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Chapter 14 
Oscillations 
 
Conceptual Problems 
 
1 • True or false: 
(a) For a simple harmonic oscillator, the period is proportional to the square of the 
amplitude. 
(b) For a simple harmonic oscillator, the frequency does not depend on the 
amplitude. 
(c) If the net force on a particle undergoing one-dimensional motion is 
proportional to, and oppositely directed from, the displacement from equilibrium, 
the motion is simple harmonic. 
 
(a) False. In simple harmonic motion, the period is independent of the amplitude. 
 
(b) True. In simple harmonic motion, the frequency is the reciprocal of the period 
which, in turn, is independent of the amplitude. 
 
(c) True. This is the condition for simple harmonic motion 
 
2 • If the amplitude of a simple harmonic oscillator is tripled, by what 
factor is the energy changed? 
 
Determine the Concept The energy of a simple harmonic oscillator varies as the 
square of the amplitude of its motion. Hence, tripling the amplitude increases the 
energy by a factor of 9. 
 
3 •• [SSM] An object attached to a spring exhibits simple harmonic 
motion with an amplitude of 4.0 cm. When the object is 2.0 cm from the 
equilibrium position, what percentage of its total mechanical energy is in the form 
of potential energy? (a) One-quarter. (b) One-third. (c) One-half. (d) Two-thirds. 
(e) Three-quarters. 
 
Picture the Problem The total energy of an object undergoing simple harmonic 
motion is given by ,2

2
1

tot kAE =  where k is the force constant and A is the 
amplitude of the motion. The potential energy of the oscillator when it is a 
distance x from its equilibrium position is ( ) .2

2
1 kxxU =  

 
Express the ratio of the potential 
energy of the object when it is  
2.0 cm from the equilibrium position 
to its total energy: 
 

( )
2

2

2
2
1

2
2
1

tot A
x

kA
kx

E
xU

==  
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Evaluate this ratio for x = 2.0 cm and  
A = 4.0 cm: 

( ) ( )
( ) 4

1
cm4.0
cm2.0cm2

2

2

tot

==
E

U  

and )(a is correct. 
 
4 • An object attached to a spring exhibits simple harmonic motion with 
an amplitude of 10.0 cm. How far from equilibrium will the object be when the 
system’s potential energy is equal to its kinetic energy? (a) 5.00 cm. (b) 7.07 cm. 
(c) 9.00 cm. (d) The distance can’t be determined from the data given.  
 
Determine the Concept Because the object’s total energy is the sum of its kinetic 
and potential energies, when its potential energy equals its kinetic energy, its 
potential energy (and its kinetic energy) equals one-half its total energy. 
 
Equate the object’s potential energy 
to one-half its total energy: 
  

total2
1

s EU =  

Substituting for Us and Etotal yields: 
 

( )2
2
1

2
12

2
1 kAkx = ⇒

2
Ax =  

 
Substitute the numerical value of A 
and evaluate x to obtain: 

cm 07.7
2
cm 0.10

==x  

and ( )b is correct. 

 
5 • Two identical systems each consist of a spring with one end attached 
to a block and the other end attached to a wall. The springs are horizontal, and the 
blocks are supported from below by a frictionless horizontal table. The blocks are 
oscillating in simple harmonic motions such that the amplitude of the motion of 
block A is four times as large as the amplitude of the motion of block B. How do 
their maximum speeds compare? (a) max BmaxA  vv = , (b) max BmaxA  2vv = ,  
(c) max BmaxA  4vv = , (d) This comparison cannot be done by using the data given. 
 
Determine the Concept The maximum speed of a simple harmonic oscillator is 
the product of its angular frequency and its amplitude. The angular frequency of a 
simple harmonic oscillator is the square root of the quotient of the force constant 
of the spring and the mass of the oscillator. 
 
Relate the maximum speed of system 
A to the amplitude of its motion: 
 

AAmaxA Av ω=  

Relate the maximum speed of system 
B to the amplitude of its motion: 

BBmax B Av ω=  
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Divide the first of these equations by 
the second to obtain: 
 

BB

AA

max B

maxA 

A
A

v
v

ω
ω

=  

Because the systems differ only in 
amplitude, ,BA ωω = and: 
 

B

A

max B

maxA 

A
A

v
v

=  

Substituting for AA and simplifying 
yields: 

44

B

B

max B

maxA ==
A
A

v
v

⇒ max BmaxA 4vv =  

( )c is correct. 

 
6 • Two systems each consist of a spring with one end attached to a block 
and the other end attached to a wall. The springs are horizontal, and the blocks are 
supported from below by a frictionless horizontal table. The blocks are oscillating 
in simple harmonic motions with equal amplitudes. However, the force constant 
of spring A is four times as large as the force constant of spring B. How do their 
maximum speeds compare? (a) max BmaxA  vv = , (b) max BmaxA  2vv = ,  
(c) max BmaxA  4vv = ,  (d) This comparison cannot be done by using the data given. 
 
Determine the Concept The maximum speed of a simple harmonic oscillator is 
the product of its angular frequency and its amplitude. The angular frequency of a 
simple harmonic oscillator is the square root of the quotient of the force constant 
of the spring and the mass of the oscillator. 
 
Relate the maximum speed of system 
A to its force constant: 
 

A
A

A
AAmaxA A

m
kAv == ω  

Relate the maximum speed of system 
B to its force constant: 
 

B
B

B
BBmax B A

m
kAv == ω  

Divide the first of these equations by 
the second and simplify to obtain: 
 

B

A

B

A

A

B

B
B

B

A
A

A

max B

maxA 

A
A

k
k

m
m

A
m
k

A
m
k

v
v

==  

 
Because the systems differ only in 
their force constants: 
 

B

A

max B

maxA 

k
k

v
v

=  
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Substituting for kA and simplifying 
yields: 24

B

B

max B

maxA ==
k
k

v
v

⇒ max BmaxA 2vv =  

( )b is correct. 

 
7 •• [SSM] Two systems each consist of a spring with one end attached 
to a block and the other end attached to a wall. The identical springs are 
horizontal, and the blocks are supported from below by a frictionless horizontal 
table. The blocks are oscillating in simple harmonic motions with equal 
amplitudes. However, the mass of block A is four times as large as the mass of 
block B. How do their maximum speeds compare? (a) max BmaxA  vv = ,  
(b) max BmaxA  2vv = ,  (c) max B2

1
maxA  vv = , (d) This comparison cannot be done by 

using the data given. 
 
Determine the Concept The maximum speed of a simple harmonic oscillator is 
the product of its angular frequency and its amplitude. The angular frequency of a 
simple harmonic oscillator is the square root of the quotient of the force constant 
of the spring and the mass of the oscillator. 
 
Relate the maximum speed of system 
A to its force constant: 
 

A
A

A
AAmaxA A

m
kAv == ω  

Relate the maximum speed of system 
B to its force constant: 
 

B
B

B
BBmax B A

m
kAv == ω  

Divide the first of these equations by 
the second and simplify to obtain: 
 

B

A

B

A

A

B

B
B

B

A
A

A

max B

maxA 

A
A

k
k

m
m

A
m
k

A
m
k

v
v

==  

 
Because the systems differ only in 
the masses attached to the springs: 
 

A

B

max B

maxA 

m
m

v
v

=  

 
Substituting for mA and simplifying 
yields: 2

1

B

B

max B

maxA 

4
==

m
m

v
v

⇒ max B2
1

maxA vv =  

( )c is correct. 

 
8 •• Two systems each consist of a spring with one end attached to a block 
and the other end attached to a wall. The identical springs are horizontal, and the 
blocks are supported from below by a frictionless horizontal table. The blocks are 
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oscillating in simple harmonic motions with equal amplitudes. However, the mass 
of block A is four times as large as the mass of block B. How do the magnitudes 
of their maximum acceleration compare? (a) max BmaxA  aa = , (b) max BmaxA  2aa = , 
(c) max B2

1
maxA  aa = , (d) max B4

1
maxA  aa = , (e) This comparison cannot be done by 

using the data given. 
 
Determine the Concept The maximum acceleration of a simple harmonic 
oscillator is the product of the square of its angular frequency and its amplitude. 
The angular frequency of a simple harmonic oscillator is the square root of the 
quotient of the force constant of the spring and the mass of the oscillator. 
 
Relate the maximum acceleration of 
system A to its force constant: A

A

A
A

2
AmaxA A

m
kAa == ω  

 
Relate the maximum acceleration of 
system B to its force constant: 
 

B
B

B
B

2
Bmax B A

m
kAa == ω  

Divide the first of these equations by 
the second and simplify to obtain: 
 B

A

B

A

A

B

B
B

B

A
A

A

max, 

maxA 

A
A

k
k

m
m

A
m
k

A
m
k

a
a

==  

 
Because the systems differ only in 
the masses attached to the springs: 
 

A

B

max B

maxA 

m
m

a
a

=  

 
Substituting for mA and simplifying 
yields: 4

1

B

B

max B

maxA 

4
==

m
m

a
a

⇒ max B4
1

maxA aa =  

( )d is correct. 

 
9 •• [SSM] In general physics courses, the mass of the spring in simple 
harmonic motion is usually neglected because its mass is usually much smaller 
than the mass of the object attached to it. However, this is not always the case. If 
you neglect the mass of the spring when it is not negligible, how will your 
calculation of the system’s period, frequency and total energy compare to the 
actual values of these parameters? Explain.  
  
Determine the Concept Neglecting the mass of the spring, the period of a simple 
harmonic oscillator is given by kmT πωπ 22 == where m is the mass of the 
oscillating system (spring plus object) and its total energy is given by 2

2
1

total kAE = . 
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Neglecting the mass of the spring results in your using a value for the mass of the 
oscillating system that is smaller than its actual value. Hence your calculated 
value for the period will be smaller than the actual period of the system.  
 
Because mk=ω , neglecting the mass of the spring will result in your using a 
value for the mass of the oscillating system that is smaller than its actual value. 
Hence your calculated value for the frequency of the system will be larger than 
the actual frequency of the system.  
 
Because the total energy of the oscillating system is the sum of its potential and 
kinetic energies, ignoring the mass of the spring will cause your calculation of the 
system’s kinetic energy to be too small and, hence, your calculation of the total 
energy to be too small.  
 
10 •• Two mass–spring systems oscillate with periods TA and TB. If  
TA = 2TB and the systems’ springs have identical force constants, it follows that 
the systems’ masses are related by (a) mA = 4mB, (b) 2BA mm = ,  
(c) mA = mB/2, (d) mA = mB/4. 
 
Picture the Problem We can use kmT π2= to express the periods of the two 
mass-spring systems in terms of their force constants. Dividing one of the 
equations by the other will allow us to express mA in terms of mB. 
 
Express the period of system A: 

A

A
A 2

k
mT π= ⇒ 2

2
AA

A 4π
Tkm =  

 
Relate the mass of system B to its 
period: 2

2
BB

B 4π
Tkm =  

 
Divide the first of these equations by 
the second and simplify to obtain: 

2
BB

2
AA

2

2
BB

2

2
AA

B

A

4

4
Tk
Tk

Tk

Tk

m
m

==

π

π  

 
Because the force constants of the 
two systems are the same: 

2

B

A
2

B

2
A

B

A
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

T
T

T
T

m
m  
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Substituting for TA and simplifying 
yields: 42

2

B

B

B

A =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

m
m

⇒ BA 4mm =  

( )a is correct. 
 
11 •• Two mass–spring systems oscillate at frequencies fA and fB. If fA = 2fB 
and the systems’ springs have identical force constants, it follows that the 
systems’ masses are related by (a) mA = 4mB, (b) 2BA mm = , (c) 2BA mm = , 
(d) 4BA mm = . 
 

Picture the Problem We can use 
m
kf

π2
1

= to express the frequencies of the 

two mass-spring systems in terms of their masses. Dividing one of the equations 
by the other will allow us to express mA in terms of mB. 

 
Express the frequency of mass-spring 
system A as a function of its mass: 

A
A 2

1
m
kf

π
=  

 
Express the frequency of mass-
spring system B as a function of its 
mass: 

B
B 2

1
m
kf

π
=  

 
Divide the second of these equations 
by the first to obtain: 
 

B

A

A

B

m
m

f
f

=  

Solve for mA: 
B4

1
B

2

B

B
B

2

A

B
A 2

mm
f

fm
f
fm =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

)(d  is correct. 

 
12 •• Two mass–spring systems A and B oscillate so that their total 
mechanical energies are equal. If mA = 2mB, which expression best relates their 
amplitudes? (a) AA = AB/4, (b) 2BA AA = , (c) AA = AB, (d) Not enough 
information is given to determine the ratio of the amplitudes. 
 
Picture the Problem We can relate the energies of the two mass-spring systems 
through either 2

2
1 kAE = or 22

2
1 AmE ω=  and investigate the relationship between 

their amplitudes by equating the expressions, substituting for mA, and expressing 
AA in terms of AB. 
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Express the energy of mass-spring 
system A: 
 

2
A

2
AA2

12
AA2

1
A AmAkE ω==  

 

Express the energy of mass-spring 
system B: 
 

2
B

2
BB2

12
BB2

1
B AmAkE ω==  

 

Divide the first of these equations by 
the second to obtain: 
 

2
B

2
BB2

1

2
A

2
AA2

1

B

A 1
Am
Am

E
E

ω
ω

==  

 
Substitute for mA and simplify: 

2
B

2
B

2
A

2
A

2
B

2
BB

2
A

2
AB 221

A
A

Am
Am

ω
ω

ω
ω

==  

Solve for AA: 
B

A

B
A 2

AA
ω

ω
=  

 
Without knowing how ωA and ωB, or kA and kB, are related, we cannot simplify 
this expression further. )(d is correct. 

 
13 •• [SSM] Two mass–spring systems A and B oscillate so that their total 
mechanical energies are equal. If the force constant of spring A is two times the 
force constant of spring B, then which expression best relates their amplitudes? 
(a) AA = AB/4, (b) 2BA AA =  , (c) AA = AB, (d) Not enough information is given 
to determine the ratio of the amplitudes. 
 
Picture the Problem We can express the energy of each system using 

2
2
1 kAE = and, because the energies are equal, equate them and solve for AA. 

 
Express the energy of mass-spring 
system A in terms of the amplitude 
of its motion: 
 

2
AA2

1
A AkE =  

Express the energy of mass-spring 
system B in terms of the amplitude 
of its motion: 
 

2
BB2

1
B AkE =  

Because the energies of the two 
systems are equal we can equate 
them to obtain: 
 

2
BB2

12
AA2

1 AkAk = ⇒ B
A

B
A A

k
kA =  
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Substitute for kA and simplify to 
obtain: 22

B
B

B

B
A

AA
k

kA ==  

)(b  is correct. 

 
14 •• The length of the string or wire supporting a pendulum bob increases 
slightly when the temperature of the string or wire is raised. How does this affect 
a clock operated by a simple pendulum? 
 
Determine the Concept The period of a simple pendulum depends on the square 
root of the length of the pendulum. Increasing the length of the pendulum will 
lengthen its period and, hence, the clock will run slow. 
 
15 •• A lamp hanging from the ceiling of the club car in a train oscillates 
with period T0 when the train is at rest. The period will be (match left and right 
columns) 
 
1. greater than T0 when A. The train moves horizontally at 

constant velocity. 
 

2. less than T0 when B. The train rounds a curve at constant 
speed. 
 

3. equal to T0 when C. The train climbs a hill at constant 
speed. 
 

 D. The train goes over the crest of a hill 
at constant speed. 
 

 
Determine the Concept The period of the lamp varies inversely with the square 
root of the effective value of the local gravitational field. 

 
1-B. The period will be greater than T0 when the train rounds a curve of radius R 
with speed v. 
 
2-D. The period will be less than T0 when the train goes over the crest of a hill of 
radius of curvature R with constant speed. 
 
3-A. The period will be equal to T0 when the train moves horizontally with 
constant velocity. 
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16 •• Two simple pendulums are related as follows. Pendulum A has a 
length LA and a bob of mass mA; pendulum B has a length LB and a bob of mass 
mB. If the period of A is twice that of B, then (a) LA = 2LB and mA = 2mB,  
(b) LA = 4LB and mA = mB, (c) LA = 4LB whatever the ratio mA/mB, (d) BA 2LL =  
whatever the ratio mA/mB. 
  
Picture the Problem The period of a simple pendulum is independent of the mass 
of its bob and is given by .2 gLT π=  
 
Express the period of pendulum A: 

g
LT A

A 2π=  

 
Express the period of pendulum B: 

g
LT B

B 2π=  

 
Divide the first of these equations by 
the second and solve for LA/LB: 

2

B

A

B

A
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

L
L  

 
Substitute for TA and solve for LB to 
obtain:  BB

2

B

B
A 42 LL

T
TL =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 )(c is correct. 
 
17 •• [SSM] Two simple pendulums are related as follows. Pendulum A 
has a length LA and a bob of mass mA; pendulum B has a length LB and a bob of 
mass mB. If the frequency of A is one-third that of B, then (a) LA = 3LB and  
mA = 3mB, (b) LA = 9LB and mA = mB, (c) LA = 9LB regardless of the ratio mA/mB, 
(d) BA 3LL = regardless of the ratio mA/mB. 
 
Picture the Problem The frequency of a simple pendulum is independent of the 

mass of its bob and is given by .
2
1 Lgf
π

=  

 
Express the frequency of pendulum 
A: 

A
A 2

1
L
gf

π
= ⇒ 2

A
2A 4 f
gL

π
=  

 
Similarly, the length of pendulum B 
is given by: 2

B
2B 4 f
gL

π
=  
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Divide the first of these equations by 
the second and simplify to obtain: 

2

A

B
2

A

2
B

2
B

2

2
A

2

B

A

4

4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

f
f

f
f

f
g

f
g

L
L

π

π  

 
Substitute for fA to obtain:  

9
2

B3
1

B

B

A =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

f
f

L
L

⇒ BA 9LL =  

 )(c is correct. 

 
18 •• Two simple pendulums are related as follows. Pendulum A has a 
length LA and a bob of mass mA; pendulum B has a length LB a bob of mass mB.  
They have the same period. The only thing different between their motions is that 
the amplitude of A’s motion is twice that of B’s motion, then (a) LA = LB and  
mA = mB, (b) LA = 2LB and mA = mB, (c) LA = LB whatever the ratio mA/mB,  
(d) B2

1
A LL =  whatever the ratio mA/mB. 

 
Picture the Problem The period of a simple pendulum is independent of the mass 
of its bob and is given by .2 gLT π=  For small amplitudes, the period is 
independent of the amplitude.  
 
Express the period of pendulum A: 

g
LT A

A 2π=  

 
Express the period of pendulum B: 

g
LT B

B 2π=  

 
Divide the first of these equations by 
the second and solve for LA/LB: 

2

B

A

B

A
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

L
L  

 
Because their periods are the same:  

1
2

B

B

B

A =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
T

L
L

⇒ BA LL =  

 )(c is correct. 

 
19 •• True or false:  
 
(a) The mechanical energy of a damped, undriven oscillator decreases 
exponentially with time.  
(b) Resonance for a damped, driven oscillator occurs when the driving frequency 
exactly equals the natural frequency. 
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(c) If the Q factor of a damped oscillator is high, then its resonance curve will be 
narrow. 
(d) The decay time τ for a spring-mass oscillator with linear damping is 
independent of its mass. 
(e) The Q factor for a driven spring-mass oscillator with linear damping is 
independent of its mass. 
 
(a) True. Because the energy of an oscillator is proportional to the square of its 
amplitude, and the amplitude of a damped, undriven oscillator decreases 
exponentially with time, so does its energy. 
 
(b) False. For a damped driven oscillator, the resonant frequency ω′ is given 

by ,
2

1
2

0
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

ω
ωω

m
b' where ω0 is the natural frequency of the oscillator. 

 
(c) True. The ratio of the width of a resonance curve to the resonant frequency 
equals the reciprocal of the Q factor ( Q1Δ 0 =ωω ). Hence, the larger Q is, the 
narrower the resonance curve. 
 
(d) False. The decay time for a damped but undriven spring-mass oscillator is 
directly proportional to its mass. 
 
(e) True. From Q1Δ 0 =ωω one can see that Q is independent of m. 
 
20 •• Two damped spring-mass oscillating systems have identical spring and 
damping constants.  However, system A’s mass mA is four times system B’s. How 
do their decay times compare? (a) BA 4ττ = , (b) BA 2ττ = , (c) BA ττ = , (d) Their 
decay times cannot be compared, given the information provided. 
 
Picture the Problem The decay time τ of a damped oscillator is related to the 
mass m of the oscillator and the damping constant b for the motion according to 

.bm=τ  
 
Express the decay time of System A: 
 

A

A
A b

m
=τ  

 
The decay time for System B is 
given by: 
 B

B
B b

m
=τ  

Dividing the first of these equations 
by the second and simplifying yields: 
 

A

B

B

A

B

B

A

A

B

A

b
b

m
m

b
m
b
m

==
τ
τ  
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Because their damping constants are 
the same: 

B

A

B

A

m
m

=
τ
τ  

 
Substituting for mA yields: 

44

B

B

B

A ==
m
m

τ
τ

⇒ BA 4ττ =  

( )a is correct. 
 
21 •• Two damped spring-mass oscillating systems have identical spring 
constants and decay times. However, system A’s mass mA is system B’s mass mB. 
They are tweaked into oscillation and their decay times are measured to be the 
same. How do their damping constants, b, compare? (a) BA 4bb = , (b) BA 2bb = , 
(c) BA bb = , (d) B2

1
A bb = , (e) Their decay times cannot be compared, given the 

information provided. 
 
Picture the Problem The decay time τ of a damped oscillator is related to the 
mass m of the oscillator and the damping constant b for the motion according to 

.bm=τ  
 
Express the damping constant of 
System A: 
 A

A
A τ

mb =  

 
The damping constant for System B 
is given by: 
 B

B
B τ

mb =  

Dividing the first of these equations 
by the second and simplifying yields: 
 

A

B

B

A

B

B

A

A

B

A

τ
τ

τ

τ
m
m

m

m

b
b

==  

 
Because their decay times are the 
same: 

B

A

B

A

m
m

b
b

=  

 
Substituting for mA yields: 

22

B

B

B

A ==
m
m

b
b

⇒ BA 2bb =  

( )b is correct. 

 
22 •• Two damped, driven spring-mass oscillating systems have identical 
driving forces as well as identical spring and damping constants. However, the 
mass of system A is four times the mass of system B.  Assume both systems are 
very weakly damped. How do their resonant frequencies compare?  
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(a) BA ωω = ,  (b) BA 2ωω = , (c) B2
1

A ωω = , (d) B4
1

A ωω = , (e) Their resonant 
frequencies cannot be compared, given the information provided. 
 
Picture the Problem For very weak damping, the resonant frequency of a spring-
mass oscillator is the same as its natural frequency and is given by 

,0 mk=ω where m is the oscillator’s mass and k is the force constant of the 
spring. 
 
Express the resonant frequency of 
System A: 
 A

A
A m

k
=ω  

 
The resonant frequency of System B 
is given by: 

B

B
B m

k
=ω  

 
Dividing the first of these equations 
by the second and simplifying yields: 
 

A

B

B

A

B

B

A

A

B

A

m
m

k
k

m
k
m
k

==
ω
ω  

 
Because their force constants are the 
same: 

A

B

B

A

m
m

=
ω
ω  

 
Substituting for mA yields: 

2
1

B

B

B

A

4
==

m
m

ω
ω

⇒ B2
1

A ωω =  

( )c is correct. 

 
23 •• [SSM] Two damped, driven spring-mass oscillating systems have 
identical masses, driving forces, and damping constants. However, system A’s 
force constant kA is four times system B’s force constant kB.  Assume they are 
both very weakly damped. How do their resonant frequencies compare?  
(a) BA ωω = ,  (b) BA 2ωω = , (c) B2

1
A ωω = , (d) B4

1
A ωω = , (e) Their resonant 

frequencies cannot be compared, given the information provided. 
 
Picture the Problem For very weak damping, the resonant frequency of a spring-
mass oscillator is the same as its natural frequency and is given by 

,0 mk=ω where m is the oscillator’s mass and k is the force constant of the 
spring. 
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Express the resonant frequency of 
System A: 
 A

A
A m

k
=ω  

 
The resonant frequency of System B 
is given by: 
 B

B
B m

k
=ω  

 
Dividing the first of these equations 
by the second and simplifying yields: 
 

A

B

B

A

B

B

A

A

B

A

m
m

k
k

m
k
m
k

==
ω
ω  

 
Because their masses are the same: 

B

A

B

A

k
k

=
ω
ω  

 
Substituting for kA yields: 

24

B

B

B

A ==
k
k

ω
ω

⇒ BA 2ωω =  

( )b is correct. 

 
24 •• Two damped, driven simple-pendulum systems have identical 
masses, driving forces, and damping constants. However, system A’s length is 
four times system B’s length.  Assume they are both very weakly damped. How 
do their resonant frequencies compare? (a) BA ωω = ,  (b) BA 2ωω = ,  
(c) B2

1
A ωω = , (d) B4

1
A ωω = , (e) Their resonant frequencies cannot be compared, 

given the information provided. 
 
Picture the Problem For very weak damping, the resonant frequency of a simple 
pendulum is the same as its natural frequency and is given by ,0 Lg=ω where 
L is the length of the simple pendulum and g is the gravitational field. 
 
Express the resonant frequency of 
System A: 
 A

A L
g

=ω  

 
The resonant frequency of System B 
is given by: 
 B

B L
g

=ω  
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Dividing the first of these equations 
by the second and simplifying yields: 
 

A

B

B

A

B

A

L
L

L
g

L
g

==
ω
ω  

 
Substituting for LA yields: 

2
1

B

B

B

A

4
==

L
L

ω
ω

⇒ B2
1

A ωω =  

( )c is correct. 

 
Estimation and Approximation  
 
25 • [SSM] Estimate the width of a typical grandfather clocks’ cabinet 
relative to the width of the pendulum bob, presuming the desired motion of the 
pendulum is simple harmonic. 
 
Picture the Problem If the motion of 
the pendulum in a grandfather clock is 
to be simple harmonic motion, then its 
period must be independent of the 
angular amplitude of its oscillations. 
The period of the motion for large-
amplitude oscillations is given by 
Equation 14-30 and we can use this 
expression to obtain a maximum value 
for the amplitude of swinging 
pendulum in the clock. We can then use 
this value and an assumed value for the 
length of the pendulum to estimate the 
width of the grandfather clocks’ 
cabinet. 

L

w

θ

bobw

amplitudew

 

 
Referring to the diagram, we see that 
the minimum width of the cabinet is 
determined by the width of the bob 
and the width required to 
accommodate the swinging 
pendulum: 
 

amplitudebob www +=   

and 

bob

amplitude

bob

1
w

w
w

w
+=                    (1) 
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Express amplitudew  in terms of the 

angular amplitude θ and the length 
of the pendulum L: 
 

θsin2amplitude Lw =  

Substituting for amplitudew  in equation 

(1) yields: 
 

bobbob

sin21
w
L

w
w θ

+=                    (2) 

Equation 14-30 gives us the period 
of a simple pendulum as a function 
of its angular amplitude: 
 

⎥⎦
⎤

⎢⎣
⎡ ++= ...

2
1sin

2
11 2

20 θTT  

If T is to be approximately equal to 
T0, the second term in the brackets 
must be small compared to the first 
term. Suppose that: 
 

001.0
2
1sin

4
1 2 ≤θ  

Solving for θ yields: 
 

( ) °≈≤ − 25.70632.0sin2 1θ  

If we assume that the length of a 
grandfather clock’s pendulum is 
about 1.5 m and that the width of the 
bob is about 10 cm, then equation (2) 
yields: 

( ) 5
m 10.0

25.7sinm 5.121
bob

≈
°

+=
w

w  

 
26 • A small punching bag for boxing workouts is approximately the size 
and weight of a person’s head and is suspended from a very short rope or chain.  
Estimate the natural frequency of oscillations of such a punching bag. 
 
Picture the Problem For the purposes of this estimation, model the punching bag 
as a sphere of radius R and assume that the spindle about which it rotates to be 1.5 
times the radius of the sphere. The natural frequency of oscillations of this 

physical pendulum is given by 
I

MgDf
π

ω
2
1

00 == where M is the mass of the 

pendulum, D is the distance from the point of support to the center of mass of the 
punching bag, and I is its moment of inertia about an axis through the spindle 
from which it is supported and about which it swivels. 
 
Express the natural frequency of 
oscillation of the punching bag: 
 

spindle
0 2

1
I
MgDf

π
=                       (1) 
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From the parallel-axis theorem we 
have: 
 

2
cmspindle MhII +=  

where RRRh 25.05.1 =+=  

Substituting for Icm and h yields: 
 

( ) 222
5
2

spindle 4.42 MRRMMRI =+=  

Substitute for Ispindle in equation (1) 
to obtain: 
 

( )
R

g
MR

RMgf
2.22

1
4.4

2
2
1

20 ππ
==  

Assume that the radius of the 
punching bag is 10 cm, substitute 
numerical values and evaluate f0: 

( ) Hz 1
m 10.02.2

m/s 81.9
2
1 2

0 ≈=
π

f  

 
27 • For a child on a swing, the amplitude drops by a factor of 1/e in about 
eight periods if no additional mechanical energy is given to the system. Estimate 
the Q factor for this system. 
 
Picture the Problem The Q factor for this system is related to the decay constant 
τ  through TQ πττω 20 == and the amplitude of the child’s damped motion 
varies with time according to .2

0
τteAA −=  We can set the ratio of two 

displacements separated by eight periods equal to 1/e to determine τ  in terms of 
T. 

 
Express Q as a function of τ : 

T
Q πττω 2

0 ==                         (1) 

 
The amplitude of the oscillations 
varies with time according to: 
 

τ2
0

teAA −=  

The amplitude after eight periods is: ( ) τ28
08

TteAA +−=  
 

Express and simplify the ratio A8/A: ( )
τ

τ

τ
T

t

Tt

e
eA

eA
A
A 4

2
0

28
08 −

−

+−

==  

 
Set this ratio equal to 1/e and solve 
for τ : 
 

Tee T 414 =⇒= −− ττ  
 

Substitute in equation (1) and 
evaluate Q: 

( ) ππ 842
==

T
TQ  

 
28 •• (a) Estimate the natural period of oscillation for swinging your arms as 
you walk, when your hands are empty. (b) Now estimate the natural period of 
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oscillation when you are carrying a heavy briefcase. (c) Observe other people as 
they walk. Do your estimates seem reasonable? 
 
Picture the Problem Assume that an average length for an arm is about 80 cm, 
and that it can be treated as a uniform rod, pivoted at one end. We can use the 
expression for the period of a physical pendulum to derive an expression for the 
period of the swinging arm. When carrying a heavy briefcase, the mass is 
concentrated mostly at the end of the rod (that is, in the briefcase), so we can treat 
the arm-plus-briefcase system as a simple pendulum.   
 
(a) Express the period of a uniform 
rod pivoted at one end: 
 MgD

IT π2=  

where I is the moment of inertia of the 
stick about an axis through one end, M 
is the mass of the stick, and D (= L/2) is 
the distance from the end of the stick to 
its center of mass. 
 

Express the moment of inertia of a 
rod about an axis through its end: 
 

2
3
1 MLI =  

Substitute the values for I and D in 
the expression for T and simplify to 
obtain: 
 

( ) g
L

LMg
MLT

3
222

2
1

2
3
1

ππ ==  

 
Substitute numerical values and 
evaluate T: 
 

( )
( ) s5.1

m/s81.93
m80.022 2 == πT  

 
(b) Express the period of a simple 
pendulum: g

L'T π2'=  

where L′ is slightly longer than the arm 
length due to the size of the briefcase. 
 

Assuming L′ = 1.0 m, evaluate 
the period of the simple 
pendulum: 

s0.2
m/s81.9
m0.12 2 == πT'  

 
(c) From observation of people as they walk, these estimates seem reasonable. 
 
Simple Harmonic Motion 
 
29 • The position of a particle is given by x = (7.0 cm) cos 6πt, where t is 
in seconds. What are (a) the frequency, (b) the period, and (c) the amplitude of the 
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particle’s motion? (d) What is the first time after t = 0 that the particle is at its 
equilibrium position? In what direction is it moving at that time? 
 
Picture the Problem The position of the particle is given by ( )δω += tAx cos  
where A is the amplitude of the motion, ω is the angular frequency, and δ  is a 
phase constant. The frequency of the motion is given by πω 2=f and the period 
of the motion is the reciprocal of its frequency. 

 
(a) Use the definition of ω to 
determine  f: Hz00.3

2
s6

2

1

===
−

π
π

π
ωf  

 
(b) Evaluate the reciprocal of the  
frequency: 

s333.0
Hz00.3

11
===

f
T  

 
(c) Compare x = (7.0 cm) cos 6π t to  

( )δω += tAx cos  to conclude that: 
 

cm0.7=A  

 

(d) Express the condition that must 
be satisfied when the particle is at its 
equilibrium position: 
 

0cos =tω ⇒
2
πω =t ⇒

ω
π
2

=t  

Substituting for ω yields: 
( ) s0833.0
62

==
π

πt  

 
Differentiate x to find v(t): ( )[ ]

( ) t

t
dt
dv

ππ

π

6sincm/s42

6coscm0.7

−=

=
 

 
Evaluate v(0.0833 s): 
 

( ) ( ) ( ) 0s0833.06sincm/s42s0833.0 <−= ππv  
 

Because v < 0, the particle is moving in the negative direction at t = 0.0833 s. 
 

30 • What is the phase constant δ in ( )δω += tAx cos (Equation 14-4) if the 
position of the oscillating particle at time t = 0 is (a) 0, (b) –A, (c) A, (d) A/2? 
 
Picture the Problem The initial position of the oscillating particle is related to 
the amplitude and phase constant of the motion by δcos0 Ax =  where 0 ≤ δ < 2π. 
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(a) For x0 = 0: 
0cos =δ ⇒ ( )

2
3,

2
0cos 1 ππδ == −  

 
(b) For x0 = −A: δcosAA =− ⇒ ( ) πδ =−= − 1cos 1  

 
(c) For x0 = A: δcosAA = ⇒ ( ) 01cos 1 == −δ  

 
(d) When x = A/2: 

δcos
2

AA
= ⇒ 

32
1cos 1 πδ =⎟

⎠
⎞

⎜
⎝
⎛= −  

 
31 • [SSM] A particle of mass m begins at rest from x = +25 cm and 
oscillates about its equilibrium position at x = 0 with a period of 1.5 s.  Write 
expressions for (a) the position x as a function of t, (b) the velocity vx as a 
function of t, and (c) the acceleration ax as a function of t. 
 
Picture the Problem The position of the particle as a function of time is given 
by ( )δω += tAx cos . Its velocity as a function of time is ( )δωω +−= tAvx sin  and 
its acceleration is ( )δωω +−= tAax cos2 . The initial position and velocity give us 
two equations from which to determine the amplitude A and phase constantδ. 

 
(a) Express the position, velocity, 
and acceleration of the particle as a 
function of t: 

( )δω += tAx cos                       (1) 
( )δωω +−= tAvx sin                 (2) 

( )δωω +−= tAax cos2              (3) 
 

Find the angular frequency of the 
particle’s motion: 

11 s19.4s
3

42 −− ===
ππω

T
 

 
Relate the initial position and 
velocity to the amplitude and phase 
constant: 

δcos0 Ax =  
and 

δω sin0 Av −=  
 

Divide the equation for v0  by the 
equation for x0 to eliminate A: 
 

δω
δ

δω tan
cos

sin

0

0 −=
−

=
A

A
x
v  

Solving for δ  yields: 
00tantan

0

1

0

01 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

ωω
δ

xx
v  
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Substitute in equation (1) to obtain: ( )

( ) ( )[ ]t

tx

1

1

s2.4cosm25.0

s
3

4coscm25

−

−

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

π

 

 
(b) Substitute in equation (2) to 
obtain: ( )

( ) ( )[ ]t

tvx

1

11

s2.4sinm/s0.1

s
3

4sins
3

4cm25

−

−−

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

ππ

 

 
(c) Substitute in equation (3) to 
obtain: ( )

( ) ( )[ ]t

tax

12

1
2

1

s2.4cosm/s4.4

s
3

4coss
3

4cm25

−

−−

−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

ππ

 
32 •• Find (a) the maximum speed and (b) the maximum acceleration of the 
particle in Problem 31. (c) What is the first time that the particle is at x = 0 and 
moving to the right? 
  
Picture the Problem The maximum speed and maximum acceleration of the 
particle in are given by ωAv =max  and .2

max ωAa =  The particle’s position is 
given by ( )δω += tAx cos  where A = 7.0 cm, ω = 6π s−1, and δ  = 0, and its 
velocity is given by ( )δωω +−= tAv sin . 

 
(a) Express vmax in terms of A and ω: ( )( )

m/s3.1

cm/s42s6cm0.7 1
max

=

=== − ππωAv
 

 
(b) Express amax in terms of A and ω: ( )( )

222

212
max

m/s25cm/s252

s6cm0.7

==

== −

π

πωAa
 

 
(c) When x = 0: 0cos =tω ⇒ ( )

2
3,

2
0cos 1 ππω == −t  

 

Evaluate v for :
2
πω =t  ωπω AAv −=⎟

⎠
⎞

⎜
⎝
⎛−=

2
sin  

That is, the particle is moving to the 
left. 
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Evaluate v for :
2

3πω =t  ωπω AAv =⎟
⎠
⎞

⎜
⎝
⎛−=

2
3sin  

That is, the particle is moving to the 
right. 
 

Solve 
2

3πω =t for t to obtain: ( ) s25.0
s62

3
2
3

1 === −π
π

ω
πt  

 
33 •• Work Problem 33 with the particle initially at x = 25 cm and moving 
with velocity v0 = +50 cm/s. 
 
Picture the Problem The position of the particle as a function of time is given by 

( )δω += tAx cos . Its velocity as a function of time is given by ( )δωω +−= tAv sin  
and its acceleration by ( )δωω +−= tAa cos2 . The initial position and velocity give 
us two equations from which to determine the amplitude A and phase constant δ. 
 
(a) Express the position, velocity, 
and acceleration of the particle as 
functions of t: 

( )δω += tAx cos                     (1) 
( )δωω +−= tAvx sin               (2) 

( )δωω +−= tAax cos2            (3) 
 

Find the angular frequency of the 
particle’s motion: 

11 s19.4s
3

42 −− ===
ππω

T
 

 
Relate the initial position and 
velocity to the amplitude and phase 
constant: 

δcos0 Ax =  
and 

δω sin0 Av −=  
 

Divide these equations to eliminate 
A: 

δω
δ

δω tan
cos

sin

0

0 −=
−

=
A

A
x
v  

 
Solving for δ yields: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

ω
δ

0

01tan
x
v  

 
Substitute numerical values and 
evaluate δ: ( )( )

rad445.0
s24.19cm25

cm/s50tan 1
1

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

−δ
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Use either the x0 or v0 equation (x0 is 
used here) to find the amplitude:  
 

( ) cm7.27
rad0.445cos

cm25
cos

0 =
−

==
δ

xA  

 
Substitute in equation (1) to obtain: 
 

( ) ( )[ ]45.0s2.4cosm28.0 1 −= − tx  

 
(b) Substitute numerical values in equation (2) to obtain: 
 

( ) ( ) ( )[ ]45.0s2.4sinm/s2.1445.0s
3

4sins
3

4cm7.27 111 −−=⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−= −−− ttvx

ππ  

 
(c) Substitute numerical values in equation (3) to obtain: 
 

( )

( ) ( )[ ]45.0s2.4cosm/s9.4

445.0s
3

4coss
3

4cm7.27

12

1
2

1

−−=

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−=

−

−−

t

tax
ππ

 

 
34 •• The period of a particle that is oscillating in simple harmonic motion 
is 8.0 s and its amplitude is 12 cm. At t = 0 it is at its equilibrium position. Find 
the distance it travels during the intervals (a) t = 0 to t = 2.0 s, (b) t = 2.0 s to  
t = 4.0 s, (c) t = 0 to t = 1.0 s, and (d) t = 1.0 s to t = 2.0 s. 
 
Picture the Problem The position of the particle as a function of time is given 
by ( )δω += tAx cos . We’re given the amplitude A of the motion and can use the 
initial position of the particle to determine the phase constant δ. Once we’ve 
determined these quantities, we can express the distance traveled Δx during any 
interval of time. 

 
Express the position of the particle as 
a function of t: 
 

( ) ( )δω += tx coscm12               (1)            
 

Find the angular frequency of the 
particle’s motion: 

1s
4s0.8

22 −===
πππω

T
 

 
Relate the initial position of the 
particle to the amplitude and phase 
constant: 
 

δcos0 Ax =  
 
 

Solve for δ: 
2

0coscos 101 πδ =⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= −−

AA
x  
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Substitute in equation (1) to obtain: ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −

2
s

4
coscm12 1 ππ tx  

 
Express the distance the particle travels in terms of tf and ti: 
 

( ) ( )

( )
⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛=Δ

−−

−−

2
s

4
cos

2
s

4
coscm12

2
s

4
coscm12

2
s

4
coscm12

i
1

f
1

i
1

f
1

ππππ

ππππ

tt

ttx

 

 
(a) Evaluate Δx for tf = 2.0 s, ti = 0 s: 
 

( ) ( ) ( ) cm12
2

0s
4

cos
2

s0.2s
4

coscm12Δ 11 =
⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −− ππππx  

 
(b) Evaluate Δx for tf = 4.0 s, ti = 2.0 s: 
 

( ) ( ) ( ) cm12
2

s0.2s
4

cos
2

s0.4s
4

coscm12Δ 11 =
⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −− ππππx  

 
(c) Evaluate Δx for tf = 1.0 s, ti = 0: 
 

( ) ( ) ( )

( ) }{ cm5.807071.0cm12

2
0s

4
cos

2
s0.1s

4
coscm12Δ 11

=−−=

⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −− ππππx

 

 
(d) Evaluate Δx for tf = 2.0 s, ti = 1.0 s: 
 

( ) ( ) ( ) cm5.3
2

s0.1s
4

cos
2

s0.2s
4

coscm12Δ 11 =
⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛= −− ππππx  

 
35 •• The period of a particle oscillating in simple harmonic motion is 8.0 s. 
At t = 0, the particle is at rest at x = A = 10 cm. (a) Sketch x as a function of t.  
(b) Find the distance traveled in the first, second, third, and fourth second after 
t = 0. 
  
Picture the Problem The position of the particle as a function of time is given 
by ( ) ( )δω += tx coscm10 . We can determine the angular frequency ω from the 
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period of the motion and the phase constant δ  from the initial position and 
velocity. Once we’ve determined these quantities, we can express the distance 
traveled Δx during any interval of time. 
 
Express the position of the particle as 
a function of t: 
 

( ) ( )δω += tx coscm10              (1)           
 

Find the angular frequency of the 
particle’s motion: 
 

1s
4s0.8

22 −===
πππω

T
 

Find the phase constant of the 
motion: 00tantan

0

1

0

01 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −−

ωω
δ

xx
v  

 
Substitute in equation (1) to obtain: ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= − tx 1s

4
coscm10 π  

(a) A graph of ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= − tx 1s

4
coscm10 π  follows: 

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

t  (s)

x 
(c

m
)

 
(b) Express the distance the particle travels in terms of tf and ti: 
 

( ) ( )

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=Δ

−−

−−

i
1

f
1

i
1

f
1

s
4

coss
4

coscm10

s
4

coscm10s
4

coscm10

tt

ttx

ππ

ππ

                   (2) 
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Substitute numerical values in 
equation (2) and evaluate Δx in each 
of the given time intervals to obtain: 

tf ti Δx 
(s) (s) (cm) 
1 0 9.2  

2 1 1.7  

3 2 1.7  

4 3 9.2  
 

 
36 •• Military specifications often call for electronic devices to be able to 
withstand accelerations of up to 10g (10g = 98.1 m/s2). To make sure that your 
company’s products meet this specification, your manager has told you to use a 
″shaking table,″ which can vibrate a device at controlled and adjustable 
frequencies and amplitudes. If a device is placed on the table and made to 
oscillate at an amplitude of 1.5 cm, what should you adjust the frequency to in 
order to test for compliance with the 10g military specification? 
 
Picture the Problem We can use the expression for the maximum acceleration of 
an oscillator to relate the 10g military specification to the compliance frequency. 
 
Express the maximum acceleration 
of an oscillator: 
 

2
max ωAa =  

Express the relationship between the 
angular frequency and the frequency 
of the vibrations: 
 

fπω 2=  

Substitute for ω to obtain: 
 

22
max 4 Afa π= ⇒

A
af max

2
1
π

=  

 
Substitute numerical values and 
evaluate  f: Hz13

m101.5
m/s98.1

2
1

2

2

=
×

= −π
f  

 
37 •• [SSM] The position of a particle is given by x = 2.5 cos πt, where x 
is in meters and t is in seconds. (a) Find the maximum speed and maximum 
acceleration of the particle. (b) Find the speed and acceleration of the particle 
when x = 1.5 m. 
 
Picture the Problem The position of the particle is given by tAx ωcos= , where 
A = 2.5 m and ω = π rad/s. The velocity is the time derivative of the position and 
the acceleration is the time derivative of the velocity. 
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(a) The velocity is the time 
derivative of the position and the 
acceleration is the time derivative of 
the acceleration: 
 

tAx ωcos= ⇒ tA
dt
dxv ωω sin−==  

and tA
dt
dva ωω cos2−==  

 
The maximum value of sinωt is +1 
and the minimum value of sinωt is 
−1. A and ω are positive constants: 
 

( )( ) m/s9.7sm5.2 1
max === −πωAv  

The maximum value of cosωt is +1 
and the minimum value of cosωt is 
−1: 

( )( )
2

212
max

m/s25

sm5.2

=

== −πωAa
 

 
(b) Use the Pythagorean identity 

1cossin 22 =+ tt ωω to eliminate t 
from the equations for x and v: 
 

12

2

22

2

=+
A
x

A
v

ω
⇒ 22 xAv −= ω  

Substitute numerical values and 
evaluate ( ) :m 5.1v  

 

( ) ( ) ( ) ( )
m/s 3.6

m 5.1m 5.2rad/s m 5.1 22

=

−= πv

 
Substitute x for Acosωt in the 
equation for a to obtain: 
 

xa 2ω−=  

Substitute numerical values and 
evaluate a: 

( ) ( ) 22 m/s 15m 5.1rad/s −=−= πa  

 
38 ••• (a) Show that A0 cos(ωt + δ) can be written as As sin(ωt) + Ac cos(ωt), 
and determine As and Ac in terms of A0 and δ. (b) Relate Ac and As to the initial 
position and velocity of a particle undergoing simple harmonic motion. 
  
Picture the Problem We can use the formula for the cosine of the sum of two 
angles to write x = A0 cos(ωt + δ) in the desired form.  We can then evaluate x and 
dx/dt at t = 0 to relate Ac and As to the initial position and velocity of a particle 
undergoing simple harmonic motion. 
 
(a) Apply the trigonometric identity 

( ) δωδωδω sinsincoscoscos ttt −=+  
to obtain: 
 

( )
[ ]

tAtA

tAtA
ttA

tAx

ωω

ωδωδ
δωδω

δω

cossin

coscossinsin
sinsincoscos

cos

cs

00

0

0

+=

+−=
−=

+=

 

provided 
δsin0s AA −= and δcos0c AA =  
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(b) When t = 0: 
c0 cos)0( AAx == δ  

 
Evaluate dx/dt: [ ]

tAtA

tAtA
dt
d

dt
dxv

ωωωω

ωω

sincos

cossin

cs

cs

−=

+==
 

 
Evaluate v(0) to obtain: δωω sin)0( 0s AAv −==  

Simple Harmonic Motion as Related to Circular Motion 
 
39 • [SSM] A particle moves at a constant speed of 80 cm/s in a circle of 
radius 40 cm centered at the origin. (a) Find the frequency and period of the x 
component of its position. (b) Write an expression for the x component of its 
position as a function of time t, assuming that the particle is located on the +y-axis 
at time t = 0. 
 
Picture the Problem We can find the period of the motion from the time required 
for the particle to travel completely around the circle. The frequency of the 
motion is the reciprocal of its period and the x-component of the particle’s 
position is given by ( )δω += tAx cos .  We can use the initial position of the 
particle to determine the phase constant δ. 
 
(a) Use the definition of speed to 
find the period of the motion: 
 

( ) s1.3 14.3
m/s80.0

m40.022
====

ππ
v

rT  

 
Because the frequency and the 
period are reciprocals of each other: 

Hz32.0
s14.3

11
===

T
f  

 
(b) Express the x component of the 
position of the particle: 
 

( ) ( )δπδω +=+= ftAtAx 2coscos    (1) 
 

The initial condition on the particle’s 
position is: 
 

( ) 00 =x  

Substitute in the expression for x to 
obtain: 
 

δcos0 A= ⇒ ( )
2

0cos 1 πδ == −  

Substitute for A, ω, and δ  in 
equation (1) to obtain: ( ) ( ) ⎥⎦

⎤
⎢⎣
⎡ += −

2
s0.2coscm40 1 πtx  
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40 • A particle moves in a 15-cm-radius circle centered at the origin and 
completes 1.0 rev every 3.0 s. (a) Find the speed of the particle. (b) Find its 
angular speed ω. (c) Write an equation for the x component of the position of the 
particle as a function of time t, assuming that the particle is on the −x axis at time 
t = 0.  
 
Picture the Problem We can find the period of the motion from the time required 
for the particle to travel completely around the circle. The angular frequency of 
the motion is 2π times the reciprocal of its period and the x-component of the 
particle’s position is given by ( )δω += tAx cos .  We can use the initial position of 
the particle to determine the phase constantδ. 
 
(a) Use the definition of speed to 
express and evaluate the speed of  
the particle: 
 

( ) cm/s31
s0.3
cm1522

===
ππ

T
rv  

 

(b) The angular speed of the particle 
is: rad/s

3
2

s 0.3
22 πππω ===

T
 

 
(c) Express the x component of the 
position of the particle: 
 

( )δω += tAx cos                  (1) 
 

The initial condition on the particle’s 
position is: 
 

( ) Ax −=0  

Substituting for x in equation (1) 
yields: 
 

δcosAA =− ⇒ ( ) πδ =−= − 1cos 1  
 

Substitute for A, ω, and δ in equation 
(1) to obtain: ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛= − ππ tx 1s

3
2coscm15  

 
Energy in Simple Harmonic Motion 
 
41 • A 2.4-kg object on a frictionless horizontal surface is attached to one 
end of a horizontal spring of force constant k = 4.5 kN/m. The other end of the 
spring is held stationary. The spring is stretched 10 cm from equilibrium and 
released. Find the system’s total mechanical energy. 
 
Picture the Problem The total mechanical energy of the object is given by 

,2
2
1

tot kAE =  where A is the amplitude of the object’s motion.  
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The total mechanical energy of the 
system is given by: 
 

2
2
1

tot kAE =  
 

Substitute numerical values and 
evaluate Etot: 

( )( ) J23m0.10kN/m4.5 2
2
1

tot ==E  

 
42 • Find the total energy of a system consisting of a 3.0-kg object on a 
frictionless horizontal surface oscillating with an amplitude of 10 cm and a 
frequency of 2.4 Hz at the end of a horizontal spring. 
 
Picture the Problem The total energy of an oscillating object can be expressed in 
terms of its kinetic energy as it passes through its equilibrium position: 

.2
max2

1
tot mvE =  Its maximum speed, in turn, can be expressed in terms of its 

angular frequency and the amplitude of its motion.  
 
Express the total energy of the object 
in terms of its maximum kinetic 
energy: 
 

2
max2

1 mvE =  

The maximum speed maxv  of the 
oscillating object is given by: 
 

AfAv πω 2max ==  
 

Substitute for maxv  to obtain: ( ) 2222
2
1 22 fmAAfmE ππ ==  

 
Substitute numerical values and 
evaluate E: 

( )( ) ( )
J4.3

s4.2m10.0kg0.32 2122

=

= −πE
 

 
43 • [SSM] A 1.50-kg object on a frictionless horizontal surface oscillates 
at the end of a spring of force constant k = 500 N/m. The object’s maximum 
speed is 70.0 cm/s. (a) What is the system’s total mechanical energy? (b) What is 
the amplitude of the motion? 
 
Picture the Problem The total mechanical energy of the oscillating object can be 
expressed in terms of its kinetic energy as it passes through its equilibrium 
position: 2

max2
1

tot mvE = . Its total energy is also given by .2
2
1

tot kAE =  We can 
equate these expressions to obtain an expression for A. 
 
(a) Express the total mechanical 
energy of the object in terms of its 
maximum kinetic energy: 
 

2
max2

1 mvE =  
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Substitute numerical values and 
evaluate E: 
 

( )( )
J0.368

J0.3675m/s0.700kg1.50 2
2
1

=

==E
 

 
(b) Express the total mechanical 
energy of the object in terms of the 
amplitude of its motion: 
 

2
2
1

tot kAE = ⇒
k
EA tot2

=  

Substitute numerical values and 
evaluate A: 

( ) cm83.3
N/m500

J3675.02
==A  

 
44 • A 3.0-kg object on a frictionless horizontal surface is oscillating on the 
end of a spring that has a force constant equal to 2.0 kN/m and a total mechanical 
energy of 0.90 J. (a) What is the amplitude of the motion? (b) What is the 
maximum speed? 
 
Picture the Problem The total mechanical energy of the oscillating object can be 
expressed in terms of its kinetic energy as it passes through its equilibrium 
position: .2

max2
1

tot mvE =  Its total energy is also given by .2
2
1

tot kAE =  We can solve 
the latter equation to find A and solve the former equation for vmax. 
 
(a) Express the total mechanical 
energy of the object as a function of 
the amplitude of its motion: 

 

2
2
1

tot kAE = ⇒
k
EA tot2

=  

 
 

Substitute numerical values and 
evaluate A: 

( ) cm0.3
N/m2000

J90.02
==A  

 
(b) Express the total mechanical 
energy of the object in terms of its 
maximum speed: 
 

2
max2

1
tot mvE = ⇒

m
Ev tot

max
2

=  

 

Substitute numerical values and 
evaluate vmax: 

( ) cm/s77
kg3.0

J0.902
max ==v  

 
45 • An object on a frictionless horizontal surface oscillates at the end of a 
spring with an amplitude of 4.5 cm. Its total mechanical energy is 1.4 J. What is 
the force constant of the spring? 
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Picture the Problem The total mechanical energy of the object is given by 
.2

2
1

tot kAE =  We can solve this equation for the force constant k and substitute the 
numerical data to determine its value. 
 
Express the total mechanical energy 
of the oscillator as a function of the 
amplitude of its motion: 
 

2
2
1

tot kAE = ⇒ 2
tot2

A
Ek =  

 

Substitute numerical values and 
evaluate k: 

( )
( )

kN/m1.4
m0.045
J1.42

2 ==k  

 
46 •• A 3.0-kg object on a frictionless horizontal surface oscillates at the end 
of a spring with an amplitude of 8.0 cm. Its maximum acceleration is 3.5 m/s2. 
Find the total mechanical energy. 
 
Picture the Problem The total mechanical energy of the system is the sum of the 
potential and kinetic energies. That is, .2

2
12

2
1

tot mvkxE +=  Newton’s 2nd law 
relates the acceleration to the displacement. That is, .makx =−  In addition, when 
x = A, v = 0. Use these equations to solve Etot in terms of the given parameters m, 
A and amax. 
 
The total mechanical energy is the 
sum of the potential and kinetic 
energies. We don’t know k so we 
need an equation relating k to one or 
more of the given parameters: 
 

2
2
12

2
1

tot mvkxE +=  
 

The force exerted by the spring 
equals the mass of the object 
multiplied by its acceleration: 
 

makx =− ⇒ 
x

mak −=  

When x = −A, a = amax. Thus, 

A
ma

A
mak maxmax =

−
−=  

 
Substitute to obtain: 
 

2
2
12max

2
1

tot mvx
A

maE +=  

 
When x = A, v = 0. Substitute to 
obtain: 

AmaA
A

maE max2
12max

2
1

tot 0 =+=   

 
Substitute numerical values and 
evaluate Etot: 

( )( )( )
J0.42

m0.080m/s3.5kg3.0 2
2
1

tot

=

=E
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Simple Harmonic Motion and Springs 
 
47 • A 2.4-kg object on a frictionless horizontal surface is attached to a 
horizontal spring that has a force constant 4.5 kN/m. The spring is stretched 10 
cm from equilibrium and released. What are (a) the frequency of the motion,  
(b) the period, (c) the amplitude, (d) the maximum speed, and (e) the maximum 
acceleration? (f) When does the object first reach its equilibrium position? What is 
its acceleration at this time?  
 
Picture the Problem The frequency of the object’s motion is given by 

mkf
π2
1

=  and its period is the reciprocal of f. The maximum velocity and 

acceleration of an object executing simple harmonic motion are ωAv =max  and 
,2

max ωAa =  respectively.  
 
(a) The frequency of the motion is 
given by: m

kf
π2
1

=  

 
Substitute numerical values and 
evaluate f: 

Hz9.6

Hz 89.6
kg2.4

kN/m4.5
2
1

=

==
π

f
 

 
(b) The period of the motion to is the 
reciprocal of its frequency: 

s15.0s 145.0
s89.6

11
1 ==== −f

T  

 
(c) Because the object is released 
from rest after the spring to which it 
is attached is stretched 10 cm: 
 

cm10=A  

(d) The object’s maximum speed is 
given by: 
 

fAAv πω 2max ==  
 

Substitute numerical values and 
evaluate vmax: 
 

( )( )
m/s3.4

m/s33.4m10.0s89.62 1
max

=

== −πv
 

 
(e) The object’s maximum 
acceleration is given by: 
 

maxmax
2

max 2 fvvAa πωω ===  
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Substitute numerical values and 
evaluate amax: 

( )( )
22

1
max

m/s109.1

m/s33.4s89.62

×=

= −πa
 

 
(f) The object first reaches its 
equilibrium when: 

( ) ms36s145.04
1

4
1 === Tt  

 
Because the resultant force acting on 
the object as it passes through its 
equilibrium position is zero, the 
acceleration of the object is: 

0=a  

 
48 • A 5.00-kg object on a frictionless horizontal surface is attached to one 
end of a horizontal spring that has a force constant k = 700 N/m.  The spring is 
stretched 8.00 cm from equilibrium and released. What are (a) the frequency of 
the motion, (b) the period, (c) the amplitude, (d) the maximum speed, and (e) the 
maximum acceleration? (f) When does the object first reach its equilibrium 
position? What is its acceleration at this time?  
 
Picture the Problem The frequency of the object’s motion is given by 

mkf
π2
1

=  and its period is the reciprocal of f. The maximum speed and 

acceleration of an object executing simple harmonic motion are ωAv =max  and 
,2

max ωAa =  respectively.  
 
(a) The frequency of the motion is 
given by: m

kf
π2
1

=  

 
Substitute numerical values and 
evaluate f: 

Hz88.1

Hz 883.1
kg5.00

N/m700
2
1

=

==
π

f
 

 
(b) The period of the motion is the 
reciprocal of its frequency: 

s531.0

s 5310.0
s883.1

11
1

=

=== −f
T

 

 
(c) Because the object is released 
from rest after the spring to which it 
is attached is stretched 8.00 cm: 
 

cm00.8=A  
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(d) The object’s maximum speed is 
given by: 
 

fAAv πω 2max ==  
 

Substitute numerical values and 
evaluate vmax: 

( )( )
m/s947.0m/s 9465.0

m0800.0s883.12 1
max

==

= −πv
 

 
(e) The object’s maximum 
acceleration is given by: 
 

maxmax
2

max 2 fvvAa πωω ===  
 

Substitute numerical values and 
evaluate amax: 

( )( )
2

1
max

m/s2.11

m/s9465.0s883.12

=

= −πa
 

 
(f) The object first reaches its 
equilibrium when: 
 

( ) s.1330s5310.04
1

4
1 === Tt  

 

Because the resultant force acting on the object as it passes through its 
equilibrium point is zero, the acceleration of the object is .0=a  

 
49 • [SSM] A 3.0-kg object on a frictionless horizontal surface is 
attached to one end of a horizontal spring, oscillates with an amplitude of 10 cm 
and a frequency of 2.4 Hz. (a) What is the force constant of the spring? (b) What 
is the period of the motion? (c) What is the maximum speed of the object?  
(d) What is the maximum acceleration of the object?  
 
Picture the Problem (a) The angular frequency of the motion is related to the 
force constant of the spring through .2 mk=ω  (b) The period of the motion is the 
reciprocal of its frequency. (c) and (d) The maximum speed and acceleration of an 
object executing simple harmonic motion are ωAv =max  and ,2

max ωAa =  
respectively.  
 
(a) Relate the angular frequency of 
the motion to the force constant of 
the spring: 
 

m
k

=2ω  ⇒ mfmk 222 4πω ==  

 

Substitute numerical values to 
obtain: 

( ) ( )
kN/m68.0

N/m682kg0.3s4.24 212

=

== −πk
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(b) Relate the period of the motion 
to its frequency: 

s42.0s417.0
s4.2

11
1 ==== −f

T  

 
(c) The maximum speed of the 
object is given by: 
 

fAAv πω 2max ==  
 

Substitute numerical values and 
evaluate vmax: 
 

( )( )
m/s5.1

m/s51.1m10.0s4.22 1
max

=

== −πv
 

(d) The maximum acceleration of 
the object is given by: 
 

AfAa 222
max 4πω ==  

Substitute numerical values and 
evaluate amax: 

( ) ( ) 2212
max m/s23m0.10s4.24 == −πa

 
  
50 • An 85.0-kg person steps into a car of mass 2400 kg, causing it to sink 
2.35 cm on its springs. If started into vertical oscillation, and assuming no 
damping, at what frequency will the car and passenger vibrate on these springs? 
 
Picture the Problem We can find the frequency of vibration of the car-and-

passenger system using ,
2
1

M
kf

π
=  where M is the total mass of the system. 

The force constant of the spring can be determined from the compressing force 
and the amount of compression. 
 
Express the frequency of the car-
and-passenger system: M

kf
π2
1

=  

 
The force constant is given by: 

x
mg

x
Fk

Δ
=

Δ
=  

where m is the person’s mass. 
 

Substitute for k in the expression for 
f to obtain: xM

mgf
Δ

=
π2
1  

 
Substitute numerical values and 
evaluate f: 

( )( )
( )( )

Hz601.0

m102.35kg2485
m/s9.81kg0.85

2
1

2

2

=

×
= −π

f
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51 • A 4.50-kg object with an amplitude of 3.80 cm oscillates on a 
horizontal spring. The object’s maximum acceleration is 26.0 m/s2. Find (a) the 
force constant of the spring, (b) the frequency of the object, and (c) the period of 
the motion of the object. 
 
Picture the Problem (a) We can relate the force constant k to the maximum 
acceleration by eliminating ω2 between mk=2ω and .2

max ωAa =  (b) We can 

find the frequency f of the motion by substituting mamax/A for k in .
2
1 mkf
π

=  

(c) The period of the motion is the reciprocal of its frequency. Assume that 
friction is negligible. 
 
(a) Relate the angular frequency of 
the motion to the force constant and 
the mass of the oscillator: 
 

m
k

=2ω ⇒ mk 2ω=  

 

Relate the object’s maximum 
acceleration to its angular frequency 
and amplitude and solve for the 
square of the angular frequency: 
 

2
max ωAa = ⇒ 

A
amax2 =ω           (1) 

 

Substitute for 2ω  to obtain: 
A

mak max=  

 
Substitute numerical values and 
evaluate k: 

( )( ) kN/m08.3
m103.80
m/s26.0kg4.50

2

2

=
×

= −k  

 
(b) Replace ω in equation (1) by 2πf 
and solve for f  to obtain: A

af max

2
1
π

=  

 
Substitute numerical values and 
evaluate f: 

Hz16.4

Hz163.4
m103.80

m/s26.0
2
1

2

2

=

=
×

= −π
f

 

 
(c) The period of the motion is the 
reciprocal of its frequency: 

s240.0
s163.4

11
1 === −f

T  

 
52 •• An object of mass m is suspended from a vertical spring of force 
constant 1800 N/m.  When the object is pulled down 2.50 cm from equilibrium 
and released from rest, the object oscillates at 5.50 Hz. (a) Find m. (b) Find the 
amount the spring is stretched from its unstressed length when the object is in 
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equilibrium. (c) Write expressions for the displacement x, the velocity vx, and the 
acceleration ax as functions of time t. 
 
Picture the Problem Choose a coordinate system in which upward is the +y 
direction. We can find the mass of the object using .2ωkm =  We can apply a 
condition for translational equilibrium to the object when it is at its equilibrium  
position to determine the amount the spring has stretched from its natural length. 
Finally, we can use the initial conditions to determine A and δ and express x(t) 
and then differentiate this expression to obtain vx(t) and ax(t). 
 
(a) Express the angular frequency of 
the system in terms of the mass of the 
object fastened to the vertical spring 
and solve for the mass of the object: 
 

2
2

ω
ω km

m
k

=⇒=  

Express ω2 in terms of  f: 222 4 fπω =  
 

Substitute for 2ω to obtain: 
224 f

km
π

=  

 
Substitute numerical values and 
evaluate m: ( )

kg51.1

kg 507.1
s50.54

N/m1800
212

=

==
−π

m
 

 
(b) Letting Δx represent the amount 
the spring is stretched from its 
natural length when the object is in 
equilibrium, apply ∑ = 0yF  to the 

object when it is in equilibrium: 
 

0=−Δ mgxk  

Solve for m to obtain: 0
4 22 =−Δ

f
kgxk

π
⇒ 224
Δ

f
gx

π
=  

 
Substitute numerical values and 
evaluate Δx: ( )

mm21.8
s50.54

m/s81.9Δ 212

2

==
−π

x  

 
(c) Express the position of the object 
as a function of time: 
 

( )δω += tAx cos  
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Use the initial conditions  
x0 = −2.50 cm and v0 = 0 to find δ: 
 

( ) π
ω

δ ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −− 0tantan 1

0

01

x
v  

 
Evaluate ω: 

rad/s34.56
kg1.507

N/m1800
===

m
kω  

 
Substitute to obtain: ( ) ( )[ ]

( ) ( )[ ]t
tx

rad/s6.34coscm50.2

rad/s56.34coscm50.2

−=

+= π
 

 
Differentiate x(t) to obtain vx: ( ) ( )[ ]

( ) ( )[ ]t
tvx

rad/s6.34sincm/s4.86

rad/s56.34sincm/s39.86

=

=
 

 
Differentiate v(t) to obtain ax: ( ) ( )[ ]

( ) ( )[ ]t
tax

rad/s6.34cosm/s9.29

rad/s56.34cosm/s86.29
2

2

=

=
 

 
53 •• An object is hung on the end of a vertical  spring and is released from 
rest with the spring unstressed. If the object falls 3.42 cm before first coming to 
rest, find the period of the resulting oscillatory motion. 
 
Picture the Problem Let the system include the object and the spring. Then, the 
net external force acting on the system is zero. Choose Ei = 0 and apply the 
conservation of mechanical energy to the system.  
 
Express the period of the motion in 
terms of its angular frequency: 
 

ω
π2

=T                                      (1) 

Apply conservation of energy to the 
system: 
 

fi EE = ⇒ springg0 UU +=  

 

Substituting for Ug and Uspring yields: 
 ( )2

2
10 xkxmg Δ+Δ−= ⇒

x
g

m
k

Δ
2

==ω  

 
Substituting for ω in equation (1) 
yields: g

x

x
g

T
2
Δ2

Δ
2
2π π==  

 
Substitute numerical values and 
evaluate T: ( ) s0.262

m/s 9.812
cm 3.422π 2 ==T  
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54 •• A suitcase of mass 20 kg is hung from two bungee cords, as shown in 
Figure 14-27.  Each cord is stretched 5.0 cm when the suitcase is in equilibrium. 
If the suitcase is pulled down a little and released, what will be its oscillation 
frequency? 
 
Picture the Problem The diagram 
shows the stretched bungee cords 
supporting the suitcase under 
equilibrium conditions. We can use 

M
kf eff

2
1
π

= to express the frequency 

of the suitcase in terms of the effective 
″spring″ constant keff and apply the 
condition for translational equilibrium 
to the suitcase to find keff.  

k

M

kx

Mg

y

k

x

kx

 
  
Express the frequency of the suitcase 
oscillator: M

kf eff

2
1
π

=                            (1) 

 
Apply 0=∑ yF  to the suitcase to 

obtain: 
 

0=−+ Mgkxkx  
or 

02 =− Mgkx  
or 

0eff =− Mgxk ⇒
x

Mgk =eff  

where keff = 2k 
 

Substitute for keff in equation (1) to 
obtain: x

gf
π2
1

=  

 
Substitute numerical values and 
evaluate f: Hz2.2

m050.0
m/s81.9

2
1 2

==
π

f  

 
55 •• A 0.120-kg block is suspended from a spring. When a small pebble of 
mass 30 g is placed on the block, the spring stretches an additional 5.0 cm. With 
the pebble on the block, the spring oscillates with an amplitude of 12 cm. 
(a) What is the frequency of the motion? (b) How long does the block take to 
travel from its lowest point to its highest point? (c) What is the net force on the 
pebble when it is at the point of maximum upward displacement? 
 
Picture the Problem (a) The frequency of the motion of the stone and block 
depends on the force constant of the spring and the mass of the stone plus block. 
The force constant can be determined from the equilibrium of the system when 
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the spring is stretched additionally by the addition of the stone to the mass.  
(b) The time required for the block to travel from its lowest point to its highest 
point is half its period. (c) When the block is at the point of maximum upward 
displacement, it is momentarily at rest and the net force acting on it is its weight. 
 
(a) Express the frequency of the 
motion in terms of  k and mtot: 
 

tot2
1

m
kf

π
=                            (1) 

where mtot is the total mass suspended 
from the spring. 
 

Apply ∑ = 0yF  to the stone when it 

is at its equilibrium position: 
 

0=−Δ mgyk ⇒
y

mgk
Δ

=  

Substitute for k in equation (1) to 
obtain: 

totΔ2
1

ym
mgf

π
=  

 
Substitute numerical values and 
evaluate  f: 

( )( )
( )( )

Hz0.1Hz997.0

kg 15.0m 0.050
m/s 81.9kg 0.030

2
1 2

==

=
π

f
 

 
(b) The time to travel from its 
lowest point to its highest point is 
one-half its period: 
 

( ) s0.50
s0.9972

1
2
1

12
1 ==== −f
Tt  

 

(c) When the stone is at a point of 
maximum upward displacement: 

( )( )
N0.29

m/s9.81kg030.0 2
net

=

== mgF
 

 
56 •• Referring to Problem 69, find the maximum amplitude of oscillation at 
which the pebble will remain in contact with the block. 
 
Picture the Problem We can use the maximum acceleration of the oscillator to 
express amax in terms of  A, k, and m. k can be determined from the equilibrium of 
the system when the spring is stretched additionally by the addition of the stone to 
the mass. If the stone is to remain in contact with the block, the block’s maximum 
downward acceleration must not exceed g. 
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Express the maximum acceleration 
of the oscillator in terms of its 
angular frequency and amplitude of 
the motion: 
 

2
max ωAa =  

Relate ω2 to the force constant of the 
spring and the mass of the block-
plus-stone: 
 

tot

2

m
k

=ω  

 

Substitute for ω2 to obtain: 
tot

max m
kAa =                            (1) 

 
Apply ∑ = 0yF  to the stone when 

it is at its equilibrium position: 
 

0=−Δ mgyk ⇒
y

mgk
Δ

=  

where Δy is the additional distance the 
spring stretched when the stone was 
placed on the block. 
 

Substitute for k in equation (1) to 
obtain: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

tot
max Δym

mgAa  

 
Set amax = g and solve for Amax: y

m
mg

mg
ymA ΔΔ tottot

max ==  

 
Substitute numerical values and 
evaluate Amax: 

( ) cm 25m 050.0
kg 030.0

kg 15.0
max =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=A  

 
57 •• An object of mass 2.0 kg is attached to the top of a vertical spring that 
is anchored to the floor. The unstressed length of the spring is 8.0 cm and the 
length of the spring when the object is in equilibrium is 5.0 cm. When the object 
is resting at its equilibrium position, it is given a sharp downward blow with a 
hammer so that its initial speed is 0.30 m/s. (a) To what maximum height above 
the floor does the object eventually rise? (b) How long does it take for the object 
to reach its maximum height for the first time? (c) Does the spring ever become 
unstressed? What minimum initial speed must be given to the object for the spring 
to be unstressed at some time? 
 
Picture the Problem (a) The maximum height above the floor to which the 
object rises is the sum of its initial distance from the floor and the amplitude of its 
motion. We can find the amplitude of its motion by relating it to the object’s 
maximum speed. (b) Because the object initially travels downward, it will be 
three-fourths of the way through its cycle when it first reaches its maximum 
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height. (c) We can find the minimum initial speed the object would need to be 
given in order for the spring to become uncompressed by applying conservation 
of mechanical energy. 
 
(a) Relate h, the maximum height 
above the floor to which the object 
rises, to the amplitude of its motion: 
 

cm 0.5+= Ah                          (1) 

Relate the maximum speed of the 
object to the angular frequency and 
amplitude of its motion and solve for 
the amplitude: 
 

ωAv =max  

or, because ,2

m
k

=ω  

k
mvA max=                              (2) 

 
Apply 0=∑ yF to the object when it 

is resting at its equilibrium position 
to obtain: 
 

0Δ =− mgyk ⇒
y

mgk
Δ

=  

Substitute for k  in equation (2): 
g
yv

mg
ymvA ΔΔ

maxmax ==  

 
Substituting for A in equation (1) 
yields: cm 0.5Δ

max +=
g
yvh  

 
Substitute numerical values and 
evaluate h: 

cm 7.6

cm 0.5
m/s 81.9

m 030.0m/s 30.0 2
2

=

+=h
 

 
(b) The time required for the object 
to reach its maximum height the first 
time is three-fourths its period: 
 

Tt 4
3=  

Express the period of the motion of 
the oscillator: g

y

y
mg
m

k
mT Δ2

Δ

22 πππ ===  

 
Substitute for T in the expression for 
t to obtain: g

y
g
yt Δ

2
3Δ2

4
3 ππ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  
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Substitute numerical values and 
evaluate t: 
 

s 0.26
m/s 81.9

m .0300
2

3
2 ==

πt  

(c) Because h < 8.0 cm, the spring is never uncompressed.     
 
Using conservation of energy and 
letting Ug be zero 5 cm above the 
floor, relate the height to which the 
object rises, Δy, to its initial kinetic 
energy: 
 

0sg =Δ+Δ+Δ UUK  

or, because Kf = Ui = 0, 
( )

( ) 0

ΔΔ
2

i2
1

2
2
12

i2
1

=−−

+−

yLk

ykymgmv
 

Because :iyLy −=Δ   
 

( ) ( ) 02
2
12

2
12

i2
1 =Δ−Δ+Δ− ykykymgmv  
and 

02
i2

1 =Δ− ymgmv ⇒ ygv Δ2i =  
 

Substitute numerical values and 
evaluate vi: 

( )( ) cm/s77cm3.0m/s9.812 2
i ==v  

That is, the minimum initial speed that 
must be given to the object for the 
spring to be uncompressed at some 
time is cm/s77  

 
58 ••• A winch cable has a cross-sectional area of 1.5 cm2 and a length of  
2.5 m. Young’s modulus for the cable is 150 GN/m2. A 950-kg engine block is 
hung from the end of the cable. (a) By what length does the cable stretch?  
(b) Treating the cable as a simple spring, what is the oscillation frequency of the 
engine block at the end of the cable? 
  
Picture the Problem We can relate the elongation of the cable to the load on it 
using the definition of Young’s modulus and use the expression for the frequency 
of a spring-mass oscillator to find the oscillation frequency of the engine block at 
the end of the wire. 
 
(a)  Using the definition of  Young’s 
modulus, relate the elongation of the 
cable to the applied stress: 
 

Δ
==

AFY
strain
stress

⇒
AY

Mg
AY
F

==Δ  

Substitute numerical values and 
evaluate Δ : 

( )( )( )
( )( )

mm0.1mm0355.1

GN/m150cm5.1
m5.2m/s81.9kg950

22

2

==

=Δ
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(b)  Express the oscillation 
frequency of the wire-engine block 
system: 
 

M
kf eff

2
1
π

=  

 

Express the effective ″spring″ 
constant of the cable: Δ

=
Δ

=
MgFkeff  

 
Substitute for keff to obtain: 

Δ
=

gf
π2
1  

 
Substitute numerical values and 
evaluate f: Hz15

mm0355.1
m/s81.9

2
1 2

==
π

f  

 
Simple Pendulum Systems 
 
59 • [SSM] Find the length of a simple pendulum if its frequency for 
small amplitudes is 0.75 Hz. 
  
Picture the Problem The frequency of a simple pendulum depends on its length 

and on the local gravitational field and is given by
L
gf

π2
1

= . 

 
The frequency of a simple pendulum 
oscillating with small amplitude is 
given by: 
 

L
gf

π2
1

= ⇒ 224 f
gL

π
=  

 

Substitute numerical values and 
evaluate L: ( )

cm 44
s 75.04

m/s 81.9
212

2

==
−π

L  

 
60 • Find the length of a simple pendulum if its period for small amplitudes 
is 5.0 s. 
 
Picture the Problem We can determine the required length of the pendulum from 
the expression for the period of a simple pendulum. 
 
Express the period of a simple 
pendulum: g

LT π2= ⇒ 2

2

4π
gTL =  

 
Substitute numerical values and 
evaluate L: 

( ) ( ) m2.6
4

m/s9.81s0.5
2

22

==
π

L  
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61 • What would be the period of the pendulum in Problem 60 if the 
pendulum were on the moon, where the acceleration due to gravity is one-sixth 
that on Earth? 
 
Picture the Problem We can find the period of the pendulum from 

moon2 gLT π=   where gg 6
1

moon =  and L = 6.21 m. 

 
Express the period of a simple 
pendulum on the moon: 

moon

2
g

LT π=  

 
Substitute numerical values and 
evaluate T: ( ) s12

m/s9.81
m6.212 2

6
1

== πT  

 
62 • If the period of a 70.0-cm-long simple pendulum is 1.68 s, what is the 
value of g at the location of the pendulum? 
  
Picture the Problem We can find the value of g at the location of the pendulum 
by solving the equation gLT π2=  for g and evaluating it for the given length 
and period. 
 
Express the period of a simple 
pendulum where the gravitational 
field is g: 
 

g
LT π2= ⇒ 2

24
T

Lg π
=  

 

Substitute numerical values and 
evaluate g: 

( )
( )

2
2

2

m/s79.9
s68.1

m700.04
==

πg  

 
63 • A simple pendulum set up in the stairwell of a 10-story building 
consists of a heavy weight suspended on a 34.0-m-long wire. What is the period 
of oscillation? 
 
Picture the Problem We can use gLT π2=  to find the period of this 
pendulum. 
 
Express the period of a simple 
pendulum: g

LT π2=  

 
Substitute numerical values and 
evaluate T: s7.11

m/s9.81
m0.432 2 == πT  
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64 •• Show that the total energy of a simple pendulum undergoing 
oscillations of small amplitude φ0 (in radians) is   E ≈ 1

2 mgLφ0
2 . Hint: Use the 

approximation     cosφ ≈1− 1
2 φ2  for small φ.  

 
Picture the Problem The figure shows 
the simple pendulum at maximum 
angular displacement φ0. The total 
energy of the simple pendulum is equal 
to its initial gravitational potential 
energy. We can apply the definition of 
gravitational potential energy and use 
the small-angle approximation to show 
that .2

02
1 φmgLE ≈   h

m 1

2

LL cos 

θ
0

θ0

0g =U

 
 
Express the total energy of the 
simple pendulum at maximum 
displacement: 
 

mghUE == ntdisplacememax  

 

Referring to the diagram, express h 
in terms of L and φ0: 
 

( )00 cos1cos φφ −=−= LLLh  

Substituting for h yields: [ ]0cos1 φ−= mgLE  
 

From the power series expansion for 
cosφ, for φ << 1: 
 

2
2
11cos φφ −≈  

 

Substitute and simplify to obtain: ( )[ ] 2
02

12
02

111 φφ mgLmgLE =−−=  

 
65 ••• [SSM] A simple pendulum of length L is attached to a massive cart 
that slides without friction down a plane inclined at angle θ with the horizontal, as 
shown in Figure 14-28. Find the period of oscillation for small oscillations of this 
pendulum. 
 
Picture the Problem The cart accelerates down the ramp with a constant 
acceleration of gsinθ.  This happens because the cart is much more massive than 
the bob, so the motion of the cart is unaffected by the motion of the bob 
oscillating back and forth.   The path of the bob is quite complex in the reference 
frame of the ramp, but in the reference frame moving with the cart the path of the 
bob is much simpler—in this frame the bob moves back and forth along a circular 
arc.  To solve this problem we first apply Newton’s second law (to the bob) in the 
inertial reference frame of the ramp.  Then we transform to the reference frame 



Oscillations 
 

 

1483

moving with the cart in order to exploit the simplicity of the motion in that frame. 
 
Draw the free-body diagram for the 
bob.  Let φ denote the angle that the 
string makes with the normal to the 
ramp.  The forces on the bob are the 
tension force and the force of gravity: 

m

L

θ  
θ

φ

φθ+

g
r

m

T
r

 
 

Apply Newton’s 2nd law to the bob, 
labeling the acceleration of the bob 
relative to the ramp BRa : 
 

BRagT mm =+  

The acceleration of the bob relative 
to the ramp is equal to the 
acceleration of the bob relative to 
the cart plus the acceleration of the 
cart relative to the ramp: 
 

CRBCBR aaa +=  

Substitute for  BRa  in BRagT mm =+ :  
 

( )CRBC aagT +=+ mm  
 

Rearrange terms and label CRag −  
as effg , where effg  is the 
acceleration, relative to the cart, of 
an object in free fall.  (If the tension 
force is set to zero the bob is in free 
fall.): 
 

( ) BCCR aagT mm =−+  
Label CRag −  as effg  to obtain 

BCeff agT mm =+        (1) 

To find the magnitude of effg , first 
draw the vector addition diagram 
representing the equation 

CReff agg −= .  Recall that  
aCR = g sin θ: 

θθ

g

gsin θβ

effg
r

CRa
r

−

g
r effg
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From the diagram, find the 
magnitude of effg .  Use the law of 
cosines: 

geff
2 = g2 + g2 sin 2 θ − 2g gsin θ( )cos β  

But cos β = sin θ , so 
geff

2 = g2 + g2 sin 2 θ − 2g2 sin 2 θ

= g2 1− sin 2 θ( )= g2 cos2 θ
 

Thus geff = gcosθ  
 

To find the direction of effg , first 
redraw the vector addition diagram 
as shown: 

θ

g

gsin θβ

δ

gcosθ

 
 

From the diagram find the direction 
of effg .  Use the law of cosines 
again and solve for δ: 

δθ

θθ

coscos2
cossin
2

22222

g
ggg

−

+=
 

and so θδ =  
 

To find an equation for the motion 
of the bob draw the ″free-body 
diagram″ for the ″forces″ that 
appear in equation (1).  Draw the 
path of the bob in the reference 
frame moving with the cart: m

θ  
θ

φ

φ
θ

effg
r

m

L

T
r

 
 

Take the tangential components of 
each vector in equation (1) in the 
frame of the cart yields.  The 
tangential component of the 
acceleration is equal to the radius of 
the circle times the angular 
acceleration   at = rα( ): 

2

2

eff sin0
dt
dmLmg φφ =−  

where L is the length of the string and 
d2φ
dt 2 is the angular acceleration of the 

bob.  The positive tangential ″direction″ 
is counterclockwise. 
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Rearranging this equation yields: 
 0sineff2

2

=+ φφ mg
dt
dmL           (2) 

 
For small oscillations of the 
pendulum: 
 

1<<φ and φφ ≈sin  

 

Substituting for φsin in equation 
(2) yields: 
 

0eff2

2

=+ φφ mg
dt
dmL  

or 

0eff
2

2

=+ φφ
L

g
dt
d                        (3) 

 
Equation (3) is the equation of 
motion for simple harmonic motion 
with angular frequency: 
 

ω =
geff

L
 

where ω is the angular frequency of the 
oscillations (and not the angular speed 
of the bob). 
 

The period of this motion is: 
 T =

2π
ω

= 2π
L

geff

                   (4) 

 
Substitute g cosθ for geff in 
equation (4) to obtain: θ

ππ
cos

22
eff g

L
g
LT ==  

 
Remarks: Note that, in the limiting case θ = 0, gLT π2= and T → 0. As  
θ → 90°, T → ∞. 
 
66 ••• The bob at the end of a simple pendulum of length L is released from 
rest from an angle φ0. (a) Model the pendulum’s motion as simple harmonic 
motion and find its speed as it passes through φ = 0 by using the small angle 
approximation. (b) Using the conservation of energy, find this speed exactly for 
any angle (not just small angles). (c) Show that your result from Part (b) agrees 
with the approximate answer in Part (a) when φ0 is small. (d) Find the difference 
between the approximate and exact results for φ0 = 0.20 rad and L = 1.0 m.  
(e) Find the difference between the approximate and exact results for  
φ0 = 1.20 rad and L = 1.0 m.  
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Picture the Problem The figure shows 
the simple pendulum at maximum 
angular displacement φ0. We can 
express the angular position of the 
pendulum’s bob in terms of its initial 
angular position and time and 
differentiate this expression to find the 
maximum speed of the bob.  We can 
use conservation of energy to find an 
exact value for vmax and the 
approximation 2

2
11cos φφ −≈  to show 

that this value reduces to the former 
value for small φ. 

h

Ug
= 0

2

1

ø0

L

m

m

φ

Lcosφø0

 
 
(a) Relate the speed of the 
pendulum’s bob to its angular speed: 
 

dt
dLv φ

=                                   (1) 

The angular position of the 
pendulum as a function of time is 
given by: 
 

tωφφ cos0=  

Differentiate this expression to 
express the angular speed of the 
pendulum: 
 

t
dt
d ωωφφ sin0−=  

 

Substitute in equation (1) to obtain: 
 

tvtLv ωωωφ sinsin max0 −=−=  
 

Simplify vmax to obtain: 
gL

L
gLv 00max φφ ==  

 
(b) Use conservation of energy to 
relate the potential energy of the 
pendulum at point 1 to its kinetic 
energy at point 2: 
 

0=Δ+Δ UK  
or, because K1 = U2 = 0, 

012 =−UK  
 

Substitute for K2 and U1: 02
22

1 =− mghmv  
 

Express h in terms of L and φ0: ( )0cos1 φ−= Lh  
 

Substituting for h yields: ( ) 0cos1 0
2
22

1 =−− φmgLmv  
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Solve for v2 = vmax to obtain: 
 

( )0max cos12 φ−= gLv          (2) 

 
(c) For φ0 << 1: 2

02
1

0cos1 φφ ≈−  
 

Substitute in equation (2) to obtain: ( ) gLgLv 0
2
02

1
max 2 φφ ==  

in agreement with our result in part (a). 
 

(d) Express the difference in the 
results from (a) and (b): 
 

bmax,amax, vvv −=Δ                       

Substitute for vmax,a and vmax,b and 
simplify to obtain: 
 

( )
( )( )00

00

cos12

cos12Δ

φφ

φφ

−−=

−−=

gL

gLgLv
(3) 

 
Substitute numerical values and evaluate Δv: 
 

( )( ) ( )( )( ) mm/s 1rad 20.0cos12rad 20.0m 0.1m/s 81.9Δ 2 ≈−−=v  

 
(e) Evaluate equation (3) for φ0 = 1.20 rad and L = 1.0 m: 
 

( )( ) ( )( )( ) m/s .20rad 20.1cos12rad 20.1m 0.1m/s 81.9Δ 2 ≈−−=v  

 
*Physical Pendulums  
 
67 • [SSM] A thin 5.0-kg disk with a 20-cm radius is free to rotate about 
a fixed horizontal axis perpendicular to the disk and passing through its rim. The 
disk is displaced slightly from equilibrium and released. Find the period of the 
subsequent simple harmonic motion. 
 
Picture the Problem The period of this physical pendulum is given by 

MgDIT π2= where I  is the moment of inertia of the thin disk about the fixed 
horizontal axis passing through its rim. We can use the parallel-axis theorem to 
express I in terms of the moment of inertia of the disk about an axis through its 
center of mass and the distance from its center of mass to its pivot point. 
 
Express the period of a physical 
pendulum: MgD

IT π2=  
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Using the parallel-axis theorem, find 
the moment of inertia of the thin disk 
about an axis through the pivot point: 
 

2
2
3

22
2
12

cm

MR

MRMRMRII

=

+=+=
 

 

Substituting for I and simplifying 
yields: g

R
MgR
MRT

2
322

2
2
3

ππ ==  

 
Substitute numerical values and 
evaluate T: 

( )
( ) s1.1

m/s9.812
m0.2032 2 == πT  

 
68 • A circular hoop that has a 50-cm radius is hung on a narrow horizontal 
rod and allowed to swing in the plane of the hoop. What is the period of its 
oscillation, assuming that the amplitude is small? 
 
Picture the Problem The period of this physical pendulum is given by 

MgDIT π2= where I is the moment of inertia of the circular hoop about an 
axis through its pivot point. We can use the parallel-axis theorem to express I in 
terms of the moment of inertia of the hoop about an axis through its center of 
mass and the distance from its center of mass to its pivot point. 
 
Express the period of a physical 
pendulum: MgD

IT π2=  

 
Using the parallel-axis theorem, find 
the moment of inertia of the circular 
hoop about an axis through the pivot 
point: 
 

2222
cm 2MRMRMRMRII =+=+=  

 

Substitute for I and simplify to obtain: 
g
R

MgR
MRT 2222

2

ππ ==  

 
Substitute numerical values and 
evaluate T: 

( ) s0.2
m/s9.81

m0.5022 2 == πT  

 
69 • A 3.0-kg plane figure is suspended at a point 10 cm from its center of 
mass. When it is oscillating with small amplitude, the period of oscillation is  
2.6 s. Find the moment of inertia I about an axis perpendicular to the plane of the 
figure through the pivot point. 
 
 



Oscillations 
 

 

1489

Picture the Problem The period of a physical pendulum is given by 
MgDIT π2= where I is its moment of inertia about an axis through its pivot 

point. We can solve this equation for I and evaluate it using the given numerical 
data. 
 
Express the period of a physical 
pendulum: MgD

IT π2= ⇒ 2

2

4π
MgDTI =  

 
Substitute numerical values and 
evaluate I: 

( )( )( )( )

2

2

22

mkg50.0
4

s2.6m0.10m/s9.81kg3.0

⋅=

=
π

I
 

 
70 •• You have designed a cat door that consists of a square piece of 
plywood that is 1.0 in. thick and 6.0 in. on a side, and is hinged at its top. To 
make sure the cat has enough time to get through it safely, the door should have a 
natural period of at least 1.0 s.  Will your design work? If not, explain 
qualitatively what you would do to make it meet your requirements.  
 
Picture the Problem The pictorial 
representation shows the cat door, of 
height h and width w, pivoted about an 
axis through a-a′. We can use 

mgD
IT a'a−= π2  

to find the period of the door but first 
must find a'aI − . The diagram also 
shows a differential strip of height dy 
and mass dm a distance y from the axis 
of rotation of the door. We can 
integrate the differential expression for 
the moment of inertia of this strip to 
determine the moment of inertia of the 
door. 

w

a

a'
y

dy

dm
h

 

 
The period of the cat door is given 
by: 
 mgD

IT a'a−= π2                          (1) 

where D is the distance from the center 
of mass of the door to the axis of 
rotation. 
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Express the moment of inertia, about 
the axis a-a′, of the cat door: 
 

dmydI a'a
2=−  

or, because wtdytdAdVdm ρρρ === , 
dyywtdI a'a

2ρ=−  
 

Integrating this expression between  
y = 0 and y = h yields: 
 

3
3
1

0

2 wthdyywtI
h

a'a ρρ == ∫−  

 

Because 
wht
m

V
m

==ρ : 

 

2
3
13

3
1 mhwth

wht
mI a'a =⎟

⎠
⎞

⎜
⎝
⎛=−  

Substituting for D and a'aI − in 
equation (1) yields: ( ) g

h
hmg

mh
T

3
222

2
1

2
3
1

ππ ==  

 
Substitute numerical values and 
evaluate T: 

( ) s 64.0
m/s 81.93

in
cm 2.540in 0.62

2 2 =
⎟
⎠
⎞

⎜
⎝
⎛ ×

= πT  

 
Thus the door’s period is too short. The only way to increase it is to increase the 
height of the door. 
 
71 •• You are given a meterstick and asked to drill a narrow hole through it 
so that, when the stick is pivoted about a horizontal axis through the hole, the 
period of the pendulum will be a minimum. Where should you drill the hole? 
 
Picture the Problem Let x be the distance of the pivot from the center of the 
meter stick, m the mass of the meter stick, and L its length. We’ll express the 
period of the meter stick as a function of the distance x and then differentiate this 
expression with respect to x to determine where the hole should be drilled to 
minimize the period. 
 
Express the period of a physical 
pendulum: MgD

IT π2=                           (1) 

 
Express the moment of inertia of the 
meter stick about an axis through its 
center of mass: 
 

2
12
1

cm mLI =  
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Using the parallel-axis theorem, 
express the moment of inertia of the 
meter stick about an axis through 
the pivot point: 
 

22
12
1

2
cm

mxmL

mxII

+=

+=
 

 

Substitute in equation (1) and 
simplify to obtain: 

x
xL

g

mgx
mxmL

T

12
122

2

22

22
12
1

+
=

+
=

π

π
       

 
The condition for an extreme value 

of T is that  .0
12

12 22

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
x

xL
dx
d  

Evaluate this derivative to obtain: 
 

0

12
1224

12
22

2

22

=
+

−

x
xLx

Lx
⇒ 012 22 =− Lx  

 

Noting that only the positive 
solution is physically meaningful, 
solve for x: 
 

cm9.28
12
cm100

12
===

Lx  

 

The hole should be drilled at a 
distance: 

cm1.21cm28.9cm50.0 =−=d  

from the center of the meter stick. 
 
72 •• Figure 14-29 shows a uniform disk of radius R = 0.80 m, a mass of  
6.00 kg, and a small hole a distance d from the disk’s center that can serve as a 
pivot point. (a) What should be the distance d so that the period of this physical 
pendulum is 2.50 s? (b) What should be the distance d so that this physical 
pendulum will have the shortest possible period? What is this shortest possible 
period? 
 
Picture the Problem (a) Let m represent the mass and R the radius of the uniform 
disk. The disk is a physical pendulum. We’ll use the expression 

mgdIT π2= for the period of a physical pendulum. To find I we use the 
parallel-axis theorem ( 2

cm mdII += ). (b) The period is a minimum when 
0=dxdT , where, to avoid notational difficulties, we have substituted x for d. 

 
(a) Express the period of a physical 
pendulum: mgd

IT π2=                        
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Using the parallel-axis theorem 
( 2

cm mdII += ), relate the moment 
of inertia about the axis through the 
hole to the moment of inertia Icm 
about the parallel axis through the 
center of mass. Obtain Icm from 
Table 9-1: 
 

22
2
1

2
cm

mdmR

mdII

+=

+=
 

Substituting for I yields: 

gd
dR

mgd
mdmRT

22
2
1

22
2
1

2

2

+
=

+
=

π

π
             (1) 

 
Square both sides of this equation, 
simplify, and substitute numerical 
values to obtain:  

0
24

2

2

2
2 =+−

RdgTd
π

 

or 
( ) 0m320.0m553.1 22 =+− dd  

 
Use the quadratic formula or your 
graphing calculator to obtain: 

cm42m 238.0 ==d  

The second root, d = 1.31 m, is greater 
than R, so it is too large to be 
physically meaningful. 
 

(b) The period T is related to the distance d by equation (1). T will be a minimum 
when ( ) ddR 22

2
1 +  is a minimum. Set the derivative of this expression equal to 

zero to find relative maxima and minima. We’ll replace d with x to avoid the 
notational challenge of differentiating with respect to d. Evaluating 

0
22

2
1

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
x

xR
dx
d yields: 

 
( )

0
2

2

22
2
12

=
+−

d
dRd

⇒ ( ) 02 22
2
12 =+− dRd  

where we have changed x back to d. 
 
Solving for d yields: 
 2

Rd =  
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Evaluate equation (1) with 
2Rd = to obtain an expression 

for the shortest possible period: 
 

g
R

Rg

RRT 22

2

2
2

2
12

2
1

ππ =
+

=  

 
Substitute numerical values and 
evaluate T: 

( ) s1.2
m/s81.9

m80.022 2 == πT  

 
Remarks: We’ve shown that 2Rd = corresponds to an extreme value; that 
is, to a maximum, a minimum, or an inflection point. To verify that this value 
of d corresponds to a minimum, we can either (1) show that d2T/dx2 evaluated 
at 2Rx = (where x = d) is positive, or (2) graph T as a function of d and 
note that the graph is a minimum at 2Rd = . 
 
73 ••• [SSM] Points P1 and P2 on a plane object (Figure 14-30) are 
distances h1 and h2, respectively, from the center of mass.  The object oscillates 
with the same period T when it is free to rotate about an axis through P1 and when 
it is free to rotate about an axis through P2. Both of these axes are perpendicular 
to the plane of the object.  Show that h1 + h2 = gT2/(4π)2, where h1 ≠ h2. 
 
Picture the Problem We can use the equation for the period of a physical 
pendulum and the parallel-axis theorem to show that h1 + h2 = gT 2/4π 2. 
 
Express the period of the physical 
pendulum: mgd

IT π2=                        

 
Using the parallel-axis theorem, 
relate the moment of inertia about an 
axis through P1 to the moment of 
inertia about an axis through the 
plane’s center of mass: 
 

2
1cm mhII +=  

Substitute for I to obtain: 

1

2
1cm2

mgh
mhIT +

= π            

 
Square both sides of this equation 
and rearrange terms to obtain: 1

1

cm
2

2

4
mh

h
ImgT

+=
π

                    (1) 

 
Because the period of oscillation is 
the same for point P2: 2

2

cm
1

1

cm mh
h
Imh

h
I

+=+  
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Combining like terms yields: 
 ( )12cm

21

11 hhmI
hh

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  

 
Provided 21 hh ≠ : 
 

21cm hmhI =  

Substitute in equation (1) and 
simplify to obtain: 1

1

21
2

2

4
mh

h
hmhmgT

+=
π

⇒ 2

2

21 4π
gThh =+

 
74 ••• A physical pendulum consists of a spherical bob of radius r and mass 
m suspended from a rigid rod of negligible mass as in Figure 14-31. The distance 
from the center of the sphere to the point of support is L.  When r is much less 
than L, such a pendulum is often treated as a simple pendulum of length L.   

(a) Show that the period for small oscillations is given by 
  
T = T0 1+

2r2

5L2  where 

T0 = 2π L / g  is the period of a simple pendulum of length L. (b) Show that 
when r is much smaller than L, the period can be approximated by  
T ≈ T0 (1 + r2/5L2). (c) If L = 1.00 m and r = 2.00 cm, find the error in the 
calculated value when the approximation T = T0 is used for the period. How large 
must be the radius of the bob for the error to be 1.00 percent? 
 
Picture the Problem (a) We can find the period of the physical pendulum in 
terms of the period of a simple pendulum by starting with mgLIT π2= and 
applying the parallel-axis theorem. (b) Performing a binomial expansion (with 
 r << L) on the radicand of our expression for T  will lead to T ≈ T0 (1 + r2/5L2). 

 
(a) Express the period of the 
physical pendulum: 
 

mgL
IT π2=  

 
Using the parallel-axis theorem, 
relate the moment of inertia of the 
pendulum about an axis through its 
center of mass to its moment of 
inertia about an axis through its point 
of support: 
 

22
5
2

2
cm

mLmr

mLII

+=

+=
 

Substitute for I and simplify to obtain: 
 

2

2

02

222
5
2

5
21

5
2122

L
rT

L
r

g
L

mgL
mLmr

T +=+=
+

= ππ  
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(b) Expanding 
21

2

2

5
21 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

L
r  

binomially yields: 

2

2

2

2

2

2

221

2

2

5
1

sorder term-higher 
5
2

8
1

5
2

2
11

5
21

L
r

L
r

L
r

L
r

+≈

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

 

provided r << L 
 

Substitute in our result from Part (a) 
to obtain: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≈ 2

2

0 5
1

L
rTT  

 
(c) Express the fractional error 
when the approximation T = T0 is 
used for this pendulum: 

2

2

2

2
00

0

5
1

5
1

1

L
r

L
r

T
T

T
TT

T
T

=−+=

−=
−

≈
Δ

 

 
Substitute numerical values and 
evaluate ΔT/T: 

( )
( )

0.00800%
cm1005
cm2.00Δ

2

2

=≈
T
T  

 
For an error of 1.00%: 

0100.0
5 2

2

=
L
r

⇒ 0500.0Lr =  

 
Substitute the numerical value of 
L and evaluate r to obtain: 

( ) cm22.40.0500cm100 ==r  

 
75 ••• Figure 14-32 shows the pendulum of a clock in your grandmother’s 
house. The uniform rod of length L = 2.00 m has a mass m = 0.800 kg.  Attached 
to the rod is a uniform disk of mass M = 1.20 kg and radius 0.150 m.  The clock is 
constructed to keep perfect time if the period of the pendulum is exactly 3.50 s. 
(a) What should the distance d be so that the period of this pendulum is 2.50 s? 
(b) Suppose that the pendulum clock loses 5.00 min/d. To make sure that your 
grandmother won’t be late for her quilting parties, you decide to adjust the clock 
back to its proper period. How far and in what direction should you move the disk 
to ensure that the clock will keep perfect time? 
 
Picture the Problem (a) The period of this physical pendulum is given by 

.2 MgDIT π=  We can express its period as a function of the distance d  by 
using the definition of the center of mass of the pendulum to find D in terms of d 
and the parallel-axis theorem to express I  in terms of d. Solving the resulting 
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quadratic equation yields d. (b) Because the clock is losing 5 minutes per day, one 
would reposition the disk so that the clock runs faster; that is, so the pendulum has 
a shorter period. We can determine the appropriate correction to make in the 
position of the disk by relating the fractional time loss to the fractional change in 
its position. 

 
(a) Express the period of a physical 
pendulum: 
 

cmtot

2
gxm
IT π=

 
 

Solving for
cmx
I yields: 

2
tot

2

cm 4π
gmT

x
I

=                           (1) 

 
Express the moment of inertia of the 
physical pendulum, about an axis 
through the pivot point, as a function 
of d: 
 

22
2
12

3
12

cm MdMrmLMdII ++=+=  
 
 

Substitute numerical values and 
evaluate I: 

( )( )
( )( ) ( )

( ) 22

22
2
1

2
3
1

kg20.1mkg0802.1

kg20.1m150.0kg20.1

m00.2kg800.0

d

d

I

+⋅=

++

=

 

 
Locate the center of mass of the 
physical pendulum relative to the 
pivot point: 

( )( ) ( )
kg00.2

kg1.20m1.00kg0.800
cm

dx +
=  

and 
dx 600.0m400.0cm +=  

 
Substitute in equation (1) to obtain: 
 

( ) ( )( ) ( ) 22
2

2222

m/skg49698.0
4

kg00.2m/s81.9
0.600m400.0

kg20.1mkg0802.1 TT
d

d
⋅==

+
+⋅

π
  (2) 

 
Setting T = 2.50 s and solving for 
d yields: 

m63574.1=d  

where we have kept more than three 
significant figures for use in Part (b). 
 

(b) There are 1440 minutes per day. 
If the clock loses 5.00 min per day, 
then the period of the clock is related 
to the perfect period of the clock by: 

perfect14401435 TT =  ⇒ perfect1435
1440 TT =     

where Tperfect = 3.50 s. 



Oscillations 
 

 

1497

Substitute numerical values and 
evaluate T: 
 

( ) s51220.3s50.3
1435
1440

==T  

 
Substitute T = 3.51220 s in equation 
(2) and solve for d to obtain: 
 

m40140.3=d  
 

Substitute T = 3.50 s in equation (2) 
and solve for d ′ to obtain: 
 

m37826.3=d'  

Express the distance the disk needs 
to be moved upward to correct the 
period: 

cm2.31 

m37826.3m40140.3Δ

=

−=−= d'dd
 

 
Damped Oscillations 
 
76 • A 2.00-kg object oscillates with an initial amplitude of 3.00 cm. The 
force constant of the spring is 400 N/m. Find (a) the period, and (b) the total 
initial energy. (c) If the energy decreases by 1.00 percent per period, find the 
linear damping constant b and the Q factor. 
 
Picture the Problem (a) We can find the period of the oscillator from 

kmT π2= . (b) The total initial energy of the spring-object system is given 
by 2

2
1

0 kAE = . (c) The Q factor can be found from its definition 
( )

cycle
2 EEQ Δ= π and the damping constant from .0 bmQ ω=  

 
(a) The period of the oscillator is 
given by: k

mT π2=  

 
Substitute numerical values and 
evaluate T: s444.0

N/m400
kg2.002 == πT  

 
(b) Relate the initial energy of the 
oscillator to its amplitude: 
 

2
2
1

0 kAE =  
 

Substitute numerical values and 
evaluate E0: 
 

( )( )
J0.180

m0.0300N/m400 2
2
1

0

=

=E
 

 
(c) Relate the fractional rate at which 
the energy decreases to the Q value 
and evaluate Q: 

( ) 628
0100.0
2

Δ
2

cycle

===
ππ

EE
Q  
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Express the Q value in terms of b: 
b
mQ 0ω

=  

 
Solve for the damping constant b:  

Q
mk

Q
k
m
m

TQ
m

Q
mb ====

π

ππω

2

220  

 
Substitute numerical values and 
evaluate b: 

( )( )

kg/s0450.0
628

N/m 400kg00.2

=

=b
 

 
77 •• [SSM] Show that the ratio of the amplitudes for two successive 
oscillations is constant for a linearly damped oscillator. 
 
Picture the Problem The amplitude of the oscillation at time t is ( ) τ2

0
teAtA −=  

where τ = m/b is the decay constant. We can express the amplitudes one period 
apart and then show that their ratio is constant. 

 
Relate the amplitude of a given 
oscillation peak to the time at which 
the peak occurs: 
 

( ) τ2
0

teAtA −=  

Express the amplitude of the 
oscillation peak at t′ = t + T: 
 

( ) ( ) τ2
0

TteATtA +−=+  

Express the ratio of these 
consecutive peaks: 

( )
( ) ( )

constant

2
2

0

2
0

=

==
+

−
+−

−
τ

τ

τ
T

Tt

t

e
eA

eA
TtA

tA
 

 
78 •• An oscillator has a period of 3.00 s. Its amplitude decreases by 5.00 
percent during each cycle. (a) By how much does its mechanical energy decrease 
during each cycle? (b) What is the time constant τ? (c) What is the Q factor? 
 
Picture the Problem (a) We can relate the fractional change in the energy of the 
oscillator each cycle to the fractional change in its amplitude. (b) and (c)  Both the 
Q value and the decay constant τ  can be found from their definitions. 

 
(a) Relate the energy of the oscillator 
to its amplitude: 
 

2
2
1 kAE =  
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Take the differential of this 
relationship to obtain: 
 

kAdAdE =  

Divide the second of these equations 
by the first and simplify to obtain: A

dA
kA

kAdA
E

dE 22
2
1

==  

 
Approximate dE and dA by ΔE  
and ΔA and evaluate ΔE/E: 

%0.10%)00.5(2Δ
==

E
E  

 
(b) For small damping: 

τ
T

E
E

=
Δ

 

and 

s0.30
0.0100

s00.3
Δ

===
EE

Tτ  

 
(c) The Q factor is given by: τπτω ⎟

⎠
⎞

⎜
⎝
⎛==

T
Q 2

0  

 
Substitute numerical values and 
evaluate Q: 

( ) 8.62s0.30
s00.3

2
==

πQ  

 
79 •• A linearly damped oscillator has a Q factor of 20. (a) By what fraction 
does the energy decrease during each cycle? (b) Use Equation 14-40 to find the 
percentage difference between ω′ and ω0. Hint: Use the approximation 
( ) xx 2

121 11 +≈+  for small x. 
 
Picture the Problem We can use the physical interpretation of Q for small 

damping ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

cycle
Δ

2
EE

Q π to find the fractional decrease in the energy of the 

oscillator each cycle.  
 

(a) Express the fractional decrease in 
energy each cycle as a function of 
the Q factor and evaluate EEΔ : 

 

31.0314.0
20
22Δ

====
ππ

QE
E

 

 

(b) The percentage difference 
between ω′ and ω0 is given by: 
 

1'

00

0 −=
−

ω
ω

ω
ωω'  
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Using the definition of the Q 
factor, use Equation 14-40 to 
express the ratio of ω′ to ω0 as a 
function of Q: 
 

21

2

21

2
0

2

2

0 4
11

4
11 ⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Qm
b'
ωω

ω  

 

Substituting for 
0ω

ω' yields: 

 

1
4

11
21

2
0

0 −⎥
⎦

⎤
⎢
⎣

⎡
−=

−
Q

'
ω

ωω  

Use the approximation  
( ) xx 2

121 11 +≈+  
for x << 1 to obtain: 
 

2

21

2 8
11

4
11

QQ
−≈⎥

⎦

⎤
⎢
⎣

⎡
−

 
 

Substituting for
21

24
11 ⎥

⎦

⎤
⎢
⎣

⎡
−

Q
and 

simplifying yields:  
 

22
0

0

8
11

8
11

QQ
'

−=−−=
−
ω

ωω  

Substitute the numerical value of Q 

and evaluate
0

0

ω
ωω −' :  ( )

%101.3
208
1 2

2
0

0 −×−=−=
−
ω

ωω'  

 
80 •• A linearly damped mass–spring system oscillates at 200 Hz. The time 
constant of the system is 2.0 s. At t = 0 the amplitude of oscillation is 6.0 cm and 
the energy of the oscillating system is 60 J. (a) What are the amplitudes of 
oscillation at t = 2.0 s and t = 4.0 s? (b) How much energy is dissipated in the 
first 2-s interval and in the second 2-s interval? 
 
Picture the Problem The energy of the spring-and-mass oscillator varies with 
time according to τteEE −= 0 and its energy is proportional to the square of the 
amplitude. 
 
(a) Using τteEE −= 0 and 2AE ∝ , 
solve for the amplitude A as a 
function of time: 
 

τteEE −= 0 and 2AE ∝  
imply that τteAA −= 2

0
2

 
Hence τ2

0
teAA −=  

Express the amplitude of the 
oscillations as a function of time: 
 

( ) s 4cm 0.6 teA −=  

Evaluate the amplitude when  
t = 2.0 s: 

( ) ( ) cm6.3cm0.6s 0.2 s0.4s0.2 == −eA  
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Evaluate the amplitude when  
t = 4.0 s: 

( ) ( ) cm2.2cm0.6s 0.4 s0.4s0.4 == −eA  

 
(b) Express the energy of the system 
at t = 0, t = 2.0 s, and t = 4.0 s: 
 

( ) 0
s0.20

00 EeEE == −

 ( ) 1
0

s0.20.2
0s 0.2 −− == eEeEE

 ( ) 2
0

s0.20.4
0s 0.4 −− == eEeEE

  
The energy dissipated in the first 
2.0 s is equal to the negative of 
the change in mechanical energy: 

( )
( )( ) J 381J 60

Δ
1

0s 2.0s 0.2
0s 0.20

=−=

−−=−
−

−
→

e

eeEE
 

 
The energy dissipated in the second 
2.0-s interval is: 

( )
( ) ( ) J 411J 60

Δ
11

s 2.0s 0.2s 2.0s 0.4
0s 0.4s 0.2

=−=

−−=−
−−

−−
→

ee

eeEE
 

 
81 •• [SSM]  Seismologists and geophysicists have determined that the 
vibrating Earth has a resonance period of 54 min and a Q factor of about 400.  
After a large earthquake, Earth will ″ring″ (continue to vibrate) for up to  
2 months. (a) Find the percentage of the energy of vibration lost to damping 
forces during each cycle. (b) Show that after n periods the vibrational energy is 
given by       En = 0.984( )n

E0 , where E0 is the original energy. (c) If the original 
energy of vibration of an earthquake is E0, what is the energy after 2.0 d? 
 
Picture the Problem (a) We can find the fractional loss of energy per cycle from 
the physical interpretation of Q for small damping. (b) We will also find a general 
expression for the earth’s vibrational energy as a function of the number of cycles 
it has completed.  (c) We can then solve this equation for the earth’s vibrational 
energy after any number of days. 
 
(a) Express the fractional change in 
energy as a function of Q: 

%57.1
400
22Δ

===
ππ

QE
E

 
 

(b) Express the energy of the damped 
oscillator after one cycle: 
 

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=
E
EEE 101  

Express the energy after two 
cycles: 

2

012 11 ⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=
E
EE

E
EEE  

 



Chapter 14    
 

 

1502 

Generalizing to n cycles: ( )

( )n

n
n

n

E

E
E
EEE

984.0

0157.01Δ1

0

00

=

−=⎟
⎠
⎞

⎜
⎝
⎛ −=

 

 
(c) Express 2.0 d in terms of the 
number of cycles; that is, the number 
of vibrations the earth will have 
experienced:  

T

T

3.53
min54

1min2880

h
m60

d
h24d0.2d0.2

=

×=

××=

 

 
Evaluate E(2 d): ( ) 0

3.53
0 43.0)9843.0(d2 EEE ==  

 
82 ••• A pendulum that is used in your physics laboratory experiment has a 
length of 75 cm and a compact bob with a mass equal to 15 g. To start the bob 
oscillating, you place a fan next to it that blows a horizontal stream of air on the 
bob. With the fan on, the bob is in equilibrium when the pendulum is displaced by 
an angle of 5.0º from the vertical. The speed of the air from the fan is 7.0 m/s.  
You turn the fan off, and allow the pendulum to oscillate. (a) Assuming that the 
drag force due to the air is of the form –bv, predict the decay time constant τ for 
this pendulum. (b) How long will it take for the pendulum’s amplitude to reach 
1.0º? 
 
Picture the Problem The diagram 
shows 1) the pendulum bob displaced 
through an angle θ0 and held in 
equilibrium by the force exerted on it 
by the air from the fan and 2) the bob 
accelerating, under the influence of 
gravity, tension force, and drag force, 
toward its equilibrium position. We can 
apply Newton’s 2nd law to the bob to 
obtain the equation of motion of the 
damped pendulum and then use its 
solution to find the decay time constant 
and the time required for the amplitude 
of oscillation to decay to 1°. 

θ0

θ

gm
r

gm
r

fanF
r

T
r

0T
r

vb
r

l

 

  
(a) Apply ∑ = ατ I to the pendulum 
to obtain: 
 

2

2

dsin
dt
dIFmg θθ =+−  
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Express the moment of inertia of the 
pendulum about an axis through its 
point of support: 
 

2mI =  

Substitute for I and Fd to obtain: 
 0sin2

2
2 =++ θθ mgbv

dt
dm  

 
Because θ << 1 and v = ω = dθ/dt: 
 

02
2

2
2 ≈++ θθθ mg

dt
db

dt
dm  

or 

02

2

≈++ θθθ mg
dt
db

dt
dm  

 
The solution to this second-order 
homogeneous differential equation 
with constant coefficients is: 
 

( )δωθθ τ += − 'te t cos2
0              (1) 

where θ0 is the maximum amplitude,  
τ = m/b is the time constant, and the 

frequency ( )2
00 21 ωωω mb' −= . 

 
Apply aF m=∑ to the bob when it 
is at its maximum angular 
displacement to obtain: 

0sin 0fan =−=∑ θTFFx  
and 

0cos 0 =−=∑ mgTFy θ  
 

Divide the x equation by the y 
equation to obtain: 
 

0
0

0fan tan
cos
sin θ

θ
θ

==
T
T

mg
F  

or  
0fan tanθmgF =  

 
When the bob is in equilibrium, the 
drag force on it equals Ffan: 
 

0tanθmgbv = ⇒
0tanθ

τ
g

v
b
m

==  

Substitute numerical values and 
evaluate τ : ( ) s2.8s16.8

0.5tanm/s9.81
m/s0.7
2 ==

°
=τ

 
(b) From equation (1), the angular 
amplitude of the motion is given by: 
 

τθθ 2
0

te−=  
 

When the amplitude has decreased to 
1.0°: 
 

τ20.50.1 te−°=° or 20.02 =− τte  
 

Take the natural logarithm of both 
sides of the equation to obtain: ( )20.0ln

2
=−

τ
t

⇒ ( )20.0ln2τ−=t  
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Substitute the numerical value of τ  
and evaluate t: 

( ) ( ) s 2620.0lns16.82 =−=t  

 
83 ••• [SSM] You are in charge of monitoring the viscosity of oils at a 
manufacturing plant and you determine the viscosity of an oil by using the 
following method: The viscosity of a fluid can be measured by determining the 
decay time of oscillations for an oscillator that has known properties and operates 
while immersed in the fluid. As long as the speed of the oscillator through the 
fluid is relatively small, so that turbulence is not a factor, the drag force of the 
fluid on a sphere is proportional to the sphere’s speed relative to the fluid:  

vaF ηπ6d = , where η is the viscosity of the fluid and a is the sphere’s radius.  
Thus, the constant b is given by ηπ a6 . Suppose your apparatus consists of a stiff 
spring that has a force constant equal to 350 N/cm and a gold sphere (radius  
6.00 cm) hanging on the spring.  (a) What is the viscosity of an oil do you 
measure if the decay time for this system is 2.80 s? (b) What is the Q factor for 
your system? 
 
Picture the Problem (a) The decay time for a damped oscillator (with speed-
dependent damping) system is defined as the ratio of the mass of the oscillator to 
the coefficient of v in the damping force expression. (b) The Q factor is the 
product of the resonance frequency and the damping time. 
 
(a) From vaF ηπ6d = and bvF −=d , 
it follows that:  
 

ηπab 6= ⇒
a

b
π

η
6

=  

Because bm=τ , we can substitute 
for b to obtain: τπ

η
a

m
6

=  

 
Substituting Vm ρ= and simplifying 
yields: 
 

τ
ρ

τπ
ρπ

τπ
ρη

9
2

66

23
3
4 a

a
a

a
V

===  

Substitute numerical values and 
evaluate η (see Table 13-1 for the 
density of gold): 
 

( ) ( )
( )

sPa 51.5

s 8.29
kg/m 103.19m 0600.02 332

⋅=

×
=η

 

 
(b) The Q factor is the product of the 
resonance frequency and the 
damping time: 
 

τ
ρπ

τ
ρ

ττω 3
3
40 a

k
V
k

m
kQ ====  
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Substitute numerical values and evaluate Q: 
 

( ) ( )( ) 125s 80.2
kg/m 103.19m 0600.04

m
cm 100

cm
N 3503

333 ≈
×

⎟
⎠
⎞

⎜
⎝
⎛ ×

=
π

Q  

 
Driven Oscillations and Resonance 
 
84 • A linearly damped oscillator loses 2.00 percent of its energy during 
each cycle. (a) What is its Q factor? (b) If its resonance frequency is 300 Hz, what 
is the width of the resonance curve Δω when the oscillator is driven? 
 
Picture the Problem (a) We can use the physical interpretation of Q for small 
damping to find the Q factor for this damped oscillator. (b) The width of the 
resonance curve depends on the Q factor according to .0 Qωω =Δ  

 
(a) Using the physical interpretation 
of Q for small damping, relate Q to 
the fractional loss of energy of the 
damped oscillator per cycle: 
 

( )
cycle

2
EE

Q
Δ

=
π  

Evaluate this expression for 
( ) %00.2Δ

cycle
=EE : 

314
0200.0
2

==
πQ  

 
(b) Relate the width of the 
resonance curve to the Q value of 
the oscillatory system: 
 

Q
f

Q
00 2πωω ==Δ  

Substitute numerical values and 
evaluate Δω: 

( ) rad/s00.6
314

s3002Δ
-1

==
πω

 

 
85 • Find the resonance frequency for each of the three systems shown in 
Figure 14-33. 
 
Picture the Problem The resonant frequency of a vibrating system depends on 
the mass m of the system and on its ″stiffness″ constant k according to 

m
kf

π2
1

0 = or, in the case of a simple pendulum oscillating with small-

amplitude vibrations, .
2
1

0 L
gf

π
=  
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(a) For this spring-and-mass 
oscillator we have: Hz0.1

kg10
N/m400.0

2
1

0 ==
π

f  

 
(b) For this spring-and-mass 
oscillator we have: Hz2

kg5
N/m800.0

2
1

0 ==
π

f  

 
(c) For this simple pendulum we 
have: Hz35.0

m2.0
m/s9.81

2
1 2

0 ==
π

f  

 
86 •• A damped oscillator loses 3.50 percent of its energy during each cycle. 
(a) How many cycles elapse before half of its original energy is dissipated?  
(b) What is its Q factor? (c) If the natural frequency is 100 Hz, what is the width 
of the resonance curve when the oscillator is driven by a sinusoidal force? 
 
Picture the Problem (a) We’ll find a general expression for the damped 
oscillator’s energy as a function of the number of cycles it has completed.  We 
can then solve this equation for the number of cycles corresponding to the loss of 
half the oscillator’s energy. (b) The Q factor is related to the fractional energy loss 
per cycle through QEE π2=Δ . (c) The width of the resonance curve is 

Q0ωω =Δ  where ω0 is the oscillator’s natural angular frequency.  
 
(a) Express the energy of the damped 
oscillator after one cycle: ⎟

⎠
⎞

⎜
⎝
⎛ Δ

−=
E
EEE 101  

 
Express the energy after two 
cycles: 

2

012 11 ⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=
E
EE

E
EEE  

 
Generalizing to n cycles: n

n E
EEE ⎟

⎠
⎞

⎜
⎝
⎛ Δ

−= 10  

 
Substituting numerical values yields: ( )nEE 035.0150.0 00 −=  

or 
( )n965.050.0 =  

 
Solving for n yields: 

cycles. complete 20

5.19
965.0ln
50.0ln

≈

==n
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(b) Apply the physical interpretation 
of Q for small damping to obtain: 

180
0350.0
2

Δ
2

===
ππ

EE
Q  

 
(c) The width of the resonance 
curve is given by: 

( ) ( )EEfEEf
Q

Δ
2
Δ2Δ 0

00 ===
π

πω
ω  

 
Substitute numerical values and 
evaluate ωΔ : 

( )( ) rad/s50.30350.0Hz100Δ ==ω  

 
87 •• [SSM] A 2.00-kg object oscillates on a spring of force constant 
400 N/m. The linear damping constant has a value of 2.00 kg/s. The system is 
driven by a sinusoidal force of maximum value 10.0 N and angular frequency 
10.0 rad/s.  (a) What is the amplitude of the oscillations? (b) If the driving 
frequency is varied, at what frequency will resonance occur? (c) What is the 
amplitude of oscillation at resonance? (d) What is the width of the resonance 
curve Δω? 
 
Picture the Problem (a) The amplitude of the damped oscillations is related to 
the damping constant, mass of the system, the amplitude of the driving force, and 

the natural and driving frequencies through
( ) 22222

0
2

0

ωωω bm

FA
+−

= .  

(b) Resonance occurs when .0ωω =  (c) At resonance, the amplitude of the 

oscillations is 22
0 ωbFA = . (d)  The width of the resonance curve is related to 

the damping constant and the mass of the system according to .mb=Δω  
 

(a) Express the amplitude of the 
oscillations as a function of the 
driving frequency: 
 

( ) 22222
0

2

0

ωωω bm

FA
+−

=  

                                  

 

Because 
m
k

=0ω : 

 
22

2
22

0

ωω b
m
km

FA

+⎟
⎠
⎞

⎜
⎝
⎛ −

=  

 
Substitute numerical values and evaluate A: 
 

( ) ( ) ( ) ( )
cm 98.4

rad/s 0.10kg/s 00.2rad/s 0.10
kg 00.2

N/m 400kg 00.2

N 0.10

22
2

22

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=A
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(b) Resonance occurs when: 
m
k

== 0ωω
  

Substitute numerical values and 
evaluate ω: 
 

rad/s1.14

rad/s 14.14
kg 2.00

N/m 400

=

==ω

 

 
(c) The amplitude of the motion at 
resonance is given by: 2

0
2
0

ωb
FA =  

 
Substitute numerical values and 
evaluate A: ( ) ( )

cm35.4

rad/s14.14kg/s2.00

N10.0
22

=

=A
 

 
(d) The width of the resonance 
curve is: 

rad/s00.1
kg2.00

kg/s00.2Δ ===
m
bω  

 
88 •• Suppose you have the same apparatus described in Problem 74 and the 
same gold sphere hanging from a weaker spring that has a force constant of only 
35.0 N/cm.  You have studied the viscosity of ethylene glycol with this device, 
and found that ethylene glycol has a viscosity value of 19.9 mPa⋅s.  Now you 
decide to drive this system with an external oscillating force. (a) If the magnitude 
of the driving force for the device is 0.110 N and the device is driven at 
resonance, how large would be the amplitude of the resulting oscillation? (b) If 
the system were not driven, but were allowed to oscillate, what percentage of its 
energy would it lose per cycle? 
 
Picture the Problem (a) The amplitude of the steady-state oscillations when the 
system is in resonance is given by ωbFA 0= .  (b) We can relate the fractional 
energy loss to the Q value of the oscillator. 
 
(a) The amplitude of the steady-state 
oscillations when the system is in 
resonance is given by: 
 

ωb
FA 0=  

Because ηπab 6= , and mk=ω :  
 k

m
a

F
a
FA

ηπηωπ 66
00 ==  
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Substituting Vm ρ= and simplifying 
yields: 
 

k
aF

k
a

a
F

k
V

a
FA

33

66

0

3
3
4

00

ρπ
πη

ρπ
ηπ

ρ
ηπ

=

==
 

 
Substitute numerical values and evaluate A: 
 

( )
( )( )

( ) cm 5.43
N/cm 0.353

kg/m 103.19m 0600.0
smPa 9.193

N 110.0 33

=
×

⋅
=

π
π

A  

 
(b) This is a very weakly damped 
system and so we can relate the 
fractional energy loss per cycle to the 
system’s Q value: 
 

( ) τωπ
0

cycleΔ
2

==
EE

Q  

Because 
ηπ

τ
a

m
b
m

6
== : ( ) ηπ

ωπ
a

m
EE 6Δ

2 0

cycle

=  

 
Substituting for m and ω0 and 
simplifying yields: 
 ( )

m
ka

m
k

a
a

a
m
kV

EE

η
ρ

ηπ
ρπ

ηπ

ρπ

9
2

66Δ
2

2

3
3
4

cycle

=

==
 

 
Solve for ( )cycleΔ EE to obtain: 

 
( )

k
m

a
EE

ρ
πη
2cycle

9Δ =  

 
Substitute numerical values and evaluate ( )cycleΔ EE : 

 

( ) ( )
( ) ( )

4
332cycle 1073.5

N/cm 0.35
kg 5.17

kg/m 103.19m 0600.0
smPa 9.199Δ −×=

×
⋅

=
πEE  

 
General Problems 
 
89 • A particle’s displacement from equilibrium is given by  
x(t) = 0.40 cos(3.0t + π/4), where x is in meters and t is in seconds. (a) Find the 
frequency and period of its motion. (b) Find an expression for the speed of the 
particle as a function of time. (c) What is its maximum speed? 
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Picture the Problem (a) The particle’s displacement is of the form 
( )δω += tAx cos . Thus, we have A = 0.40 m, ω = 3.0 rad/s, and δ = π/4. We can 

find the frequency of the motion from its angular frequency and the period from 
the frequency. (b) The particle’s velocity is the time derivative of its 
displacement. (c) The particle’s maximum speed occurs when ( ) 1sin −=+δωt . 
 
(a) The particle’s displacement from 
equilibrium is of the form 

( )δω += tAx cos . 
Comparing this to the given equation 
we see that: 
 

rad/s 0.3=ω  
and so 

Hz48.0

Hz 477.0
2
rad/s0.3

2
=

===
ππ

ωf
 

The period of the particle’s motion is 
the reciprocal of its frequency: 

s2.1s 09.2
s0.477

11
1 ==== −f

T  

 
(b) Differentiate ( )δω += tAx cos  
with respect to time to obtain an 
expression for the particle’s velocity: 
 

( )[ ]
( )δωω

δω

+−=

+==

tA

tA
dt
d

dt
dxvx

sin

cos
 

 
Substituting for A, ω, and δ yields: 
 

( )( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−=⎥⎦

⎤
⎢⎣
⎡ +−=

4
rad/s 0.3sinm/s 2.1

4
rad/s 0.3sinm 40.0rad/s 0.3 ππ ttvx  

 
(c) The particle’s maximum speed 
occurs when ( ) 1sin −=+δωt : 

( )( ) m/s 2.11m/s 2.1max =−−=xv  

 
90 • An astronaut arrives at a new planet, and gets out his simple device to 
determine the gravitational acceleration there.  Prior to his arrival, he noted that 
the radius of the planet was 7550 km.  If his 0.500-m-long pendulum has a period 
of 1.0 s, what is the mass of the planet? 
 
Picture the Problem We can apply Newton’s 2nd law and the law of gravity to an 
object at the surface of the new planet to obtain an expression for the mass of the 
planet as a function of the acceleration due to gravity at its surface. We can use 
the period of the astronaut’s pendulum to obtain an expression for the acceleration 
of gravity ag at the surface of the new planet.  
 
Apply Newton’s 2nd law and the law 
of gravity to an object of mass m at 
the surface of the planet: 
 

g2
planet

planet ma
R

mGM
= ⇒

G
Ra

M
2
planetg

planet =  
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The period of the astronaut’s simple 
pendulum is related to the 
gravitational field ag at the surface of 
the new planet: 
  

g

2
a
LT π= ⇒ 2

2

g
4
T

La π
=                         

 

Substituting for ag and simplifying 
yields: 2

2
planet

2

planet

4
GT

LR
M

π
=  

Substitute numerical values and evaluate planetM : 

 
( ) ( )

( )( )
kg 107.1

s 0.1kg/mN 1067.6
m 500.0km 75504 25

22211

22

planet ×=
⋅×

=
−

πM  

 
91 •• A pendulum clock keeps perfect time on Earth’s surface. In which case 
will the error be greater: if the clock is placed in a mine of depth h or if the clock 
is elevated to a height h? Prove your answer and assume h << RE. 
 
Picture the Problem Assume that the density of Earth ρ is constant and let m 
represent the mass of the clock. We can decide the question of where the clock is 
more accurate by applying the law of gravitation to the clock at a depth h 
below/above the surface of Earth and at Earth’s surface and expressing the ratios 
of the acceleration due to gravity below/above the surface of Earth to its value at 
the surface of Earth. 
 
Express the gravitational force 
acting on the clock when it is at a 
depth h in a mine: 

( )2
E hR

GM'mmg'
−

=  

where M′ is the mass between the 
location of the clock and the center of 
Earth. 
 

Express the gravitational force 
acting on the clock at the surface 
of Earth: 
 

2
E

E

R
mGMmg =  

Divide the first of these equations 
by the second and simplify to 
obtain: 

( )
( )2

E

2
E

E
2
E

E

2
E

hR
R

M
M'

R
GM

hR
GM'

g
g'

−
=−=  

 
Express M ′: ( )3

E3
4 hRV'M' −== πρρ  

 
Express ME: 3

E3
4

E RVM πρρ ==  
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Substitute for M ′ and ME to obtain: ( )
( )2

E

2
E

3
E3

4

3
E3

4

hR
R

R
hR

g
g'

−
−

=
πρ

πρ  

 
Simplifying and solving for g′ 
yields: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

EE

E 1
R
hg

R
hRgg'  

or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

E

1
R
hgg'                          (1) 

 
Express the gravitational force acting 
on the clock when it is at an 
elevation h: 
 

( )2
E

E

hR
mGMmg''

+
=  

 

Express the gravitational force acting 
on the clock at the surface of Earth: 
 

2
E

E

R
mGMmg =  

Divide the first of these equations by 
the second and simplify to obtain: ( )

( )2
E

2
E

2
E

E

2
E

E

hR
R

R
GM

hR
GM

g
g''

−
=

+
=  

 
Factoring 2

ER from the denominator 
yields: 2

E

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

R
hg

g''  

 
Solve for g′′ to obtain: 2

E

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

R
hgg''                     (2) 

 
Comparing equations (1) and (2), we see that g' is closer to g than is g'' . Thus the 
error is greater if the clock is elevated. 
 
92 •• Figure 14-34 shows a pendulum of length L with a bob of mass M. The 
bob is attached to a spring that has a force constant k. When the bob is directly 
below the pendulum support, the spring is unstressed. (a) Derive an expression for 
the period of this oscillating system for small-amplitude vibrations. (b) Suppose 
that M = 1.00 kg and L is such that in the absence of the spring the period is  
2.00 s. What is the force constant k if the period of the oscillating system is  
1.00 s? 
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Picture the Problem The figure shows 
this system when it has an angular 
displacement θ. The period of the 
system is related to its angular 
frequency according to T = 2π/ω. We 
can find the equation of motion of the 
system by applying Newton’s 2nd law. 
By writing this equation in terms of θ 
and using a small-angle approximation, 
we’ll find an expression for ω that we 
can use to express T. 

θ

θ

θ

L

T
r

gM
r

ikxˆ−
x

y

 
 
(a) The period of the system in terms 
of its angular frequency is given by: 
 

ω
π2

=T                                      (1) 

Apply ∑ = aF m to the bob: ∑ =−−= xx MaTkxF θsin  

and 
∑ =−= 0cos MgTFy θ  

 
Eliminate T between the two 
equations to obtain: 
 

xMaMgkx =−− θtan  
 

Noting that x = Lθ and 

,2

2

dt
dLLax

θα ==  eliminate the 

variable x in favor of θ : 
 

θθθ tan2

2

MgkL
dt
dML −−=  

For θ << 1, tanθ ≈ θ : 

( )θ

θθθ

MgkL

MgkL
dt
dML

+−=

−−=2

2

 

or 

θωθθ 2
2

2

−=⎟
⎠
⎞

⎜
⎝
⎛ +−=

L
g

M
k

dt
d  

where 
L
g

M
k

+=ω  
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Substitute in equation (1) to obtain: 

L
g

M
k

T
+

=
π2  

 
(b) When k = 0 (no spring),  
T = 2.00 s, and M = 1.00 kg we have: 
 L

g
π2s 00.2 =                             (2) 

 
With the spring present and T = 1.00 s 
we have: 

L
gk +

=
−1kg 

2s 00.1 π                (3) 

 
Solving equations (2) and (3) 
simultaneously yields: 

N/m6.29=k  

 
93 •• [SSM] A block that has a mass equal to m1 is supported from below 
by a frictionless horizontal surface. The block, which is attached to the end of a 
horizontal spring with a force constant k, oscillates with an amplitude A.  When 
the spring is at its greatest extension and the block is instantaneously at rest, a 
second block of mass m2 is placed on top of it. (a) What is the smallest value for 
the coefficient of static friction μs such that the second object does not slip on the 
first? (b) Explain how the total mechanical energy E, the amplitude A, the angular 
frequency ω, and the period T of the system are affected by the placing of m2 on 
m1, assuming that the coefficient of friction is great enough to prevent slippage. 
 
Picture the Problem Applying Newton’s 2nd law to the first object as it is about 
to slip will allow us to express μs in terms of the maximum acceleration of the 
system which, in turn, depends on the amplitude and angular frequency of the 
oscillatory motion. 
 
(a) Apply ∑ = xx maF to the second 

object as it is about to slip: 
 

max2maxs, amf =  

Apply ∑ = 0yF to the second 

object: 
 

02n =− gmF  
 

Use nsmaxs, Ff μ= to eliminate maxs,f  
and nF between the two equations 
and solve for μs: 
 

max22s amgm =μ ⇒
g

amax
s =μ  
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Relate the maximum acceleration of 
the oscillator to its amplitude and 
angular frequency and substitute for 
ω2: 
 

21

2
max mm

kAAa
+

== ω  

 

Finally, substitute for amax to obtain: 
( )gmm

Ak

21
s +

=μ  

 
(b) A is unchanged. E is unchanged because 2

2
1 kAE = . ω is reduced and T is 

increased by increasing the total mass of the system. 
 
94 •• A 100-kg box hangs from the ceiling of a room−suspended from a 
spring with a force constant of 500 N/m. The unstressed length of the spring is 
0.500 m. (a) Find the equilibrium position of the box. (b) An identical spring is 
stretched and attached to the ceiling and box and is parallel with the first spring. 
Find the frequency of the oscillations when the box is released. (c) What is the 
new equilibrium position of the box once it comes to rest? 
 
Picture the Problem The diagram 
shows the box hanging from the 
stretched spring and the free-body 
diagram when the box is in equilibrium. 
We can apply ∑ = 0yF  to the box to 
derive an expression for x. In (b) and 
(c), we can proceed similarly to obtain 
expressions for the effective force 
constant, the new equilibrium position 
of the box, and frequency of 
oscillations when the box is released. mg

0

x –

x0 –

m

k

k(x – x0)

y

 
  
(a) Apply ∑ = 0yF  to the box to 
obtain: 

( ) 00 =−− mgxxk ⇒ 0x
k

mgx +=  

 
Substitute numerical values and 
evaluate x: 
 

( )( )

m46.2

m 500.0
N/m500

m/s81.9kg100 2

=

+=x
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(b) Draw the free-body diagram for 
the block with the two springs 
exerting equal upward forces on it: 
 

x0

k(x – x0)

k(x – x0)

m

x

k k

y0

mg

 
 

Apply ∑ = 0yF  to the box to 
obtain: 

( ) ( ) 000 =−−+− mgxxkxxk  
or 

( ) 00eff =−− mgxxk                    (1) 
where kk 2eff =  
 

When the box is displaced from this 
equilibrium position and released, its 
motion is simple harmonic motion 
and its frequency is given by: 
 

m
k

m
k 2eff ==ω  

Substitute numerical values and 
evaluate ω: 
 

( ) rad/s16.3
kg100
N/m5002

==ω  

 
(c) Solve equation (1) for x to obtain: 

02
x

k
mgx +=  

 
Substitute numerical values and 
evaluate x: 

( )( )
( )
m48.1

m500.0
N/m5002

m/s81.9kg100 2

=

+=x
 

 
95 •• The acceleration due to gravity g varies with geographical location 
because of Earth’s rotation and because Earth is not exactly spherical. This was 
first discovered in the seventeenth century, when it was noted that a pendulum 
clock carefully adjusted to keep correct time in Paris lost about 90 s/d near the 
equator. (a) Show by using the differential approximation that a small change in 
the acceleration of gravity Δg produces a small change in the period ΔT of a 
pendulum given by       ΔT / T ≈ − 1

2 Δg / g . (b) How large a change in g is needed to 
account for a 90 s/d change in the period? 
 
 
 



Oscillations 
 

 

1517

Picture the Problem We’ll differentiate the expression for the period of simple 

pendulum 
g
LT π2= with respect to g, separate the variables, and use a 

differential approximation to establish that .
2
1

g
g

T
T Δ

−≈
Δ  

 
(a) Express the period of a simple 
pendulum in terms of its length and 
the local value of the acceleration 
due to gravity: 
 

g
LT π2=  

Differentiate this expression with 
respect to g to obtain: 
 

[ ]

g
T

gLgL
dg
d

dg
dT

2

2 2321

−=

−== −− ππ
 

 
Separate the variables to obtain: 
 g

dg
T
dT

2
1

−=  

 
For Δg << g we can approximate 
dT and dg by ΔT and Δg: 
 

g
g

T
T Δ

−≈
Δ

2
1  

(b) Solve the equation in Part (a) for 
Δg: T

Tgg Δ
−=Δ 2  

 
Substitute numerical values and evaluate Δg for a 90 s/d change in the period: 
 

( ) 22 cm/s2.0
s3600

h1
h24

d1
d
s90m/s81.92Δ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
××−−=g  

 
96  •• A small block that has a mass equal to m1 rests on a piston that is 
vibrating vertically with simple harmonic motion described by the formula 
 y = A sin ωt.  (a) Show that the block will leave the piston if ω2A > g. (b) If  
ω2A = 3g and A = 15 cm, at what time will the block leave the piston? 
 
Picture the Problem If the displacement of the block is y = A sin ωt, its 
acceleration is a = −ω2Asinωt. 
 
(a) At maximum upward extension, the block is momentarily at rest. Its 
downward acceleration is g. The downward acceleration of the piston is ω 2A. 
Therefore, if ω 2A > g, the block will separate from the piston. 
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(b) Express the acceleration of the 
small block: 
 

tAa ωω sin2−=  
 

For gA 32 =ω and A = 15 cm: gtga −=−= ωsin3  
 

Solving for t yields: 
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= −−

3
1sin

33
1sin1 11

g
At

ω
 

 
Substitute numerical values and 
evaluate t: ( ) ms24

3
1sin

m/s81.93
m15.0 1

2 =⎟
⎠
⎞

⎜
⎝
⎛= −t  

 
97  •• [SSM] Show that for the situations in Figure 14-35a and Figure 14-
35b  the object oscillates with a frequency f = 1/ 2π( ) keff / m , where keff is 
given by (a) keff = k1 + k2, and (b) 1/keff = 1/k1 + 1/k2. Hint: Find the magnitude of 
the net force F on the object for a small displacement x and write F = –keffx. Note 
that in Part (b) the springs stretch by different amounts, the sum of which is x. 
 
Picture the Problem Choose a coordinate system in which the +x direction is to 
the right and assume that the object is displaced to the right. In case (a), note that 
the two springs undergo the same displacement whereas in (b) they experience 
the same force. 
 
(a) Express the net force acting on 
the object: 

( ) xkxkkxkxkF eff2121net −=+−=−−=

where 21eff kkk +=  

 
(b) Express the force acting on each 
spring and solve for x2: 

2211 xkxkF −=−= ⇒ 1
2

1
2 x

k
kx =  

 
Express the total extension of the 
springs: eff

21 k
Fxx −=+  

 
Solving for keff yields: 

21
1

2

1
1

11

21

11

21
eff

11
1

kk
x

k
kx

xk
xx
xk

xx
Fk

+
=

+
=

+
−

−=
+

−=

 

 
Take the reciprocal of both sides 
of the equation to obtain: 

21eff

111
kkk

+=  
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98 •• During an earthquake, a floor oscillates horizontally in approximately 
simple harmonic motion. Assume it oscillates at a single frequency with a period 
of 0.80 s.  (a) After the earthquake, you are in charge of examining the video of 
the floor motion and discover that a box on the floor started to slip when the 
amplitude reached 10 cm. From your data, determine the coefficient of static 
friction between the box and the floor. (b) If the coefficient of friction between 
the box and floor were 0.40, what would be the maximum amplitude of vibration 
before the box would slip? 
 
Picture the Problem Applying Newton’s 2nd law to the box as it is about to slip 
will allow us to express μs in terms of the maximum acceleration of the platform 
which, in turn, depends on the amplitude and angular frequency of the oscillatory 
motion. 
 
(a) Apply ∑ = xx maF  to the box as 

it is about to slip: 
 

maxmaxs, maf =  

Apply ∑ = 0yF  to the box: 0n =− mgF  
 

Use nsmaxs, Ff μ=  to eliminate maxs,f  
and nF between the two equations: 
 

maxs mamg =μ and 
g

amax
s =μ  

 
Relate the maximum acceleration of 
the oscillator to its amplitude and 
angular frequency: 
 

2
max ωAa =  

 

Substitute for amax in the expression 
for μs: gT

A
g

A
2

22

s
4πωμ ==  

 
Substitute numerical values and 
evaluate μs: 

( )
( ) ( ) 63.0

m/s9.81s80.0
m0.104

22

2

s ==
πμ  

 
(b) Solve the equation derived above 
for Amax: 2

2
s

2
s

max 4π
μ

ω
μ gTgA ==  

 
Substitute numerical values and 
evaluate Amax: 

( )( )( )

cm4.6
4

s0.80m/s9.810.40
2

22

max

=

=
π

A
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99 •• If we attach two blocks of masses m1 and m2 to either end of a spring 
of force constant k and set them into oscillation by releasing them from rest with 
the spring stretched, show that the oscillation frequency is given by ω = (k/μ)1/2, 
where μ = m1m2/(m1 + m2) is the reduced mass of the system. 
  
Picture the Problem The pictorial representation shows the two blocks 
connected by the spring and displaced from their equilibrium positions.  We can 
apply Newton’s 2nd law to each of these coupled oscillators and solve the 
resulting equations simultaneously to obtain the equation of motion of the coupled 
oscillators. We can then compare this equation and its solution to the equation of 
motion of the simple harmonic oscillator and its solution to show that the 
oscillation frequency is ( ) 21μω k= where μ = m1m2/(m1 + m2). 
 

m1
m2

x

x1 x2

xm1g

m2g

k(x1 – x2)
–k(x1 – x2)

Fm1
Fn2

 
 
Apply ∑ = aF m  to the block 
whose mass is m1 and solve for its 
acceleration: 
 

( ) 2
1

2

11121 dt
xdmamxxk ==−  

or 

( )21
1

2
1

2

1 xx
m
k

dt
xda −==  

 
Apply ∑ = aF m  to the block 
whose mass is m2 and solve for its 
acceleration: 
 

( ) 2
2

2

12221 dt
xdmamxxk ==−−  

or 

( )12
2

2
2

2

2 xx
m
k

dt
xda −==  

 
Subtract the first equation from the 
second to obtain: 

( ) x
mm

k
dt

xd
dt

xxd
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−==

−

21
2

2

2
12

2 11

 
where x = x2 − x1 
 

The reduced mass of the system is: 
 

21

111
mm

+=
μ

⇒ 
21

21

mm
mm

+
=μ  

 



Oscillations 
 

 

1521

Substitute to obtain: 
 xk

dt
xd

μ
−=2

2

                             (1) 

 
Compare this equation to the 
equation of the simple harmonic 
oscillator: 
 

x
m
k

dt
xd

−=2

2

 

The solution to this equation is: ( )δω += txx cos0  

where 
m
k

=ω  

 
Because of the similarity of the two 
differential equations, the solution to 
equation (1) must be: 

( )δω += txx cos0  

where 
μ

ω k
= and 

21

21

mm
mm

+
=μ  

 
100 •• In one of your chemistry labs you determine that one of the vibrational 
modes of the HCl molecule has a frequency of 8.969 × 1013 Hz.  Using the result 
of Problem 99, find the effective ″spring constant″ between the H atom and the Cl 
atom in the HCl molecule. 
  
Picture the Problem We can use ( ) 21μω k= and μ = m1m2/(m1 + m2) from 
Problem 99 to find the spring constant for the HCl molecule. 
 
Use the result of Problem 99 to relate 
the oscillation frequency to the force 
constant and reduced mass of the 
HCl molecule: 
 

μ
ω k

= ⇒ 2μω=k  

Express the reduced mass of the HCl 
molecule: 
 21

21

mm
mm

+
=μ  

 
Substitute for μ to obtain: 

21

2
21

mm
mm

k
+

=
ω

 

 
Express the masses of the hydrogen 
and Cl atoms: 

m1 = 1 amu = 1.67×10−27 kg 
and 
m2 = 35.45 amu = 5.92×10−26 kg 
 

Substitute numerical values and evaluate k: 
 

( )( )( ) N/m1.13
kg1092.5kg10673.1

s10969.8kg1092.5kg10673.1
2627

21-132627

=
×+×

×××
= −−

−−

k  
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101 •• If a hydrogen atom in HCl were replaced by a deuterium atom 
(forming DCl) in Problem 100, what would be the new vibration frequency of the 
molecule? Deuterium consists of 1 proton and 1 neutron.  
 
Picture the Problem In Problem 100, we derived an expression for the 
oscillation frequency of a spring-and-two-block system as a function of the force 
constant of the spring and the reduced mass of the two blocks. We can solve this 
problem, assuming that the "spring constant" does not change, by using the result 
of Problem 101 and the reduced mass of a deuterium atom and a Cl atom in the 
equation for the oscillation frequency. 
 
Use the result of Problem 100 to 
relate the oscillation frequency to the 
force constant and reduced mass of 
the DCl molecule: 
 

μ
ω k

=  

Express the reduced mass of the DCl 
molecule: 
 21

21

mm
mm

+
=μ  

 
The masses of the deuterium and Cl 
atoms are: 

m1 = 2 amu = 3.34×10−27 kg 
and 
m2 = 35.45 amu = 5.92×10−26 kg 
 

Substitute numerical values and evaluate ω: 
 

( )( ) rad/s106.44

kg1092.5kg1034.3
kg1092.5kg1034.3

N/m1.13 13

2627

2627 ×=

×+×
××

=

−−

−−ω  

 
102 ••• A block of mass m on a horizontal table is attached to a spring of force 
constant k, as shown in Figure 14-36.  The coefficient of kinetic friction between 
the block and the table is μk. The spring is unstressed if the block is at the origin 
(x = 0), and the +x direction is to the right. The spring is stretched a distance A, 
where kA > μkmg, and the block is released. (a) Apply Newton’s second law to 
the block to obtain an equation for its acceleration d2x/dt2 for the first half-cycle, 
during which the block is moving to the left. Show that the resulting equation can 
be written as x'dtx'd 222 ω−= , where mk=ω and   ′ x = x − x0 , with 

2
kk0 ωμμ gkmgx == . (b) Repeat Part (a) for the second half-cycle as the 

block moves to the right, and show that x''dtx''d 222 ω−= , where     ′ ′ x = x + x0  
and x0 has the same value. (c) Use a spreadsheet program to graph the first 5 
half-cycles for A = 10x0. Describe the motion, if any, after the fifth half-cycle. 
 
Picture the Problem The pictorial representation shows the block moving from 
right to left with an instantaneous displacement x from its equilibrium position. 
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The free-body diagram shows the forces acting on the block during the half-cycles 
that it moves from right to left.  When the block is moving from left to right, the 
directions of the kinetic friction force and the restoring force exerted by the spring 
are reversed. We can apply Newton’s 2nd law to these motions to obtain the 
equations given in the problem statements and then use their solutions to plot the 
graph called for in (c). 
 

 

Ax0

m

kx

Fn

fk
x

mg

y

 
 
(a) Apply xx maF =∑ to the block 
while it is moving to the left to 
obtain: 
 

2

2

k dt
xdmkxf =−  

Using  mgFf knkk μμ == , eliminate 

kf  in the equation of motion: 
 

mgkx
dt

xdm k2

2

μ+−=  

or 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

k
mgxk

dt
xdm k
2

2 μ  

 

Let 
k
mgx k

0
μ

=  to obtain: ( )02

2

xxk
dt

xdm −−=  

or 

x'x'
m
k

dt
x'd 2
2

2

ω−=−=  

provided x′ = x − x0 and 

2
kk

0 ω
μμ g

k
mgx ==  

 
The solution to the equation of 
motion is: 
 

( )δω += t'xx' cos0  
and its derivative is 

( )δωω +−= t'xv' sin0  
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The initial conditions are: 
 

( ) 00 xxx' −= and ( ) 00 =v'  
 

Apply these conditions to obtain: ( ) 00 cos0 xx'xx' −== δ  
and 

( ) 0sin0 0 =−= δω 'xv'  
 

Solve these equations simultaneously 
to obtain: 
 

0=δ and 00 xx'x −=  
and 

( ) txxx' ωcos0−=       
or 
 ( ) 00 cos xtxxx +−= ω        (1) 
 

(b) Apply aF m=∑ to the block 
while it is moving to the right to 
obtain: 
 

2

2

k dt
xdmkxf =−−  

Using  mgFf knkk μμ == , eliminate 

kf  in the equation of motion: 
 

mgkx
dt

xdm k2

2

μ−−=  

or 

⎟
⎠
⎞

⎜
⎝
⎛ +−=

k
mgxk

dt
xdm k
2

2 μ  

 

Let 
k
mgx k

0
μ

= to obtain: ( )02

2

xxk
dt

xdm +−=  

or 

x"x"
m
k

dt
x"d 2
2

2

ω−=−=  

provided x″ = x + x0 and 

2
kk

0 ω
μμ g

k
mgx == . 

 
The solution to the equation of 
motion is: 
 

( )δω += t"xx" cos0  
and its derivative is 

( )δωω +−= t"xv" sin0  
 

The initial conditions are: 
 

( ) 00 xxx" += and ( ) 00 =v"  
 

Apply these conditions to obtain: ( ) 00 cos0 xx"xx" +== δ  
and 

( ) 0sin0 0 =−= δω "xv"  
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Solve these equations simultaneously 
to obtain: 
 

0=δ and 00 xx"x +=  
and 

( ) txxx" ωcos0+=       
or 
 ( ) 00 cos xtxxx −+= ω         (2) 
 

(c) A spreadsheet program to calculate the position of the oscillator as a function 
of time (equations (1) and (2)) is shown below. The constants used in the position 
functions (x0 = 1 m and T = 2 s were used for simplicity) and the formulas used to 
calculate the positions are shown in the table. After each half-period, one must 
compute a new amplitude for the oscillation, using the final value of the position 
from the last half-period.  
 

Cell Content/Formula Algebraic Form 
B1 1 x0 
B2 10 A 
C7 C6 + 0.1 t + Δt 
D7 ($B$2−$B$1)*COS(PI()*C7)+$B$1 ( ) 00 cos xtxA +− π  
D17 (ABS($D$6+$B$1))*COS(PI()*C17)−$B$1 00 cos xtxx −+ π  
D27 (ABS($D$6−$B$1))*COS(PI()*C27)+$B$1 00 cos xtxx +− π  
D37 (ABS($D$36+$B$1))*COS(PI()*C37)−$B$1 00 cos xtxx −+ π  
D47  ($D$46−$B$1)*COS(PI()*C47)+$B$1 ( ) 00 cos xtxx +− π   

 
 A B C D 
1 x0= 1 m  
2 A= 10   
3     
4   t x 
5   (s) (m) 
6   0.0 10.00
7   0.1 9.56 
8   0.2 8.28 
9   0.3 6.29 
10   0.4 3.78 
     

53   4.7 0.41 
54   4.8 0.19 
55   4.9 0.05 
56   5.0 0.00  

 
The following graph was plotted using the data from columns C (t) and D (x). 

cycles.-half fiveafter  ceasesblock   theofmotion   that theNote  
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103  •••  Figure 14-37 shows a uniform solid half-cylinder of mass M 
and radius R resting on a horizontal surface. If one side of this cylinder is pushed 
down slightly and then released, the half-cylinder will oscillate about its 
equilibrium position. Determine the period of this oscillation. 
 
Picture the Problem The diagram shows the half-cylinder displaced from its 
equilibrium position through an angle θ. The frequency of its motion will be 
found by expressing the mechanical energy E in terms of θ and dθ/dt. For small θ 

we will obtain an equation of the form .
2

2
12

2
1 ⎟

⎠
⎞

⎜
⎝
⎛+=

dt
dIE θκθ  Differentiating both 

sides of this equation with respect to time will lead to 
dt
d

dt
dI θθκθ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

0 , an 

equation that must be valid at all times. Because the situation of interest to us 

requires that dθ/dt is not always equal to zero, we have 2

2

0
dt
dI θκθ +=  or 

02

2

=+ θκθ
Idt

d , the equation of simple harmonic motion with .2 Iκω =  We’ll 

show that the distance from O to the center of mass D, is given by 
π3

4RD = , and 

let the distance from the contact point C to the center of mass be r. Finally, we’ll 
take the potential energy to be zero where θ  is zero and assume that there is no 
slipping. 
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h

R

C

O

θ D

r

 
 

Apply conservation of energy to 
obtain: 
 ( )

2

2
1

⎟
⎠
⎞

⎜
⎝
⎛+−=

+=

dt
dIDhMg

KUE

C
θ     (1) 

 
From Table 9-1, the moment of 
inertia of a solid cylinder about an 
axis perpendicular to its face and 
through its center is given by: 
 

( ) 22
cylinder solid,0 2

2
1 MRRMI ==  

where M is the mass of the half-
cylinder. 

Express the moment of inertia of the 
half-cylinder about the same axis: 
 

[ ] 22
0cylinderhalf 0, 2

1
2
1 MRMRII ===  

Use the parallel-axis theorem to 
relate Icm to I0: 
 

2
cm0 MDII +=  

 

Substitute for I0 and solve for Icm: MDMRMDII 222
0cm 2

1
−=−=  

 
Apply the parallel-axis theorem a 
second time to obtain an expression 
for IC: 
 ⎟

⎠
⎞

⎜
⎝
⎛ +−=

+−=

222

222
C

2
1

2
1

rDRM

MrMDMRI
        (2) 

 
Apply the law of cosines to obtain: 
 

θcos2222 RDDRr −+=  
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Substitute for r2 in equation (2) to obtain: 
 

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −++−= θθ cos2

2
3cos2

2
1 22222

C R
DMRRDDRDRMI  

 
Substitute for h and IC  in equation (1): 
 

( )
2

2 cos2
2
3

2
1cos1 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −+−=

dt
d

R
DMRMgDE θθθ  

 

Use the small angle approximation 2

2
11cos θθ −≈ to obtain: 

 

[ ]
2

222 2
2
3

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −−+=

dt
d

R
DMRMgDE θθθ  

 
Because θ 2 << 2, we can neglect the θ 2 in the square brackets to obtain: 
 

2
22 2

2
3

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −+=

dt
d

R
DMRMgDE θθ  

 
Differentiating both sides with respect to time and simplifying yields: 
 

02
2
3

2

2
2 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ − θθ gD

dt
d

R
DR , 

or 

0
2

2
32

2

2

=
⎟
⎠
⎞

⎜
⎝
⎛ −

+ θθ

R
DR

gD
dt
d , 

 the equation of simple harmonic motion with 
⎟
⎠
⎞

⎜
⎝
⎛ −

=

R
DR

gD

2
2
32

2ω .           (3) 
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D is the y coordinate of the center of 
mass of the semicircular disk shown. A 
surface element of area dA is shown in 
the diagram. Because the disk is a 
continuous object, we’ll use  

∫= dmM rrcm  

to find ycm = D. 
 

 

Express the coordinates of the 
center of mass of the semicircular 
disk: 

symmetry.by0cm =x  

M

dAy
Dy ∫==

σ
cm  

 
Express y as a function of r and θ : θsinry =  

 
Express dA in terms of r and θ : 
 

drdrdA θ=  

Substitute and evaluate D: 

3

0

20 0

2

3
2

2
sin

R
M

drr
MM

drdr
D

R

R

σ

σ
θθσ

π

=

== ∫
∫ ∫

 

 
Express M as a function of r and θ : 2

2
1

diskhalf RAM σπσ ==  

 
Substituting for M and simplifying 
yields: ( ) RR

R
D

πσπ
σ

3
4

3
2 3

2
2
1

==  

 
Substitute for D in equation (3) and 
simplify to obtain: 
 R

g
R
g

⎟
⎠
⎞

⎜
⎝
⎛

−
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
169

8

3
8

2
3

3
4

2

π
π

πω  

 
The period of the motion is given 
by: ω

π2
=T  

 
Substituting for ω and simplifying 
yields: g

R
g
RT 78.7

8
1692 =⎟

⎠
⎞

⎜
⎝
⎛ −

=
ππ  
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104 ••• A straight tunnel is dug through Earth as shown in Figure 14-38.  
Assume that the walls of the tunnel are frictionless. (a) The gravitational force 
exerted by Earth on a particle of mass m at a distance r from the center of Earth 
when r < RE is     Fr = − GmM E / RE

3( )r , where ME is the mass of Earth and RE is its 
radius. Show that the net force on a particle of mass m at a distance x from the 
middle of the tunnel is given by Fx = − GmM E / RE

3( )x , and that the motion of the 
particle is therefore simple harmonic motion. (b) Show that the period of the 
motion is independent of the length of the tunnel and is given by gRT E2π= . 
(c) Find its numerical value in minutes.  
 
Picture the Problem The net force acting on the particle as it moves in the tunnel 
is the x-component of the gravitational force acting on it. We can find the period 
of the particle from the angular frequency of its motion. We can apply Newton’s 
2nd law to the particle in order to express ω in terms of the radius of Earth and the 
acceleration due to gravity at the surface of Earth. 
 
(a) From the figure we see that: 

x
R

GmM

r
xr

R
GmMFF rx

3
E

E

3
E

Esin

−=

−== θ

 

 
Because this force is a linear restoring force, the motion of the particle is simple 
harmonic motion. 
 
(b) Express the period of the particle 
as a function of its angular 
frequency: 
 

ω
π2

=T                                      (1) 

 

Apply ∑ = xx maF to the particle: max
R

GmM
=− 3

E

E  

 
Solving for a yields: xx

R
GMa 2

3
E

E ω−=−=  

where 3
E

E

R
GM

=ω  

 
Use 2

EE gRGM = to simplify ω: 

E
3
E

2
E

R
g

R
gR

==ω  
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Substitute in equation (1) to obtain: 

g
R

R
g

T E

E

22 ππ
==  

 
(c) Substitute numerical values 
and evaluate T: 

min4.84

s1006.5
m/s9.81

m106.372 3
2

6

=

×=
×

= πT
 

 
105 ••• [SSM]  In this problem, derive the expression for the average power 
delivered by a driving force to a driven oscillator (Figure 14-39). 
(a) Show that the instantaneous power input of the driving force is given by 
                                            P = Fv = −A ωF0 cos ωt sin ωt −δ( ). 
(b) Use the identity sin(θ1 – θ2) = sin θ1 cos θ2 – cos θ1 sin θ2 to show that the 
equation in (a) can be written as    

ttFAtFAP ωωδωωδω sincoscoscossin 0
2

0 −=  
(c) Show that the average value of the second term in your result for (b) over 
one or more periods is zero, and that therefore    Pav = 1

2 AωF0 sin δ . 
(d) From Equation 14-56 for tan δ, construct a right triangle in which the side 
opposite the angle δ  is bω  and the side adjacent is m ω0

2 − ω2( ), and use this 
triangle to show that  

                                 

      

sin δ =
bω

m2 ω0
2 −ω2( )2

+ b2ω2
=

bωA
F0

. 

(e) Use your result for Part (d) to eliminate ωA from your result for Part (c) so 
that the average power input can be written as  

      
Pav =

1
2

F0
2

b
sin 2 δ =

1
2

bω2F0
2

m2 ω0
2 −ω2( )2

+ b2ω2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
. 

 
Picture the Problem We can follow the step-by-step instructions provided in the 
problem statement to obtain the desired results. 
 
(a) Express the average power 
delivered by a driving force to a 
driven oscillator: 
  

θcosFvP =⋅= vF  
or, because θ is 0°, 

FvP =  

Express F as a function of time: tFF ωcos0=  
 

Express the position of the driven 
oscillator as a function of time: 
 

( )δω −= tAx cos  
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Differentiate this expression with 
respect to time to express the 
velocity of the oscillator as a 
function of time: 
 

( )δωω −−= tAv sin  

Substitute to express the average 
power delivered to the driven 
oscillator: 
 

( ) ( )[ ]
( )δωωω

δωωω

−−=

−−=

ttFA

tAtFP

sincos

sincos

0

0
 

 
(b) Expand ( )δω −tsin  to obtain: 
 

( ) δωδωδω sincoscossinsin ttt −=−  
 

Substitute in your result from (a) 
and simplify to obtain: 

(
)

ttFA
tFA

t
ttFAP

ωωδω
ωδω

δω
δωωω

sincoscos
cossin

sincos
cossincos

0

2
0

0

−
=

−
−=

 

 
(c) Integrate θθ cossin over one 
period to determine θθ cossin : 

0sin
2
1

2
1

cossin
2
1cossin

2

0

2

2

0

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
= ∫

π

π

θ
π

θθθ
π

θθ d

 

 
Integrate θ2cos over one period to 
determine θ2cos : 

( )

( )
2
10

2
1

2cos
2
1

2cos1
2
1

2
1

cos
2
1cos

2

0
2
1

2

0
2
1

2

0

2

0

22

=+=

⎥
⎦

⎤
⎢
⎣

⎡
+=

⎥
⎦

⎤
⎢
⎣

⎡
+=

=

∫∫

∫

∫

π
π

θθθ
π

θθ
π

θθ
π

θ

ππ

π

π

dd

d

d

 

 
Substitute and simplify to express 
Pav: 

( )
δω

δωδω
ωωδω

ωδω

sin

0cossin
sincoscos

cossin

02
1

002
1

0

2
0av

FA

FAFA
ttFA

tFAP

=

−=

−

=
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(d) Construct a triangle that is 
consistent with 
 

( )22
0

tan
ωω

ωδ
−

=
m

b : 

  
 

Using the triangle, express sinδ: 

( ) 22222
0

2
sin

ωωω

ωδ
bm

b

+−
=  

 
Using Equation 14-56, reduce this 
expression to the simpler form: 

0

sin
F

Abωδ =  

 

(e) Solve 
0

sin
F

Abωδ = for ω: δω sin0

bA
F

=  

 
Substitute in the expression for 
Pav to eliminate ω: 
 

δ2
2

0
av sin

2b
FP =  

Substitute for δsin from (d) to 
obtain: ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
=

22222
0

2

2
0

2

av 2
1

ωωω
ω

bm
FbP             

 
106  ••• In this problem, you are to use the result of Problem 105 to derive 
Equation 14-51. At resonance, the denominator of the fraction in brackets in 
Problem 105(e) is     b

2ω0
2  and Pav has its maximum value. For a sharp resonance, the 

variation in ω in the numerator in this equation can be neglected. Then the power 
input will be half its maximum value at the values of ω, for which the denominator 
is     2b2ω0

2 . 
(a) Show that ω then satisfies   m

2 ω − ω0( )2
ω + ω0( )2

≈ b2ω0
2 . 

(b) Using the approximation  ω + ω2 ≈ 2ω0 , show that    ω −ω0 ≈ ±b / 2m . 
(c) Express b in terms of Q. 
(d) Combine the results of (b) and (c) to show that there are two values of ω for 
which the power input is half that at resonance and that they are given by 

                            
    
ω1 = ω0 −

ω0

2Q
 and 

  
ω2 = ω0 −

ω0

2Q
 

Therefore,       ω2 − ω1 = Δω = ω0 / Q , which is equivalent to Equation 14-51. 
 
Picture the Problem We can follow the step-by-step instructions given in the 
problem statement to derive the given results. 
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(a) Express the condition on the 
denominator of Equation 14-56 
when the power input is half  
its maximum value: 
 

( ) 2
0

222222
0

2 2 ωωωω bbm =+−  
and, for a sharp resonance, 

( ) 2
0

2222
0

2 ωωω bm ≈−  
 

Factor the difference of two squares 
to obtain: 

( )( )[ ] 2
0

22
00

2 ωωωωω bm ≈+−  
or 

( ) ( ) 2
0

22
0

2
0

2 ωωωωω bm ≈+−  

 
(b) Use the approximation  
ω + ω0 ≈ 2ω0 to obtain: 
 

( ) ( ) 2
0

22
0

2
0

2 2 ωωωω bm ≈−  

Solving for ω0 − ω yields: 
m
b

20 ±=− ωω                      (1) 

 
(c) Using its definition, express Q: 

b
mQ 0ω

= ⇒
Q
mb 0ω

=  

 
(d) Substitute for b in equation (1) to 
obtain: 
 

Q2
0

0
ωωω ±=− ⇒

Q2
0

0
ωωω ±=  

Express the two values of ω: 
Q2
0

0
ωωω +=+ and

Q2
0

0
ωωω −=−  

 
Remarks: Note that the width of the resonance at half-power is 

Q0Δ ωωωω =−= −+ , in agreement with Equation 14-51. 
 
107 ••• The Morse potential, which is often used to model interatomic forces, 
can be written in the form     U r( )= D 1− e− β r −r0( )( )2

, where r is the distance between 
the two atomic nuclei. (a) Using a spreadsheet program or graphing calculator, 
make a graph of the Morse potential using D = 5.00 eV, β = 0.20 nm–1, and  
r0 = 0.750 nm. (b) Determine the equilibrium separation and ″spring constant″ for 
small displacements from equilibrium for the Morse potential. (c) Determine an 
expression for the oscillation frequency for a homonuclear diatomic molecule 
(that is, two of the same atoms), where the atoms each have mass m. 
 
Picture the Problem We can find the equilibrium separation for the Morse 
potential by setting dU/dr = 0 and solving for r. The second derivative of U will 
give the "spring constant" for small displacements from equilibrium. In (c), we 
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can use ,μω k=  where k is our result from (b) and μ is the reduced mass of a 
homonuclear diatomic molecule, to find the oscillation frequency of the molecule. 
 
 (a) A spreadsheet program to calculate the Morse potential as a function of r is 
shown below. The constants and cell formulas used to calculate the potential are 
shown in the table.  
 

Cell Content/Formula Algebraic Form 
B1 5 D 
B2 0.2 β 
C9 C8 + 0.1 r + Δr 
D8 $B$1*(1−EXP(−$B$2*(C8−$B$3)))^2 ( )[ ]2

01 rreD −−− β   
 

 A B C D 
1 D= 5 eV  
2 β= 0.2 nm−1  
3 r0= 0.75 nm  
4     
5     
6   r U(r) 
7   (nm) (eV) 
8   0.0 0.13095
9   0.1 0.09637
10   0.2 0.06760
11   0.3 0.04434
12   0.4 0.02629
     

235   22.7 4.87676
236   22.8 4.87919
237   22.9 4.88156
238   23.0 4.88390
239   23.1 4.88618 
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The graph shown below was plotted using the data from columns C (r) and  
D (U(r)). 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r (nm)

U
 (e

V
)

 
 

(b) Differentiate the Morse potential 
with respect to r  to obtain: 
 

( )[ ]{ }
[ ])(

2

0

0

12

1

rr

rr

eD

eD
dr
d

dr
dU

−−

−−

−−=

−=

β

β

β
 

 
This derivative is equal to zero for 
extrema: 
 

[ ]  012 )( 0 =−− −− rreD ββ ⇒ 0rr =  

 

Evaluate the second derivative of 
U(r) to obtain: 
 

[ ]{ }
)(2

)(
2

2

0

0

2

12

rr

rr

De

eD
dr
d

dr
Ud

−−

−−

=

−−=

β

β

β

β
 

 
Evaluate this derivative at r = r0: D

dr
Ud

rr

2
2

2

2
0

β=
=

                      (1) 

 
Recall that the potential function for 
a simple harmonic oscillator is: 
 

2
2
1 kxU =  

 

Differentiate this expression twice to 
obtain: k

dx
Ud

=2

2

 

 
By comparison with equation (1) we 
have: 

Dk 22β=  



Oscillations 
 

 

1537

(c) Express the oscillation frequency 
of the diatomic molecule: 
 

μ
ω k

=  

where μ is the reduced mass of the 
molecule. 
 

Express the reduced mass of the 
homonuclear diatomic molecule: 
 

22

2

21

21 m
m

m
mm

mm
==

+
=μ  

Substitute for ω and simplify to 
obtain: m

D
m

D ββω 2

2

2 2

==  

 
Remarks: An alternative approach in (b) is to expand the Morse potential in 
a Taylor series 

( ) ( ) ( ) ( ) ( ) ( ) termsorder higher 
2!
1  r'U'rrrU'rrrUrU 0

2
0000 +−+−+=  

to obtain ( )2
0

2 rrDβU(r) −≈ . Comparing this expression to the energy of a 
spring-and-mass oscillator we see that, as was obtained above, Dβk 22= . 
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