to gravity is one-sixth
that on Earth?

Picture the Problem We can find the period of the pendulum from
T=27L/90o. Where g, =<0 andL=6.21 m.

Express the period of a simple L
T=2n|—
pendulum on the moon:

g moon

Substitute numerical values and T—» 6.2lm T
evaluate T: e %i9,81m/52 D g Bl

62 If the period of a 70.0-cm-long simple pendulum is 1.68 s, what is the
value of g at the location of the pendulum?

Picture the Problem We can find the value of g at the location of the pendulum
by solving the equation T =27./L/g for g and evaluating it for the given length

and period.

Express the period of a simple To9 L _4r’L
pendulum where the gravitational i 5 —9= T?

field is :

Substitute numerical values and q= 47:2(0.700m) _19.79m/s?
evaluate g: (1.68s)’

63 - A simple pendulum set up in the stairwell of a 10-story building
consists of a heavy weight suspended on a 34.0-m-long wire. What is the period
of oscillation?

Picture the Problem We can use T =27,/L/g to find the period of this

pendulum.

Express the period of a simple L
T=27_|—

pendulum: g

Substitute numerical values and 34.0m
] T=2n |————=|11.7s
evaluate T: 9.81m/s?
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64 e« Show that the total energy of a simple pendulum undergoing
oscillations of small amplitude ¢ (in radians) is E ~3 mgLg,. Hint: Use the

approximation cos ¢ ~1—1 ¢ for small ¢.

Picture the Problem The figure shows
the simple pendulum at maximum
angular displacement ¢. The total
energy of the simple pendulum is equal
to its initial gravitational potential
energy. We can apply the definition of
gravitational potential energy and use
the small-angle approximation to show
that E ~ L mgLd;.

Express the total energy of the E =U displacement = MGN

simple pendulum at maximum

displacement:

Referring to the diagram, express h h=L-Lcosg, = L(1-cosg,)

in terms of L and ¢y:

Substituting for h yields: E=mg L[l —Cos ¢0]

From the power series expansion for cosg~1-1g

cosg, for p<<1:

Substitute and simplify to obtain: E=mg |_[1 — (1 — 147 )]: ImgLg;

65 e« [SSM] A simple pendulum of length L is attached to a massive cart
that slides without friction down a plane inclined at angle & with the horizontal, as
shown in Figure 14-28. Find the period of oscillation for small oscillations of this
pendulum.

Picture the Problem The cart accelerates down the ramp with a constant
acceleration of gsiné@. This happens because the cart is much more massive than
the bob, so the motion of the cart is unaffected by the motion of the bob
oscillating back and forth. The path of the bob is quite complex in the reference
frame of the ramp, but in the reference frame moving with the cart the path of the
bob is much simpler—in this frame the bob moves back and forth along a circular
arc. To solve this problem we first apply Newton’s second law (to the bob) in the
inertial reference frame of the ramp. Then we transform to the reference frame



moving with the cart in order to exploit the simplicity of the motion in that frame.

Draw the free-body diagram for the
bob. Let ¢ denote the angle that the
string makes with the normal to the
ramp. The forces on the bob are the
tension force and the force of gravity:

Apply Newton’s 2™ law to the bob,
labeling the acceleration of the bob
relative to the ramp dg; :

The acceleration of the bob relative
to the ramp is equal to the
acceleration of the bob relative to
the cart plus the acceleration of the
cart relative to the ramp:

Substitute for @y, in T + Mg = Md, :

Rearrange terms and label g —a ,
as g. , where g is the

acceleration, relative to the cart, of
an object in free fall. (If the tension

force is set to zero the bob is in free
fall.):

To find the magnitude of g, first

draw the vector addition diagram
representing the equation
8. =8 —d .- Recall that

acr =0 sin &
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B

T +Mg = Miy,

App =dpc Hacg

T+mg=md,. +d.)

T+ m(g' _[iCR): Ma
Label g —a.; as g, to obtain

T +mg,. =Mdg. (1)

Lur Ot
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From the diagram, find the
magnitude of g, . Use the law of

cosines:

To find the direction of g, first

redraw the vector addition diagram
as shown:

From the diagram find the direction
of g.. Use the law of cosines

again and solve for ¢:

To find an equation for the motion
of the bob draw the "free-body
diagram” for the "forces” that
appear in equation (1). Draw the
path of the bob in the reference
frame moving with the cart:

Take the tangential components of
each vector in equation (1) in the
frame of the cart yields. The
tangential component of the
acceleration is equal to the radius of
the circle times the angular

acceleration (q = ra):

0 =9"+0 SiDZH—Zg(gsin 9)cosﬂ
But cos f=sin 4, so
gesz =g’ +0°sin’d-29°sin’ @
=g’ (l—sin20)= g% cos’ 0
Thus g = gcosd

gcoso

g°sin’d=9g°+9g’cos’ 0
—~2g°cosfcosd
andso 0 =6

B

d%g

0-mg,, sing =mL

dt?
where L is the length of the string and

2
© is the angular acceleration of the
bob. The positive tangential "direction’
is counterclockwise.

’
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Rearranging this equation yields: L (; :Zﬁ +MQ,, sing =0 @)
For small oscillations of the |¢| <<land sing = ¢
pendulum:
Substituting for sin ¢ in equation 2
. & pin e de—¢+mgeff¢:0
(2) yields: dt?
or
d’¢ Qe
—+="¢=0 3
L ¢ 3)
Equation (3) is the equation of .
motion for simple harmonic motion w= L

with angular frequency: where o is the angular frequency of the

oscillations (and not the angular speed

of the bob).
The period of this motion is: 2 L
P T=Zo2g | — @)
w Oerr
Substitute g cos @ for gesr in L L
equation (4) to obtain: T=2n g_ff =| 27 gcosé

Remarks: Note that, in the limiting case #=0, T =27,/L/g and T — 0. As
60— 90°, T - oo.

66 eec The bob at the end of a simple pendulum of length L is released from
rest from an angle ¢. (&) Model the pendulum’s motion as simple harmonic
motion and find its speed as it passes through ¢= 0 by using the small angle
approximation. (b) Using the conservation of energy, find this speed exactly for
any angle (not just small angles). (C) Show that your result from Part (b) agrees
with the approximate answer in Part () when ¢ is small. (d) Find the difference
between the approximate and exact results for ¢y =0.20 rad and L = 1.0 m.

(e) Find the difference between the approximate and exact results for
d=120radand L= 1.0 m.
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Picture the Problem The figure shows
the simple pendulum at maximum
displacement ¢. We can
express the angular position of the
pendulum’s bob in terms of its initial
angular position and time and
differentiate this expression to find the
maximum speed of the bob. We can
use conservation of energy to find an
exact for Vmax and  the
approximation cosg~1-1¢’ to show

angular

value

that this value reduces to the former
value for small ¢.

(a) Relate the speed of the
pendulum’s bob to its angular speed:

The angular position of the
pendulum as a function of time is
given by:

Differentiate this expression to
express the angular speed of the

pendulum:

Substitute in equation (1) to obtain:
Simplify Viax to obtain:

(b) Use conservation of energy to
relate the potential energy of the

pendulum at point 1 to its kinetic
energy at point 2:

Substitute for K, and U;:
Express h in terms of L and ¢y:

Substituting for h yields:

d
v-Lf 1)
¢ = ¢, coswt
Z—f: —g o sin wt

sin wt

max

V=-Lgwsinwt =-v

Vmax = L¢0\/% =

AK +AU =0
or, because K; = U, =0,
K,-U,=0

#/oL

Imv; —mgh=0
h=L(1-cosg,)

1 mvZ —mgL(1-cosg,)=0
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Solve for V; = Viax to obtain: v = X/ZQL(I — cos ¢0) 2)
(c) For ¢y << 1: l—cosg, ~Lg;
Substitute in equation (2) to obtain: V. o= \/ 2gL(§ &4 ) =| ¢, [gL

in agreement with our result in part (a).

(d) Express the difference in the AV=V Vo
results from (a) and (b):

Substitute for Vimax a and Vimaxp and Av =g,/ gL - \/ 2gL(1—cosd,)

simplify to obtain: —JeL (¢O _ M)

Substitute numerical values and evaluate Av:

Av = J[9.81m/5?)(1.0m)(0.20 rad - \/2(1— cos(020 rad)) ) = 1 mm/s

(e) Evaluate equation (3) for ¢ = 1.20 rad and L = 1.0 m:

Av = 0.8 m/s?)(1.0m)(1.20 rad — \/2(1 — cos(1 20 rad)) ) = [ 0.2 m/s

*Physical Pendulums

67 [SSM] A thin 5.0-kg disk with a 20-cm radius is free to rotate about
a fixed horizontal axis perpendicular to the disk and passing through its rim. The
disk is displaced slightly from equilibrium and released. Find the period of the
subsequent simple harmonic motion.

Picture the Problem The period of this physical pendulum is given by
T =27,/1/MgD where | is the moment of inertia of the thin disk about the fixed

horizontal axis passing through its rim. We can use the parallel-axis theorem to
express | in terms of the moment of inertia of the disk about an axis through its
center of mass and the distance from its center of mass to its pivot point.

Express the period of a physical I
T=27|—
pendulum: MgD
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Using the parallel-axis theorem, find I =1, +MR*=1MR* + MR’
the moment of inertia of the thin disk — 3MR?
2

about an axis through the pivot point:
Substituting for | and simplifying 3 MR2 3R

. ld . T = 27Z' 2 = 27[ —_—
yi€ldas: MgR 29
Substitute numerical values and 3(0.20 m)

. T=2x =|1.1s

evaluate T: 2(9.81m/s?
68 A circular hoop that has a 50-cm radius is hung on a narrow horizontal

rod and allowed to swing in the plane of the hoop. What is the period of its
oscillation, assuming that the amplitude is small?

Picture the Problem The period of this physical pendulum is given by
T =27,/1/MgD where | is the moment of inertia of the circular hoop about an
axis through its pivot point. We can use the parallel-axis theorem to express | in

terms of the moment of inertia of the hoop about an axis through its center of
mass and the distance from its center of mass to its pivot point.

Express the period of a physical I
T=27|—

pendulum: MgD
Using the parallel-axis theorem, find | =1, + MR’ =MR* + MR* = 2MR?
the moment of inertia of the circular
hoop about an axis through the pivot
point:
Substitute for | and simplify to obtain: IMR?2 IR
T=2x =2 [—
MgR g

Substitute numerical values and

) T =2 |2050m) =0
evaluate T: 9.81m/s>

69 - A 3.0-kg plane figure is suspended at a point 10 cm from its center of
mass. When it is oscillating with small amplitude, the period of oscillation is

2.6 s. Find the moment of inertia | about an axis perpendicular to the plane of the
figure through the pivot point.
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Picture the Problem The period of a physical pendulum is given by
T =27,/1/MgD where | is its moment of inertia about an axis through its pivot

point. We can solve this equation for | and evaluate it using the given numerical

data.

Express the period of a physical
pendulum:

Substitute numerical values and
evaluate I:

70 e

|  MgDT?

- | 5
MgD An

T=2x

(3.0kg)(9.81m/s?)(0.10m)(2.65)

| =
4r*

=] 0.50kg-m’

You have designed a cat door that consists of a square piece of

plywood that is 1.0 in. thick and 6.0 in. on a side, and is hinged at its top. To
make sure the cat has enough time to get through it safely, the door should have a
natural period of at least 1.0 s. Will your design work? If not, explain
qualitatively what you would do to make it meet your requirements.

Picture the Problem The pictorial
representation shows the cat door, of
height h and width w, pivoted about an
axis through a-a’. We can use

T=2x /—I ad
mgD

to find the period of the door but first
must find | The diagram also

a-a' °
shows a differential strip of height dy
and mass dm a distance y from the axis
of rotation of the door. We can
integrate the differential expression for
the moment of inertia of this strip to
determine the moment of inertia of the
door.

The period of the cat door is given
by:

a

~

/I .
T=2 _—a-a 1
d mgD M

where D is the distance from the center
of mass of the door to the axis of
rotation.
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Express the moment of inertia, about dl, . = y*dm
the axis a-a’, of the cat door: or, because dm = pdV = ptdA = pwtdy
dl, . = pwty’dy
Integrating this expression between " \
y =0 and y = h yields: o :P‘Aﬂjy dy =3 pwth
0
m m m
Because p=—=—-: l, o =% — [wth’ =imh?
PV wht e (W j
Substituting for D and I, . in
equation (1) yields:
Substitute numerical values and ' 2 540 cm
evaluate T: j
=0.64s
3(9.81 m/s )

Thus the door’s period is too short. The only way to increase it is to increase the
height of the door.

71 e=  You are given a meterstick and asked to drill a narrow hole through it
so that, when the stick is pivoted about a horizontal axis through the hole, the
period of the pendulum will be a minimum. Where should you drill the hole?

Picture the Problem Let x be the distance of the pivot from the center of the
meter stick, m the mass of the meter stick, and L its length. We’ll express the
period of the meter stick as a function of the distance X and then differentiate this
expression with respect to X to determine where the hole should be drilled to
minimize the period.

Express the period of a physical I
. T=27|—— (1)
pendulum: MgD

Express the moment of inertia of the lew =15 mL*
meter stick about an axis through its
center of mass:
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Using the parallel-axis theorem, =1 +mx’

express j[he moment of .1nert1a of the =L mL2 + mx2

meter stick about an axis through

the pivot point:

Substitute in equation (1) and T LmL? +mx?

simplify to obtain: =27 mgx

27 [P +12x°

Jo U 12x

The condition for an extreme value 12x* - I

=0=>12x>-L* =0

2 2 2 2
of Tis that 9| [ H12X 1 _ o 24x21/ﬂ
dx 12x 12x

Evaluate this derivative to obtain:

Noting that only the positive wo L _100em _ 28.9¢m
solution is physically meaningful, V2o V12 '

solve for x:

The hole should be drilled at a d=500cm-289cm=|21.1cm
distance:

from the center of the meter stick.

72 = Figure 14-29 shows a uniform disk of radius R = 0.80 m, a mass of
6.00 kg, and a small hole a distance d from the disk’s center that can serve as a
pivot point. (a) What should be the distance d so that the period of this physical
pendulum is 2.50 s? (b) What should be the distance d so that this physical
pendulum will have the shortest possible period? What is this shortest possible
period?

Picture the Problem (a) Let m represent the mass and R the radius of the uniform
disk. The disk is a physical pendulum. We’ll use the expression
T =2x,/1/mgd for the period of a physical pendulum. To find | we use the
parallel-axis theorem (1=1_+md?). (b) The period is a minimum when

dT/dx =0, where, to avoid notational difficulties, we have substituted x for d.

=27 |——

(a) Express the period of a physical - I
pendulum: mgd
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Using the parallel-axis theorem I=1_+md?

(I=1_, +md?), relate the moment — ImR® 4 md?
of inertia about the axis through the

hole to the moment of inertia I

about the parallel axis through the

center of mass. Obtain |, from

Table 9-1:
Substituting for | yields: T2 1mR? +md?

- mgd

—— (1)
_op |2 R°+d
gd

Square both sides of this equation, 42 gT’ d+ R® 0
simplify, and substitute numerical 47° 2
values to obtain: or

d?—(1.553m)d +0.320m> =0

Use the quadratic formula or your d=0238m=| 24cm
graphing calculator to obtain:

The second root, d = 1.31 m, is greater
than R, so it is too large to be
physically meaningful.

(b) The period T is related to the distance d by equation (1). T will be a minimum
when (% R*>+d? )/ d is a minimum. Set the derivative of this expression equal to

zero to find relative maxima and minima. We’ll replace d with X to avoid the
notational challenge of differentiating with respect to d. Evaluating

1p2 2
i[ /ZR—J’XJ — 0yields:
dx X

2d> -(LR*+d?)
d 2
where we have changed x back to d.

=0=2d>—(1R*+d?)=0

Solving for d yields: d=

R
V2
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Evaluate equation (1) with

IR 4+1R? V2R
_ 2 2 —
d= R/ /2 to obtain an expression T=2z R =27 g
for the shortest possible period: g J2
Substitute numerical values and T_o V2 (0.80m) 137
evaluate T: o /Ty LS

Remarks: We’ve shown that d = R/\/E corresponds to an extreme value; that
is, to a maximum, a minimum, or an inflection point. To verify that this value
of d corresponds to a minimum, we can either (1) show that ¢°7/dx* evaluated
at x= R/\/E (where x = d) is positive, or (2) graph T as a function of 4 and

note that the graph isa minimum at d = R/\/E.

73 eee [SSM] Points P; and P; on a plane object (Figure 14-30) are
distances h; and hy, respectively, from the center of mass. The object oscillates
with the same period T when it is free to rotate about an axis through P; and when
it is free to rotate about an axis through P,. Both of these axes are perpendicular
to the plane of the object. Show that h; +h, = gTz/(47z)2, where h; # h,.

Picture the Problem We can use the equation for the period of a physical
pendulum and the parallel-axis theorem to show that h; + h, = gT */4 2>,

Express the period of the physical |

. T=27n|—
pendulum: mgd
Using the parallel-axis theorem, I =1 +mh’

relate the moment of inertia about an
axis through P, to the moment of
inertia about an axis through the
plane’s center of mass:

Substitute for | to obtain: |  +mh?
T=27g |-m 1
mgh,
Square both sides of this equation mgT> |
) ———=-"4+mh (1)
and rearrange terms to obtain: 47 h,

Because the period of oscillation is lew
the same for point P,: h, ,
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Combining like terms yields:
g g i_i Icmzm(hZ hl)
hh,
Provided h, #h,: l.,, =mhh,
Substitute in equation (1) and mgT? mhh, gT?
simplify to obtain: 4 h +mh=h, +h, = 4

74  ee» A physical pendulum consists of a spherical bob of radius r and mass
m suspended from a rigid rod of negligible mass as in Figure 14-31. The distance
from the center of the sphere to the point of support is L. When r is much less
than L, such a pendulum is often treated as a simple pendulum of length L.

2r’
a) Show that the period for small oscillations is given by T =T 4/1+ —= where
p g y 0 512

To =27+/L /g is the period of a simple pendulum of length L. (b) Show that
when r is much smaller than L, the period can be approximated by
T~To(1+r*5L%.(c) IfL=1.00 m and r = 2.00 cm, find the error in the
calculated value when the approximation T = Ty is used for the period. How large
must be the radius of the bob for the error to be 1.00 percent?

Picture the Problem (a) We can find the period of the physical pendulum in
terms of the period of a simple pendulum by starting with T =27,/1/mgL and

applying the parallel-axis theorem. (b) Performing a binomial expansion (with
r << L) on the radicand of our expression for T will lead to T~ To (1 + r*/5L%).

(a) Express the period of the I

. ) T=27r|—
physical pendulum: mgL
Using the parallel-axis theorem, I =1_ +mL’

relate the moment of inertia of the
pendulum about an axis through its
center of mass to its moment of
inertia about an axis through its point
of support:

=2mr? +mL’

Substitute for | and simplify to obtain:

2mr? +mL’ 2 2
Toog S o R e 2 o 12
mgL g SL 5L
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2r2 )" 2r2 )" 1(2r2) 1f2r2Y
(b) Expanding [1 + ST] (1 + S?J =1+ 5(5?] + g(S?J
binomially yields: + higher - order terms
r.2
Rl+—
512

provided r << L

Substitute in our result from Part (&) r2
to obtain: T Ty 1+ 512
(c) Express the fractional error AT T-T,_T 1
when the approximation T = T is T T, T,
used for this pendulum: r2 r2
1 + —2 - 1 = —2

5L 5L

Substitute numerical values and 2
. AT M ~1 0.00800%
evaluate AT/T: T 5(1 00 cm)2
F £1.00%: ?
oranerror of 1.U7 Sr?=o.01oo:»r = 1L/0.0500

Substitute the numerical value of r =(100cmW0.0500 =| 22.4cm

L and evaluate r to obtain:

75 eee  Figure 14-32 shows the pendulum of a clock in your grandmother’s
house. The uniform rod of length L =2.00 m has a mass m = 0.800 kg. Attached
to the rod is a uniform disk of mass M = 1.20 kg and radius 0.150 m. The clock is
constructed to keep perfect time if the period of the pendulum is exactly 3.50 s.
(2) What should the distance d be so that the period of this pendulum is 2.50 s?
(b) Suppose that the pendulum clock loses 5.00 min/d. To make sure that your
grandmother won’t be late for her quilting parties, you decide to adjust the clock
back to its proper period. How far and in what direction should you move the disk
to ensure that the clock will keep perfect time?

Picture the Problem (a) The period of this physical pendulum is given by
T =27,/1/MgD. We can express its period as a function of the distance d by

using the definition of the center of mass of the pendulum to find D in terms of d
and the parallel-axis theorem to express | in terms of d. Solving the resulting
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quadratic equation yields d. (b) Because the clock is losing 5 minutes per day, one
would reposition the disk so that the clock runs faster; that is, so the pendulum has
a shorter period. We can determine the appropriate correction to make in the
position of the disk by relating the fractional time loss to the fractional change in

its position.

(a) Express the period of a physical
pendulum:

Solving forL yields:
X

cm

Express the moment of inertia of the
physical pendulum, about an axis
through the pivot point, as a function
of d:

Substitute numerical values and
evaluate I:

Locate the center of mass of the
physical pendulum relative to the
pivot point:

Substitute in equation (1) to obtain:

1.0802kg-m” +(1.20kg)d> _ T>(9.81m/s* )(2.00kg)

T=2x
mtotgxcm
I T’gm,,
- 1 St 1
X 47 M

cm

=1, +Md*>=1iml+L{Mr’+Md?

I=1(0.800kg)(2.00m)’
+1(1.20kg)(0.150m)* +(1.20kg )d*
=1.0802kg-m’ +(1.20kg)d”

. _ (0.800kg)(1.00m)+(1.20kg)d
o 2.00kg

and
x_, =0.400m+0.600d

—(0.49698kg - m/s?JT* (2)

0.400m + 0.600d

Setting T = 2.50 s and solving for
d yields:

(b) There are 1440 minutes per day.
If the clock loses 5.00 min per day,
then the period of the clock is related
to the perfect period of the clock by:

4r?

d=|1.63574m

where we have kept more than three
significant figures for use in Part (b).

1435T =1440T =T = 1440

erfect erfect
P 14357

where Tperfect = 3.50 s.
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Substitute numerical values and T 1440 (3.50s)=3.51220s

evaluate T: 1435

Substitute T = 3.51220 s in equation d =3.40140m
(2) and solve for d to obtain:

Substitute T = 3.50 s in equation (2) d' =3.37826m
and solve for d ' to obtain:

Express the distance the disk needs Ad =d—d'=3.40140m—-3.37826m
to be moved upward to correct the = 231cm
period:

Damped Oscillations

76 A 2.00-kg object oscillates with an initial amplitude of 3.00 cm. The
force constant of the spring is 400 N/m. Find (@) the period, and (b) the total
initial energy. (C) If the energy decreases by 1.00 percent per period, find the
linear damping constant b and the Q factor.

Picture the Problem (a) We can find the period of the oscillator from

T= ZEM . (b) The total initial energy of the spring-object system is given
by E, =1kA®. (c) The Q factor can be found from its definition

Q= 27[/ QAE| / E)cycle and the damping constant from Q = w,m/b.

(a) The period of the oscillator is m
. . T=2rx,|—
given by:
Substitut ical val d
ubstitute numerical values an T2y 2.00kg _ 0 adds
evaluate T: 400N/m
(b) Relate the initial energy of the E, = 1kA’

oscillator to its amplitude:

Substitute numerical values and E, =1(400N/m)(0.0300m)’
evaluate Ey: _10.1807
(c) Relate the fractional rate at which 2r 2r

628

O~ [oE/E] 00100

cycle

the energy decreases to the Q value
and evaluate Q:
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Express the Q value in terms of b: Q= @M
b
Solve for the damping constant b: b= a)om 2 m _
e
Substitute numerical values and b \/ (2.00kg )(400 N/m)
evaluate b: - 628
=1 0.0450kg/s

77 e [SSM] Show that the ratio of the amplitudes for two successive
oscillations is constant for a linearly damped oscillator.

Picture the Problem The amplitude of the oscillation at time tis A(t)= Ae™*"

where 7=m/b is the decay constant. We can express the amplitudes one period
apart and then show that their ratio is constant.

Relate the amplitude of a given A(t) = Aoe’t/ 2
oscillation peak to the time at which
the peak occurs:

Express the amplitude of the (t +T) Age (t+T )22
oscillation peak att' =t + T:

Express the ratio of these At)  Ae"” T)2¢
consecutive peaks: At+T) Aoe‘(”T Jar
= | constant

78 = An oscillator has a period of 3.00 s. Its amplitude decreases by 5.00
percent during each cycle. (&) By how much does its mechanical energy decrease
during each cycle? (b) What is the time constant z? (¢) What is the Q factor?

Picture the Problem (a) We can relate the fractional change in the energy of the
oscillator each cycle to the fractional change in its amplitude. (b) and (c) Both the
Q value and the decay constant 7 can be found from their definitions.

(a) Relate the energy of the oscillator E=1 kA*
to its amplitude:



Take the differential of this
relationship to obtain:

Divide the second of these equations
by the first and simplify to obtain:

Approximate dE and dA by AE
and AA and evaluate AE/E:

(b) For small damping:

(c) The Q factor is given by:

Substitute numerical values and
evaluate Q:

79 e
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dE =KkAdA

dE _KAdA _dA

E 1kA? ~ A

% = 2(5.00%) =[ 10.0%

JAEl_T
E ¢
and
T 3.00s oo
|AE|/E  0.0100
2
Q=0i=( T}
Q=—2"_(30.05)=[ 62.8
3.00s

A linearly damped oscillator has a Q factor of 20. (a) By what fraction

does the energy decrease during each cycle? (b) Use Equation 14-40 to find the
percentage difference between @w”and ay. Hint: Use the approximation

(1+x)"* ~1+1x for small x.

Picture the Problem We can use the physical interpretation of Q for small

27

damping | Q = q—r to find the fractional decrease in the energy of the
( AE|/ E cycle}

oscillator each cycle.

(a) Express the fractional decrease in
energy each cycle as a function of
the Q factor and evaluate |AE| / E:

(b) The percentage difference
between @w’and ay is given by:

AE

B _27 27 (314051
E Q 20

® a)ozﬂ'_l
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Using the definition of the Q
factor, use Equation 14-40 to
express the ratio of @' to ay as a
function of Q:

Substituting for ﬂyields:
@,

Use the approximation
(1+x)? ~1+1x

for X << 1 to obtain:

1/2
! } and

Substituting for| 1-—
4Q

simplifying yields:

Substitute the numerical value of Q
o' —o,
and evaluate ———:
2

80 oo

w-o, . 1 1
w, 8Q° 8Q°
oo L T30
w, 8(20)

A linearly damped mass—spring system oscillates at 200 Hz. The time

constant of the system is 2.0 s. At t = 0 the amplitude of oscillation is 6.0 cm and
the energy of the oscillating system is 60 J. (a) What are the amplitudes of
oscillation att = 2.0 s and t = 4.0 s? (b) How much energy is dissipated in the
first 2-s interval and in the second 2-s interval?

Picture the Problem The energy of the spring-and-mass oscillator varies with

time according to E = E,e ™"

amplitude.

(a) Using E=E,e " and E oc A?,
solve for the amplitude A as a
function of time:

Express the amplitude of the
oscillations as a function of time:

Evaluate the amplitude when
t=20s:

and its energy is proportional to the square of the

E=Ee " and E c A’
imply that A> = AZe™""
Hence A= Ae "™

A=(6.0cm)e™*

A(2.0s)=(6.0cm)e™**** =| 3.6cm
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Evaluate the amplitude when A(4.05)=(6.0cm)e™*** =| 2.2cm
t=4.0s:

(b) Express the energy of the system E(0)=E,e " =E,
att=0,t=2.0s,andt=4.0s: E(2.0 s): E0e72-0/2-0s _ Eoefl

E(4.0s)=E,e™*"** =Eee”

The energy dissipated in the first -AE, ,,,, =—-E, (e—Z.Os/ 20s _ eo)

2.0 s is equal to the negative of = (60 J)(l e ): 38 ]

the change in mechanical energy:

The energy dissipated in the second —AE, o 00 =—E, (e—4.0s/ 205 _gm204 Z'OS)
2.0-s interval is: =(607)e" (1 _e! ): 147

81 e [SSM] Seismologists and geophysicists have determined that the
vibrating Earth has a resonance period of 54 min and a Q factor of about 400.
After a large earthquake, Earth will "ring” (continue to vibrate) for up to

2 months. () Find the percentage of the energy of vibration lost to damping
forces during each cycle. (b) Show that after n periods the vibrational energy is
given by E = (0.984)n E,, where E, is the original energy. (C) If the original
energy of vibration of an earthquake is E(, what is the energy after 2.0 d?

Picture the Problem (a) We can find the fractional loss of energy per cycle from
the physical interpretation of Q for small damping. (b) We will also find a general
expression for the earth’s vibrational energy as a function of the number of cycles
it has completed. (C) We can then solve this equation for the earth’s vibrational
energy after any number of days.

(a) Express the fractional change in AE 27 _ 27 _ 157%

energy as a function of Q: E Q 400

(b) Express the energy of the damped E_eli- AE
oscillator after one cycle: b E

Express the energy after two 2
me = E =E(1—£j:5(1—£j
cycles: 2 1 E 0
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Generalizing to n cycles: "
sloney E, - Eo[l—ﬁj —E,(1-0.0157)"
E

=| E,(0.984)"
(c) Express 2.0 d in terms of the 20d=2.0dx 24h . 00m
number of cycles; that is, the number ' ' d h
of vibrations the earth will have — 7280 minx
experienced: 54min

=53.3T

Evaluate E(2 d): E(2d)=E,(0.9843)" =| 0.43E,

82 e« A pendulum that is used in your physics laboratory experiment has a
length of 75 cm and a compact bob with a mass equal to 15 g. To start the bob
oscillating, you place a fan next to it that blows a horizontal stream of air on the
bob. With the fan on, the bob is in equilibrium when the pendulum is displaced by
an angle of 5.0° from the vertical. The speed of the air from the fan is 7.0 m/s.
You turn the fan off, and allow the pendulum to oscillate. (a) Assuming that the
drag force due to the air is of the form —bv, predict the decay time constant 7 for
this pendulum. (b) How long will it take for the pendulum’s amplitude to reach
1.0°?

Picture the Problem The diagram
shows 1) the pendulum bob displaced
through an angle & and held in
equilibrium by the force exerted on it
by the air from the fan and 2) the bob
accelerating, under the influence of
gravity, tension force, and drag force,
toward its equilibrium position. We can
apply Newton’s 2™ law to the bob to
obtain the equation of motion of the
damped pendulum and then use its
solution to find the decay time constant
and the time required for the amplitude
of oscillation to decay to 1°.

— 2
(a) ApPly Zr = la to the pendulum —mglsin 0+ (F, = | d_29
to obtain: dt



Express the moment of inertia of the
pendulum about an axis through its
point of support:

Substitute for | and F4 to obtain:

Because << 1 andv=/ow=¢d@dt:

The solution to this second-order
homogeneous differential equation
with constant coefficients is:

Apply ZF = ma to the bob when it

is at its maximum angular
displacement to obtain:

Divide the x equation by the y
equation to obtain:

When the bob is in equilibrium, the
drag force on it equals Fgy:

Substitute numerical values and
evaluate 7:

(b) From equation (1), the angular
amplitude of the motion is given by:

When the amplitude has decreased to
1.0°:

Take the natural logarithm of both
sides of the equation to obtain:
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| =m/?

2

m¢? d 0+€bv+mg€sin9=0

dt?

2
m€2%+€2b%+ mglé =0

or

2
90 199, M9 5 -
@ dt

m

0 =0,e™" cos(w't +0) (1)
where 6 is the maximum amplitude,
7= m/b is the time constant, and the

frequency @' = w,/1-(b/2ma, )’ .

D> F, =F,, ~Tsing, =0
and
ZFy =Tcosg,—mg =0

h: Tsing, — and
mg Tcos6, °
or
F., = Mg tan6,
bV=mgtan6’0:T=%: tv 7
g tan &,
r= OS¢ 65 =[82s
(9.81my/s? Jtan 5.0°

0=0,e""
1.0°=5.0%"*" or e7** =0.20

~ L _1n(0.20)=t =-271n(0.20)

27
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Substitute the numerical value of 7

t=-2(8.16s)In(0.20)=| 26
and evaluate t:

83 e« [SSM] You are in charge of monitoring the viscosity of oils at a
manufacturing plant and you determine the viscosity of an oil by using the
following method: The viscosity of a fluid can be measured by determining the
decay time of oscillations for an oscillator that has known properties and operates
while immersed in the fluid. As long as the speed of the oscillator through the
fluid is relatively small, so that turbulence is not a factor, the drag force of the
fluid on a sphere is proportional to the sphere’s speed relative to the fluid:

F, =6manv, where 7 is the viscosity of the fluid and a is the sphere’s radius.

Thus, the constant b is given by 6z a7 . Suppose your apparatus consists of a stiff

spring that has a force constant equal to 350 N/cm and a gold sphere (radius
6.00 cm) hanging on the spring. (&) What is the viscosity of an oil do you
measure if the decay time for this system is 2.80 s? (b) What is the Q factor for
your system?

Picture the Problem (a) The decay time for a damped oscillator (with speed-
dependent damping) system is defined as the ratio of the mass of the oscillator to
the coefficient of v in the damping force expression. (b) The Q factor is the
product of the resonance frequency and the damping time.

(a) From F, =6zanvand F, =-bv, b=6ﬂa77:>77=6i
7a

1t follows that:
Because 7 =m/b, we can substitute ~m
for b to obtain: 6mat

Substituting m = pV and simplifying
yields:

Substitute numerical values and
evaluate 77 (see Table 13-1 for the
density of gold):

(b) The Q factor is the product of the
resonance frequency and the
damping time:

77_

PN _imp 2a'p
6rmar 6rar ot

~2(0.0600m)*(19.3x10° kg/m’)
9(2.85)

=|5.51Pa-s

Q=0)0T=\/ET=\/ k z-=\/4 k3 .
m oY% jma’p
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Substitute numerical values and evaluate Q:

3(350N>< 100 Cm]

cm m
= 2.80s)~[ 125
© 472(0.0600 m)*(19.3x10° kg/m3)( )

Driven Oscillations and Resonance

84 - A linearly damped oscillator loses 2.00 percent of its energy during
each cycle. (a) What is its Q factor? (b) If its resonance frequency is 300 Hz, what
is the width of the resonance curve Aw when the oscillator is driven?

Picture the Problem (a) We can use the physical interpretation of Q for small
damping to find the Q factor for this damped oscillator. (b) The width of the
resonance curve depends on the Q factor according to Aw = @, /Q.

(a) Using the physical interpretation Q= 27

of Q for small damping, relate Q to ( AE| / E Lyde
the fractional loss of energy of the

damped oscillator per cycle:

Evaluate this expression for 2
Q= =314
(AE|/E). . =2.00%: 0.0200
cycle
(b) Relate the width of the w, 2,

resonance curve to the Q value of Q Q
the oscillatory system:

. . -1
Substitute numerical values and Ag— 27[!300s !: 6.00rad/s
evaluate Aw: 314
85 o Find the resonance frequency for each of the three systems shown in

Figure 14-33.

Picture the Problem The resonant frequency of a vibrating system depends on
the mass m of the system and on its "stiffness” constant Kk according to

f, :L hor, in the case of a simple pendulum oscillating with small-

27\ m
g

amplitude vibrations, f L =,
* 27zVL
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(a) For this spring-and-mass

oscillator we have: fo
(b) For this spring-and-mass ;
oscillator we have: 0~
(c) For this simple pendulum we

have: fy=

86 e A damped oscillator loses 3.50 percent of its energy during each cycle.

=L 400.0N/m= L 0Hy
2r 10kg

L 800.0N/m= Ty
2 Skg
2

L 9.81m/s 0351
27 2.0m

(a) How many cycles elapse before half of its original energy is dissipated?

(b) What is its Q factor? (C) If the natural frequency is 100 Hz, what is the width

of the resonance curve when the oscillator is driven by a sinusoidal force?

Picture the Problem (a) We’ll find a general expression for the damped
oscillator’s energy as a function of the number of cycles it has completed. We
can then solve this equation for the number of cycles corresponding to the loss of
half the oscillator’s energy. (b) The Q factor is related to the fractional energy loss
per cycle through AE/E=27z/Q. (c) The width of the resonance curve is

Aw=w,/Q where oy is the oscillator’s natural angular frequency.

(a) Express the energy of the damped

. E =E, 1—E
oscillator after one cycle: E
Express the energy after two :
pressthe nergy c 61 25) 1)
cycles: ! 0 E

Generalizing to n cycles:

Substituting numerical values yields: 0.50E, = E,(1-0.035)"

or

0.50 =(0.965)"

Solving for n yields: N In0.50 _
In0.965

~
~

19.5

20 complete cycles.
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(b) Apply the physical interpretation Q 2r 2r 180

of Q for small damping to obtain: - AE/E T 0.0350
i o, 24,(AE/E
(©) Th.e w¥dth of the resonance Ao =20 — o( / ) _ fo(AE/E)
curve is given by: Q 2
Substitute numerical values and Aw= (1 00 Hz)(0.03 50) =| 3.50rad/s

evaluate Aw:

87 e [SSM] A 2.00-kg object oscillates on a spring of force constant
400 N/m. The linear damping constant has a value of 2.00 kg/s. The system is
driven by a sinusoidal force of maximum value 10.0 N and angular frequency
10.0 rad/s. (a) What is the amplitude of the oscillations? (b) If the driving
frequency is varied, at what frequency will resonance occur? (C) What is the
amplitude of oscillation at resonance? (d) What is the width of the resonance
curve Aw?

Picture the Problem (a) The amplitude of the damped oscillations is related to

the damping constant, mass of the system, the amplitude of the driving force, and
FO

\/mz(a)é ~’ )2 +b’w’
(b) Resonance occurs when @ = @,. (C) At resonance, the amplitude of the

oscillations is A= F, / vVb’@* . (d) The width of the resonance curve is related to

the damping constant and the mass of the system according to Aw = b/m.

the natural and driving frequencies through A =

(a) Express the amplitude of the Ao F
oscillations as a function of the \/ m?2 ( 2 — o> )2 +brw?
driving frequency: ’

F
Because o, = LS : A= ’ - >
m
\/mz(—wzj +b’w’
m
Substitute numerical values and evaluate A:
A= 10.0N =|4.98cm

2
\/ (2.00kg)’ (400N/m —(10.0 rad/s)zj +(2.00kg/s)’ (10.0 rad/s )’
2.00 kg
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(b) Resonance occurs when:
=0, =

&7\_‘

m

Substitute numerical values and 400 N/m
. o= |———— =14.14rad/s

evaluate w: 2.00kg
=| 14.1rad/s

(€) The amplitude of the motion at Ao F

resonance is given by: b*w;

Substitute numerical values and A 10.0N

evaluate A: J(2.00kg/s)’ (14.14rad/s)’
=| 35.4cm

(d) Th.e width of the resonance Ao = b _2.00Kke/s 00 ad)s

curve is: m  2.00kg

88 e Suppose you have the same apparatus described in Problem 74 and the
same gold sphere hanging from a weaker spring that has a force constant of only
35.0 N/em. You have studied the viscosity of ethylene glycol with this device,
and found that ethylene glycol has a viscosity value of 19.9 mPa-s. Now you
decide to drive this system with an external oscillating force. (a) If the magnitude
of the driving force for the device is 0.110 N and the device is driven at
resonance, how large would be the amplitude of the resulting oscillation? (b) If
the system were not driven, but were allowed to oscillate, what percentage of its
energy would it lose per cycle?

Picture the Problem (a) The amplitude of the steady-state oscillations when the
system is in resonance is given by A=F,/bw. (b) We can relate the fractional

energy loss to the Q value of the oscillator.
(a) The amplitude of the steady-state

oscillations when the system is in baw
resonance is given by:

Because b =677, and o =,/k/m : A K m
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Substituting m = pV and simplifying = \ E [+
yields: A=—" \/ Lo To 370
6ran\ k  6ran k
F, |map

“3ap\ 3k

Substitute numerical values and evaluate A:

___0.110N_ [#(0.0600m)(19.3x10° kg/m’) _ o
37(19.9 mPa-s) 3(35.0 N/cm) '
(b) This is a very weakly damped Q= 2z -
system and so we can relate the (AE/ E)cycle ’
fractional energy loss per cycle to the
system’s Q value:
Because 7= =M. 2n___ M,
6713‘77 . (AE/E)cycle 6ﬂa77
Substituting for m and @y and v k
simplifying yields: 2r s m _im’p \/K
(AE/E),,. 6man  6man \'m
_2a’p |k
97 \m
Solve for (AE/E),,, to obtain: AE/E) 2 9mn [m
( / )cycle - a2p ?

Substitute numerical values and evaluate (AE/E)_, :

cycle *

(AEJE).. = 97(19.9 mPa s) [175kg FETMTE
9 (0.0600m)*(19.3x10° kg/m* ) V35.0 Nlem =

General Problems

89 - A particle’s displacement from equilibrium is given by

X(t) = 0.40 cos(3.0t + 7/4), where X is in meters and t is in seconds. (a) Find the
frequency and period of its motion. (b) Find an expression for the speed of the
particle as a function of time. (C) What is its maximum speed?
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Picture the Problem (a) The particle’s displacement is of the form

X= Acos(a)t + 5). Thus, we have A =0.40 m, = 3.0 rad/s, and 6= 77/4. We can
find the frequency of the motion from its angular frequency and the period from
the frequency. (b) The particle’s velocity is the time derivative of its
displacement. (C) The particle’s maximum speed occurs when sin(a)t +0 ) =—1.

(a) The particle’s displacement from ® =3.0rad/s
equilibrium is of the form and so
| X = Acos(a)t +.5). | flO 3.0rad/s _ 0.477 Hz
Comparing this to the given equation 2 2r
we see that: =| 0.48Hz
The pe'rlod of the.partlcle’s motion 1s T= 1 _ 1 _=2.095=[2.1s
the reciprocal of its frequency: f 0477s
(b) Differentiate X = Acos(wt + ) v, = dx_d [Acos(at+ )]
with respect to time to obtain an dt dt
expression for the particle’s velocity: = —wAsin(at +6)

Substituting for A, @, and o'yields:

V, = (3.0 rad/s)(0.40 m)sin{(S.O rad/s)t + ﬂ = -(12 m/s)sin[(ao rad/s)t + ﬂ

(C) The particle’s maximum speed V. =—(1.2m/s)-1)=|1.2m/s
occurs when sin(at +8)=—1:

90 - An astronaut arrives at a new planet, and gets out his simple device to
determine the gravitational acceleration there. Prior to his arrival, he noted that
the radius of the planet was 7550 km. If his 0.500-m-long pendulum has a period
of 1.0 s, what is the mass of the planet?

Picture the Problem We can apply Newton’s 2™ law and the law of gravity to an
object at the surface of the new planet to obtain an expression for the mass of the
planet as a function of the acceleration due to gravity at its surface. We can use
the period of the astronaut’s pendulum to obtain an expression for the acceleration
of gravity a, at the surface of the new planet.

2
planet

Apply Newton’s 2™ law and the law GM M
of gravity to an object of mass m at RZ
the surface of the planet: planet

a,R
= mag = M planet = G




Oscillations 1511

The period of the astronaut’s simple L 47°L
T=27n |—= a, =
a
g

pendulum is related to the T2
gravitational field a, at the surface of
the new planet:

Substituting for a, and simplifying 47°R> L

. planet
ylelds: planet — GT 2

Substitute numerical values and evaluate M

planet *

47*(7550 km)’(0.500 m)
(6.67x10™" N-m* /kg?)(1.05)’

planet —

=|1.7x10* kg

91 e+ A pendulum clock keeps perfect time on Earth’s surface. In which case
will the error be greater: if the clock is placed in a mine of depth h or if the clock
is elevated to a height h? Prove your answer and assume h << Rg.

Picture the Problem Assume that the density of Earth p is constant and let m
represent the mass of the clock. We can decide the question of where the clock is
more accurate by applying the law of gravitation to the clock at a depth h
below/above the surface of Earth and at Earth’s surface and expressing the ratios
of the acceleration due to gravity below/above the surface of Earth to its value at
the surface of Earth.

Express the gravitational force mg’ = GM'm

acting on the clock when it is at a (R, —hY

depth h in a mine: where M’ is the mass between the
location of the clock and the center of
Earth.

Express the gravitational force mg = GM m

acting on the clock at the surface R;

of Earth:

Divide the first of these equations GM'

by the second and simplify to g _(R.-hy ™M R

obtain: g GM, M, (R.—hY

Re
Express M ': M' = pV' =4 7p(R, —h)

Express Mg: M, = pV =470R]
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Substitute for M " and Mg, to obtain: g _4mp(R.—h) RI

Simplifying and solving for g’ , R, —h h
Tde- g=9g =0|1-—
yields: Rg Re
or
h
'=g|1-— 1
9=9 REJ 6]

Express the gravitational force acting
on the clock when it is at an
elevation h:

Express the gravitational force acting mg = GM;m
on the clock at the surface of Earth: R;
Divide the first of these equations by GM,
the second and simplify to obtain: 9" (R.+h)  R]
g % (RE - h)2
Re
Factoring R; from the denominator 9" _ 1
ields: g ’
yields 14 h
RE
Solve for g"’ to obtain: h )~
g" =g 1+—— @)
RE

Comparing equations (1) and (2), we see that ¢’ is closer to g than is g" . Thus the

error is greater if the clock is elevated.

92 o Figure 14-34 shows a pendulum of length L with a bob of mass M. The
bob is attached to a spring that has a force constant k. When the bob is directly
below the pendulum support, the spring is unstressed. (a) Derive an expression for
the period of this oscillating system for small-amplitude vibrations. (b) Suppose
that M = 1.00 kg and L is such that in the absence of the spring the period is

2.00 s. What is the force constant K if the period of the oscillating system is

1.00 s?
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Picture the Problem The figure shows
this system when it has an angular
displacement 6. The period of the
system is related to its angular
frequency according to T = 27/w. We
can find the equation of motion of the
system by applying Newton’s 2™ law.
By writing this equation in terms of &
and using a small-angle approximation,
we’ll find an expression for @ that we
can use to express T.

-

——dm-

(2) The period of the system in terms T= 2z

of its angular frequency is given by: 0]

Apply ZF = ma to the bob: Z F, =—kx-Tsind =Ma,

and
sz =T cosd-Mg=0

Eliminate T between the two —kx—Mgtané = Ma,
equations to obtain:

. _ 2
Noting that X 2Lté?and ML(:j 4 =—kL&— Mg tan

2
a, = La =L——, eliminate the t
X dt’

variable X in favor of &:

~ . 2
For §<< 1, tanf0=~ @ MLd 0

= —kLO—-Mg@

t2

=—(kL+Mg)o

(D

1513
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Substitute in equation (1) to obtain: T 2r
k.9
M L
(b) When k = 0 (no spring), 200s = 2z ?)
T=2.00s,and M =1.00 kg we have: ' \/E
L
With the spring present and T = 1.00 s 1.00s = 2z 3)
we have: . k kg™ L9
L
Solving equations (2) and (3) k=] 29.6N/m

simultaneously yields:

93 e [SSM] A block that has a mass equal to m; is supported from below
by a frictionless horizontal surface. The block, which is attached to the end of a
horizontal spring with a force constant k, oscillates with an amplitude A. When
the spring is at its greatest extension and the block is instantaneously at rest, a
second block of mass m; is placed on top of it. (a) What is the smallest value for
the coefficient of static friction x4 such that the second object does not slip on the
first? (b) Explain how the total mechanical energy E, the amplitude A, the angular
frequency @, and the period T of the system are affected by the placing of m; on
m;, assuming that the coefficient of friction is great enough to prevent slippage.

Picture the Problem Applying Newton’s 2™ law to the first object as it is about
to slip will allow us to express g4 in terms of the maximum acceleration of the
system which, in turn, depends on the amplitude and angular frequency of the
oscillatory motion.

(a) Apply z F. =ma, to the second fmax = My

object as it is about to slip:

Apply Z F, = 0to the second F,.-m,g=0

object:

Use f, . = uF toeliminate f -
S, max /’ls n ‘ S, max ﬂsng — mzamax :>ﬂs — al'n

and F, between the two equations 9

and solve for z4:



Relate the maximum acceleration of

the oscillator to its amplitude and

angular frequency and substitute for
v

W’

Finally, substitute for am.x to obtain:
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a, =Ao’ =A K
m1 + m2
1 = Ak
* [ (m +m,)g

(b) A is unchanged. E is unchanged because E = 1kA’. wis reduced and T is

increased by increasing the total mass of the system.

94 oo

A 100-kg box hangs from the ceiling of a room—suspended from a

spring with a force constant of 500 N/m. The unstressed length of the spring is
0.500 m. (a) Find the equilibrium position of the box. (b) An identical spring is
stretched and attached to the ceiling and box and is parallel with the first spring.
Find the frequency of the oscillations when the box is released. () What is the
new equilibrium position of the box once it comes to rest?

Picture the Problem The diagram
shows the box hanging from the
stretched spring and the free-body
diagram when the box is in equilibrium.

We can apply Z F, =0 to the box to

derive an expression for x. In (b) and
(c), we can proceed similarly to obtain
expressions for the effective force
constant, the new equilibrium position
of the box, and frequency of
oscillations when the box is released.

(a) Apply Z F, =0 to the box to
obtain:

Substitute numerical values and
evaluate X:

k(x—x,)—mg :O:X:%+xo

(100kg)9.81m/s?)
500 N/m

=|2.46m

+0.500 m
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(b) Draw the free-body diagram for
the block with the two springs
exerting equal upward forces on it:

Apply Z F, =0 to the box to
obtain:

When the box is displaced from this
equilibrium position and released, its
motion is simple harmonic motion
and its frequency is given by:

Substitute numerical values and
evaluate w:

(c) Solve equation (1) for X to obtain:

Substitute numerical values and
evaluate X:

95 oo

k(x—x,)+k(x=x,)—mg =0

or

keff(x_xo)_mg =0 (1)
where K . =2k

oo [ _ [
m m

o= M: 3.16rad/s
100kg

m
x=—g+x0

2k

(100kg)(9.81m/s?)
2(500 N/m)

=| 1.48m

+0.500m

The acceleration due to gravity g varies with geographical location

because of Earth’s rotation and because Earth is not exactly spherical. This was
first discovered in the seventeenth century, when it was noted that a pendulum
clock carefully adjusted to keep correct time in Paris lost about 90 s/d near the
equator. (a) Show by using the differential approximation that a small change in
the acceleration of gravity Ag produces a small change in the period AT of a
pendulum given by AT/ T ~—1Ag/ g. (b) How large a change in g is needed to

account for a 90 s/d change in the period?
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Picture the Problem We’ll differentiate the expression for the period of simple

pendulum T =27 \/E with respect to g, separate the variables, and use a
g

. . o . A
differential approximation to establish that AT—T ~— l—g
g
(a) Express the period of a simple _ L
pendulum in terms of its length and i a
the local value of the acceleration
due to gravity:
Differentiate this e)‘cpresswn with ar _ da [27[ \/Ig _1/2]: —r \/Ig 32
respect to g to obtain: dg dg
__T
29
Separate the variables to obtain: ar _ _1ldg
T 29
For Ag << g we can approximate AT | 1Ag
dT and dg by AT and Ag: T | 2 g
(Ab) Solve the equation in Part (@) for Ag =2 AT_T
g:

Substitute numerical values and evaluate Ag for a 90 s/d change in the period:

Ag = 2008152 ) —905x 14 1B g e
d 24h 36005

96 e A small block that has a mass equal to m; rests on a piston that is
vibrating vertically with simple harmonic motion described by the formula
y = Asin ot. (a) Show that the block will leave the piston if W'A > g. (b) If
@’A=3gand A =15 cm, at what time will the block leave the piston?

Picture the Problem If the displacement of the block is y = A sin at, its
acceleration is a = —@’Asinat.

(a) At maximum upward extension, the block is momentarily at rest. Its
downward acceleration is g. The downward acceleration of the piston is @?A.
Therefore, if @”A > g, the block will separate from the piston.
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(b) Express the acceleration of the a=—-Aw’sinot
small block:
For @’A=3gand A=15cm: a=-3gsinot =—g

Solving for t yields: 1. 1( lj A . 1[ lj
t=—smn | —|=,/—sin | —
w 3 39 3
Substitute numerical values and 0.15m . (1
i t= sin" | — |=| 24ms
evaluate t: 3(9.81m/s’ 3

97 e [SSM] Show that for the situations in Figure 14-35a and Figure 14-
35b the object oscillates with a frequency f = (1/ 2 )\[ K / M, where Kegr is
given by (@) Kegr = K; + Ko, and (b) 1/Keee = 1/k; + 1/K,. Hint: Find the magnitude of
the net force F on the object for a small displacement x and write F = —k.gx. Note
that in Part (b) the springs stretch by different amounts, the sum of which is x.

Picture the Problem Choose a coordinate system in which the +x direction is to
the right and assume that the object is displaced to the right. In case (@), note that
the two springs undergo the same displacement whereas in (b) they experience
the same force.

(a) Express the net force acting on F. =—kx—kx=—(k +k,)x=—kx
the object:

where K. =| k +k,

(b).Express the force acting on each F=—kx = kX, =% = ﬁ X,
spring and solve for X,: K,

Express the total extension of the

. X + X, =
springs: Kegr
Solving for K yields: K- F _ = K X,
XX, XX
— kl Xl _ 1
= T
X +-—LX & —+—
k2 1 2
Take the reciprocal of both sides 1|1 N 1

of the equation to obtain: Ky kK k,
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98 e« During an earthquake, a floor oscillates horizontally in approximately
simple harmonic motion. Assume it oscillates at a single frequency with a period
of 0.80 s. (a) After the earthquake, you are in charge of examining the video of
the floor motion and discover that a box on the floor started to slip when the
amplitude reached 10 cm. From your data, determine the coefficient of static
friction between the box and the floor. (b) If the coefficient of friction between
the box and floor were 0.40, what would be the maximum amplitude of vibration
before the box would slip?

Picture the Problem Applying Newton’s 2™ law to the box as it is about to slip
will allow us to express 4 in terms of the maximum acceleration of the platform
which, in turn, depends on the amplitude and angular frequency of the oscillatory
motion.

(a) Apply z F =ma, to the box as fomax = M,

it is about to slip:
Apply Z F, =0 to the box: F-mg=0

Use f, .. =#F, toeliminate f

a
Smax umg=ma_, and g =—"=
and F, between the two equations:

Relate the maximum acceleration of a_ =Aw’
the oscillator to its amplitude and
angular frequency:

Substitute for amax in the expression 3 Ao’ B 4z’ A

for pu: Hs = g Tig

Substitute numerical values and _ 47°(0.10m) 0.63
evaluate z: # (0.80s)(9.81mys?) =
(b) Solve the equation derived above 49 pgT?

for Amax: Amax a (02 a 472'2

Substitute numerical values and 4 - (0.40)(9.81m/s”)(0.80s)’
evaluate Apyy: e 4n’

~[eden]
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99 e [fwe attach two blocks of masses m; and m; to either end of a spring
of force constant k and set them into oscillation by releasing them from rest with
the spring stretched, show that the oscillation frequency is given by @ = (k/z)"?,

where 4 = mm,/(m; + my) is the reduced mass of the system.

Picture the Problem The pictorial representation shows the two blocks
connected by the spring and displaced from their equilibrium positions. We can
apply Newton’s 2™ law to each of these coupled oscillators and solve the
resulting equations simultaneously to obtain the equation of motion of the coupled
oscillators. We can then compare this equation and its solution to the equation of
motion of the simple harmonic oscillator and its solution to show that the

oscillation frequency is @ = (k/ ,u)l/ *where 1= mymy/(m; + m,).

Apply ZF =ma to the block

whose mass is m; and solve for its

acceleration: or
d?x
a = dtzl = (Xl - Xz)
1
Apply > F =ma to the block " )= _ o dx,

. . —KIX =X, )=m,a, =m, 2
whose mass is M, and solve for its dt
acceleration: or

d?x
a, = dt22 = (Xz Xl)
2
Subtract the ﬁr.st equation from the d2(x,—x) d’x N 1 . 1 y
second to obtain: e T m o m,

where X = X5 — X;

The reduced mass of the system is:
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Substitute to obtain: d?2x k
T =——X (1
dt 7
Compare this equation to the d?2x k
equation of the simple harmonic a2 _EX
oscillator:
The solution to this equation is: X = X, cos(at +5)
where o = \/E
m
Because of the similarity of the two X=X, cos(a)t +0 )
differential equations, the solution to "
equation (1) must be: where w=| _|— |and u= _mm,
H m, +m,

100 <= In one of your chemistry labs you determine that one of the vibrational
modes of the HC] molecule has a frequency of 8.969 x 10'° Hz. Using the result
of Problem 99, find the effective "spring constant” between the H atom and the CI
atom in the HCI molecule.

Picture the Problem We can use @ = (k/,u)l/2 and g = mim,/(m; + my) from
Problem 99 to find the spring constant for the HCIl molecule.

the oscillation frequency to the force
constant and reduced mass of the
HCI molecule:

Use the result of Problem 99 to relate k
o=_|—=k=puwo’
Y7,

Express the reduced mass of the HCI _omm,
molecule: H= m, +m,
Substitute for 4 to obtain: _mm ,0°
m,+m,
Express the masses of the hydrogen m; =1 amu=1.67x10"" kg
and Cl atoms: and

m, = 35.45 amu = 5.92x10*° kg

Substitute numerical values and evaluate k:

o (1673x107 ke)(5.92x10™ ke )(8.969x10" 5" )

— e =|13.1N/m
1.673x107" kg +5.92x10" kg
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101 e+ Ifahydrogen atom in HCI were replaced by a deuterium atom
(forming DCI) in Problem 100, what would be the new vibration frequency of the
molecule? Deuterium consists of 1 proton and 1 neutron.

Picture the Problem In Problem 100, we derived an expression for the
oscillation frequency of a spring-and-two-block system as a function of the force
constant of the spring and the reduced mass of the two blocks. We can solve this
problem, assuming that the "spring constant" does not change, by using the result
of Problem 101 and the reduced mass of a deuterium atom and a CI atom in the
equation for the oscillation frequency.

Use the result of Problem 100 to k

relate the oscillation frequency to the 0=

force constant and reduced mass of H

the DC1 molecule:

Express the reduced mass of the DCI e m,m,

molecule: m, +m,

The masses of the deuterium and Cl m; =2 amu = 3.34x107> kg
atoms are: and

m, = 35.45 amu = 5.92x10*° kg

Substitute numerical values and evaluate w:

13.1N/m
(3.34x10™ kg )5.92x10 ™ kg)
3.34x107 kg +5.92x10* kg

=1 6.44x%10" rad/s

102 <= A block of mass m on a horizontal table is attached to a spring of force
constant K, as shown in Figure 14-36. The coefficient of kinetic friction between
the block and the table is z4. The spring is unstressed if the block is at the origin
(x = 0), and the +x direction is to the right. The spring is stretched a distance A,
where KA > z4mg, and the block is released. (a) Apply Newton’s second law to
the block to obtain an equation for its acceleration d*x/dt’ for the first half-cycle,
during which the block is moving to the left. Show that the resulting equation can
be written as d’x'/dt* =—w’x", where @ =./k/m and X’ = x —X,, with

X, =4, mg/K =19 / o’ . (b) Repeat Part (a) for the second half-cycle as the

block moves to the right, and show that d 2X"/dt2 =-w’X", where X" =X +X,

and X has the same value. (C) Use a spreadsheet program to graph the first 5
half-cycles for A = 10xy. Describe the motion, if any, after the fifth half-cycle.

Picture the Problem The pictorial representation shows the block moving from
right to left with an instantaneous displacement X from its equilibrium position.
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The free-body diagram shows the forces acting on the block during the half-cycles
that it moves from right to left. When the block is moving from left to right, the
directions of the kinetic friction force and the restoring force exerted by the spring
are reversed. We can apply Newton’s 2" law to these motions to obtain the
equations given in the problem statements and then use their solutions to plot the

graph called for in (C).

(a) Apply z F, = ma, to the block

while it is moving to the left to
obtain:

Using f, = F, = 1, mg, eliminate
f, in the equation of motion:

_ MMy

to obtain:

The solution to the equation of
motion is:

fx
mg
d?x
f —kx=m
: dt?
2
X
m e =—kx+ 2, mg
or
2
mcI ;(_ k[x——’ukng
dt k
d>x
m-— =—k(x=x,)
or
d2x' k . ,
—=——X' =-o'X
dt m
provided X’ = X — Xo and
_| AM9 A9
X, = = £
K o

X' =X, cos(at+5)
and its derivative is
V' = —ax, sin(wt + &)
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The initial conditions are:

Apply these conditions to obtain:

Solve these equations simultaneously
to obtain:

(b) Apply Zﬁ' = ma to the block

while it is moving to the right to
obtain:

Using f,_ = F =g, mg, eliminate
f, in the equation of motion:

to obtain:

m
Let x, = ’ukTg

The solution to the equation of
motion is:

The initial conditions are:

Apply these conditions to obtain:

x'(0)= x—x,and v'(0)=0

x'(0)=x, cos& = x—X,
and
V'(0)= —ax, sins =0

o0=0and X, =X-X,
and
X'= (X—xo)cos wt

or

X= (X—Xo)cosa)t+xo

d?x
- f, —kx=m pre
d?x "
m el X — 41, Mg
or

2
md ;(:—k[x+—”kmgj
dt k

or

d>x" k .
——=—X"=-0X
dt m
provided X" =X + Xo and
4mg _ 49 .
K @’

Xy =

X" = X, cos(at +5)
and its derivative is
V"' =—ax;" sin(ot + )

x"(0) = x + x,and v"(0)=0
x"(0)= %" cos & = x+X,

and
v'(0)=—ax;"sind =0

(1)



Solve these equations simultaneously

to obtain:

and

or
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o0 =0and X;" = X+X,

X" = (X + X, )cos at

x = (X+ X, )cos ot — X, 2)

(c) A spreadsheet program to calculate the position of the oscillator as a function
of time (equations (1) and (2)) is shown below. The constants used in the position
functions (Xo =1 m and T =2 s were used for simplicity) and the formulas used to
calculate the positions are shown in the table. After each half-period, one must
compute a new amplitude for the oscillation, using the final value of the position
from the last half-period.

Cell Content/Formula Algebraic Form

B1 1 Xo

B2 10 A

C7 C6+0.1 t+ At

D7 ($B$2-$B$1)*COS(PI()*C7)+$BS$1 (A—x,)cos at + X,
D17 | (ABS(8D$6+$BS1))*COS(PI()*C17)-$B$1 | |x +x,|cosat — X,
D27 | (ABS(8D$6-$B$1))*COS(PI()*C27)+$B$1 | |x —x,|cos 7t + X,
D37 | (ABS(8D$36+$B$1))*COS(PI()*C37)-$B$1 | |x + X |cos 2t — X,
D47 ($D$46-$B$1)*COS(PI()*C47)+$BS$1 (x =X, )cos 7t + X,

A |B| C D
1 | Xo= m
2 =110
3
4 t X
5 (s) | (m)
6 0.0 | 10.00
7 0.1 | 9.56
8 0.2 | 8.28
9 0.3 6.29
10 0.4 | 3.78
53 47| 041
54 48| 0.19
55 49| 0.05
56 5.0 0.00

The following graph was plotted using the data from columns C (t) and D (X).

Note that the motion of the block ceases after five half - cycles.
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=
o

X (m)
o & A N O N AN O ®
N )

KN
o

t (s)

103 eee Figure 14-37 shows a uniform solid half-cylinder of mass M
and radius R resting on a horizontal surface. If one side of this cylinder is pushed
down slightly and then released, the half-cylinder will oscillate about its
equilibrium position. Determine the period of this oscillation.

Picture the Problem The diagram shows the half-cylinder displaced from its
equilibrium position through an angle 6. The frequency of its motion will be
found by expressing the mechanical energy E in terms of #and dé&/dt. For small &

2
we will obtain an equation of the form E =1 x6” + 11 (%j . Differentiating both

2
sides of this equation with respect to time will lead to 0 = (K'9+ | ZTZHJ%—?

equation that must be valid at all times. Because the situation of interest to us
2

requires that d@/dt is not always equal to zero, we have 0 = k6 + | e or
d’0 « . . . . L ,
e + I—H =0, the equation of simple harmonic motion with ®° = «/1. We’ll

show that the distance from O to the center of mass D, is given by D = :—R ,and
T

let the distance from the contact point C to the center of mass be r. Finally, we’ll
take the potential energy to be zero where € is zero and assume that there is no

slipping.
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Apply conservation of energy to
obtain:

From Table 9-1, the moment of
inertia of a solid cylinder about an
axis perpendicular to its face and
through its center is given by:

Express the moment of inertia of the
half-cylinder about the same axis:

Use the parallel-axis theorem to
relate ., to lo:

Substitute for Iy and solve for lp:

Apply the parallel-axis theorem a
second time to obtain an expression
for I¢:

Apply the law of cosines to obtain:

l(2|v| )R> = MR’

0, solid cylinder = 2

where M is the mass of the half-
cylinder.

1 1
IO,half cylinder = IO :E[MRz]:EMRZ

I, =1, +MD?

I =1,-DM :%MRz—DZM

Ci

I :%MRz—DZM +Mr?

1 @)
=M|=R>-D?+r’
R0

r’ =R?*+D?*-2RDcosé#
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Substitute for r’in equation (2) to obtain:

l. = |\/|GR2 -D?*+R*+D? —2RDcosé’j = MRZG—zgcosej

Substitute for h and Ic in equation (1):

2
E= MgD(l—cos9)+lMRz(i—zgcosej[d—Hj
2 2 "R dt

Use the small angle approximation cosd ~ 1—%(92 to obtain:

2
E - MgDe? +1MR2(§—9[2—92]J((1—9)
2 22 R dt

Because 02 << 2, we can neglect the §7 in the square brackets to obtain:

2
E = LmgDe? +1MR2(§—2EJ(d—9j
2 2 2 TR dt

Differentiating both sides with respect to time and simplifying yields:

2
Rz(%_zgjﬁjt?j+ gbé =0,

or
2
?129+ 3gD Y7 ="
2 R

the equation of simple harmonic motion with @® =

— = 3)
“37)



D is the y coordinate of the center of

mass of the semicircular disk shown. A

surface element of area dA is shown in

the diagram. Because the disk is a

continuous object, we’ll use
Mz, = [ Fdm

to find Y = D.

Express the coordinates of the

center of mass of the semicircular
disk:

Express Yy as a function of r and &
Express dA in terms of r and &

Substitute and evaluate D:

Express M as a function of r and 6:

Substituting for M and simplifying
yields:

Substitute for D in equation (3) and
simplify to obtain:

The period of the motion is given
by:

Substituting for @ and simplifying
yields:
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A y
dA
"
H -
X
X, =0 by symmetry.
yo dA
ycm=D=I
M
y=rsiné
dA=rd&dr
Rz
o[ [r’sinododr -
00 20 ¢
D= = —J‘ r=dr
M M <
= 2_0- R3
3M

_ _1 2
M = 0A, s gig. =7 7R

20 3 4

D= R =| =R
3L oaR?) 3z
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104 eee A straight tunnel is dug through Earth as shown in Figure 14-38.
Assume that the walls of the tunnel are frictionless. (a) The gravitational force
exerted by Earth on a particle of mass m at a distance r from the center of Earth

whenr <Rgis F = —(GmM e/ Ré)r, where Mg is the mass of Earth and Rg is its

-
radius. Show that the net force on a particle of mass m at a distance X from the

middle of the tunnel is given by F, = —(GmM e/ Ré)x , and that the motion of the
particle is therefore simple harmonic motion. (b) Show that the period of the
motion is independent of the length of the tunnel and is given by T =274R;. /g .
(c) Find its numerical value in minutes.

Picture the Problem The net force acting on the particle as it moves in the tunnel
is the X-component of the gravitational force acting on it. We can find the period
of the particle from the angular frequency of its motion. We can apply Newton’s
2" law to the particle in order to express @ in terms of the radius of Earth and the
acceleration due to gravity at the surface of Earth.

(a) From the figure we see that: F. =Fsin0=— Gmlz/IE r X
Re r
GmM
=| — 3 X
RE

Because this force is a linear restoring force, the motion of the particle is simple
harmonic motion.

(b) Express the period of the particle T= 2z (1)
as a function of its angular 0]
frequency:
Apply > F, =ma, to the particle: B Gm|2/|E X — Ma
E
Solving for a yields: a-_ GM3 E y = — X
RE
where o= GM3 L
RE
Use GM,, = gR; to simplify e gR: _ |9
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Substitute in equation (1) to obtain: 211 R

g g
RE

(C) Substitute numerical values 6.37x10° m

and evaluate T: T=27 Toslms’ 5.06x10%s

=| 84.4 min

105 ee= [SSM] In this problem, derive the expression for the average power
delivered by a driving force to a driven oscillator (Figure 14-39).
(a) Show that the instantaneous power input of the driving force is given by
P =Fv=-A ok cos ot sin (a)t —5).

(b) Use the identity sin(&, — &) = sin 6; cos &, — cos 6, sin 6, to show that the
equation in (&) can be written as

P = AwF, sin § cos’ wt — AwF, cos 5 cos wt sin ot
(c) Show that the average value of the second term in your result for (b) over
one or more periods is zero, and that therefore P, =1 Aok, sin 5.

(d) From Equation 14-56 for tan &, construct a right triangle in which the side
opposite the angle J is b and the side adjacent is m(a)é - a)z), and use this

triangle to show that
bo bwA

sz(a)g -~ a)z)z + b’ 0
(e) Use your result for Part (d) to eliminate @A from your result for Part () so
that the average power input can be written as
1K 1 bw’F;
P, ==-Lsin’5§== — wz — |
2b 2m(a)0—a))+ba)

Picture the Problem We can follow the step-by-step instructions provided in the
problem statement to obtain the desired results.

(a) Express the average power P=F-v=Fvcosd
delivered by a driving force to a or, because @is 0°,
driven oscillator: P=Fv

Express F as a function of time: F =F, cosat
Express the position of the driven X= Acos(a)t -0 )

oscillator as a function of time:
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Differentiate this expression with
respect to time to express the
velocity of the oscillator as a
function of time:

Substitute to express the average
power delivered to the driven
oscillator:

(b) Expand sin(a)t -0 ) to obtain:

Substitute in your result from (&)
and simplify to obtain:

(C) Integrate sin @ cosé over one
period to determine <sin 0 cos ¢9> :

Integrate cos’ @ over one period to

determine <0052 0>:

Substitute and simplify to express
Pav:

vV =—Awsin(at - &)

P= (F0 cos a)t)[— Aw sin(a)t - 5)]

= | — AwF, cos wtsin(wt — )

sin(wt — §) = sin wt cos & — cos wtsin

P =-AwkF, cos a)t(sin wtcosd

—cos it sin 5)

AwF, sin & cos” at

— Awk, cos § cos wt sin wt

. 1 [
<sm O cos 6’> = Py !sm 0 cosAd 0}

_1 2r
=—|—sin’ @ }20
2

0

1 2r
<cos2 (9> =5 ‘([coszédﬁ

1 127z
=— —j(l+cos2(9)it9}
2 0

27|
1 2z 2
= %}[d0+%}[cos26’d0
1 1
—E(ﬂ"l'())—a
P, = AwF,sin §<cos2 a)t>

— AwF, cos 5<cos wtsin a)t>
L A@F, sin§ — AwF, cos 5(0)
=| + AwkF,sino

o

|
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(d) Construct a triangle that is
consistent with

be

bw

tano = :
m(ew — o*)

Using the triangle, ino: .
sing the triangle, express sin NS — ba

Using Equation 14-56, reduce this 5 bwA
expression to the simpler form: Sno= F,
(e) Solve sind = bwA for w: W= isin5
F, bA
Substitute in the expression for F2
o P, =| —Lsin’o
P.y to eliminate w: av b
Sgbs.tltute for sin J from (d) to o 1 ba’F;
obtain: e
2 mz(a)g ~0') +be

106 ee=  In this problem, you are to use the result of Problem 105 to derive
Equation 14-51. At resonance, the denominator of the fraction in brackets in
Problem 105(e) is b2a)§ and P,, has its maximum value. For a sharp resonance, the
variation in @ in the numerator in this equation can be neglected. Then the power
input will be half its maximum value at the values of @, for which the denominator
is 2’y .

(@) Show that w then satisfies mz(a) - a)o)z(a)Jr a)o)Z ~ba;.

(b)  Using the approximation @+ @, = 2®,, show that ® —@, =+b/2m.

(c) Express b in terms of Q.

(d) Combine the results of (b) and (¢) to show that there are two values of @ for

which the power input is half that at resonance and that they are given by
@ @y
10} :a)o—% and a)zza)o—ﬁ
Therefore, @, — o, = Aw=w,/ Q, which is equivalent to Equation 14-51.
Picture the Problem We can follow the step-by-step instructions given in the
problem statement to derive the given results.
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(@) Express the condit.ion on the m2(a)§ - a,z)z +b’w’ =2b%w;
denominator of Equation 14-56
when the power input is half
its maximum value:

and, for a sharp resonance,

mz(a)é - a)z)2 ~b’w]

Factor the difference of two squares m*[(w, — @)@, + )] =b*w;

to obtain: or

m*(w, - o) (0, + ©) ~b*w;

(b) Use the approximation m*(w, —) (20,) ~b’w}
o+ @y~ 2y to obtain:

Solving for ey — w yields: 0 —w=|+ b (1)

(c) Using its definition, express Q: Q- @,M b @,m
b Q
(d) Substltute for b in equation (1) to P Do e 0, + .
obtain: 2Q 2Q
Express the two values of w: @, @,
o, = o,+— ando_=| 0, ——
2Q 2Q

Remarks: Note that the width of the resonance at half-power is
Aw=0, -o_=wr,/Q,in agreement with Equation 14-51.

107 <= The Morse potential, which is often used to model interatomic forces,

can be written in the form U(r)= D(l ~¢”’ (H“))z, where r is the distance between

the two atomic nuclei. (a) Using a spreadsheet program or graphing calculator,
make a graph of the Morse potential using D = 5.00 eV, #=0.20 nm ™', and
ro=0.750 nm. (b) Determine the equilibrium separation and "spring constant” for
small displacements from equilibrium for the Morse potential. (C) Determine an
expression for the oscillation frequency for a homonuclear diatomic molecule
(that is, two of the same atoms), where the atoms each have mass m.

Picture the Problem We can find the equilibrium separation for the Morse
potential by setting dU/dr = 0 and solving for r. The second derivative of U will
give the "spring constant" for small displacements from equilibrium. In (C), we
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can use @ =/k/u, where K is our result from (b) and # is the reduced mass of a
homonuclear diatomic molecule, to find the oscillation frequency of the molecule.

(a) A spreadsheet program to calculate the Morse potential as a function of r is
shown below. The constants and cell formulas used to calculate the potential are
shown in the table.

Cell Content/Formula Algebraic Form
Bl 5 D

B2 0.2 B

C9 C8+0.1 r+ Ar

D8 | $B$1*(1-EXP(-$B$2*(C8-$B$3)))"2 D[l _ e—ﬁ(r—ro)]2

A | B C D

1 |D=|5 eV

2 | /=102 |nm’

3 | r=1]0.75| nm

4

5

6 r u(r)

7 (nm) | (eV)

8 0.0 |0.13095

9 0.1 |0.09637
10 0.2 | 0.06760
11 0.3 ]0.04434
12 0.4 |0.02629
235 22.7 | 4.87676
236 22.8 | 4.87919
237 22.9 | 4.88156
238 23.0 | 4.88390
239 23.1 | 4.88618
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The graph shown below was plotted using the data from columns C (r) and

D (U(r)).

0.7

/

0.6

0.0 -
0.0 0.5 1.0

15 2.0 2.5 3.0

r (nm)

(b) Differentiate the Morse potential
with respect to I to obtain:

This derivative is equal to zero for
extrema:

Evaluate the second derivative of
U(r) to obtain:

Evaluate this derivative at r = ry:

Recall that the potential function for
a simple harmonic oscillator is:

Differentiate this expression twice to
obtain:

By comparison with equation (1) we
have:

W_d )l

= 2lI-e”]

—2fl—e =0 =r =T,

d’u d

— _2 l_e_ﬁ(r_ro)
drz dr{ ﬂD[ ]}

— 2ﬂ2 De—ﬂ(r—fo)

=23°D 1

i, = (1)
U =1kx’
d’U _
dx®
k=|28°D




(c) Express the oscillation frequency
of the diatomic molecule:

Express the reduced mass of the
homonuclear diatomic molecule:

Substitute for @ and simplify to
obtain:
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w=_|—
y7,

where x is the reduced mass of the
molecule.

mm, m’
/J = = —
m+m, 2m

o [, D
C=m T m\/;
2

m
2

Remarks: An alternative approach in (b) is to expand the Morse potential in

a Taylor series

U(r)=U(r,)+(r —ro)U'(r0)+%(r —r,)U" (r,)+ higher order terms

to obtain U(r) = f°D(r —r,)* . Comparing this expression to the energy of a
spring-and-mass oscillator we see that, as was obtained above, k =24°D.
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