Chapter 7
Conservation of Energy

Conceptual Problems

1 - [SSM] Two cylinders of unequal mass are connected by a massless
cord that passes over a frictionless peg (Figure 7-34). After the system is released
from rest, which of the following statements are true? (U is the gravitational
potential energy and K is the kinetic energy of the system.) (a) AU <0 and

AK >0, (b) AU =0and AK> 0, (c) AU <0 and AK =0, (d) AU =0 and AK=0,
(e) AU>0 and AK <0.

Determine the Concept Because the peg is frictionless, mechanical energy is
conserved as this system evolves from one state to another. The system moves and

so we know that AK > (. Because AK + AU = constant, AU <0. | (a) |is correct.

2 Two stones are simultaneously thrown with the same initial speed from
the roof of a building. One stone is thrown at an angle of 30° above the
horizontal, the other is thrown horizontally. (Neglect effects due to air resistance.)
Which statement below is true?

(@) The stones strike the ground at the same time and with equal speeds.
(b) The stones strike the ground at the same time with different speeds.
(c) The stones strike the ground at different times with equal speeds.
(d) The stones strike the ground at different times with different speeds.

Determine the Concept Choose the zero of gravitational potential energy to be at
ground level. The two stones have the same initial energy because they are thrown
from the same height with the same initial speeds. Therefore, they will have the
same total energy at all times during their fall. When they strike the ground, their
gravitational potential energies will be zero and their kinetic energies will be
equal. Thus, their speeds at impact will be equal. The stone that is thrown at an
angle of 30° above the horizontal has a longer flight time due to its initial upward

velocity and so they do not strike the ground at the same time.| (c¢) |is correct.

3 . True or false:

(a) The total energy of a system cannot change.

(b) When you jump into the air, the floor does work on you increasing your
mechanical energy.

(c) Work done by frictional forces must always decrease the total mechanical
energy of a system.

(d) Compressing a given spring 2.0 cm from its unstressed length takes more
work than stretching it 2.0 cm from its unstressed length.

595



596 Chapter 7

(a) False. Forces that are external to a system can do work on the system to
change its energy.

(b) False. In order for some object to do work, it must exert a force over some
distance. Your muscles increase the force exerted on the floor by your feet and, in
turn, the normal force of the floor on your feet increases and launches you into the
air.

(c) False. The frictional force that accelerates a sprinter increases the total
mechanical energy of the sprinter.

(d) False. Because the work required to stretch a spring a given distance varies as
the square of that distance, the work is the same regardless of whether the spring
is stretched or compressed.

4 . As a novice ice hockey player (assume frictionless situation), you have
not mastered the art of stopping except by coasting straight for the boards of the
rink (assumed to be a rigid wall). Discuss the energy changes that occur as you
use the boards to slow your motion to a stop.

Determine the Concept The boards don’t do any work on you. Your loss of
kinetic energy is converted into thermal energy of your body and the boards.

5 e True or false (The particle in this question can move only along the X
axis and is acted on by only one force, and U(X) is the potential-energy function
associated with this force.):

(@) The particle will be in equilibrium if it is at a location where dU/dx =0.

(b) The particle will accelerate in the —Xx direction if it is at a location where
dU/dx >0.

(c) The particle will both be in equilibrium and have constant speed if it is at a
section of the X axis where dU/dx =0 throughout the section.

(d) The particle will be in stable equilibrium if it is at a location where both
dU/dx =0 and d’U/dx" >0.

(e) The particle will be in neutral equilibrium if it is at a location where both
dU/dx =0 and d’U/dx’ >0.

Determine the Concept dU/dx is the slope of the graph of U(x) and dzU/dx2 is

the rate at which the slope is changing. The force acting on the object is given
by F =—dU/dx .

(@) True. If dU/dx = 0, then the net force acting on the object is zero (the

condition for equilibrium).
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(b) True. If dU/dx > 0 at a given location, then the net force acting on the object
is negative and its acceleration is to the left.

(¢) True. If dU/dx = 0 over a section of the X axis, then the net force acting on the
object is zero and its acceleration is zero.

(d) True. If dU/dx =0 and dZU/dx2 > ( at a given location, then U(X) is concave

upward at that location (the condition for stable equilibrium).

(e) False. If dU/dx = 0 andd’U/dx” > 0 at a given location, then U(x) is concave
upward at that location (the condition for stable equilibrium).

6 . Two knowledge seekers decide to ascend a mountain. Sal chooses a
short, steep trail, while Joe, who weighs the same as Sal, chooses a long, gently
sloped trail. At the top, they get into an argument about who gained more
potential energy. Which of the following is true:

(a) Sal gains more gravitational potential energy than Joe.

(b) Sal gains less gravitational potential energy than Joe.

(c) Sal gains the same gravitational potential energy as Joe.

(d) To compare the gravitational potential energies, we must know the height of
the mountain.

(e) To compare the gravitational potential energies, we must know the length of
the two trails.

Determine the Concept The change in gravitational potential energy, over
elevation changes that are small enough so that the gravitational field can be
considered constant, is mgAh, where Ah is the elevation change. Because Ah is the
same for both Sal and Joe, their gains in gravitational potential energy are the

same. | (¢) |is correct.

7 . True or false:

(a) Only conservative forces can do work.

(b) If only conservative forces act on a particle, the kinetic energy of the particle
can not change.

(c) The work done by a conservative force equals the change in the potential
energy associated with that force.

(d) If, for a particle constrained to the X axis, the potential energy associated with
a conservative force decreases as the particle moves to the right, then the
force points to the left.

(e) If, for a particle constrained to the X axis, a conservative force points to the
right, then the potential energy associated with the force increases as the
particle moves to the left.
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(a) False. The definition of work is not limited to displacements caused by
conservative forces.

(b) False. Consider the work done by the gravitational force on an object in
freefall.

(c) False. The work done may change the kinetic energy of the system.

(d) False. The direction of the force is given by F = —dU/dx , so if the potential

energy is decreasing to the right (the slope of U(X) is negative), F must be positive
(that is, points to the right).

(e) True. The direction of the force is given by F = —dU/dx , so if F points to the

right, the potential energy function must increase to the left.

8 - Figure 7-35 shows the plot of a potential-energy function U versus X.
(a) At each point indicated, state whether the X component of the force associated
with this function is positive, negative, or zero. (b) At which point does the force
have the greatest magnitude? (C) Identify any equilibrium points, and state
whether the equilibrium is stable, unstable, or neutral

Picture the Problem Fy is defined to be the negative of the derivative of the
potential-energy function with respect to x; that is, F, = —dU/dx .

(a) Examine the slopes of the curve at Point | dU/dx | Fy
each of the lettered points, A + -
remembering that Fy is the negative B 0 0
of the slope of the potential energy C _ +
graph, to complete the table: D 0 0

E + —

F 0 0
(b) Find the point where the slope is |FX| is greatest at point C.

steepest:

() Ifd*U/dx* <0, then the curve is The equilibrium is unstable at point B.

concave downward and the
equilibrium is unstable.
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If d*U/dx* > 0, then the curve is The equilibrium is stable at point D.

concave upward and the equilibrium
is stable.

Remarks: At point F, if d*Uldx* = 0 while the fourth derivative is positive,
then the equilibrium is stable.

9 . Assume that, when the brakes are applied, a constant frictional force is
exerted on the wheels of a car by the road. If that is so, then which of the
following are necessarily true? (@) The distance the car travels before coming to
rest is proportional to the speed of the car just as the brakes are first applied,

(b) the car’s kinetic energy diminishes at a constant rate, (C) the kinetic energy of
the car is inversely proportional to the time that has elapsed since the application
of the brakes, (d) none of the above.

Picture the Problem Because the constant friction force is responsible for a
constant acceleration, we can apply the constant-acceleration equations to the
analysis of these statements. We can also apply the work-energy theorem with
friction to obtain expressions for the kinetic energy of the car and the rate at
which it is changing. Choose the system to include the earth and car and assume
that the car is moving on a horizontal surface so that AU = 0.

() A constant frictional force causes v: = v +2als
a constant acceleration. The stopping or, because V = 0,
distance of the car is related to its 2
: 0=v, +2aAs =As=—"

speed before the brakes were applied % " a
through a constant-acceleration where a < 0.
equation.
Thus, As oc V; : Statement (a) is false.
(b) Apply the work-energy theorem AK =-W, = -y, mgAs
with friction to obtain:
Express the rate at which K is AK As

. — = Mg —
dissipated: At At

Thus, % oc Vand therefore not Statement (b) is false.

constant.
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(¢) In Part (b) we saw that: K oc As

Because As oc At and K oc At: Statement (C) is false.
Because none of the above are (d) |is correct.
correct:

10 - If a rock is attached to a massless, rigid rod and swung in a vertical
circle (Figure 7-36) at a constant speed, the total mechanical energy of the rock-
Earth system does not remain constant. The kinetic energy of the rock remains
constant, but the gravitational potential energy is continually changing. Is the total
work done on the rock equal zero during all time intervals? Does the force by the
rod on the rock ever have a nonzero tangential component?

Determine the Concept No. From the work-kinetic energy theorem, no total
work is being done on the rock, as its kinetic energy is constant. However, the
rod must exert a tangential force on the rock to keep the speed constant. The
effect of this force is to cancel the component of the force of gravity that is
tangential to the trajectory of the rock.

11 e+« Use the rest energies given in Table 7-1 to answer the following
questions. (@) Can the triton naturally decay into a helion? (b) Can the alpha
particle naturally decay into helion plus a neutron? (c) Can the proton naturally
decay into a neutron and a positron?

Determine the Concept
(a) Yes, because the triton mass is slightly more than that of the helion (*He)
mass.

(b) No, because the total of the neutron and helion masses is 3747.96 MeV which
is larger than the alpha particle mass.

(c) No, because the neutron mass is already larger than that of the proton.
Estimation and Approximation

12 - Estimate (a) the change in your potential energy on taking an elevator
from the ground floor to the top of the Empire State building, (b) the average
force acting on you by the elevator to bring you to the top, and (C) the average
power due to that force. The building is 102 stories high.

Picture the Problem You can estimate your change in potential energy due to
this change in elevation from the definition of AU. You’ll also need to estimate
the height of one story of the Empire State building. We’ll assume your mass is
70.0 kg and the height of one story to be 3.50 m. This approximation gives us a
height of 1170 ft (357 m), a height that agrees to within 7% with the actual height
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of 1250 ft from the ground floor to the observation deck. We’ll also assume that it
takes 3 min to ride non-stop to the top floor in one of the high-speed elevators.

(a) Express the change in your AU = mgAh

gravitational potential energdy as you

ride the elevator to the 102" floor:

Substitute numerical values and AU =(70.0 kg)(9.81m/sz )(357 m)

evaluate AU: =2452k] =| 245kJ

(b) Ignoring the acceleration AU
intervals at the beginning and the W=Fh=AU=F= n
end of your ride, express the work

done on you by the elevator in terms

of the change in your gravitational

potential energy:

Substitute numerical values and 245.2KkJ

evaluate F: F= 357m 687N

(C) Assuming a 3 min ride to the top, po AU 245.2KkJ

the average power delivered to the ~ At (3min)(60s/min)

elevator is:
=|1.36kW

13 - A tightrope walker whose mass is 50 kg walks across a tightrope held
between two supports 10 m apart; the tension in the rope is 5000 N when she
stands at the exact center of the rope. Estimate: (a) the sag in the tightrope when
the acrobat stands in the exact center, and (b) the change in her gravitational
potential energy from when she steps onto the tightrope to when she stands at its
exact center.

Picture the Problem The diagram depicts the situation when the tightrope walker
is at the center of rope and shows a coordinate system in which the +X direction is
to the right and +y direction is upward. M represents her mass and the vertical
components of tensions Tl and T, 5, which are equal in magnitude, support her
weight. We can apply a condition for static equilibrium in the vertical direction to
relate the tension in the rope to the angle € and use trigonometry to find Ay as a
function of 6.
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(a) Use trigonometry to relate the sag

_ Ay _
Ay in the rope to its length L and 6: tan = I 7 Ay=3Ltand (1)

2

Apply z F, = 0to the tightrope 2Tsinf-Mg =0
walker when she is at the center of where T is the magnitude of 7,and 7, .
the rope to obtain:

lve f to obtain:
Solve for @ to obtain ezsin_l(ng
Substituting for €1in equation (1) . 4 Mg
yields: Ay = Ltan| sin” T

Substitute numerical values and evaluate Ay:

2
Ay =4(10 m)tan{sin{(wkg)(g'glm/s )ﬂ =0.2455m =| 25cm
2(5000N)

(b) Express the change in the AU =U

at center

tightrqpe walker’s gravitational - Mgy
potential energy as the rope sags:

-U,,=0+MgAy

Substitute numerical values and AU = (50 kg)(9.81m/sz )(_ 0.2455m)
evaluate AU: oy

14 -« The metabolic rate is defined as the rate at which the body uses
chemical energy to sustain its life functions. The average metabolic rate
experimentally has been found to be proportional to the total skin surface area of
the body. The surface area for a 5-ft, 10-in. male weighing 175 Ib is about 2.0 m?,
and for a 5-ft, 4-in. female weighing 110 Ib it is approximately 1.5 m”. There is
about a 1 percent change in surface area for every three pounds above or below
the weights quoted here and a 1 percent change for every inch above or below the
heights quoted. (a) Estimate your average metabolic rate over the course of a day
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using the following guide for metabolic rates (per square meter of skin area) for
various physical activities: sleeping, 40 W/m?; sitting, 60 W/m?; walking,

160 W/m?; moderate physical activity, 175 W/m?*; and moderate aerobic exercise,
300 W/m?. How do your results compare to the power of a 100-W light bulb?

(b) Express your average metabolic rate in terms of kcal/day (1 kcal = 4.19 klJ).
(A kcal is the "food calorie” used by nutritionists.) (C) An estimate used by
nutritionists is that each day the "average person” must eat roughly 12—15 kcal of
food for each pound of body weight to maintain his or her weight. From the
calculations in Part (b), are these estimates plausible?

Picture the Problem We’ll use the data for the "typical male" described above
and assume that he spends 8 hours per day sleeping, 2 hours walking, 8 hours
sitting, 1 hour in aerobic exercise, and 5 hours doing moderate physical activity.
We can approximate his energy utilization using E AP .. At where A

activity
is the rate of energy consumption in a given

activity — activity °

is the surface area of his body, F’activity

activity, and At is the time spent in the given activity. His total energy

activity
consumption will be the sum of the five terms corresponding to his daily
activities.

(a) Express the energy consumption of the hypothetical male:

E =E, g+ Eaing  Eitiing T Emod.act, T Eacrobicact (1)

Evaluate E

seening = AP Mg = (2.0m )40 W/m? )(8.0h)(3600s/h) = 2.30x10° J
Evaluate E, ., :

watking = AP, in A yang = (2.0m (160 W/m? }(2.00)(3600/h )= 2.30x10° J
Evaluate E_;,,

Eine = AP.ingMiuine = (2.0m? )(60 W/m? )(8.00)(3600/h) = 3.46x10° J
EvaluateE,_, _ :

Epodae = APy Aty oo = (2.0m?)(175 W/m? )(5.0h)(3600s/h) = 6.30 x10° J



604 Chapter 7

Evaluate E

aerobic act. *

At = (2.0m?)(300 W/m?)(1.0h)(3600s/h )= 2.16 x10° J

aerobicact. Apaerobic act. aerobic act.

Substitute numerical values in equation (1) and evaluate E:

E=230x10°T+230x10°J+3.46x10°J+6.30x10°T+2.16x10°J
=16.5x10°T = 17MJ

Express the average metabolic rate P _ E
represented by this energy av E
consumption:
Substitute numerical values and p 16.5x10°7 019KW
evaluate P, : “ " (24h)(3600s/h)

or about twice that of a 100 W light bulb.
(b) Express his average energy 16.5x10° J/d
consumption in terms of kcal/day: = 41901 /keal 3938keal/d

~| 3.9Mcal/d

(©) 3940kcal ~23 keal is higher than the estimate given in the statement of the

1751b 1b

problem. However, by adjusting the day's activities, the metabolic rate can vary
by more than a factor of 2.

15 e« [SSM] Assume that your maximum metabolic rate (the maximum
rate at which your body uses its chemical energy) is 1500 W (about 2.7 hp).
Assuming a 40 percent efficiency for the conversion of chemical energy into
mechanical energy, estimate the following: (&) the shortest time you could run up
four flights of stairs if each flight is 3.5 m high, (b) the shortest time you could
climb the Empire State Building (102 stories high) using your Part (a) result.
Comment on the feasibility of you actually achieving Part (b) result.

Picture the Problem The rate at which you expend energy, that is do work, is
defined as power and is the ratio of the work done to the time required to do the
work.
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(a) Relate the rate at which you can eP = AW Af = AW
expend energy to the work done in At P
running up the four flights of stairs: where e is the efficiency for the

conversion of chemical energy into
mechanical energy.

The work you do in climbing the AW = mgh
stairs increases your gravitational
potential energy:

Substitute for AW to obtain: _ mgh

P

At (1)

Assuming that your mass is 70 kg, Af (70 kg)(9.81 m/s’ )(4 x3.5m)
substitute numerical values in B (0.40)(1 500 W)
equation (1) and evaluate At:

16s

Q

(b) Substituting numerical values in equation (1) yields:

70kg)(9.81m/s?)(102x3.5m)

_(
At = (0.40)(1500 W)

=409s =~ | 6.8 min

The time of about 6.8 min is clearly not reasonable. The fallacy is that you cannot
do work at the given rate of 250 W for more than very short intervals of time.

16 = You are in charge of determining when the uranium fuel rods in a local
nuclear power plant are to be replaced with fresh ones. To make this
determination you decide to estimate how much the mass of a core of a nuclear-
fueled electric-generating plant is reduced per unit of electric energy produced.
(Note: In such a generating plant the reactor core generates thermal energy,
which is then transformed to electric energy by a steam turbine. It requires 3.0 J
of thermal energy for each 1.0 J of electric energy produced.) What are your
results for the production of (a) 1.0 J of thermal energy? (b) enough electric
energy to keep a 100-W light bulb burning for 10.0 y? (C) electric energy at a
constant rate of 1.0 GW for a year? (This is typical of modern plants.)

Picture the Problem The intrinsic rest energy in matter is related to the mass of
matter through Einstein’s equation E, = mc”.

(a) Relate the rest mass consumed to ) E,
the energy produced and solve for m: c
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Substitute numerical values and Mo 1.0J _=[1.1x 10" kg
evaluate m: (2.998><108 rn/s)
(b) Because the reactor core must E =3PAt

produce 3 J of thermal energy for
each joule of electrical energy

produced:
Substitute for Eq in equation (1) to _ 3PAt

; m = 2 (2)
obtain: c

Substitute numerical values in equation (2) and evaluate m:

3(100W)(on)[365.24d](24hj{3600sj

y d h
(2.998x10° mys)’

m= =[1.1ug

(c) Substitute numerical values in equation (2) and evaluate m:

3(1.OGW)(l.Oy)(365'24dj(24hj(36005j

y d h
(2.998x10° mys)’

=|1.1kg

17 e [SSM] The chemical energy released by burning a gallon of gasoline
is approximately 1.3 x 10° kJ. Estimate the total energy used by all of the cars in
the United States during the course of one year. What fraction does this represent
of the total energy use by the United States in one year (currently about

5% 10 1)?

Picture the Problem There are about 3 x 10® people in the United States. On the
assumption that the average family has 4 people in it and that they own two cars,
we have a total of 1.5 x 10® automobiles on the road (excluding those used for
industry). We’ll assume that each car uses about 15 gal of fuel per week.

Calculate, based on the assumptions identified above, the total annual
consumption of energy derived from gasoline:

(1.5><108aut0)[15 gal Jszweeks 13x10° | Z[T5x107 1y
auto - week y gal
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Express this rate of energy use as a 1.5x10" J/y
. =~ 3%
fraction of the total annual energy 20
s 5x107 Iy
use by the United States:

18 e The maximum efficiency of a solar-energy panel in converting solar
energy into useful electrical energy is currently about 12 percent. In a region such
as the southwestern United States the solar intensity reaching Earth’s surface is
about 1.0 kW/m?” on average during the day. Estimate the area that would have to
be covered by solar panels in order to supply the energy requirements of the
United States (approximately 5 x 10*° J/y) and compare it to the area of Arizona.
Assume cloudless skies.

Picture the Problem The energy consumption of the U.S. works out to an
average power consumption of about 1.6x10'® watt. The solar constant is roughly
10° W/m? (reaching the ground), or about 120 W/m® of useful power with a 12%
conversion efficiency. Letting P represent the daily rate of energy consumption,
we can relate the power available at the surface of the earth to the required area of
the solar panels usingP = IA. Using the internet, one finds that the area of
Arizona is about 114,000 miZ or 3.0 x 10" m?.

Relate the required area to the Ao P
electrical energy to be generated by 2
the solar panels: where | is the solar intensity that
reaches the surface of the Earth.
Substitute numerical values and ( 13 }
evaluate A: A:21'6XI0 EN = 2.7x10" m’
: 120 W/m

where the factor of 2 comes from the
fact that the sun is only "up” for

roughly half the day.
Express the ratio of A to the area A 2.7x10" m?2 0.90
of Arizona to obtain: 4 T30x10"m2

Arizona
That is, the required area is about 90%
of the area of Arizona.

Remarks: A more realistic estimate that would include the variation of
sunlight over the day and account for latitude and weather variations might
very well increase the area required by an order of magnitude.

19 e Hydroelectric power plants convert gravitational potential energy into
more useful forms by flowing water downhill through a turbine system to
generate electric energy. The Hoover Dam on the Colorado River is 211 m high
and generates 4 x 10 kW-h/y. At what rate (in L/s) must water be flowing
through the turbines to generate this power? The density of water is 1.00 kg/L.
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Assume a total efficiency of 90.0 percent in converting the water’s potential
energy into electrical energy.

Picture the Problem We can relate the energy available from the water in terms
of its mass, the vertical distance it has fallen, and the efficiency of the process.
Differentiation of this expression with respect to time will yield the rate at which
water must pass through its turbines to generate Hoover Dam’s annual energy
output.

Assuming a total efficiencye, use the E = gmgh
expression for the gravitational

potential energy near the earth’s

surface to express the energy

available from the water when it has

fallen a distance h:

Differentiate this expression with P d [smgh] = zgh dm h dv
respect to time to obtain: = g emani=agn- - =40 -
Solving for dV/dt yields: dv P
== ()

dt  ¢gogh
Using its definition, relate the dam’s _AE
annual power output to the energy T OAt
produced:
Substituting for P in equation (1) av _  AE
yields: dt  goghAt
Substitute numerical values and evaluate dV/dt:

9
d_V= 4.00x10" kW -h _[ 2 4x10° L/s
dt 24h

(0.90)(1.00kg/L)(9.81m/s? )(21 1m)(365.24d x dj

Force, Potential Energy, and Equilibrium

20 - Water flows over Victoria Falls, which is 128 m high, at an average
rate of 1.4x10° kg/s. If half the potential energy of this water were converted into
electric energy, how much electric power would be produced by these falls?

Picture the Problem The water going over the falls has gravitational potential
energy relative to the base of the falls. As the water falls, the falling water
acquires kinetic energy until, at the base of the falls; its energy is entirely kinetic.
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The rate at which energy is delivered to the base of the falls is given by
P =dW /dt =—-dU /dt.

Express the rate at which energy is p_ daw _ du _ —li(mgh)
being delivered to the base of the dt dt 2 dt

falls; remembering that half the __1igh d_m

potential energy of the water is R dt

converted to electric energy:

Substitute numerical values and evaluate P:

P =—1(9.81m/s*(~128m)(1.4x10° ke/s)=[ 0.88GW

21 + A 2.0-kgbox slides down a long, frictionless incline of angle 30°. It
starts from rest at time t = 0 at the top of the incline at a height of 20 m above the
ground. (a) What is the potential energy of the box relative to the ground at t = 0?
(b) Use Newton’s laws to find the distance the box travels during the interval

0.0 s <t<1.0sand its speed at t = 1.0 s. (C) Find the potential energy and the
kinetic energy of the box at t = 1.0 s. (d) Find the kinetic energy and the speed of
the box just as it reaches the ground at the bottom of the incline.

Picture the Problem In the absence of friction, the sum of the potential and
kinetic energies of the box remains constant as it slides down the incline. We can
use the conservation of the mechanical energy of the system to calculate where
the box will be and how fast it will be moving at any given time. We can also use
Newton’s 2™ law to show that the acceleration of the box is constant and
constant-acceleration equations to calculate where the box will be and how fast it
will be moving at any given time.
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(a) Express the gravitational
potential energy of the box, relative
to the ground, at the top of the
incline:

Substitute numerical values and
evaluate U;:

(b) Using a constant-acceleration
equation, relate the displacement of
the box to its initial speed,
acceleration and time-of-travel:

Apply Z F, = ma, to the box as it

slides down the incline and solve for
its acceleration:

Substitute for a in equation (1) to
obtain:

Substitute numerical values and
evaluate Ax(t = 1.0 s):

Using a constant-acceleration
equation, relate the speed of the box
at any time to its initial speed and
acceleration:

Substitute numerical values and
evaluate V(1.0 s):

(c) The kinetic energy of the box is
given by:

U =mgh

U, = (2.0kg)(9.81m/s* )20 m)
=392]

=| 0.39kJ

Ax=vt+Lat’

or, because vo =0,
Ax = Eatz (1)

Fg sin@ = ma

or, because F, = mg,
mg sin @ = ma and
a=gsinf

Ax = 1(gsin@)¢?

AX(1.0s)=1(9.81m/s? )(sin30°)(1.0s)?
=245m=|2.5m

v=y,+at

or, because vo =0,
v =at = g(sinf)t

v(1.0s) = (9.81m/s? )(sin30°)(1.0s)
=491m/s=| 4.9m/s

K= %mv2
or, because v = g(sin @)z,
K(t)= %mgz(sin2 0)t2
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Substitute numerical values and evaluate K(1.0 s):

K(1.05)=1(2.0kg)(9.81 m/s’ ] (sin> 30)(1.0s)* =24.11 =[ 24]

Express the potential energy of the
box after it has traveled for

1.0 s in terms of its initial potential
energy and its kinetic energy:

(d) Apply conservation of
mechanical energy to the box-earth
system as the box as it slides down

the incline:

Solving for K, yields:

From equation (2) we have:

Substitute numerical values and
evaluate Vv, :

U=U -K=392]-24]
=[037kJ

W . =AK+AU =0

ext
or, because K; = U= 0,
K.-U =0 (2)

K, =U, =[ 0.39kJ

v, 2(392J) _ S0ms
2.0kg

22 o A constant force Fx = 6.0 N is in the +X direction. (a) Find the
potential-energy function U(X) associated with this force if U(Xo) = 0. (b) Find a
function U(X) such that U(4 .0 m) = 0. (¢) Find a function U(X) such that

U6 .0m)=147.

Picture the Problem The potential energy function U (X) is defined by the

equation U(x)—-U(x,)=— I Fdx. We can use the given force function to determine

Xo

U(X) and then the conditions on U(X) to determine the potential functions that

satisfy the given conditions.

(a) Use the definition of the potential

energy function to find the potential
energy function associated with Fy:

U(x)=U(x,)- J{dex
- U(x,)- [(oNax

=U(x,)-(6.0N)(x - x,)
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Because U(xg) = 0:

(b) Use the result obtained in (a) to
find U (X) that satisfies the condition
that U(4.0 m) = 0:

(c) Use the result obtained in (a) to
find U(X) that satisfies the condition
that U(6.0 m) =14 J:

23 -

U(x)=| -(6.0N)(x—-x,)

U(4.0m)=—(6.0N)(4.0m - x,)
=0=x,=4.0m

and
U(x)=—(6.0N)(x-4.0m)

= 247—(6.0N)x

U(6.0m)=—(6.0N)(6.0m - x,)
=14)=x, = %m

and
U(x)= —(6.0N)(x _Sz_f)mj

=|507—(6.0N)x

A spring has a force constant of 1.0 x 10* N/m . How far must the

spring be stretched for its potential energy to equal (a) 50 J, and (b) 100 J?

Picture the Problem The potential energy of a stretched or compressed ideal
spring Uy is related to its force (stiffness) constant k and stretch or compression Ax

by U, =1kx*.
(a) Relate the potential energy stored

in the spring to the distance it has
been stretched:

Substitute numerical values and
evaluate X:

(b) Proceed as in (@) with Ug =100 J:

24 o

Us =%kX2:>X: 2lkJS

2(507]
xX= |———F"—>= 10cm
1.0x10" N/m
X = —2109J =|14cm
1.0x10" N/m

(a) Find the force Fy associated with the potential-energy function U =

Ax*, where A is a constant. (b) At what value(s) of X does the force equal zero?

Picture the Problem Fy is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is, F, = —dU/dx. Consequently,

given U as a function of X, we can find Fy by differentiating U with respect to X.
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(a) Evaluate F, = —d—U: F = —i(Ax“): —4AX°
dx dx

(b) Set Fx = 0 and solve for X to F,=0=|x=0

obtain:

25 e [SSM] The force Fy is associated with the potential-energy function
U = C/x, where C is a positive constant. (a) Find the force Fy as a function of X.
(b) Is this force directed toward the origin or away from it in the region x > 0?
Repeat the question for the region X < 0. (¢) Does the potential energy U increase
or decrease as X increases in the region X > 0? (d) Answer Parts (b) and (c) where
C is a negative constant.

Picture the Problem F is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is F, =—dU/dx. Consequently,

X

given U as a function of X, we can find Fy by differentiating U with respect to x.

(a) Evaluate F :—d—U: F = d (Cj: c

X dx kU x x*

(b) Because C > 0, if x> 0, F is positive and F points away from the origin. If
X <0, Fy is still positive and F points toward the origin.

(c) Because U is inversely proportional to x and C > 0, U(X) decreases with
increasing X.

(d) When C <0, if X > 0, Fy is negative and F points toward the origin. If x <0,
Fy is negative and F points away from the origin.

Because U is inversely proportional to X and C < 0, U(X) becomes less negative as
X increases and U(X) increases with increasing X.

26 = The force Fy is associated with the potential-energy function U(y). On
the potential-energy curve for U versus Y, shown in Figure 7-37, the segments AB
and CD are straight lines. Plot F, versus Y. Include numerical values, with units,
on both axes. These values can be obtained from the U versus Y plot.

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to y; that is, F, = —dU /dy. Consequently,

we can obtain Fy by examining the slopes of the graph of U as a function of'y.



614 Chapter 7

The table to the right summarizes
the information we can obtain
from Figure 7-37:

Slope Fy
Interval N) (N)
A—B -2 2
B—C | transitional | 2 > —-1.4
C—->D 1.4 -1.4

The following graph shows F as a function of'y:

2.5
2.0
1.5 1
1.0

Lo

0.0 \

-0.5 \
1.0 \
1.5

0 1 3 4 5 6
y, m

27 e The force acting on an object is given by Fy = a/x>. At x = 5.0 m, the
force 1s known to point in the —X direction and have a magnitude of 25.0 N.
Determine the potential energy associated with this force as a function of X,
assuming we assign a reference value of —10.0 J at x = 2.0 m for the potential

energy.

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to X, i.e.F, =—dU/dx. Consequently,

given F as a function of X, we can find U by integrating F, with respect to X.

Applying the condition on F,x will allow us to determine the value of a and

using the fact that the potential energy is —10.0 J at X = 2.00 m will give us the

value of U,.

Evaluate the integral of F, with

respect to X:

Because F, (5.0m)=-25.0N:

U(x)= —j F.dx = —J'X%dx

a
=—+U,

X

e
(5.00mY

=-250N

(1)




Conservation of Energy 615

Solving for a yields: a=-625N-m’

Subsjtitute for a in equation (1) to U(x)== 625N -m’ U, 2
obtain: x

Applying the condition _ —625N-m’

U(2.00 m) = —10.0 J yields: -10.07= 200m U

Solve for Uy to obtain: U,=303]

Substituting for Uy in equation (2) —625N -m>

28 = The potential energy of an object constrained to the X axis is given by
U(X) = 3x> — 2x°, where U is in joules and X is in meters. (@) Determine the force
F, associated with this potential energy function. (b) Assuming no other forces

act on the object, at what positions is this object in equilibrium? (¢) Which of
these equilibrium positions are stable and which are unstable?

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is, F, = —dU/dx . Consequently,
given U as a function of X, we can find F, by differentiating U with respect to X.
To determine whether the object is in stable or unstable equilibrium at a given

point, we’ll evaluate dU/dx? at the point of interest.

(a) Evaluate F, =—99.. F=— 9 (3x* —2x*)=[ 6x(x 1)

X dx
(b) We know that, at equilibrium, When F, =0, 6xX(Xx — 1) = 0. Therefore,
F.=0: the object is in equilibrium at

X=0and X=1m.

(c) To decide whether the d_U:i(3Xz —2X3):6X—6X2
equilibrium at a particular point is dx dx

stable or unstable, evaluate the ond and

derivative of the potential energy d°u

. . : =6—-12x
function at the point of interest: dx?
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2 2
EvaluatedgatXZO: dLZJ =6>0
dx dx o
= | stable equilibriumat x =0
2 2
EvaluatedgatXZIm: dLZJ =6-12<0
dx dx .

= | unstable equilibriumat X =1m

29 = [SSM] The potential energy of an object constrained to the X axis is
given by U(x) = 8x* —x*, where U is in joules and X is in meters. (a) Determine
the force F, associated with this potential energy function. (b) Assuming no other

forces act on the object, at what positions is this object in equilibrium? (¢) Which
of these equilibrium positions are stable and which are unstable?

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is F, =—dU/dx . Consequently,
given U as a function of X, we can find F, by differentiating U with respect to X.

To determine whether the object is in stable or unstable equilibrium at a given
point, we’ll evaluate dU/dx” at the point of interest.

(a) Evaluate the negative of the _ du d (8X2 . 4)
derivative of U with respect to X: g dx dx

=4x° —16x=| 4x(x+2)(x-2)

(b) The object is in equilibrium 4X(x+2)(x=2)=0 = the equilibrium
wherever F_ =F, =0:

points are | X =—2m,0,and2m.

(¢) To decide whether the d’u _d 3\ >
equilibrium at a particular point is dx® &(1 6x=4x )_ 16-12x
stable or unstable, evaluate the 2nd

derivative of the potential energy

function at the point of interest:
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Evaluating d°U / dx’ at Xx=-2m, 0 and X = 2 m yields the following results:

X,m| d*U / dx> | Equilibrium
-2 -32 Unstable
0 16 Stable
2 -32 Unstable

Remarks: You could also decide whether the equilibrium positions are stable
or unstable by plotting F(x) and examining the curve at the equilibrium
positions.

30 The net force acting on an object constrained to the X axis is given by

Fx(X) = X° — 4x. (The force is in newtons and x in meters.) Locate the positions of
unstable and stable equilibrium. Show that each of these positions is either stable
or unstable by calculating the force one millimeter on either side of the locations.

Picture the Problem The equilibrium positions are those values of x for which
F(X) = 0. Whether the equilibrium positions are stable or unstable depends on
whether the signs of the force either side of the equilibrium position are the same
(unstable equilibrium) of opposite (stable equilibrium).

Determine the equilibrium locations

FX) =X —4x=x(x*-4)=0
by setting F_, =F(x)=0:

and the positions of stable and unstable
equilibrium are at

x=-2m,0and 2m |.

Noting that we need only determine whether each value of F(X) is positive or
negative, evaluate F(X) at X = =201 mm and X = =199 mm to determine the
stability at x = =200 mm ... and repeat these calculations at X = —1 mm, 1 mm
and X = 199 mm, 201 mm to complete the following table:

X, mm | F._, | F. .. |Equilibrium
-200 <0 <0 Unstable
0 > () <0 Stable
200 > () > () Unstable

Remarks: You can very easily confirm these results by using your graphing
calculator to plot F(x). You could also, of course, find U(x) from F(x) and
examine it at the equilibrium positions.
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31 e+ The potential energy of a 4.0-kg object constrained to the X axis is
given by U = 3x* —x° for x < 3.0 m and U = 0 for x > 3.0 m, where U is in joules
and X is in meters, and the only force acting on this object is the force associated
with this potential energy function. (a) At what positions is this object in
equilibrium? (b) Sketch a plot of U versus X. () Discuss the stability of the
equilibrium for the values of X found in Part (a). (d) If the total mechanical energy
of the particle is 12 J, what is its speed at X = 2.0 m?

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is F, = —dU/dx . Consequently,
given U as a function of X, we can find F, by differentiating U with respect to X.

To determine whether the object is in stable or unstable equilibrium at a given
point, we can examine the graph of U.

X

(a) Evaluate F, = —%—U forx<3.0m: F = —di(3x2 - X3): 3x(2—x)
X X

Set F, =0 and solve for those values 3X2-x)=0

of x for which the 4.0-kg object is in Therefore, the object is in equilibrium
equilibrium: at| x=0and x =2.0m.
Because U = 0: Fx(x23m)=—%=0

Therefore, the object is in neutral equilibrium for X > 3.0 m.

(b) A graph of U(x) in the interval —1.0 m < x < 3.0 m follows:

. N\
3.0 \ / \

o] \ \
" \ \
N/ \

0.0

U

-1.0 0.0 1.0 2.0 3.0

X (m)

(c) From the graph, U(X) is a minimum at X = 0 and so the equilibrium is stable at
this point
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From the graph, U(X) is a maximum at X = 2.0 m and so the equilibrium is
unstable at this point.

(d) Relate the kinetic energy of the
object K to its total energy E and its
potential energy U:

2(E-U

K=lm’=E-U=v=
m

Substitute numerical values and evaluate v(2.0 m):

v(2Om)_\/2(12J—((3.OJ/m2)(2.0m)2—(1.0J/m3)(2.0m)3» Reyy
T 4.0kg L=

32 e Aforceisgivenby F, = Ax, where A = 8.0 N-m’. (@) For positive

values of X, does the potential energy associated with this force increase or
decrease with increasing X? (You can determine the answer to this question by
imagining what happens to a particle that is placed at rest at some point X and is
then released.) (b) Find the potential-energy function U associated with this force
such that U approaches zero as X approaches infinity. () Sketch U versus Xx.

Picture the Problem F, is defined to be the negative of the derivative of the
potential-energy function with respect to X, that is F, =—dU/dx. Consequently,

given F as a function of X, we can find U by integrating F, with respect to X.

(2) Evaluate the negative of the U (X) — _'[ F(X) - j Ax2dx
integral of F(X) with respect to X: LA
T

where Uy is a constant whose value is
determined by conditions on U(X).

For x> 0: U decreases as X increases

(b) As X — oo, lA—) 0. Hence: Uo=0
2
2 X and
14 1(80N-m’
Ux)=——=—
= ﬂN. 3
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(c) The graph of U(x) follows:

400
350 \
300
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150

100

50 1
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33 e [SSM] A straight rod of negligible mass is mounted on a frictionless
pivot, as shown in Figure 7-38. Blocks have masses m; and m; are attached to the
rod at distances ¢, and /,. (a) Write an expression for the gravitational potential
energy of the blocks-Earth system as a function of the angle & made by the rod
and the horizontal. (b) For what angle @is this potential energy a minimum? Is the
statement "systems tend to move toward a configuration of minimum potential
energy” consistent with your result? (¢) Show that if m ¢, = m,/,, the potential
energy is the same for all values of €. (When this holds, the system will balance at
any angle 6. This result is known as Archimedes’ law of the lever.)

Picture the Problem The gravitational potential energy of this system of two
objects is the sum of their individual potential energies and is dependent on an
arbitrary choice of where, or under what condition(s), the gravitational potential
energy is zero. The best choice is one that simplifies the mathematical details of the
expression for U. In this problem let’s choose U = 0 where 6= 0.

(a) Express U for the 2-object U(@)=U, +U,

system as the sum of their =m,g/,sin@—m g/, sind
gravitational potential energies;
noting that because the object whose
mass is M, is above the position we
have chosen for U = 0, its potential
energy is positive while that of the
object whose mass is m; is negative:

=| (myt, —m,)gsin@




(b) Differentiate U with respect to &
and set this derivative equal to zero
to identify extreme values:

To be physically meaningful,
-r/2<0<x/2. Hence:

Express the 2™ derivative of U with
respect to & and evaluate this
derivative at 6 =+7/2:

If we assume, in the expression for U
that we derived in (@), that
My, —my ¢y > 0, then U(6) is a sine
function and, in the interval of
interest,

~-m/2<0<7/2 ’

takes on its minimum value when
0 =-772:

(c) If m2/2 =ml/1, then:
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((jj—L;=(m2£2 —mlﬁl)g cosd=0

from which we can conclude that
cos@= 0 and &= cos 0.

0=+x/2

d*uU .

0 —~(m,¢, —m¢,)gsin &
2

d lé >0 and

do

/2

U is a minimum at@ = — /2

d’U

197 <0and

/2

U is a maximum até = /2

m/l,—m,l,=0
and
U = 0 independent of 6.

Remarks: An alternative approach to establishing that U is a maximum at
6= 2 is to plot its graph and note that, in the interval of interest, U is
concave downward with its maximum value at 8= /2. Similarly, it can be
shown that U is a minimum at @ = —z/2 (Part (b)).

34 e An Atwood’s machine (Figure 7-39) consists of masses m; and m,, and
a pulley of negligible mass and friction. Starting from rest, the speed of the two
masses is 4.0 m/s at the end of 3.0 s. At that time, the kinetic energy of the system
1s 80 J and each mass has moved a distance of 6.0 m. Determine the values of m;

and m,.
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Picture the Problem In a simple Atwood’s machine, the only effect of the pulley
is to connect the motions of the two objects on either side of it; that is, it could be
replaced by a piece of polished pipe. We can relate the kinetic energy of the rising
and falling objects to the mass of the system and to their common speed and relate
their accelerations to the sum and difference of their masses ... leading to
simultaneous equations in m; and m;.

Relate the kinetic energy of the K=1 (m1 +m, )V2 —m+m, =

system to the total mass being v

accelerated:

Substitute numerical values and M. = 2(80 J)

evaluate m; + my: b (4.0m/s)2 (1)
=10.0kg

In Chapter 4, the acceleration of the a— m, —m,

masses was shown to be: m, +m,

Because v(t) = at, we can eliminate a _m-m,

. . . . V(t) =——=qt

in the previous equation to obtain: m, +m,

Solving for m, —m, yields: m—m. = (m, +m,)v(t)

1 2 gt

Substitute numerical values and mo—m. = (10kg)(4.0m/s)

evaluate m —m, : b (9.81mss?)(3.0s)  (2)
=1.36kg

Solve equations (1) and (2) m, =|5.7kg |and m, =| 4.3kg

simultaneously to obtain:

35 eee  You have designed a novelty desk clock, as shown in Figure 7-40. You
are worried that it is not ready for market because the clock itself might be in an
unstable equilibrium configuration. You decide to apply your knowledge of
potential energies and equilibrium conditions and analyze the situation. The
clock (mass m) is supported by two light cables running over the two frictionless
pulleys of negligible diameter, which are attached to counterweights that each
have mass M. (a) Find the potential energy of the system as a function of the
distance y. (b) Find the value of y for which the potential energy of the system is a
minimum. (C) If the potential energy is a minimum, then the system is in
equilibrium. Apply Newton’s second law to the clock and show that it is in
equilibrium (the forces on it sum to zero) for the value of y obtained for Part (b).
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(d) Finally, determine whether you are going to be able to market this gadget: is
this a point of stable or unstable equilibrium?

Picture the Problem Let L be the total length of one cable and the zero of
gravitational potential energy be at the top of the pulleys. We can find the value of
y for which the potential energy of the system is an extremum by differentiating
U(y) with respect to y and setting this derivative equal to zero. We can establish
that this value corresponds to a minimum by evaluating the second derivative of
U(y) at the point identified by the first derivative. We can apply Newton’s 2™ law
to the clock to confirm the result we obtain by examining the derivatives of U(Yy).

(a) Express the potential energy of U(y)=U,.(y)+U weights (y)
the system as the sum of the
potential energies of the clock and

counterweights:
Substitute for U, (y)and U(y)=|-magy- 2|v|g(L ~Jy?+d?)
Uweights(y) to obtain:

(b) Differentiate U(y) with respect to y:

M: —i[mgy+2Mg(L—W)]: {mg —-2Mg L]

dy dy /yz +d?
For extreme values (relative maxima y'
o mg —2Mg———==0
and minima): W
Solve for y’ to obtain: 4 m?
R DTV R

2,
Fing SU0). Uy __d] v Y

dy dy’ dy y: +d>

2Mgd*
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2, 2 2
Evaluate d :gy) aty=y" d’u gy)| __2Mgd .
2 2
dy* |, (y2+d?)”)
2Mgd
- m? 32
e+l
4M* —m
>0
and the potential energy is a minimum
at
m2
— d —_—
y 4M*? —m’

(c) The free-body diagram, showing
the magnitudes of the forces acting
on the support point just above the
clock, is shown to the right:

Apply z F, = 0to this point to

obtain:
Express sindin terms of y and d: Ging - y
y2 + d 2
Equate the two expressions for siné m y
to obtain: oM v +d>

which is equivalent to the first equation
in Part (b).

(d) This is a point of stable equilibrium. If the clock is displaced downward, &
increases, leading to a larger upward force on the clock. Similarly, if the clock is
displaced upward, the net force from the cables decreases. Because of this, the
clock will be pulled back toward the equilibrium point if it is displaced away from
it.

Remarks: Because we’ve shown that the potential energy of the system is a
minimum at y = y“(i.e., U(y) is concave upward at that point), we can
conclude that this point is one of stable equilibrium.
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The Conservation of Mechanical Energy

36 - A block of mass m on a horizontal frictionless tabletop is pushed
against a horizontal spring, compressing it a distance X, and the block is then
released. The spring propels the block along the tabletop, giving a speed v. The
same spring is then used to propel a second block of mass 4m, giving it a speed
3v. What distance was the spring compressed in the second case? Express your
answer in terms of X.

Picture the Problem The work done in compressing the spring is stored in the
spring as potential energy. When the block is released, the energy stored in the
spring is transformed into the kinetic energy of the block. Equating these energies
will give us a relationship between the compressions of the spring and the speeds
of the blocks.

Let the numeral 1 refer to the first 1kx; =tmyv;
case and the numeral 2 to the second ’
. =%(4m1)(3vl)

case. Relate the compression of the 5

=18m,v,

spring in the second case to its
potential energy, which equals its
initial kinetic energy when released:

Relate the compression of the spring 1kx! =imv; =>my] = kx}
in the first case to its potential

energy, which equals its initial

kinetic energy when released:

Substitute for mlvl2 to obtain: %kxz2 = 18kX12 =X, =| 6X,

37 e A simple pendulum of length L with a bob of mass m is pulled aside
until the bob is at a height L/4 above its equilibrium position. The bob is then
released. Find the speed of the bob as it passes through the equilibrium position.
Neglect any effects due to air resistance.
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Picture the Problem The diagram
shows the pendulum bob in its initial
position. Let the zero of gravitational
potential energy be at the low point of
the pendulum’s swing, the equilibrium
position, and let the system include the
pendulum and the earth. We can find the
speed of the bob at it passes through the
equilibrium  position by applying
conservation of mechanical energy to

the system. U,
Apply conservation of mechanical W =AK+AU
energy to the system to obtain: or, because Wy = 0,
AK +AU =0
Because K, -U, =0: K;-U, =0
Substituting for K;and U, yields: Imv; —mgAh=0=v, = /2gAh
Express Ah in terms of the length L Ah = L
of the pendulum: 4
Substitute for Ah in the expression for gL
v, and simplify to obtain: Vp = B3

38 A 3.0-kg block slides along a frictionless horizontal surface with a
speed of 7.0 m/s (Figure 7-41). After sliding a distance of 2.0 m, the block makes
a smooth transition to a frictionless ramp inclined at an angle of 40° to the
horizontal. What distance along the ramp does the block slide before coming
momentarily to rest?

Picture the Problem The pictorial representation shows the block in its initial,
intermediate, and final states. It also shows a choice for U, = 0. Let the system
consist of the block, ramp, and the earth. Because the surfaces are frictionless, the
initial kinetic energy of the system is equal to its final gravitational potential
energy when the block has come to rest on the incline.
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Apply conservation of mechanical W, =AK+AU

energy to the system to obtain: or, because Wy = 0,
AK+AU =0

Because K;=U; =0: -K +U;=0

2

Substituting for K; and Us yields: —%mvf +mgh=0=h= ;/_1

where h is the change in elevation of
the block as it slides to a momentary
stop on the ramp.

Relate the height h to the h=/sin@
displacement / of the block along the

ramp and the angle the ramp makes
with the horizontal:

Equate the two expressions for h and : v, v,
. {sinf=—=/= -
solve for / to obtain: 29 29siné
Substitute numerical values and (7.0m/s)’ 39
= =/39m
evaluate /: 2(9.81m/s* ) sin40°

39 - The 3.00-kg object in Figure 7-42 is released from rest at a height of
5.00 m on a curved frictionless ramp. At the foot of the ramp is a spring of force
constant 400 N/m. The object slides down the ramp and into the spring,
compressing it a distance X before coming momentarily to rest. (a) Find X.

(b) Describe the motion object (if any) after the block momentarily comes to rest?

Picture the Problem Let the system consist of the earth, the block, and the spring.
With this choice there are no external forces doing work to change the energy of
the system. Let U, = 0 at the elevation of the spring. Then the initial gravitational
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potential energy of the 3.00-kg object is transformed into kinetic energy as it slides
down the ramp and then, as it compresses the spring, into potential energy stored
in the spring.

(a) Apply conservation of W, =AK+AU =0

mechanical energy to the system to and, because AK =0,

relate the distance the spring is ) 2mgh
compressed to the initial potential —mgh+3kx" =0=x= B
energy of the block:

Substitute numerical values and \/2(3.()() kg)(g.g 1m/s> )(5_00 m)
evaluate X: X= 400 N/m

=] 0.858m

(b) The energy stored in the compressed spring will accelerate the block, launching
it back up the incline and the block will retrace its path, rising to a height of
5.00 m.

40 You are designing a game for small children and want to see if the
ball’s maximum speed is sufficient to require the use of goggles. In your game, a
15.0-g ball is to be shot from a spring gun whose spring has a force constant of
600 N/m. The spring will be compressed 5.00 cm when in use. How fast will the
ball be moving as it leaves the gun and how high will the ball go if the gun is
aimed vertically upward? What would be your recommendation on the use of

goggles?

Picture the Problem With U, chosen to be zero at the uncompressed level of the
spring, the ball’s initial gravitational potential energy is negative. Let the system
consist of the ball, the spring and gun, and the earth. The difference between the
initial potential energy of the spring and the gravitational potential energy of the
ball is first converted into the kinetic energy of the ball and then into gravitational
potential energy as the ball rises and slows ... eventually coming momentarily to
rest.

Apply conservation of mechanical W, =AK+AU,+AU =0
energy to the system as the ball or, because K; = Ug ;= Uy s =0,
leaves the gun to obtain: Imv? +mgx—1kx* =0

Solving for v, yields: k
Vv, = [— X— 2gjx
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Substitute numerical values and evaluate V¢

0.0150kg

This initial speed of the ball is fast enough to warrant the use of goggles.

y, = \/KM](&OSOO m)-2(9.81m/s?)|(0.0500m) =[ 9.95 m/s

Apply conservation of mechanical W, =AK+AU,+AU =0
energy to the system as the ball rises or, because AK = Uy =0,
to its maximum height to obtain: mgh + mgx—Lkx* =0
where h is the maximum height of the
ball.
Solving for h yields: he k
2mg
Substitut ical val d ¥
ubstitu e.numerlca values an . (600N/m)(0.0500 m)2 0.0500m
evaluate h: 2(0.0150kg)(9.81m/s”)
=|5.05m

41 +[SSM] A 16-kg child on a 6.0-m-long playground swing moves with a
speed of 3.4 m/s when the swing seat passes through its lowest point. What is the
angle that the swing makes with the vertical when the swing is at its highest
point? Assume that the effects due to air resistance are negligible, and assume
that the child is not pumping the swing.

Picture the Problem Let the system
consist of the earth and the child. Then
Weyt = 0. Choose U, = 0 at the child’s
lowest point as shown in the diagram to
the right. Then the child’s initial energy
is entirely kinetic and its energy when
it is at its highest point is entirely
gravitational  potential. We can
determine h from conservation of
mechanical energy and then use
trigonometry to determine6.

Using the diagram, relate &to h and
L:
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Apply conservation of mechanical W . =AK+AU =0

energy to the system to obtain: or, because Ky = Uy; =0,
-K,+U, =0

Substituting for K; and U, yields: v

—%mvi2+mgh:0:h:2—i

g
2
6 =cos™|1-_
2gL

(3.4m/s)’ j

— 111
9= cos [ 2(9.81m/5?)(6.0m)
~[26°

Substitute for h in equation (1) to
obtain:

Substitute numerical values and
evaluate &

42 e+ The system shown in Figure 7-44 is initially at rest when the lower
string is cut. Find the speed of the objects when they are momentarily at the same
height. The frictionless pulley has negligible mass.

Picture the Problem Let the system include the two objects and the earth. Then
Wext = 0. Choose Ug = 0 at the elevation at which the two objects meet. With this
choice, the initial potential energy of the 3.0-kg object is positive and that of the
2.0-kg object is negative. Their sum, however, is positive. Given our choice for
U, = 0, this initial potential energy is transformed entirely into kinetic energy.

Apply conservation of mechanical
energy to the system to obtain:

W, =AK +AU, =0

or, because Wey = 0,
AK = -AU,

Noting that m represents the sum of
the masses of the objects as they are
both moving in the final state,

1 2_1 2 _
smyv; —my; =-AU,

or, because v; = 0,

substitute for AK:

AU, is given by:

Substitute for AU, to obtain:

~2AU,
m

tmvl =-AU, = v, =
AUg = Ug,f _Ug,i = 0_("’3 _mz)gh

2lmy —m, )gh
T
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Substitute numerical values and evaluate v, :

=|1.4m/s

f

43 o

. 2(3.0kg —2.0kg)(0.50m)(9.81m/s? )
3.0kg+2.0kg

A block of mass m rests on an inclined plane (Figure 7-44). The

coefficient of static friction between the block and the plane is 4. A gradually
increasing force is pulling down on the spring (force constant k). Find the
potential energy U of the spring (in terms of the given symbols) at the moment the

block begins to move.

Picture the Problem Fs is the force
exerted by the spring and, because the
block is on the verge of sliding,

fs = fomax. We can use Newton’s ond
law, under equilibrium conditions, to
express the elongation of the spring as a
function of m, k and &
substitute in the expression for the
potential energy stored in a stretched or
compressed spring.

and then

Express the potential energy of the
spring when the block is about to
move:

Apply ZF = ma,under equilibrium

conditions, to the block:

Using f_  =uF and F =kx,

s, max

eliminate f

S, max

and F, from the X

equation and solve for X:

Substitute for X in the expression
for U and simplify to obtain:

ZFX :FS _-f‘s,max _mgSinez 0
and
ZFy =F —mgcosf=0

_ mg(sin@ + 4, cos 6’)
k

. -2
U :%k[mg(smﬁz,us cosd)

[mg(sin 6+ sz, cos 0)]°
2k
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44 = A 2.40-kg block is dropped onto a spring (Figure 7-45) with a force
constant of 3.96 x 10’ N/m from a height of 5.00 m. When the block is

momentarily at rest, the spring is compressed by 25.0 cm. Find the speed of the
block when the compression of the spring is 15.0 cm.

Picture the Problem Let the system
include the block, the spring, and the
earth. Let U, = 0 where the spring is
compressed 15.0 cm. Then the
mechanical  energy =~ when  the
compression of the spring is 15.0 cm
will be partially kinetic and partially
stored in the spring. We can use
conservation of mechanical energy to
relate the initial potential energy of the
system to the energy stored in the
spring and the kinetic energy of block
when it has compressed the spring

15.0 cm.

Apply conservation of mechanical
energy to the system to obtain:

BecauseU,; =U; = K, =0:
Substitute to obtain:

Solving for v yields:

—U,=0

/4

ext

=AU+AK =0

or

U,-U,+U,;-U;+K;-K; =0

-U,; +U;+K;=0

—mg(h+x)+ 1k +Imv> =0

2

V= \/2g(h+ x)—%

Substitute numerical values and evaluate Vv:

(3.96x10° N/m)(0.150m

=| 8.00m/s

y = \/2(9.81m/sz)(5.00m+O.ISOm)—

2.40kg

45 e [SSM] A ball at the end of a string moves in a vertical circle with
constant mechanical energy E. What is the difference between the tension at the
bottom of the circle and the tension at the top?



Picture the Problem The diagram
represents the ball traveling in a
circular path with constant energy. U,
has been chosen to be zero at the
lowest point on the circle and the
superimposed free-body diagrams show
the forces acting on the ball at the top
(T) and bottom (B) of the circular path.
We’ll apply Newton’s 2™ law to the
ball at the top and bottom of its path to
obtain a relationship between Tt and Tp
and conservation of mechanical energy
to relate the speeds of the ball at these
two locations.

Apply Z F.ga = M, to the ball at

radial

the bottom of the circle and solve for
TBI

=ma_.  to the ball at

radial

Apply z Fradial

the top of the circle and solve for Tr:

Subtract equation (2) from equation
(1) to obtain:

Using conservation of mechanical
energy, relate the energy of the ball
at the bottom of its path to its
mechanical energy at the top of the
circle:

Substituting in equation (3) yields:
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\\ A
o= __/_fug:()
mg
V2
T,-mg=m-=2
s —Mg R
and
V2
TBzngFmEB (D
V2
TT+mg=mET
and
V2
TT=—mg+mET 2)
2
TB—TT:mg+mV—B
R
VZ
—|-mg+m—
v2 v2
=m-=L-m-—=L+2m 3
R R g 3

1mvy =1mv; +mg(2R)

2 2
m——mV—T:4mg
R

6mg
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46 = A girl of mass m is taking a picnic lunch to her grandmother. She ties a
rope of length R to a tree branch over a creek and starts to swing from rest at a
point that is a distance R/2 lower than the branch. What is the minimum breaking
tension for the rope if it is not to break and drop the girl into the creek?

Picture the Problem Let the system
consist of the girl and the earth and let
U, = 0 at the lowest point in the girl’s
swing. We can apply conservation of
mechanical energy to the system to
relate the girl’s speed v to R. The force
diagram shows the forces acting on the
girl at the low point of her swing.
Applying Newton’s 2™ law to her will
allow us to establish the relationship
between the tension T and her speed.

Apply z Fradial = ma‘radial to the glrl

T-mg=m—
at her lowest point and solve for T:

and

V2
T=mg+m— 1
g+m— (1)

Apply conservation of mechanical W, =AK+AU =0
energy to the system to obtain: or, because K; = Uy =0,

K,-U,=0

R v’
Imv-mg—=0=>—=
2 95 =9

Substituting for K¢ and U; yields:

Substitute for V¥/R in equation (1) T=mg+mg=|2mg
and simplify to obtain:

47 = A 1500-kg roller coaster car starts from rest a height H=23.0 m
(Figure 7-46) above the bottom of a 15.0-m-diameter loop. If friction is
negligible, determine the downward force of the rails on the car when the upside-
down car is at the top of the loop.
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Picture the Problem Let the system
include the car, the track, and the earth.
The pictorial representation shows the
forces acting on the car when it is
upside down at the top of the loop.
Choose U, = 0 at the bottom of the
loop. We can express F, in terms of v
and R by apply Newton’s 2™ law to the
car and then obtain a second expression
in these same variables by applying
conservation of mechanical energy to
the system. The simultaneous solution
of these equations will yield an
expression for F, in terms of known
quantities.

Apply D F g = Ma,, to the car at F +mg = mﬁ
the top of the circle and solve for F: R
and
V2
F =m—-m 1
=M —mg (1)
Using conservation of mechanical W, =AK+AU =0
energy, relate the energy of the car at or, because K; =0,
the beginning of its motion to its K,+U,-U. =0
energy when it is at the top of the
loop:
Substitute for Ky, Uy, and U; to Imv? +mg(2R)-mgH =0
obtain:
v’ v? H
Solving for m—yields: m-—=2mg| —-2 2
g =Y R g( R J 2)

Substitute equation (2) in equation

H
(1) to obtain: F, = 2mg[E_ 2) ~mg

{2
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Substitute numerical values and evaluate F,:

F, =(1500kg) (9.81@#){%—5} ~[16.7kN
. m

48 e A single roller-coaster car is moving with speed v, on the first section
of track when it descends a 5.0-m-deep valley, then climbs to the top of a hill that
is 4.5 m above the first section of track. Assume any effects of friction or of air
resistance are negligible. (a) What is the minimum speed V, required if the car is
to travel beyond the top of the hill? (b) Can we affect this speed by changing the
depth of the valley to make the coaster pick up more speed at the bottom?
Explain.

Picture the Problem Let the system include the roller coaster, the track, and the
earth and denote the starting position with the numeral 0 and the top of the second
hill with the numeral 1. We can use the work-energy theorem to relate the
energies of the coaster at its initial and final positions. Let m be the mass of the
roller coaster.

(a) Use conservation of mechanical W, =AE_ = AK + AU
energy to relate the work done by

external forces to the change in the

energy of the system:

Because the track is frictionless, AK +AU =0

Weyi = 0: and
K, -K,+U,-U,=0

Substitute to obtain: I mv; —Limv; + mgh, —mgh, =0

Solving for vy yields: v, = \/V12 +2g(h —h,)

If the coaster just makes it to the top v, =/2g(h —h
of the second hill, v; = 0 and: 0 m
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Substitute numerical values and y, = \/ 2(9.8 1m/s> )(9 5m-5.0m)
evaluate vy:
=19.4m/s

(b) No. Note that the required speed depends only on the difference in the heights
of the two hills.

49 «»  The Gravitron single-car roller coaster consists of a single loop-the-
loop. The car is initially pushed, giving it just the right mechanical energy so the
riders on the coaster will feel "weightless” when they pass through the top of the
circular arc. How heavy will they feel when they pass through the bottom of the
arc (that is, what is the normal force pressing up on them when they are at the
bottom of the loop)? Express the answer as a multiple of mg (their actual weight).
Assume any effects of friction or of air resistance are negligible.

Picture the Problem Let the radius of the loop be R and the mass of one of the
riders be m. At the top of the loop, the centripetal force on her is her weight (the
force of gravity). The two forces acting on her at the bottom of the loop are the
normal force exerted by the seat of the car, pushing up, and the force of gravity,
pulling down. We can apply Newton’s 2™ law to her at both the top and bottom
of the loop to relate the speeds at those locations to m and R and, at b, to F, and
then use conservation of mechanical energy to relate v; and Vy.

_ : 2 2
Apply Z Froga = mar‘adial to the rider F_mg = mYe L F mg + mYe 1)
at the bottom of the circular arc: R R

Apply > Fg :.maradial to the rider mg =m v Lo R
at the top of the circular arc: R



638 Chapter 7

Apply conservation of mechanical
energy to the system to obtain:

Substitute for Ky, K¢, and U; to
obtain:

Solving forv; yields:

Substitute for v; in equation (1) and

simplify to obtain:

K,-K +U,-U,=0
or, because U, =0,
K,-K,-U,=0

1 2 _ 1 2 -
sMvg —2mv;, —2mgR =0

Vi =5gR

F:mg+m%: 6mg

That is, the rider will feel six times
heavier than her normal weight.

50 = A stone is thrown upward at an angle of 53° above the horizontal. Its
maximum height above the release point is 24 m. What was the stone’s initial
speed? Assume any effects of air resistance are negligible.

Picture the Problem Let the system
consist of the stone and the earth and
ignore the influence of air resistance.
Then Wy = 0. Choose U, = 0 as shown
in the figure. Apply conservation of
mechanical energy to describe the
energy transformations as the stone
rises to the highest point of its
trajectory.

Apply conservation of mechanical
energy to the system:

Because Ug= 0:

Substitute for the kinetic and potential
energies yields:

In the absence of air resistance, the
horizontal component of v is
constant and equal to v, =Vcos@:

W, =AK+AU =0
and
K,-K,+U,-U,=0
K,-K,+U, =0

1 2_1 2 —
Tmv; —Imv: +mgh=0

Im(veos@) —Imv? +mgh=0
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Solving for v yields: 2gh
V= |———
1—-cos* @
Substitute numerical values and 2(9.8 1m/s> )(24 m)
evaluate v: V= 1—cos253° =| 27m/s

51 = A 0.17-kg baseball is launched from the roof of a building 12 m above
the ground. Its initial velocity is 30 m/s at 40° above the horizontal. Assume any

effects of air resistance are negligible. (2) What is the maximum height above the
ground the ball reaches? (b) What is the speed of the ball as it strikes the ground?

Picture the Problem The figure shows
the ball being thrown from the roof of
the building. Let the system consist of
the ball and the earth. Then W = 0.
Choose U, = 0 at ground level. We can
use conservation of mechanical energy
to determine the maximum height of
the ball and its speed at impact with the
ground.

(a) Apply conservation of W, =AK+AU =0
mechanical energy to obtain: or

K, -K,+U, -U, =0
Substitute for the energies to obtain: LI mv; —1mv;} + mgh, —mgh, =0

Note that, at point 2, the ball is V, =V, cosd
moving horizontally and:

Substitute for v, and h; to obtain: 1m(v, cos@)’ —Lmv; +mgH
—mgh, =0

2

Solving for H yields: H=h, _;‘/—g(cos2 6’—1)

Substitute numerical values and (30m/ s)2

_ _ 2 o__
o aluate H: H=12m os1me] (cos?40°-1)

=|3Im
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(b) Apply conservation of
mechanical energy to the system to
relate the initial mechanical energy
of the ball to its just-before-impact
energy:

Substituting for K¢, K;, and U,
yields:

Solve for Vv, to obtain:

Substitute numerical values and
evaluate V.

52 oo

W, =AK +AU =0

or, because Us= 0,
K:-K,-U, =0

1 2_1 2 -
+mv; —4mv; —mgh, =0

V, =4V +2gh,

J30m/s)? +2(9.81m/s? J(12m)
=|34m/s

Ve

An 80-cm-long pendulum with a 0.60-kg bob is released from rest at

an initial angle of €, with the vertical. At the bottom of the swing, the speed of the
bob is 2.8 m/s. (a) What is €? (b) What angle does the pendulum make with the
vertical when the speed of the bob is 1.4 m/s? Is this angle equal to 46, ? Explain

why or why not.

Picture the Problem The figure shows
the pendulum bob in its release position
and in the two positions in which it is
in motion with the given speeds. Let
the system consist of the pendulum and
the earth and choose U, = 0 at the low
point of the swing. We can apply
conservation of mechanical energy to
relate the two angles of interest to the
speeds of the bob at the intermediate
and low points of its trajectory.

(a) Apply conservation of

mechanical energy to the system to
obtain:

Because K; = U;=0:

Refer to the pictorial representation
to see that U; is given by:

W, =AK+AU =0

or

K.-K +U,-U, =0.

K.-U =0 (1)

U, = mgh = mgL(1 - cos¥),)
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Substitute for K¢ and U; in equation Imv? —mgL(l1-cosé,)=0
(1) to obtain:

Solving for & yields: 4 v?
6, =cos | 1-
2gL

Substitute numerical values and [ (2.8m/s)’

luate 6: 6, =cos | 1- >
evaluate 6b: - 2(9.81m/5?)(0.80m)

=| 60°

(b) Letting primed quantities K'-K+U/'-U =0
describe the indicated location, use
conservation of mechanical energy to
obtain :
Because K; = 0: K+U,/-U. =0
Refer to the pictorial representation U, =mgh =mg L(l —Cos 6’)
to see that U/’ is given by:
Substitute for K,', U and U, : Im(v;' ) + mgL(1-cos®)

—mgL(1-cos6,)=0

Solving for € yields : 2
s Y 0 = cos™ {% +cos 00}

Substitute numerical values and evaluate @

(1.4m/s)’

_ 1
O =cos ] S081mis?){0.80m)

+cos60°} =|51°

No. The change in gravitational potential energy is linearly dependent on the
cosine of the angle rather than on the angle itself.

53 e+ The Royal Gorge bridge over the Arkansas River is 310 m above the
river. A 60-kg bungee jumper has an elastic cord with an unstressed length of 50
m attached to her feet. Assume that, like an ideal spring, the cord is massless and
provides a linear restoring force when stretched. The jumper leaps, and at her
lowest point she barely touches the water. After numerous ascents and descents,
she comes to rest at a height h above the water. Model the jumper as a point
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particle and assume that any effects of air resistance are negligible. (a) Find h. (b)

Find the maximum speed of the jumper.

Picture the Problem Choose U, =0
at the bridge and let the system be
the earth, the jumper and the bungee
cord. Then W = 0. We can use
conservation of mechanical energy to
relate to relate her initial and final
gravitational potential energies to the
energy stored in the stretched bungee
cord Us. In Part (b), we’ll use a
similar strategy but include a kinetic
energy term because we are
interested in finding her maximum
speed.

(a) Express her final height h above
the water in terms of L, d and the
distance X the bungee cord has
stretched:

Use conservation of mechanical
energy to relate her gravitational
potential energy as she just touches
the water to the energy stored in the
stretched bungee cord:

Because AK =0 and
AU = AU, + AUg:

Find the maximum distance the
bungee cord stretches:

Substitute numerical values and
evaluate k:

Express the relationship between
the forces acting on her when she
has finally come to rest X:

Bridge
L | Uy=0

L -+ O Final position

h=L-d-x (1)

W, =AK +AU =0

2mgL
52
where S is the maximum distance the

bungee cord has stretched.

—mgL+1ks* =0=k =

$=310m—-50 m=260 m.

_ 2(60kg)(9.81m/s?)(310m)
(260m)’
= 5.40N/m

Fo=kx—mg=0 :x:%



Substitute numerical values and
evaluate X:

Substitute in equation (1) and
evaluate h:

(b) Using conservation of
mechanical energy, express her
total energy E:

Because v is a maximum when K is
a maximum, solve for K to obtain:

Use the condition for an extreme
value to obtain:

Substitute numerical values and
evaluate X:

From equation (2) we have:

Solve for v to obtain:

Conservation of Energy

(60kg)(9.81m/s?)
5.40N/m

=109m

h=310m-50m-109m =15Im
=|0.15km

E=K+U,+U =E =0

K=-U,-U,

2
=mg(d +x)—Lkx’ ?

d—K:mg—kx:o :>x:m
dx k

(60kg)(9.81m/s?)
5.40N/m

=109m

1mv? =mg(d +x)— L kx?

2
V= \/29(d + x)—%

Substitute numerical values and evaluate v for X = 109 m:

y = \/2(9.81m/52)(50m+109m)— =[ 45m/s

2

(5.4N/m)(109m)’

60kg

643

Because c:j K =—k <0, x=109 m corresponds to Ky,,x and so Vv is a maximum.

X2

54 e

A pendulum consists of a 2.0-kg bob attached to a light 3.0-m-long
string. While hanging at rest with the string vertical, the bob is struck a sharp

horizontal blow, giving it a horizontal velocity of 4.5 m/s. At the instant the string
makes an angle of 30° with the vertical, what is (a) the speed, (b) the gravitational
potential energy (relative to its value is at the lowest point), and (C) the tension in

the string? (d) What is the angle of the string with the vertical when the bob

reaches its greatest height?
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Picture the Problem Let the system be
the earth and pendulum bob. Then

Wey = 0. Choose U, = 0 at the low
point of the bob’s swing and apply
conservation of mechanical energy to
the system. When the bob reaches the
30° position its energy will be partially
kinetic and partially potential. When it
reaches its maximum height, its energy
will be entirely potential. Applying
Newton’s 2™ law will allow us to
express the tension in the string as a
function of the bob’s speed and its
angular position.

(a) Apply conservation of

mechanical energy to relate the
energies of the bob at points 1 and 2:

Because U; =0:

The potential energy of the system
when the bob is at point 2 is given

by:

Substitute for U, in equation (1) to
obtain:

Solving for v, yields:

W, =AK+AU =0
or
K,-K, +U,-U, =0

1 2 _ 1 2 _
7mV2 —7mV1 +U2 =0

U, = mgL(1 - cos®)

(1)

1mv2 —1imv? +mgL(l-cos@)=0

v, = \/vf —2gL(1-cos6)

Substitute numerical values and evaluate Vs:

v, = (4.5m/s) —2(9.81m/s? )(3.0m)(1 - c0s30°) = 3.52m/s =

(b) From (a) we have:

U, =mgL(1-cos@)

Substitute numerical values and evaluate U;:

U, =(2.0kg)(9.81m/s?)(3.0m)(1- cos30°)=[ 7.9]

3.5m/s
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c) Appl F =ma_, toth 2
( ) pply Z radial radial o the T- mg cos@ = mV_Z
bob to obtain: L

Solving for T yields: 2
ving Y T=m(gcos9+vrz]

Substitute numerical values and evaluate T:

=| 25N

3.52m/s)’
3.0m

T = (2.01<g){(9.81m/s2)cos300 N

(d) When the bob reaches its greatest U=u_.=mg L(l —CoS Qmax)

height: and

-K,+U_ .. =0
Substitute for Ky and U : —1mv? + mgL(l-cosd,, )=0
Solve for Guay to obtain: . v;

0, =cos|1-—!

2gL
Substitute numerical values and il (4.5m/s)?
1 t 9 . Hmax =Ccos - - 2

evaluate Ghax: - 2(9.81m/s?)(3.0m)

= [ 49°

55 e [SSM] A pendulum consists of a string of length L and a bob of
mass M. The bob is rotated until the string is horizontal. The bob is then
projected downward with the minimum initial speed needed to enable the bob to
make a full revolution in the vertical plane. (2) What is the maximum kinetic
energy of the bob? (b) What is the tension in the string when the kinetic energy is
maximum?

Picture the Problem Let the system consist of the earth and pendulum bob. Then
Wey = 0. Choose U, = 0 at the bottom of the circle and let points 1, 2 and 3
represent the bob’s initial point, lowest point and highest point, respectively. The
bob will gain speed and kinetic energy until it reaches point 2 and slow down
until it reaches point 3; so it has its maximum kinetic energy when it is at point 2.
We can use Newton’s 2" law at points 2 and 3 in conjunction with conservation
of mechanical energy to find the maximum kinetic energy of the bob and the
tension in the string when the bob has its maximum kinetic energy.



646 Chapter 7

\ T2 /
/
A N / /
~ - 2 _ -
——m———-U,=0
mg
(a) Apply Z Fradial = maradial to the mg =m ﬁ = V32 — gL
bob at the top of the circle and solve L
for v;:
Apply conservation of mechanical K,-K,+U,-U,=0
energy to the system to express the or, because U, = 0,
relationship between K,, K3 and Us: K.-K,+U,=0
Solving for K; yields: K,=K =K,+U,
Substituting for K3 and Us yields: K, =imv:+mg(2L)
Substitute for v; and simplify to K, =1 m(gL)+ 2mgL =| 3 mgL
obtain:
— 2
(b) Applyz Fradial =ma, to the Fnet — T2 _ mg — mV_2
bob at the bottom of the circle L
and solve for T»: and
2
T,=mg+ mv—2
L (1)

Use conservation of mechanical K,-K,+U;-U, =0 where U, =0
energy to relate the energies of the and
bob at points 2 and 3 and solve for K, =K, +U, =imv;] + mg(2 |_)

Kzi
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Substitute for v; and K; to obtain: ImvZ =Im(gL)+mg(2L)=V2 = 5gL

Substitute for v; in equation (1) and _6mg

simplify to obtain:

56 e A child whose weight is 360 N swings out over a pool of water using a
rope attached to the branch of a tree at the edge of the pool. The branch is 12 m
above ground level and the surface of the water is 1.8 m below ground level. The
child holds onto the rope at a point 10.6 m from the branch and moves back until
the angle between the rope and the vertical is 23°. When the rope is in the vertical
position, the child lets go and drops into the pool. Find the speed of the child just
as he impacts the surface of the water. (Model the child as a point particle
attached to the rope 10.6 m from the branch.)

Picture the Problem Let the system
consist of the earth and child. Then
Wext = 0. In the figure, the child’s
initial position is designated with the
numeral 1; the point at which the child
releases the rope and begins to fall
with a 2, and its point of impact with
the water is identified with a 3. Choose
U, = 0 at the water level. While one
could apply conservation  of 1
mechanical energy between points 1
and 2 and then between points 2 and 3,
it is more direct to consider the energy
transformations between points 1 and
3.

Apply conservation of mechanical
energy between points 1 and 3:

Substitute for K3 and Uy;

Solving for vs yields:

W, =AK +AU =0
K,—K,+U,-U, =0

where U, and Kare zero.

1 mv? —mg[h+ L(1-cos)]=0

v, =+/2g[h+ L(1—cos )]

Substitute numerical values and evaluate Vvs:

v, =1/2(9.81m/s%)[3.2m +(10.6 m)(1 — cos23°)] =

8.9m/s
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57 = Walking by a pond, you find a rope attached to a stout tree limb that is
5.2 m above ground level. You decide to use the rope to swing out over the pond.
The rope is a bit frayed, but supports your weight. You estimate that the rope
might break if the tension is 80 N greater than your weight. You grab the rope at a
point 4.6 m from the limb and move back to swing out over the pond. (Model
yourself as a point particle attached to the rope 4.6 m from the limb.) (a) What is
the maximum safe initial angle between the rope and the vertical at which it will
not break during the swing? (b) If you begin at this maximum angle, and the
surface of the pond is 1.2 m below the level of the ground, with what speed will
you enter the water if you let go of the rope when the rope is vertical?

Picture the Problem Let the system
consist of you and the earth. Then there
are no external forces to do work on the
system and Wy = 0. In the figure, your
initial position is designated with the
numeral 1, the point at which you
release the rope and begin to fall with a
2, and your point of impact with the
water is identified with a 3. Choose

U, = 0 at the water level. We can apply
Newton’s 2™ law to the forces acting
on you at point 2 and apply
conservation of mechanical energy
between points 1 and 2 to determine the
maximum angle at which you can begin
your swing and then between points 1
and 3 to determine the speed with
which you will hit the water.

(a) Use conservation of mechanical W, =AK+AU =0
energy to relate your speed at point 2 or

to your potential energy there and at K,-K, +U,-U, =0
point 1:

Because K; =0: 1 mv; +mgh

—[mgL(1-cos@)+mgh]=0

Solve this equation for € to obtain:

2
Q:COS‘I{l—z\lﬁ} (1)

2 2

Apply z Fadiar = Ma,g;, to yourself T-mg = mVTz and T =mg + mVTZ

at point 2 and solve for T:



Because you’ve estimated that the
rope might break if the tension in it
exceeds your weight by 80 N, it
must be that:

Let’s assume that your mass is 70 kg.

Then:

Substitute numerical values in
equation (1) to obtain:

(b) Apply conservation of
mechanical energy between points 1
and 3:

Substitute for K3 and U, to
obtain:

Solving for v; yields:

Conservation of Energy

80 N)L
m

2
mVTz=80N:>V22=(

vi= w =5.26m"/s’
: 70 kg

@=cos'|1-

5.26m’/s?
2(9.81m/s*)(4.6m)

=19.65°=| 20°

W, =AK+AU =0

or, because Uz = K; =0,
K,-U =0

1mvZ —mglh+ L(1-cos@)]=0

Vv, = \/2g[h +L(1-cosd)]

Substitute numerical values and evaluate vs:

v, =/2(9.81m/s? )[1.8m +(4.6m)(1-c0s19.65°)] = [ 6.4m/s

649

58 e« A pendulum bob of mass m is attached to a light string of length L and
is also attached to a spring of force constant K. With the pendulum in the position
shown in Figure 7-47, the spring is at its unstressed length. If the bob is now
pulled aside so that the string makes a small angle & with the vertical and
released, what is the speed of the bob as it passes through the equilibrium
position? Hint: Recall the small-angle approximations: if #is expressed in

radians, and if |§| <1, then sin & ~tan 6~ @and cos O~ 1 - 16*.
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Picture the Problem Choose U, = 0 at
point 2, the lowest point of the bob’s
trajectory and let the system consist of
the bob and the earth. Given this
choice, there are no external forces
doing work on the system. Because

6@ << 1, we can use the trigonometric
series for the sine and cosine functions
to approximate these functions. The
bob’s initial energy is partially
gravitational potential and partially
potential energy stored in the stretched
spring. As the bob swings down to
point 2 this energy is transformed into
kinetic energy. By equating these
energies, we can derive an expression
for the speed of the bob at point 2.

Apply conservation of mechanical
energy to the system as the

pendulum bob swings from point 1
to point 2:

Substituting for K; and U, yields:

Note, from the figure, that when
0<<1, x~Lsinf:

Also, when << 1:

Substitute for sindand cos@ to
obtain:

Solving for v, yields:

59

W . =AK+AU =0

ext
or, because K; = U, =0,
K,-U =0

Lmy? —Lkx> —mgL(1-cos8)=0

Lmv? —Lk(Lsin@) —mgL(1-cos8)=0

sin@ ~ @ and cos@ ~1-16°

Lmv? —1k(LOY ~mgL[I-(1-16)]

vV, =

[SSM] A pendulum is suspended from the ceiling and attached to a

spring fixed to the floor directly below the pendulum support (Figure 7-48). The
mass of the pendulum bob is m, the length of the pendulum is L, and the force
constant is K. The unstressed length of the spring is L/2 and the distance between
the floor and ceiling is 1.5L. The pendulum is pulled aside so that it makes an
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angle @with the vertical and is then released from rest. Obtain an expression for
the speed of the pendulum bob as the bob passes through a point directly below
the pendulum support.

Picture the Problem Choose U, = 0 at
point 2, the lowest point of the bob’s
trajectory and let the system consist of
the earth, ceiling, spring, and pendulum
bob. Given this choice, there are no
external forces doing work to change
the energy of the system. The bob’s
initial energy is partially gravitational
potential and partially potential energy
stored in the stretched spring. As the
bob swings down to point 2 this energy
is transformed into kinetic energy. By
equating these energies, we can derive
an expression for the speed of the bob
at point 2.

Apply conservation of mechanical W..=AK+AU,+AU =0

energy to the system as the or, because K; = Ugs = U, =0,
pendulum bob swings from point 1 K,-U, -U, =0

to point 2: ’ ’

Substituting for K,, Ug 1, and Us» Lmy? —mgL(1-cos@)—Lhkx> =0 (1)
yields:

Apply the Pythagorean theorem to the lower triangle in the diagram to obtain:

(x+1L) = Lz[sin20+(%—cos0)2]= Lz[Sin20+%—3C050+COSZ 6?]
= [*(3-3cos6)

Take the square root of both sides of X+3L=L(%-3cosd
the equation to obtain:

Solving for X yields: X = L,/i%—3cos€i—%]
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Substitute for X in equation (1) to obtain:

Imy; =%kL2[1/(%—3cosn9)—%]2 +mgL(1-cos@)

Solving for v, yields:

v, = L\/Z%(l—cos9)+%( %—3c0s9—%)2

Total Energy and Non-conservative Forces

60 - In a volcanic eruption, 4.00 km® of mountain with an average density
of 1600 kg/m® was raised an average height of 500 m. (a) What is the minimum
amount of energy, in joules, that was released during this eruption? (b) The
energy released by thermonuclear bombs is measured in megatons of TNT, where

1 megaton of TNT = 4.2 x 10" J. Convert your answer for Part (a) to megatons of
TNT.

Picture the Problem The energy of the eruption is initially in the form of the
kinetic energy of the material it thrusts into the air. This energy is then
transformed into gravitational potential energy as the material rises.

(a) Express the energy of the E = mgAh
eruption in terms of the height Ah to

which the debris rises:

Relate the mass of the material to its m= pV
density and volume:

Substitute for m to obtain: E = pVgAh

Substitute numerical values and evaluate E:

E = (1600kg/m* )(4.00km* )(9.81m/s |(500m) = [ 3.14x10" J

(b) Convert 3.14x10'° J to megatons of TNT:

IMton TNT _

3.14x10"°J =3.14x10"° I x 1ox 105y~ L7-3Mton TNT
L X
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61 - To work off a large pepperoni pizza you ate on Friday night, on
Saturday morning you climb a 120-m-high hill. (a) Assuming a reasonable value
for your mass, determine your increase in gravitational potential energy.

(b) Where does this energy come from? (¢) The human body is typically 20
percent efficient. How much energy was converted into thermal energy? (d) How
much chemical energy is expended by you during the climb? Given that oxidation
(burning) of a single slice of pepperoni pizza releases about 1.0 MJ (250 food
calories) of energy, do you think one climb up the hill is enough?

Picture the Problem The work you did equals the change in your gravitational
potential energy and is enabled by the transformation of metabolic energy in your
muscles. Let the system consist of you and the earth and apply the conservation of
mechanical energy to this system.

(a) Your increase in gravitational AU, = mgAh
potential energy is:

Assuming that your mass is 70 kg, AU, = (70 kg)(9.81m/s2 )(120 m)
your increase in gravitational —82.4Kk]
potential energy is:

=| 82KkJ

(b) The energy required to do this work comes from the conversion of stored
internal chemical energy into gravitational potential energy and thermal energy.

(c) Because 20% of the energy you AE,... =—5AU,
expend is converted into

gravitational potential energy, five

times this amount is converted into

thermal energy:

Substitute the numerical value of AE, . =-5(82.4kJ)=-412k]
AU, and evaluate AEem: _[—410KJ
(d) Apply the Conservation Of Wext = AE‘mech + AEtherm + AEchem = 0
mechanical energy to the system to or, because you begin and end your
obtain: ascent at rest, AK = 0 and,

Al]g + AE'therm + AEvchem = 0
Solving for AE yields: AE ., =-AU,-AE, .
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Substitute numerical values and AE, .. = —(82.4 kJ ) - (— 412kJ )
evaluate AE : 33010

Given this small decrease in your mass, one climb of the hill is certainly not
enough to rid yourself of the caloric intake of even one slice of pizza.

62 + A 2000-kg car moving at an initial speed of 25 m/s along a horizontal
road skids to a stop in 60 m. (a) Find the energy dissipated by friction. (b) Find
the coefficient of kinetic friction between the tires and the road. (Note: When
stopping without skidding and using conventional brakes, 100 percent of the
kinetic energy is dissipated by friction within the brakes. With regenerative
braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy
is dissipated.)

Picture the Problem Let the car and the earth constitute the system. As the car
skids to a stop on a horizontal road, its kinetic energy is transformed into internal
(thermal) energy. Knowing that energy is transformed into heat by friction, we can
use the definition of the coefficient of kinetic friction to calculate its value.

(a) The energy dissipated by friction fAs = AE, .

is given by:
Apply the work-energy theorem for W =AE o + AB o = AE o + fAS
problems with kinetic friction: or, because AE__, = AK =-K. and
Wext = Oa
0=—imv} + fAs= fAs =imv;
Substitute numerical values and fAs = %(2000 kg)(25 m/ s)2

evaluate fASs: =6.25%x10°J=| 6.3x10° ]

i

b) Relate the kinetic friction force to
(®) fk:ﬂkmg:}ﬂk:m_g (1)

the coefficient of kinetic friction and
the weight of the car:

Express the relationship between the AE,...

p .. p . AE'therm:.f‘kAs:>.f‘k:—th
energy dissipated by friction and the As
kinetic friction force:

Substitute for f, in equation (1) to AE
obtain: mgAS
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Substitute numerical values and B 6.25%10° 7
evaluate z4: = (2000kg)9.81m/s? (60m)

=053

63 An 8.0-kg sled is initially at rest on a horizontal road. The coefficient
of kinetic friction between the sled and the road is 0.40. The sled is pulled a
distance of 3.0 m by a force of 40 N applied to the sled at an angle of 30° above
the horizontal. (a) Find the work done by the applied force. (b) Find the energy
dissipated by friction. (C) Find the change in the kinetic energy of the sled.

(d) Find the speed of the sled after it has traveled 3.0 m.

Picture the Problem Let the system
consist of the sled and the earth. Then

the 40-N force is external to the system. y

The free-body diagram shows the !

forces acting on the sled as it is pulled A7, F
along a horizontal road. The work done

by the applied force can be found using fo 7

the definition of work. To find the ~ — /;77—7;_5

energy dissipated by friction, we’ll use
Newton’s 2™ law to determine fx and
then use it in the definition of work.
The change in the kinetic energy of the
sled is equal to the net work done on it. vF
Finally, knowing the kinetic energy of
the sled after it has traveled 3.0 m will
allow us to solve for its speed at that

location.

(a) The work done by the applied W_ =F-5=Fscosf

force is given by:

Substitute numerical values and W, = (40 N)(3.0 m)cos 30°
evaluate Wex: ~103.91=[ 0.10kJ

(b) The energy dissipated by friction AE, .., = TAX = 1, F AX (1)

as the sled is dragged along the
surface is given by:

Apply D F, =ma, to the sled: F +Fsind-mg=0

Solving for F, yields: F. =mg—-Fsiné
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Substitute for Fy, in equation (1) to AE,.. = 1 Ax(mg —Fsin@)
obtain:

Substitute numerical values and evaluate AE

therm *

AE,... =(0.40)3.0m)(8.0kg)(9.81m/s* }- (40N)sin30°]=70.2J =[ 707
(C) Apply the work—energy theorem Wext = AEmech + AEtherm = AEmech + fAS
for systems with kinetic friction: or, because AE__, = AK +AU and
AU =0,
Wext = AK + AEtherm
Solving for AK yields: AK =W, —AE,,,
Substitute numerical values and AK =103.9J-702J=33.7] = 34)
evaluate AK:
d) Because K; = 0:
@ KszK:%mva:wf:w/%
m
Substitute numerical values and 2(33.7]
. V, = | ———"2=| 29m/s
evaluate v, : f 8.0kg

64 =  Using Figure 7-41, suppose that the surfaces described are not
frictionless and that the coefficient of kinetic friction between the block and the
surfaces is 0.30. Find (@) the speed of the block when it reaches the ramp, and (b)
the distance that the block slides along the inclined surface before coming
momentarily to rest. (Neglect any energy dissipated along the transition curve.)

Picture the Problem The pictorial representation shows the block in its initial,
intermediate, and final states. It also shows a choice for U, = 0. Let the system
consist of the block, ramp, and the earth. Then the kinetic energy of the block at
the foot of the ramp is equal to its initial kinetic energy less the energy dissipated
by friction. The block’s kinetic energy at the foot of the incline is partially
converted to gravitational potential energy and partially converted to thermal
energy (dissipated by friction) as the block slides up the incline. The free-body
diagram shows the forces acting on the block as it slides up the incline. Applying

Newton’s 2™ law to the block will allow us to determine f, and express the energy
dissipated by friction.
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1
—m
— 1
1.:] ::7.0 m/s
(a) Apply conservation of energy to W, =AE .. +AE,..,
the system while the block is moving =AK + AU + fAs
horizontally: or, because AU =W, =0,
0=AK + fAs=K, — K, + fAs
Solving for K, yields: K,=K — fAs
Substitute for K, K, and fAs to Tmv; =Llmv! - g mghx
obtain:
Solving for v, yields: v, = /‘,12 —2p, gAx
Substitute numerical values and evaluate v,:
2 2

v, =/(7.0m/s)* —2(0.30)9.81m/s” 2.0m) = 6.10m/s =[ 6.1m/s
(b) Apply conservation of energy to W, =AE ., +AE,...
the system while the block is on the =AK + AU + fAs
incline: or, because K; = U, =Wy =0,

0=-K,+U,+ fAs (1)

Apply Y F, =ma, to the block F —mgcosd=0= F, =mgcos6d
when it is on the incline:
Express fAs: fAs= fil=uF l=pumglcos@
The final potential energy of the U,=mg/lsin@
block is:
Substitute for U;, K,, and fAs in 0=—Lmv; +mglsin@+ y mglcosf

equation (1) to obtain:
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Solving for /¢ yields: ) e 1y?
g(sin@+ y, cos )
Substitute numerical values and . 1(6.10m/s)’
evaluate /: ~ (9.81m/s Jsin40°+(0.30)cos40°)
=/22m

65 e [SSM] The 2.0-kg block in Figure 7-49 slides down a frictionless
curved ramp, starting from rest at a height of 3.0 m. The block then slides 9.0 m
on a rough horizontal surface before coming to rest. (a) What is the speed of the
block at the bottom of the ramp? (b) What is the energy dissipated by friction?
(c) What is the coefficient of kinetic friction between the block and the horizontal
surface?

Picture the Problem Let the system include the block, the ramp and horizontal
surface, and the earth. Given this choice, there are no external forces acting that
will change the energy of the system. Because the curved ramp is frictionless,
mechanical energy is conserved as the block slides down it. We can calculate its
speed at the bottom of the ramp by using conservation of energy. The potential
energy of the block at the top of the ramp or, equivalently, its kinetic energy at the
bottom of the ramp is converted into thermal energy during its slide along the
horizontal surface.

(@) Let the numeral 1 designate the W, =AE . +AE
initial position of the block and the or, because Wey = K; = Ug = AEerm = 0,
numeral 2 its position at the foot of 0=1mvi—-mgAh=0=v, = /29Ah

the ramp. Choose U, = 0 at point 2
and use conservation of energy to
relate the block’s potential energy at
the top of the ramp to its kinetic
energy at the bottom:

Substitute numerical values and v,
evaluate Vs:

J2(0.81m/s?)3.0m) = 7.67m/s
=| 7.7m/s
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(b) The energy dissipated by friction W.+AK+AU=AE . +AK + AU
is responsible for changing the =0
thermal energy of the system:

Because AK = 0 for the slide: W, =-AU = (U, -U,)=U,
Substituting for U; yields: W, =mgAh

Substitute numerical values and W, =(2.0 kg)(9.81rn/s2 X3.0 m)=7589]
evaluate U;: _[597

(¢) The energy dissipated by friction AE,... = fAS = 1, mgAX
is given by:

Solving for g yields: _AEjem
e =
MQgAX
Substitute numerical values and B 58.9J
. :uk - 2
evaluate z4: (2.0 kg)(9.81m/s X9.0m)
=|0.33

66 = A 20-kg girl slides down a playground slide with a vertical drop of
3.2 m. When she reaches the bottom of the slide, her speed is 1.3 m/s. (&) How
much energy was dissipated by friction? (b) If the slide is inclined at 20° with the
horizontal, what is the coefficient of kinetic friction between the girl and the
slide?

Picture the Problem Let the system consist of the earth, the girl, and the slide.
Given this choice, there are no external forces doing work to change the energy of
the system. By the time she reaches the bottom of the slide, her potential energy at
the top of the slide has been converted into kinetic and thermal energy. Choose

U, = 0 at the bottom of the slide and denote the top and bottom of the slide as
shown in the figure. We’ll use the work-energy theorem with friction to relate
these quantities and the forces acting on her during her slide to determine the
friction force that transforms some of her initial potential energy into thermal
energy.
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(a) Express the work-energy
theorem:

Because U, = K| = W, = 0:

W, =AK +AU +AE

=0

therm

0=K,-U,+AE,. =0
or
AEthelrm = Ul - KZ = mgAh _%mvj

Substitute numerical values and evaluate AEerm:

AE

therm

(b) Relate the energy dissipated by
friction to the kinetic friction force
and the distance over which this
force acts:

Solve for z4 to obtain:

Apply Z F, =ma, to the girl and

solve for F,:

Referring to the figure, relate Ah
to As and &

Substitute for As and F, in equation
(1) and simplify to obtain:

— (20kg)(9.81m/s*)(3.2m) -

L
2

(20kg)(1.3m/s)’ =611J =| 0.61kJ
AE,... = fAs= u F As

AE
M= As tz;m (1

F,—-mgcosd=0=F, =mgcosé

AS = ‘Ah
sin @
1 = AE,..., _ AE,,,., tan@
. =
mg A cosd mgAh

sin @
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Substitute numerical values and evaluate z4:

(6117 )tan20°

-035
20kg)(9.81m/s* )(3.2m)

.Uk:(

67 e« In Figure 7-50, the coefficient of kinetic friction between the 4.0-kg
block and the shelf'is 0.35. (a) Find the energy dissipated by friction when the
2.0-kg block falls a distance y. (b) Find the change in mechanical energy Eech of
the two-block—Earth system during the time it takes the 2.0-kg block to fall a
distance Y. (€) Use your result for Part (b) to find the speed of either block after
the 2.0-kg block falls 2.0 m.

Picture the Problem Let the system consist of the two blocks, the shelf, and the
earth. Given this choice, there are no external forces doing work to change the
energy of the system. Due to the friction between the 4.0-kg block and the surface
on which it slides, not all of the energy transformed during the fall of the 2.0-kg
block is realized in the form of kinetic energy. We can find the energy dissipated
by friction and then use the work-energy theorem with kinetic friction to find the
speed of either block when they have moved the given distance.

(a) The energy dissipated by friction AE, .., = fAs =, m,qgy
when the 2.0-kg block falls a
distance y is given by:

Substitute numerical values and AE,.. =(0.35)4.0 kg)(9.8 1m/s’ )y
evaluate AE (13.7N)y _ (14N)y

therm *

(b) From the work-energy theorem W, =AE, .., +AE,...

with kinetic friction we have: or, because Wy = 0 and Epeen; = 0,
Emech = _AEtherm =~ (14 N)y

(c) Express the total mechanical %(m1 +m, )\/2 -m,gy+AE, .. =0

energy of the system:

Solving for v yields: 2(m,gy - AE,.., )
V — crm
m, +m,
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Substitute numerical values and evaluate Vv:

=|2.0m/s

. \/2 (2.0kg)(9.81m/s?)(2.0m)—(13.7 N)(2.0 m)
4.0kg+2.0kg

68 e A small object of mass m moves in a horizontal circle of radius r on a
rough table. It is attached to a horizontal string fixed at the center of the circle.
The speed of the object is initially vy. After completing one full trip around the
circle, the speed of the object is 0.5v. (a) Find the energy dissipated by friction
during that one revolution in terms of m, Vo, and r. (b) What is the coefficient of
kinetic friction? () How many more revolutions will the object make before
coming to rest?

Picture the Problem Let the system consist of the particle, the table, and the
earth. Then Wy = 0 and the energy dissipated by friction during one revolution is
the change in the thermal energy of the system.

(a) Apply the work-energy W, =AK+AU +AE,..
theorem with kinetic friction to or, because AU = Wy = 0,
obtain: 0=AK+AE,_
Substitute for AK; and simplify to E e = —(5mvZ =1 mv?)
obtain: 2 2
= ~[tmdy, ) —4m(w, ]
=| imv;

(b) Relate the energy dissipated by AE, ... = fAS= 1, mgAs = ,ukmg(27z'r)
friction to the distance traveled and
the coefficient of kinetic friction:

Substitute for AE and solve for AE, .~ 3mvy; 3v,

M to obtain: e = 27mgr - 2amgr | 16agr

(c) Because the object lost 2 K, in one revolution, it will only require another 1/3

revolution to lose the remaining 4 K

69 e [SSM] The initial speed of a 2.4-kg box traveling up a plane inclined
37° to the horizontal is 3.8 m/s. The coefficient of kinetic friction between the box
and the plane is 0.30. (a) How far along the incline does the box travel before
coming to a stop? (b) What is its speed when it has traveled half the distance
found in Part (a)?
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Picture the Problem The box will slow down and stop due to the dissipation of
thermal energy. Let the system be the earth, the box, and the inclined plane and
apply the work-energy theorem with friction. With this choice of the system, there
are no external forces doing work to change the energy of the system. The
pictorial representation shows the forces acting on the box when it is moving up

the incline.
4 x
/4\)\ -
ey rﬁ\

e

(a) Apply the work-energy theorem W, =AE_., +AE,...

with friction to the system: =AK +AU +AE,

Substitute for AK, AU, and AE, 0=1imv; —Imv; +mgh+ 4 F L (1)
to obtain:

Referring to the free-body diagram, F, =mgcosd

relate the normal force to the weight
of the box and the angle of the
incline:

Relate h to the distance L along h=Lsiné
the incline:

Substitute in equation (1) to obtain:
,mgLcos@+Lmv; —Limv; + mgLsind=0 ()
2

Solving equation (2) for L yields: L

29(1, cos@+sinH)
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Substitute numerical values and evaluate L:

(3.8m/s)

=0.8747m =| 0.87
2(9.81m/s? ] (0.30)c0s37° +5in37°] " -

(b) Let V., represent the box’s speed when it is halfway up the incline.

Then equation (2) becomes:

#,mg(LL)cos@ +4mvi, —4mvg +mg(L)sing =0

Solving for Vi yields : vV, = \/vg —gL(sin@+ g, cosb)

Substitute numerical values and evaluate v, :

vy =J(3.8m/s) —(0.81m/s*)0.8747m)fsin3 7 + (0.30)c0s37]| = 2.7mss

70 eee A block of mass m rests on a plane inclined an angle € with the
horizontal (Figure 7-51). A spring with force constant K is attached to

the block. The coefficient of static friction between the block and plane is z&. The
spring is pulled upward along the plane very slowly. (a) What is the extension of
the spring the instant the block begins to move? (b) The block stops moving just
as the extension of the contracting spring reaches zero. Express z4 (the kinetic
coefficient of friction) in terms of s and 6.

Picture the Problem Let the system
consist of the earth, the block, the
incline, and the spring. With this choice
of the system, there are no external
forces doing work to change the energy
of the system. The free-body diagram
shows the forces acting on the block
just before it begins to move. We can
apply Newton’s 2" Jaw to the block to
obtain an expression for the extension
of the spring at this instant. We’ll apply
the work-energy theorem with friction
to the second part of the problem.
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(a) Apply Y F =md to the block D F = Foing = o —Mgsing =0

when it is on the verge of sliding: and
sz =F,-mgcosé =0

Eliminate Fp, fsmax, and Fgpring kd — ¢ mgcosd —mgsind =0
between the two equations to obtain:

Solving for d yields:
Olving for £ yields d= %(sin@hus cosf)
(b) Begin with the work-energy W = AE oon + AE e
theorem with friction and no work =AK+AU +AU +AE, .,

being done by an external force:

Because the block is at rest in both AU, +AU +AE .. =0 (1)
its initial and final states, AK =0
and:
Let U, = 0 at the initial position of AU, =U, ;. —U, i = Mgh -0
the block. Then: = mgd sin &
Express the change in the energy AU, =U o U o =0-1kd’
stored in the spring as it relaxes to its _ _1kd?
unstretched length: 2
The energy dissipated by friction is: AE,.., = fAs=f, d =y F.d
= 1, mgd cos @
Substitute in equation (1) to obtain: mgd sin @ —Lkd? + 4, mgd cos& =0
or

mgsind —+kd + z,mgcosd =0
Substituting for d (from Part (a)) yields:

mgsin€—+ {%(sin@ﬂus cos@)}ﬂukmg cos@ =0

Finally, solve for g to obtain: g =| +(g, —tan@)
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Mass and Energy

71 -

(a) Calculate the rest energy of 1.0 g of dirt. (b) If you could convert

this energy completely into electrical energy and sell it for $0.10/kW-h, how
much money would you take in? (C) If you could power a 100-W light bulb with
this energy, for how long could you keep the bulb 1it?

Picture the Problem The intrinsic rest energy in matter is related to the mass of
matter through Einstein’s equation E, = mc”.

(a) The rest energy of the dirt is
given by:

Substitute numerical values and

evaluate Ey:

(b) Express kW-h in joules:

Convert 8.988 x 10" J to kW-h:

Determine the price of the electrical
energy:

(c) Relate the energy consumed to its
rate of consumption and the time:

E, =mc’

E, =(1.0x107 kg)(2.998x10° m/s)’
=8.988x10”J=|9.0x10"7J

1kW -h = (1x10° J/s) 1hx

36005]
h

=3.60x10°J
8.988x10" J = (8.988x10" J)
kW -h
X —
3.60x10°J

=2.50x10"kW-h

Price = (2.50 x107 kKW - h)(w)
kW -h

=| $2.5x10°

AE = PAt :>At=%
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Substitute numerical values and _ 8.988x 10”7

— 11
evaluate At: 100W =8.988x10"'s

=19.0x10"s

—8.988x10sx— 1Y
31561075

=1 2.8x10"y

72 e One kiloton of TNT, when detonated, yields an explosive energy of
roughly 4 x 10> J. How much less is the total mass of the bomb remnants after
the explosion than before? If you could find and reassemble the pieces, would this
loss of mass be noticeable?

Picture the Problem We can use the equation expressing the equivalence of

energy and matter, E = Amc”, to find the reduction in the mass of the bomb due
to the explosion.

Solve E = Amc* for Am: A = E
m=-
c
Substitute numerical values and 4%x1077 =
evaluate Am: Am = (2 998 % 10° m/s)2 ~| 4x10"kg
Express the ratio of Am to the mass Am 4x107° kg

of the bomb before its explosion: 2000 1b lkg
X

Myomb 1 kton X
ton 2.2046 1b

~5x107!

No, not noticeable! The mass change, compared to the mass of the bomb, is
negligible.

73 e Calculate your rest energy in both mega electron-volts and joules. If
that energy could be converted completely to the kinetic energy of your car,
estimate its speed. Use the nonrelativistic expression for kinetic energy and
comment on whether or not your answer justifies using the nonrelativistic
expression for kinetic energy.

Picture the Problem Your rest energy is given by Eo = mc?.

Your rest energy if given by: E, =mc’
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Assuming that your mass is 70 kg, E, = (70 kg)(2.998 «10° rn/s)2

substitute numerical values and

evaluate Eo: =6.292x10" J=| 6.3x10" J

Convert Ej to MeV to obtain: E, =6292x10" Jx leV -
1.602x107"J

=[3.9x10* MeV

The nonrelativistic expression for the s K

kinetic energy of your car is: K=3mv=v= m

Assumirgg the mass qf your car to be 2(6.292 %10'® J) g

1.4 x 10° kg (approximately 3000 1b), V= 1.4x10° kg ~[9.5x10" m/s

substitute numerical values and
evaluate Vv:

As expected, this result is close enough to the speed of light (and thus incorrect)
because the non-relativistic expressions do not apply if the car’s energy is of the
order of the magnitude of its rest energy. In this case we assumed they were
equal.

74 . If a black hole and a "normal” star orbit each other, gases from the
normal star falling into the black hole can have their temperature increased by
millions of degrees due to frictional heating. When the gases are heated that
much, they begin to radiate light in the X-ray region of the electromagnetic
spectrum (high-energy light photons). Cygnus X-1, the second strongest known
X-ray source in the sky, is thought to be one such binary system; it radiates at an
estimated power of 4 x 10*' W. If we assume that 1.0 percent of the in-falling
mass escapes as X ray energy, at what rate is the black hole gaining mass?

Picture the Problem We can differentiate the mass-energy equation to obtain an
expression for the rate at which the black hole gains energy.

Using the mass-energy relationship, E =(0.010)mc>

express the energy radiated by the

black hole:

Differentiate this expression to dE d 2 , dm
obtain an expression for the rate at dat E[(O.OlO)mc ]_ 0.010) dt
which the black hole is radiating

energy:

Solving for dm/dt yields: dm  dE/dt

dr (0.010)
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Substitute numerical values and dm 4x10*" watt
evaluate dm/dt: dt  (0.010)(2.998x10° ms)’
~| 4x10"° kg/s

75 [SSM] You are designing the fuel requirements for a small fusion
electric-generating plant. Assume 33% conversion to electric energy. For the
deuterium—tritium (D-T) fusion reaction in Example 7-18, calculate the number
of reactions per second that are necessary to generate 1.00 kW of electric power.

Picture the Problem The number of reactions per second is given by the ratio of
the power generated to the energy released per reaction. The number of reactions
that must take place to produce a given amount of energy is the ratio of the energy
per second (power) to the energy released per second.

In Example 7-18 it is shown that the energy per reaction is 17.59 MeV. Convert
this energy to joules:

17.59MeV = (17.59MeV)(1.602x 107" J/eV ) = 28.18x10™° ]

Assuming 33% conversion to electric energy, the number of reactions per second
is:

1000J/s N
(0.33)(28.18x 107 J/reaction)

1.1x10" reactions/s

76 e Use Table 7-1 to calculate the energy needed to remove one neutron
from a stationary alpha particle, leaving a stationary helion plus a neutron with a
kinetic energy of 1.5 MeV.

Picture the Problem The energy required for this reaction is the sum of 1.5 MeV
and the difference between the rest energy of “He and the sum of the rest energies
of a helion (*He) and a neutron.

The required energy is given by: E . =E+K, (1)
Express the reaction: ‘He—’He+n
The rest energy of a neutron 939.573 MeV

(Table 7-1) is:
The rest energy of *He (Table 7-1) is: 3727.409 MeV

The rest energy of “He is: 2808.432 MeV
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Substitute numerical values to find the difference in the rest energy of “He and the
sum of the rest energies of *He and n:

E =[3727.409 —(2808.432+939.573)] MeV = 20.596 MeV

Substitute numerical values in E
equation (1) and evaluate E

=20.596 MeV +1.5 MeV
total =[22.1MeV

total

77 + A free neutron can decay into a proton plus an electron and an electron
antineutrino [an electron antineutrino (symbol v, ) is a nearly massless elementary
particle]:n — p+e” +v,. Use Table 7-1 to calculate the energy released during
this reaction.

Picture the Problem The energy released during this reaction is the difference
between the rest energy of a neutron and the sum of the rest energies of a proton
and an electron.

The rest energy of a proton 938.280 MeV
(Table 7-1) is:

The rest energy of an electron 0.511 MeV
(Table 7-1) is:

The rest energy of a neutron 939.573 MeV

(Table 7-1) is:

Substitute numerical values to find E =[939.573-(938.280+0.511)] MeV
the difference in the rest energy of a -] 0.782MeV

neutron and the sum of the rest
energies of a positron and an
electron:

78 e+ During one type of nuclear fusion reaction, two deuterons combine to
produce an alpha particle. (a) How much energy is released during this reaction?
(b) How many such reactions must take place per second to produce 1 kW of
power?
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Picture the Problem The reaction is°H+"H—*He + E . The energy released in
this reaction is the difference between twice the rest energy of “H and the rest
energy of *He. The number of reactions that must take place to produce a given
amount of energy is the ratio of the energy per second (power) to the energy
released per reaction.

(a) The rest energy of ‘He
(Table 7-1) is: 3727.409 MeV

The rest energy of a deuteron, “H,

(Table 7-1) is: 1875.628 MeV

The energy released in the reaction E =[2(1875.628)—3727.409] MeV

is: -19
—23.847MeV x L002x10 ]

eV
=3.820x10"J=|3.82x107"%]J

(b) The number of reactions per second is:

1.00x10% /s B
3.820x107"* J/reaction

2.62x10" reactions/s

79 e A large nuclear power plant produces 1000 MW of electrical power by
nuclear fission. (&) By how many kilograms does the mass of the nuclear fuel
decrease by in one year? (Assume an efficiency of 33 percent for a nuclear power
plant.) (b) In a coal-burning power plant, each kilogram of coal releases 31 MJ of
thermal energy when burned. How many kilograms of coal are needed each year
for a 1000-MW coal-burning power plant? (Assume an efficiency of 38 percent
for a coal-burning power plant.)

Picture the Problem The annual consumption of matter by the fission plant is
the ratio of its annual energy output to the square of the speed of light. The
annual consumption of coal in a coal-burning power plant is the ratio of its
annual energy output to energy per unit mass of the coal.

(a) The yearly consumption of Am = E
matter is given by: ec’

where E is the energy to be generated
and ¢ is the efficiency of the plant.
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Because the energy to be generated Am = PAt
is the product of the power output of gc’
the plant and the elapsed time:

(1

Substitute numerical values and evaluate Am:

;
(1000 MW)[1 g 3:156x10 sj
Am = Y ~[T.1kg
(0.33)(2.998x10° m/s
(b) For a coal-burning power Am = PAt
plant, equation (1) becomes: coal . (energy releasedj
unit mass
Substitute numerical values and evaluate AmMgya:
;
(1000 MW)[I g 315610 sj
Yy 9
Am__ = =12.7x10"k
col (0.38)(31 MJ/kg) g

Remarks: 2.7 x 10° kg is approximately 3 million tons!

Quantization of Energy

80 e+ A mass on the end of a spring with a force constant of 1000 N/kg
oscillates at a frequency of 2.5 oscillations per second. (a) Determine the quantum
number, N, of the state it is in if it has a total energy of 10 J. (b) What is its ground
state energy?

Picture the Problem The energy number n of a state whose energy is E is given
by E = (n+1)hf where h is Planck’s constant and f is the frequency of the state.

(a) The energy of the vibrational E = (n + %)hf

state is given by: or, because we expect N to be very

large,

Eznhf:>n:£
hf
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Substitute numerical values and . 10J
evaluate n: (6.63x107 1-5)(2.557)
=] 6.0x10>
(b) The ground state energy of the E,=1hf
oscillator is the energy of the system
when n = 0:
Substitute numerical values and E, = %(6.63 <1074 7. S)(2_5 S—l)

evaluate Ej: 31077
= IDX

81 e Repeat Problem 80, but consider instead an atom in a solid vibrating at
a frequency of 1.00 x 10'* oscillations per second and having a total energy of
2.7¢eV.

Picture the Problem The energy number n of a state whose energy is E is given
by E = (n+1)hf where h is Planck’s constant and f is the frequency of the state.

(d) The energy o.f the vibrational E_ (n L1 )h foon E 1
state is given by: 2 hf 2
Substitute numerical values and 1.602x10™"J
evaluate n: 2.7evx
: eV 1
n= 34 % 1) A
(6.63x107 J-s)(10"s7) 2
(b) The ground state energy of the E,=1hf
oscillator is the energy of the system
when n=0:
Substitute numerical values and E, = %(6.63 x107*J- s)(lO14 s‘l)
evaluate Ey: leV
=3315x107" Jx——————
1.602x107" J

0.21eV

General Problems

82 + A block of mass m, starting from rest, is pulled up a frictionless
inclined plane that makes an angle & with the horizontal by a string parallel to the
plane. The tension in the string is T. After traveling a distance L, the speed of the
block is V. Derive an expression for work done by the tension force.



674 Chapter 7

Picture the Problem Let the system consist of the block, the earth, and the
incline. Then the tension in the string is an external force that will do work to
change the energy of the system. Because the incline is frictionless; the work done
by the tension in the string as it displaces the block on the incline is equal to the
sum of the changes in the kinetic and gravitational potential energies.

Relate the work done on the block Wi sion force = Wo =AU +AK (1)
by the tension force to the changes

in the kinetic and gravitational

potential energies of the block:

Referring to the figure, express the AU =mgAh = mgL sin &
change in the potential energy of

the block as it moves from position

1 to position 2:

Because the block starts from rest: AK =K, =L1mv]

Substitute for AU and AK in W, o tore = | mgLsin@+Lmy?
equation (1) to obtain:

83 - A block of mass m slides with constant speed Vv down a plane inclined
at angle @with the horizontal. Derive an expression for the energy dissipated by
friction during the time interval At.

Picture the Problem Let the system include the earth, the block, and the inclined
plane. Then there are no external forces to do work on the system and W_, =0.

Apply the work-energy theorem with friction to find an expression for the energy
dissipated by friction.
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Apply the work-energy theorem W, =AK+AU+AE, =0

with friction to the block:

therm

Because the velocity of the block is AE,... =—AU =-mgAh
constant, AK = 0 and:

In time At the block slides a Ah = —vAtsin @
distance VAt . From the figure:

Substitute for Ah to obtain: AE,_ . =| mgvAtsin@

84 o In particle physics, the potential energy associated with a pair of
quarks bound together by the strong nuclear force is in one particular theoretical
model written as the following function: U(r)=—(a/r)+kr , where k and « are

positive constants, and r is the distance of separation between the two quarks.

(a) Sketch the general shape of the potential-energy function. (b) What is a
general form for the force each quark exerts on the other? () At the two
extremes of very small and very large values of r, what does the force simplify to?

Picture the Problem The force between the two quarks is given by F = _dl;_(r).
r
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(a) The following graph was plotted using a spreadsheet program. & was set to 1

and k was set to 5.

6
4 - - -

w27 _ - _—//

g 0 === / N

2 27 /’ —_—— T

2 4 —

° / == _alpha/r

© 6 / == =k

> -8 / —_alphalr + kr

10 - l
-12 r
0.0 0.2 0.4 0.6 0.8 1.0
r, arbitrary units
(b) F is given by: Fe dU(r)
dr

Substitute for U(r) and evaluate F to d( a a
obtain: Fz_E _7+k" = _r_2+k

>> 1;
(c) Forr>>1: F_ >k
Forr<<1:

F;<<1 — _%
r

85

[SSM] You are in charge of "solar-energizing” your grandfather’s

farm. At the farm’s location, an average of 1.0 kW/m? reaches the surface during
the daylight hours on a clear day. If this could be converted at 25% efficiency to
electric energy, how large a collection area would you need to run a 4.0-hp

irrigation water pump during the daylight hours?

Picture the Problem The solar constant is the average energy per unit area and
per unit time reaching the upper atmosphere. This physical quantity can be
thought of as the power per unit area and is known as intensity.
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Letting |_ ... represent the intensity el :E = P

of the solar radiation at the surface of A I, .

the earth, express | ... asafunction  where ¢is the efficiency of conversion
of power and the area on which this to electric energy.

energy is incident:

Substitute numerical values and 4.0 hpx 746 W

evaluate A: _ hp  _ 12 m?

(0.25)(1.0 kW/m?)

86 e  The radiant energy from the Sun that reaches Earth’s orbit is

1.35 kW/m”. (@) Even when the Sun is directly overhead and under dry desert
conditions, 25% of this energy is absorbed and/or reflected by the atmosphere
before it reaches Earth’s surface. If the average frequency of the electromagnetic

radiation from the Sun is 5.5 x 10" Hz, how many photons per second would be
incident upon a 1.0-m” solar panel? (b) Suppose the efficiency of the panels for
converting the radiant energy to electrical energy and delivering it is a highly
efficient 10.0%. How large a solar panel is needed to supply the needs of a 5.0-hp
solar-powered car (assuming the car runs directly off the solar panel and not
batteries) during a race in Cairo at noon on March 21? () Assuming a more-
realistic efficiency of 3.3% and panels capable of rotating to be always
perpendicular to the sunlight, how large an array of solar panels is needed to
supply the power needs of the International Space Station (ISS)? The ISS
requires about 110 kW of continuous electric power.

Picture the Problem The number of photons n incident on a solar panel is related
to the energy E of the incident radiation ( E = nhf ) and the intensity of the solar

radiation is the rate at which it delivers energy per unit area.

(a) The number of photons n incident B _E

on the solar panel is related to the E =nhf =n= ﬁ (M
energy E of the radiation:

The inter.lsity | of the radiation is I P_E o E = IAAf

given by: A AAt

Substituting for E in equation (1) " 1AAt

yields: hf
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The number of photons arriving per n IA4 n_ &l'4

unit time is given by: At ﬁ ot At hf
where I’ is the unreduced solar constant
and ¢ is the percentage of the energy

absorbed.
Substitute numerical values and n (().75)(1 35 kW/m? )(1 0 mz)
eva}lgate the numl?er of photons Ar (6. 631024 J- s)(S. 5% 10" s—l)
arriving per unit time:
=|2.8x10""s™
(b) The effective intensity of the _ P P
radiation is given by: I= P A= el 2)
where ¢1is the efficiency of energy
conversion.
Substitute numerical values and 746 W
. 5.0hpx
evaluate A: hp 5
= 2 = 28 m
(0.10)(1.35 kW/m?)
(c) Substitute numerical values in 746 W
. . 5.0hpx
equation (2) to obtain: hp 5

(0.033)(1.35 kW/m?)

87 e« In 1964, after the 1250-kg jet-powered car Spirit of America lost its
parachute and went out of control during a run at Bonneville Salt Flats, Utah, it
left skid marks about 8.00 km long. (This earned a place in the Guinness Book
of World Records for longest skid marks.) (a) If the car was moving initially
at a speed of about 800 km/h, and was still going at about 300 km/h when it
crashed into a brine pond, estimate the coefficient of kinetic friction z. (b) What
was the kinetic energy of the car 60 s after the skid began?

Picture the Problem Let the system include the earth and the Spirit of America.
Then there are no external forces to do work on the car and W = 0. We can use
the work-energy theorem for problems with kinetic friction to relate the
coefficient of kinetic friction to the given information. A constant-acceleration
equation will yield the car’s velocity when 60 s have elapsed.



(a) Apply the work-energy theorem
with friction to relate the
coefficient of kinetic friction g4 to
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W_=AK+AU+AE, =0

ext therm
or
Ly —1mv? + umgAs =0
7 my; —5;my; + [ mgASs =

the initial and final kinetic energies

of the car:
Solving for s yields: v —v}
e =———
2gAs

Substitute numerical values and evaluate z:

2 2 2
800 XM | _(300Km ) |, LD
h h 3600s)
= 2(9.81m/s?)(8.00km) L

(b) The kinetic energy of the car K=1imv’ (1)
as a function of its speed is:

Using a constant-acceleration v=vy,+at (2)
equation, relate the speed of the car

to its acceleration, initial speed,

and the elapsed time:

Express the braking force acting on F.=—-f =—-umg=ma

the car:

Solving for a yields: a=-u9

Substitute for a in equation (2) to v=v,— U8t

obtain:

Substituting for v in equation (1)
yields an expression for the kinetic
energy of car as a function of the
time it has been skidding:

Substitute numerical values and evaluate K(60 s):

km T1h
K(60s)=1(1250kg)| 800—
(605) =+ (1250ke) 5005

—(0.270)(0.81m/s?)(60s)|* =[ 54G1

00s
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88 e« A T-bar tow is planned in a new ski area. At any one time, it will be
required, to pull a maximum of 80 skiers up a 600-m slope inclined at 15° above
the horizontal at a speed of 2.50 m/s. The coefficient of kinetic friction between
the skiers skis and the snow is typically 0.060. As the manager of the facility,
what motor power should you request of the construction contractor if the mass of
the average skier is 75.0 kg. Assume you want to be ready for any emergency and
will order a motor whose power rating is 50% larger than the bare minimum.

Picture the Problem The free-body
diagram shows the forces acting on a
skier as he/she is towed up the slope at
constant speed. We can apply the work-
energy theorem to find the minimum
rate at which the motor will have to
supply energy to tow the skiers up an
incline whose length is /.

Apply the work-energy theorem W =AE,  ,+AE,

to the skiers: =AK+AU,+AE, .,
Because AK=0,AE, . = f.!,and W, =m_,glsin@+ f ! (1)
AU, =mglsin@ :

The e?(ternal w.ork. done by the W._-—P At=P. L

electric motor is given by: v

where V is the speed with which the
skiers are towed up the incline.

The kinetic friction force is given by: fi=mF =pm gcosl

Subst}tutlng f(?r W,y and f in P L —m, glsin@+ um_ gcosd
equation (1) yields:

Solve for P_. to obtain: P =m,gv(sind+ u, cosé)
Because you want a safety factor P=15m, gv(sin 0+, cos 49)

of 50%, the power output of the

motor you should order should
be 150% of P, :
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Substitute numerical values and evaluate P:

P =(1.5)(80)(75.0kg)(9.81m/s )(2.50 m/s)[sin 15.0° +(0.060)cos15.0°]
=[70kw

Remarks: We could have solved this problem using Newton’s 2" law.

89 e A box of mass m on the floor is connected to a horizontal spring of
force constant k (Figure 7-52). The coefficient of kinetic friction between the box
and the floor is z4. The other end of the spring is connected to a wall. The spring
is initially unstressed. If the box is pulled away from the wall a distance d, and
released, the box slides toward the wall. Assume the box does not slide so far that
the coils of the spring touch. (a) Obtain an expression for the distance d; the box
slides before it first comes to a stop, (b) Assuming d; > dy, obtain an expression
for the speed of the box when has slid a distance d, following the release.

(c) Obtain the special value of z4 such that d; = dy.

Picture the Problem Let the system include the Earth, the box, and the surface
on which the box slides and apply the work-energy theorem for problems with
kinetic friction to the box to derive the expressions for distance the box slides and
the speed of the box when it first reaches its equilibrium position. The pictorial
representation summarizes the salient features of this problem.

A

m | . F, im .
1 1 S

B e ———
1
1

fo T :
TTATI TIPS
< dO

J-----
N
N
N
N
N
N
N
N\
N\
N
N

x=0
v=0

(a) Apply the work-energy theorem W.=AE  =AE ., +AE,

o prtloms wih et Heton 10 o, s W 30,0,
X v AEperm = ilAX, and AE. . = AU

X =d; to obtain: mech — 2>
AU + fLAx =0

Substitute for AU and AX to obtain: %k(d1 _d0)2 —lkd+fd, =0 (1)
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Apply 2 F, =0to the box to obtain: F,-F,=0=>F,=F,=mg

f, is given by: f, =4 F =u.mg

Substituting for f, in equation (1) %k(d1 - d0)2 ~1kdZ + ¢, mgd, =0
yields:
Solve for d; to obtain:

1 d, =| 2d, - 2£4M9
K

(b) Apply the work-energy theorem W, =AE =AE ., +AE,.,

to the box as it moves from X = 0 to

. or, because Wey = AU, = 0,
X = d to obtain: ext &

AK+AU +AE,, . =0
Noting that K, =U,, =0, substitute Imyv; —1kd; + f, d, =0
for AK, AU, and AE,_ to obtain:
Substituting the expression for f, Imv; —1kd] + g, mgd, =0
obtained in (a) yields:
Solving for v, yields: K

Vo = \/_do —2p,9d,

m
(c) Let d, =d, in the expression for d =24 2 1, mg kd,
= _—— =

d, derived in (a) to obtain: 0 ‘ “ | 2mg

Remarks: You can obtain the same Part (c) result by setting v, =0 in the
expression derived in Part (b).

90 e  You operate a small grain elevator near Champaign, Illinois. One of
your silos uses a bucket elevator that carries a full load of 800 kg through a
vertical distance of 40 m. (A bucket elevator works with a continuous belt, like a
conveyor belt.) (&) What is the power provided by the electric motor powering
the bucket elevator when the bucket elevator ascends with a full load at a speed
of 2.3 m/s? (b) Assuming the motor is 85% efficient, how much does it cost you
to run this elevator, per day, assuming it runs 60 percent of the time between
7:00 A.M. and 7:00 p.M. with and average load of 85 percent of a full load?
Assume the cost of electric energy in your location is 15 cents per kilowatt hour.

Picture the Problem The power provided by a motor that is delivering sufficient
energy to exert a force F on a load which it is moving at a speed v is F -v .



(a) The power provided by the motor
is given by:

Because the elevator is ascending
with constant speed, the required
force is:

Substitute for F in equation (1) to
obtain:

Substitute numerical values and
evaluate P:

(b) The daily cost of operating the
elevator is given by:

The energy used by the motor is:

Substituting for E , in equation (2)
yields:

Substitute numerical values and evaluate C

Cdaily =

(18.05kW)(12 h x 0.60)[1()
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P=F-v=Fvcosl
or, because F and v are in the same

direction, P = Fv (1)
F = mloadg
P= mloadgv

P = (800kg)(9.81m/s” (2.3 m/s)
= 18.05kW = 18kW

Cd E usedc (2 )

where C is the per unit cost of the

aily —
energy.

_ Pmotor At

used

£
where ¢ is the efficiency of the motor
and At is the number of hours the
elevator operates daily.

E

C _ Pmotor AtC

daily —
&

daily *

$0.15

Wh/_ $22.93

91 (1]

0.85

To reduce the power requirement of elevator motors, elevators are

counterbalanced with weights connected to the elevator by a cable that runs over
a pulley at the top of the elevator shaft. Neglect any effects of friction in the
pulley. If a 1200-kg elevator that carries a maximum load of 800 kg is
counterbalanced with a mass of 1500 kg, (a) what is the power provided by the
motor when the elevator ascends fully loaded at a speed of 2.3 m/s? (b) How
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much power is provided by the motor when the elevator ascends at 2.3 m/s
without a load?

Picture the Problem The power provided by a motor that is delivering sufficient
energy to exert a force F on a load which it is moving at a speed ¥ is F-¥ .The
counterweight does negative work and the power of the motor is reduced from
that required with no counterbalance.

(a) The power provided by the P=F-v=Fvcosf
motor is given by: or, because F and ¥ are in the same
direction,
P=Fv (1)
Because the elevator is F =My, + Mg — M, )9

counterbalanced and ascending with

constant speed, the tension in the

support cable(s) is:

Substitute for F in equation (1) to P =(m,,, + M., —Mm, )ov
obtain:

elev

Substitute numerical values and evaluate P:

P = (1200kg +800kg —1500kg)(9.81m/s* (2.3 m/s) = 11.28kW =| 1 1kW

(b) Without a load: F=(m,, —m,)g

and
P = FV = (melev - mcw )gV

Substitute numerical values and evaluate P:

P =(1200kg —1500kg)(9.81m/s*)(2.3m/s) = -6.77kW =| —6.8kW

92 -+ Inold science fiction movies, writers attempted to come up with novel
ways of launching spacecraft toward the moon. In one hypothetical case, a
screenwriter envisioned launching a moon probe from a deep, smooth tunnel,
inclined at 65.0° above the horizontal. At the bottom of the tunnel a very stiff
spring designed to launch the craft was anchored. The top of the spring, when the
spring is unstressed, is 30.0 m from the upper end of the table. The screenwriter
knew from his research that to reach the moon, the 318-kg probe should have a
speed of at least 11.2 km/s when it exits the tunnel. If the spring is compressed by
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95.0 m just before launch, what is the minimum value for its force constant to
achieve a successful launch? Neglect friction with the tunnel walls and floor.

Picture the Problem Let the system
consist of the earth, spring, tunnel, and
the spacecraft and the =zero of
gravitational potential energy be at the
surface of the earth. Then there are no
external forces to do work on the
system and W¢; = 0. We can use
conservation of mechanical energy to
find the minimum value of the force
constant that will result in a successful
launch. The pictorial representation
summarizes the details of the launch.
Note that the spacecraft slows
somewhat over the last 30 m of its
launch.

(a) Apply conservation of
mechanical energy to the spacecraft
as it moves from X = Xy to X = X, to
obtain:

The change in the mechanical
energy of the system is:

Because Ko = Uy, = U, = 0:

Substituting for K, Uy, and U
yields:

Substituting for AEech in equation
(1) yields:

Solving for K yields:

vo=0_ spring fully compressed
x,=0
Wext = Alz‘mech
or, because Wy = 0,
Alzmech = O (1)
AE ... =AK +AU, + AU,
=K,-K,+U,,-U,,
+ US,Z - US,O
Alzmech = KZ - Ug,O - US,O
AE, . =imv? —(-mgx,sin@)—Lkx]

D= =

2 : 1 2
my; +mgx, sin@ — 5 kx;

1 2 : 1 fy2 —
smv; +mgx,sinf—<kx; =0

P my; +2mgx, sin @

2
X
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Substitute numerical values and evaluate k:

(318ke)(11.2 km/s)’ +2(318 kg)(9.81 m/s )(125 m)sin 65.0°
(95.0m)’

k =

4.42x10° kKN/m

93 ¢ [SSM] In a volcanic eruption, a 2-kg piece of porous volcanic rock
is thrown straight upward with an initial speed of 40 m/s. It travels upward a
distance of 50 m before it begins to fall back to Earth. (a) What is the initial
kinetic energy of the rock? (b) What is the increase in thermal energy due to air
resistance during ascent? (C) If the increase in thermal energy due to air resistance
on the way down is 70% of that on the way up, what is the speed of the rock
when it returns to its initial position?

Picture the Problem Let the system consist of the earth, rock and air. Given this
choice, there are no external forces to do work on the system and Wy = 0. Choose
U, = 0 to be where the rock begins its upward motion. The initial kinetic energy of
the rock is partially transformed into potential energy and partially dissipated by
air resistance as the rock ascends. During its descent, its potential energy is
partially transformed into kinetic energy and partially dissipated by air resistance.

(@) The initial kinetic energy of the K, =1my’
rock is given by:

Substitute numerical values and K, =1(2.0kg)40m/s) =| 1.6kJ
evaluate K;:

(b) Apply the work-energy theorem AK+AU +AE, .. =0

with friction to relate the energies of or, because K¢= 0,

the system as the rock ascends: -K. +AU +AE, =0

Solving for AE,, ., yields: AE,.., =K, —-AU

Substitute numerical values and evaluate AE . :

AE

= 1.6kI —(2.0kg)9.81m/s> (50m) = 0.619kJ = 0.6kJ

therm

(c) Apply the work-energy theorem AK + AU +0.70AE ... =0
with friction to relate the energies of
the system as the rock descends:
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Because Ki= U¢=0: K. -U,+0.70AE, . =0
Substitute for the energies to obtain: Imy] —mgh+0.70AE,. =0
Solve for v, to obtain: 1.40AE
f Vf :\/Zgh— 0 therm
m

Substitute numerical values and evaluate V,:

~ 1.40(0.619kJ)
2.0kg

=| 23m/s

y, = \/2(9.81m/szx50m)

94 <= A block of mass m starts from rest at a height h and slides down a
frictionless plane inclined at angle @ with the horizontal, as shown in Figure 7-53.
The block strikes a spring of force constant k. Find the distance the spring is
compressed when the block momentarily stops.

Picture the Problem Let the distance the block slides before striking the spring
be /. The pictorial representation shows the block at the top of the incline (Xy = 0),

just as it strikes the spring (X; = ¢ ), and the block against the fully compressed
spring (X2 = ¢ + X). Let the block, spring, and the earth comprise the system. Then

Wey = 0. Let Ug = 0 where the spring is at maximum compression. We can apply
the work-energy theorem to the block to relate the energies of the system as the
block slides down the incline and compresses the spring.

Apply the work-energy theorem to AK+AU, +AU =0
the block from X to X»: or
AK + Ug»z - Ug,o + Us,z - Us,() =0
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Because AK = Uy, = U o= 0:

Substitute for each of these energy
terms to obtain:

ho is given by:

Substitute for hy in equation (1) to

—Ug’o +U,, = 0

—mgh, +Lkx* =0 (1)
where X is the distance the spring
compresses.

h, = x,sin@ = (¢ + x)sin &

—mg(0+x)sin@+1 kx> =0

obtain;

Rewrite this equation explicitly 2 _ 2mgsin & « 2mglsing _

as a quadratic equation to obtain: k k

0

Solving for X yields:

2
X= msin9+ mg sin20+Msin9
k k k

Note that the negative sign between the two terms leads to a non-physical solution

and has been ignored.

95 = [SSM] A block of mass m is suspended from a wall bracket by a
spring and is free to move vertically (Figure 7-54). The +y direction is downward
and the origin is at the position of the block when the spring is unstressed. (a)
Show that the potential energy as a function of position may be expressed as

U =1ky* —mgy, (b) Using a spreadsheet program or graphing calculator, make
a graph of U as a function of y with k=2 N/m and mg = 1 N. (¢) Explain how
this graph shows that there is a position of stable equilibrium for a positive value
of'y. Using the Part () expression for U, determine (symbolically) the value of'y
when the block is at its equilibrium position. (d) From the expression for U, find
the net force acting on m at any position Y. (€) The block is released from rest
with the spring unstressed; if there is no friction, what is the maximum value of'y
that will be reached by the mass? Indicate Y.x on your graph/spreadsheet.

Picture the Problem Given the potential energy function as a function of y, we
can find the net force acting on a given system from F = —dU /dy . The maximum
extension of the spring; that is, the lowest position of the mass on its end, can be
found by applying the work-energy theorem. The equilibrium position of the
system can be found by applying the work-energy theorem with friction ... as can
the amount of thermal energy produced as the system oscillates to its equilibrium
position. In Part (), setting dU/dy equal to zero and solving the resulting equation
for y will yield the value of y when the block is in its equilibrium position



(a) The potential energy of the
oscillator is the sum of the
gravitational potential energy of
block and the energy stored in the
stretched spring:

Letting the zero of gravitational
potential energy be at the oscillator’s
equilibrium position yields:
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U=U,+U,

U =|Ltky’ —mgy

where Yy is the distance the spring is

stretched.

(b) A graph of U as a function of y follows. Because k and m are not specified, k

has been set equal to 2 and mg to 1.

10
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(c) The fact that U is a minimum near y = 0.5 m tells us that this is a position of

stable equilibrium.

Differentiate U with respect to y to
obtain:

Setting this expression equal to
zero for extrema yields:

(d) Evaluate the negative of the
derivative of U with respect to y:

dau d g, >
—=—/|Lky” —mgy)=ky—m
dy dy(z y gy) y—mg
ky—mg=0=>y= %
du d (o2
=——=——"1\(Lky"—m
dy dy(z y QY)

=| —ky+mg
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(e) Apply conservation of energy AK+AU +AE, =0
to the movement of the mass from

y=0toy=y,.:

Because AK = 0 (the object starts AU=U(y,, )-U(0)=0

from rest and is momentarily at
restat y = y__ ) and (no friction),

it follows that:

Because U(0) = 0: U(ymax) =0= %kyliax -mgy,. .. =0
Solve for y_, to obtain: yo = 2mg
max T

On the graph, y__ is at (1.0, 0.0).

96 <+ A spring-loaded gun is cocked by compressing a short, strong spring
by a distance d. It fires a signal flare of mass m directly upward. The flare has
speed Vy as it leaves the spring and is observed to rise to a maximum height h
above the point where it leaves the spring. After it leaves the spring, effects of
drag force by the air on the flare are significant. (Express answers in terms of m,
Vo, d, h, and g.) (2) How much work is done on the spring during the
compression? (b) What is the value of the force constant k? (c) Between the time
of firing and the time at which maximum elevation is reached, how much
mechanical energy is dissipated into thermal energy?

Picture the Problem The energy stored in the compressed spring is initially
transformed into the kinetic energy of the signal flare and then into gravitational
potential energy and thermal energy as the flare climbs to its maximum height.
Let the system contain the earth, the air, and the flare so that W, = 0. We can use
the work-energy theorem with friction in the analysis of the energy
transformations during the motion of the flare.

(a) The work done on the spring in W =K, =|tmy
compressing it is equal to the kinetic
energy of the flare at launch:




(b) Ignoring changes in gravitational
potential energy (that is, assume that
the compression of the spring is small
compared to the maximum elevation
of the flare), apply the conservation of
mechanical energy to the
transformation that takes place as the
spring decompresses and gives the
flare its launch speed:

Because K; =U , =0:
Substitute for K; and U ; to obtain:
(c) Apply the work-energy theorem

with friction to the upward trajectory
of the flare:

Solve for AE :

therm *

Because K; =U, =0:

97 o
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AK +AU, =0

or
K,-K +U_,-U,=0

s,i

Kf _Us,1 :O
Imv. —1kd’> =0=k = mvy
2 0 2 d2
AK+AU, +AE; ., =0
AEm =—AK -AU,

=K, -K;+U, -U;
AEthel‘m = %mvg_mgh

Your firm is designing a new roller-coaster ride. The permit process

requires the calculation of forces and accelerations at various important locations
on the ride. Each roller-coaster car will have a total mass (including passengers)
of 500 kg and will travel freely along the winding frictionless track shown in
Figure 7-55. Points A, E, and G are on horizontal straight sections, all at the
same height of 10 m above the ground. Point C is at a height of 10 m above the
ground on an inclined section of slope angle 30°. Point B is at the crest of a hill,
while point D is at ground level at the bottom of a valley; the radius of curvature
at both of these points is 20 m. Point F is at the middle of a banked horizontal
curve with a radius of curvature of 30 m, and at the same height as points A, E,
and G. At point A the speed of the car is 12 m/s. (@) If the car is just barely to
make it over the hill at point B, what must be the height of point B above the
ground? (b) If the car is to just barely make it over the hill at point B, what should
be the magnitude of the force exerted by the track on the car at that point?

(c) What will be the acceleration of the car at point C? (d) What will be the
magnitude and direction of the force exerted by the track on the car at point D?
(e) What will be the magnitude and direction of the force exerted by the track on
the car at point F? (f) At point G a constant braking force is to be applied to the
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car, bringing it to a halt in a distance of 25 m. What is the magnitude of this

required braking force?

Picture the Problem Let Up = 0.
Choose the system to include the earth,
the track, and the car. Then there are no
external forces to do work on the
system and change its energy and we
can use Newton’s 2" law and the work-

energy theorem to describe the
system’s energy transformations to
point G ... and then the work-energy

theorem with friction to determine the
braking force that brings the car to a
stop. The free-body diagram for point C
is shown above.

The free-body diagrams for the rollercoaster cars at points D and F are shown

below.

(a) Apply the work-energy theorem
to the system’s energy
transformations between A and B:

If we assume that the car arrives at
point B with vg = 0, then:

The height above the ground is
given by:

y
A
Fl‘l
F
e -
—}
F
Fg
\J
AK +AU =0
or
K,-K,+U,-U, =0
v2
—1imvi + mgAh = 0= Ah =2~
2g

where Ah is the difference in elevation
between A and B.

2

h+Ah=h+ A
29
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Substitute numerical values and ht A =10 (12 m/s)2 173

evaluate h + Ah: +ak=10m+ 2‘9.81m/52 j_ -~ m
=|17m

(b) If the car just makes it to point B; F. .o =F,=mg

i.e., if it gets there with vg = 0, then
the force exerted by the track on the
car will be the normal force:

Substitute numerical values and F ook on cor = (500 kg)(9.81m/s2)
evaluate F_, .. . : _[291kN
(c) Apply z F, =ma, to the car at mgsind=ma=a=(gsind
point C (see the FBD) and solve for
a:
Substitute numerical values and a= (9.81m/s2 %jn3()° =1 4.9m/s>
evaluate a:
(d) Apply > F, =ma, to the car at Fn—mg=m£:>Fn:mg+m£
point D (see the FBD) and solve for R R
Fa:
Apply the work-energy theorem to AK +AU =0
the system’s energy transformations or
between B and D: Kp-Ky+U,-U; =0
Because Kg = Up =0: Ky, -Uz; =0
Substitute to obtain: 1mvi —mg(h+Ah)=0
Solving for v} yields: v2 =2g(h+aAh)
. 2 . . 2
Substitute f(‘)r VD' in the exPres51on E —mg+ Vo _ mg +m 2g(h+Ah)
for F, and simplify to obtain: R R

=mg[1+@}
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Substitute numerical values and
evaluate F,:

(e) F has two components at point
F; one horizontal (the inward force
that the track exerts) and the other
vertical (the normal force). Apply
Zﬁ' = Ma to the car at point F:

Express the resultant of these two
forces:

Substitute numerical values and
evaluate F:

The angle the resultant makes with
the x axis is given by:

Substitute numerical values and
evaluate &:

(f) Apply the work-energy theorem
with friction to the system’s energy
transformations between F and the

car’s stopping position:

The work done by friction is also
given by:

Equate the two expressions for
AE,.., and solve for F_,.:

therm

F. =(500kg)(9.81m/s* ) 1
= 00kt 14207

=| 13kN, directed upward.

>F,=F,-mg=0=F, =mg
and

_Fom¥
ZR—E—mR

+An3m)

F:@M@V%%%%+@&m#f

=| 5.5kN

6 =tan™ ij =tan" (gj
Fc VF

[ (9.81m/s>30m)
(12m/s)’

}: 63.9°

AEtherm = fAS = Fbraked

where d is the stopping distance.

mv;

F—-_F
brake 2 d

|
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Substitute numerical values and 2
. _ (500kg)12m/s)* _ AN
evaluate F_,.: brake 2(25m)

98 <«  The cable of a 2000-kg elevator has broken, and the elevator is moving
downward at a steady speed of 1.5 m/s. A safety braking system that works on
friction prevents the downward speed from increasing. (&) At what rate is the
braking system converting mechanical energy to thermal energy? (b) While the
elevator is moving downward at 1.5 m/s, the braking system fails and the elevator
is in free-fall for a distance of 5.0 m before hitting the top of a large safety spring
with force constant of 1.5 x 10* N/m. After the elevator hits the top of the spring,
find the distance d that the spring is compressed before the elevator is brought to
rest.

Picture the Problem The rate of
conversion of mechanical energy can
be determined fromP =F.v. The |||

pictorial representation shows the M

elevator moving downward just as it

goes into freefall as state 1. In state 2 T | |
the elevator is moving faster and is nesom
about to strike the relaxed spring. The I l .

momentarily at rest elevator on the
compressed spring is shown as state 3.
Let U, = 0 where the spring has its
maximum compression and the system
consist of the earth, the elevator, and 1 3 £
the spring. Then Wy = 0 and we can

apply conservation of mechanical

energy to the analysis of the falling

elevator and compressing spring.

|—o—|

—U,=0

(a) Express the rate of conversion of P =FyaingVo
mechanical energy to thermal energy

as a function of the speed of the

elevator and braking force acting on

1t:

Because the elevator is moving with Foraking = M0
constant speed, the net force acting
on it is zero and:

Substitute for F

braking

to obtain: P = Mgy,
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Substitute numerical values and P =(2000 kg)(9.81m/s2 )(1.5 m/s)
evaluate P: —[29kW
(b) Apply the conservation of AK+AU, +AU_ =0
mechanical energy to the falling or
elevator and compressing spring: K,-K +U,-U, +U,-U =0
Because K3 = Ug3 = U = 0: My} -Mg(h+d)+Lkd* =0
Rewgte thls equation e.1s a quadratic J— 2Mg q- M (Zgh N vé): 0
equation in d, the maximum k k
compression of the spring:
Solve for d to obtain: 22

d :%i\/MkZQ +%(2gh+v§)

Substitute numerical values and evaluate d:

2000kg)9.81m/s’
d =
1.5x10* N/m

[2(0.81m/52)5.0m)+ (1.5 mysY |

. |(2000ke) (9.81m/s’}  2000kg
(15x10°N/m)  1.5x10°N/m

=[52m

99 e« [SSM] To measure the combined force of friction (rolling friction
plus air drag) on a moving car, an automotive engineering team you are on turns
off the engine and allows the car to coast down hills of known steepness. The
team collects the following data: (1) On a 2.87° hill, the car can coast at a steady
20 m/s. (2) On a 5.74° hill, the steady coasting speed is 30 m/s. The total mass of
the car is 1000 kg. (a) What is the magnitude of the combined force of friction at
20 m/s (Fy) and at 30 m/s (F30)? (b) How much power must the engine deliver to
drive the car on a level road at steady speeds of 20 m/s (Po) and 30 m/s (P30)?
(c) The maximum power the engine can deliver is 40 kW. What is the angle of
the steepest incline up which the car can maintain a steady 20 m/s? (d) Assume
that the engine delivers the same total useful work from each liter of gas, no
matter what the speed. At 20 m/s on a level road, the car gets 12.7 km/L. How
many kilometers per liter does it get if it goes 30 m/s instead?
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Picture the Problem We can use Newton’s 2™ law to determine the force of
friction as a function of the angle of the hill for a given constant speed. The power

output of the engine is given by P = F, -¥ .

FBD for (a):

(a) Apply z F, = ma, to the car:

Evaluate F for the two speeds:

(b) The power an engine must
deliver on a level road in order to
overcome friction loss is given by:

Evaluate this expression for
v =20 m/s and 30 m/s:

(c) Apply z F, =ma, to the car:
Solving for F yields:

Relate F to the power output of the
engine and the speed of the car:

FBD for (C):

mgsinf@—-F =0=F =mgsin6

F,, = (1000kg)(9.81m/s* )sin(2.87°)
=[49IN

and

F,, = (1000kg)(9.81m/s? Jsin(5.74°)
=[98IN

P=Fy

P,, =(491N)(20m/s)=| 9.8kW

and
P, =(981N)(30m/s)=| 29kW

D F,=F-mgsinf—-F, =0

F =mgsin@+ F;

F-2
v
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Equate these expressions for F to
obtain:

Solving for fyields:

Substitute numerical values and
evaluate @ for F, = F,;:

(d) Express the equivalence of the
work done by the engine in driving
the car at the two speeds:

Let AV represent the volume of fuel
consumed by the engine driving the
car on a level road and divide both
sides of the work equation by AV to
obtain:

Solve for

(As),, .
AV

Substitute numerical values and

(As)y, .
AV

evaluate

100 <= (@) Calculate the kinetic energy of a 1200-kg car moving at 50 km/h.
(b) If friction (rolling friction and air drag) results in a retarding force of 300 N at
a speed of 50 km/h, what is the minimum energy needed to move the car a

P .
—=mgsin@+F,

y
6 =sin’
6 =sin™

P _r
\4
mg
AOKW _ 491N
20m/s
(1000kg)(9.81m/s°)

=|8.8°

Wengine =Fy (AS)20 =F; (AS)30

AS AS
on (A\)/ZO — F30 (A330
(AS )30 — i (AS )20
AV F, AV
(8s)y _ BIN (15 7kmiL)
AV N
=| 6.36km/L

distance of 300 m at a constant speed of 50 km/h?

Picture the Problem While on a horizontal surface, the work done by an
automobile engine changes the kinetic energy of the car and does work against
friction. These energy transformations are described by the work-energy theorem
with friction. Let the system include the earth, the roadway, and the car but not

the car’s engine.




(a) The kinetic energy of the car is:

(b) The required energy equals the
energy dissipated by friction:

Substitute numerical values and
evaluate AE :

therm *

101 (YY)
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2
km 1h
K =1(1200kg)| 50—
4 g)( h X3600s]
=1 0.12MJ
AEtherm = fAS
AE,... =(300N)(300m)=| 90.0kJ

A pendulum consists of a string of length L with a small bob of mass

m. The bob is held to the side with the string horizontal (see Figure 7-56). Then
the bob is released from rest. At the lowest point of the swing, the string catches
on a thin peg a distance R above the lowest point. Show that R must be smaller

than 2L/5 if the string is to remain taut as the bob swings around the peg in a full

circle.

Picture the Problem Assume that the
bob is moving with speed Vv as it passes
the top vertical point when looping
around the peg. There are two forces
acting on the bob: the tension in the
string (if any) and the force of gravity,
Mg; both point downward when the
ball is in the topmost position. The
minimum possible speed for the bob to
pass the wvertical occurs when the
tension is 0; from this, gravity must
supply the centripetal force required to
keep the ball moving in a circle. We
can use conservation of mechanical
energy to relate v to L and R.

Express the condition that the bob
swings around the peg in a full
circle:
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Use conservation of mechanical 1MV = Mg(L - 2R)
energy to relate the kinetic energy of

the bob at the bottom of the loop to

its potential energy at the top of its

swing:

Solving for V* yields: v’ =2g(L-2R)

Substitute for v* in equation (1) to 2g(L-2R) P
obtain: T>93R< g'—

102 = A 285-kg stunt boat is driven on the surface of a lake at a constant
speed of 13.5 m/s toward a ramp, which is angled at 25.0° above the horizontal.
The coefficient of friction between the boat bottom and the ramp’s surface is
0.150, and the raised end of the ramp is 2.00 m above the water surface.

(a) Assuming the engines are cut off when the boat hits the ramp, what is the
speed of the boat as it leaves the ramp? (b) What is the speed of the boat when it
strikes the water again? Neglect any effects due to air resistance.

Picture the Problem The pictorial representation summarizes the details of the
problem. Let the system consist of the earth, the boat, and the ramp. Then no
external forces do work on the system. We can use the work-energy theorem for
problems with kinetic friction to find the speed of the boat at the top of the ramp
and the work-energy theorem to find the speed of the boat when it hits the water.

A AN -

(a) Apply the work-energy theorem W =AE_. +AE,.

to the boat as it slides up the ramp to or, because W = 0

Obtaln: AEmech + AEtherm = O (1)
AE__, is given by: AE ... =AK +AU,

=K -K, +Ug’1 —Ug,0
or, because Ug o =0,
AE, ...=K -K,+U,,

mech
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Substituting for Ky, Ko, and Ug AE, ., =+mv] —Lmv; +mgh

yields:

AE,.., 1s given by: AE,... = f.X =4.F. X

Because F, =mgcosé: AE, ... = 1, mgx, cos@

Substituting for AE, ., and AE, . in  lmv) —Lmv; +mgh+ p mgx, cosd =0

equation (1) yields:

Referring to the pictorial _ h

representation, express X; in terms of YT 0

h to obtain:

Substituting for X; yields: Ly’ —Lmv? + mgh + ;tkmgh cos@ _0
sin@

Solve for v; to obtain: vl\/vg _ 2gh(1 + 41 cot 0)

Substitute numerical values and evaluate v;:

v, =135 /s —2(9.81m/s?)(2.00 m)[1 +(0.150)cot(25.0°)] = 11.42 m/s
=|11.4m/s
(b) Apply the work-kinetic energy W, =AK+AU,
theorem to the boat while it is or, because Way = 0
airborne: A’K+AU _ Oex ’
g
Substitute for AK and AU, to obtain: Lmv) —Lmv! —mgh =0

Solving for v, yields: y, = /vlz +2gh

Substitute numerical values and evaluate v;:

v, =(11.42m/s) +2(9.81m/s?)(2.00m) =[ 13.0m/s

103 e A standard introductory-physics lab-experiment to examine the
conservation of energy and Newton’s laws is shown in Figure 7-57. A glider is
set up on a linear air track and is attached by a string over a massless-frictionless
pulley to a hanging weight. The mass of the glider is M, while the mass of the
hanging weight is m. When the air supply to the air track is turned on, the track
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becomes essentially frictionless. You then release the hanging weight and
measure the speed of the glider after the weight has fallen a given distance (y). To
show that the measured speed is the speed predicted by theory; (a) apply
conservation of mechanical energy and calculate the speed as a function of y. To
verify this calculation; (b) apply Newton’s second and third laws directly by
sketching a free-body diagram for each of the two masses and applying Newton’s
laws to find their accelerations. Then use kinematics to calculate the speed of the
glider as a function of'y.

Picture the Problem For Part (a), we’ll let the system include the glider, track,
weight, and the earth. The speeds of the glider and the falling weight will be the
same while they are in motion. Let their common speed when they have moved a
distance Y be v and let the zero of potential energy be at the elevation of the
weight when it has fallen the distance Y. We can use conservation of mechanical
energy to relate the speed of the glider (and the weight) to the distance the weight
has fallen. In Part (b), we’ll let the direction of motion be the X direction, the
tension in the connecting string be T, and apply Newton’s 2™ law to the glider and
the weight to find their common acceleration. Because this acceleration is
constant, we can use a constant-acceleration equation to find their common speed
when they have moved a distance Y.

(a) Apply the work-energy theorem W. . =AK+AU =0

ext
to the system to obtain: or, because Wey = 0,

K,—K,+U,-U, =0

Because the system starts from rest K,-U, =0
and U,=0:
Substitute for K, and U, to obtain: Imv? +1Mv? —mgY =0

Solving for v yields: 2mgY
I
M+m

(b) The free-body diagrams for the y
glider and the weight are shown to A A
the right: F, T,
T
- - o]
Mg
y mg
Y
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Apply Newton’s 3 law to obtain: ‘ ”1 ‘ _ ‘ *2‘ -7
Apply Y F, =mato the glider: T =Ma
Apply Y F, =mato the hanging mg-T =ma
weight:

Add these equations to eliminate M 3
T and obtain: Mg = a+ma:>a—gm+M

Using a constant-acceleration Vi =v, +2aY
equation, relate the speed of the

: SR or, because vo =0,
glider to its initial speed and to the °

2 _
distance that the weight has fallen: V' =2a¥
Substitute for a and solve for v to maY
. g
obtain: V= M , the same result we
+Mm

obtained in Part (a).

104 +»  In one model of a person jogging, the energy expended is assumed to
go into accelerating and decelerating the feet and the lower portions of the legs. If
the jogging speed is V then the maximum speed of the foot and lower leg is about
2v. (From the moment a foot leaves the ground, to the moment it next contacts
the ground, the foot travels nearly twice as far as the torso, so it must be going, on
average, nearly twice as fast as the torso.) If the mass of the foot and lower
portion of a leg is m, the energy needed to accelerate the foot and lower portion of
a leg from rest to speed 2v is +m (20)2 =2mv’, and the same energy is needed to
decelerate this mass back to rest for the next stride. Assume that the mass of the
foot and lower portion of a man’s leg is 5.0 kg and that he jogs at a speed of

3.0 m/s with 1.0 m between one footfall and the next. The energy he must provide
to each leg in each 2.0 m of travel is 2mv>, so the energy he must provide to both
legs during each second of jogging is 6mv>. Calculate the rate of the man’s
energy expenditure using this model, assuming that his muscles have an
efficiency of 20 percent.

Picture the Problem We’re given P = dW /dt and are asked to evaluate it under
the assumed conditions.

We’re given that the rate of energy P = 6my*
expenditure by the man is:

Substitute numerical values and P =6(10kg)(3.0m/s)’ =540 W
evaluate P:
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Express the rate of energy P=IiP'=P'=5P
expenditure P’ assuming that his
muscles have an efficiency of 20%:

Substitute numerical values and P’ = 5(540 W) = 2.7kW
evaluate P’:

105 e« [SSM] A high school teacher once suggested measuring the
magnitude of free-fall acceleration by the following method: Hang a mass on a
very fine thread (length L) to make a pendulum with the mass a height H above
the floor when at its lowest point P. Pull the pendulum back so that the thread
makes an angle @, with the vertical. Just above point P, place a razor blade that is
positioned to cut through the thread as the mass swings through point P. Once the
thread is cut, the mass is projected horizontally, and hits the floor a horizontal
distance D from point P. The idea was that the measurement of D as a function of
6 should somehow determine g. Apart from some obvious experimental
difficulties, the experiment had one fatal flaw: D does not depend on g! Show
that this is true, and that D depends only on the angle &,.

Picture the Problem The pictorial
representation shows the bob swinging
through an angle & before the thread is
cut and the ball 1is launched
horizontally. Let its speed at position 1
be v. We can use conservation of
mechanical energy to relate v to the
change in the potential energy of the
bob as it swings through the angle & .
We can find its flight time At from a
constant-acceleration equation and then
express D as the product of v and At.

Relate the distance D traveled D = vAt (D)
horizontally by the bob to its launch
speed V and time of flight At:

Use conservation of mechanical K -K,+U,-U,=0
energy to relate its launch speed Vv to or, because U, = Ko =0,
the length of the pendulum L and the K -U =0

angle 4: b

Substitute for K; and Uy to obtain: Imv? —mgL(1-cosf)=0

Solving for v yields: V=, /2g|_i1 —cosf)
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In the absence of air resistance, the Ay =V, At +1a, (At)2

horizontal and vertical motions of

the bob are independent of each or, lzecause Ay =-H,a,=-g, and
other and we can use a constant- Voy =0, ,

acceleration equation to express the -H=-1g(Atf=>At=,2H/g
time of flight (the time to fall a

distance H):

Substitute in equation (1) and [2H
simplify to obtain: D=y 2gL(1-cosb) T
=| 2y/HL(1 - cos®)

which shows that, while D depends on
6, it is independent of g.

106 ee= The bob of a pendulum of length L is pulled aside so that the string
makes an angle &, with the vertical, and the bob is then released. In Example 7-5,
the conservation of energy was used to obtain the speed of the bob at the bottom
of its swing. In this problem, you are to obtain the same result using Newton’s
second law. (a) Show that the tangential component of Newton’s second law
gives dv/dt = —g sin €, where V is the speed and @ is the angle between the string
and the vertical. (b) Show that v can be written v =L d@/dt. (c) Use this result and

the chain rule for derivatives to obtain Z—U = Z—Z% . (d) Combine the results of
Parts (@) and (C) to obtain v dv =—gL sin 8d#. (e) Integrate the left side of the
equation in Part (d) from v = 0 to the final speed v and the right side from 0= 6,
to 8= 0, and show that the result is equivalent to v = /2gh , where h is the

original height of the bob above the bottom of its swing.

Picture the Problem The free-body
diagram shows the forces acting on
the pendulum bob. The application
of Newton’s 2™ law leads directly to
the required expression for the
tangential acceleration. Recall that,
provided @is in radian measure,

s = L@. Differentiation with respect
to time produces the result called for
in Part (b). The remaining parts of
the  problem  simply  require
following the directions for each
part.




706 Chapter 7

(@) Apply z F, =ma, to the bob: Fan =—Mgsind =ma,,
Solving for &, yields: a, =dv/dt=|—gsind
(b) Relate the arc distance s to the s=L&

length of the pendulum L and the

angle &:

Differentiate s with respect to time: ds/dt=|v=Ld@/dt

(©) Multiplyﬂ by 40 and - _Arev _ 1 4r
dt = do dt dtdd dO dt | do

substitute for% from Part (b):

e _dvio_dvdo [ 7]
L

(d) Equate the expressions for dv/dt dv (%j _ _gsin®

from (@) and (C) to obtain: do

Separating the variables yields: vdv =| — gLsin0d@
(e) Integrate the left side of the P dy— ; Lsing do
equation in Part (d) from v = 0 to the .([ vav= éf —gksin

final speed v and the right side
from@ =6, to 6 =0:

Integrate both sides of the equation
to obtain:

Note, from the figure, that Ly =gh=v= \/Zgh
h = L(1-cos@,). Substitute to

obtain:

107 e A rock climber is rappelling down the face of a cliff when his hold
slips and he slides down over the rock face, supported only by the bungee cord he
attached to the top of the cliff. The cliff face is in the form of a smooth quarter-
cylinder with height (and radius) H = 300 m (Figure 7-58). Treat the bungee cord
as a spring with force constant k = 5.00 N/m and unstressed length L = 60.0 m.
The climber’s mass is 85.0 kg. (a) Using a spreadsheet program, make a graph of
the rock climber’s potential energy as a function of s, his distance from the top of
the cliff measured along the curved surface. Use values of s between 60.0 m and
200 m. (b) His fall began when he was a distance S; = 60.0 m from the top of the
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cliff, and ended when he was a distance Sy= 110 m from the top. Determine how
much energy is dissipated by friction between the time he initially slipped and the
time when he came to a stop.

Picture the Problem The potential energy of the climber is the sum of his
gravitational potential energy and the potential energy stored in the spring-like
bungee cord. Let &be the angle which the position of the rock climber on the cliff
face makes with a vertical axis and choose the zero of gravitational potential
energy to be at the bottom of the cliff. We can use the definitions of U, and
Uspring to express the climber’s total potential energy and the work-energy theorem
for problems with friction to determine how energy is dissipated by friction
between the time he initially slipped and finally came to a stop.

(a) The total potential energy of U(s) = Uppgeceons + U, (1)
the climber is the sum of
Ubungee cord and Ug :
U ngeccond is given by: Uppngeccord = %k(s - L)2
U, is given by: U, = Mgy = MgH cosé@
S
= MgH cos| —
# (Hj

Substitute for Upunge cord and Ug in

2 S
equation (1) to obtain: U(s) = %k(s - L) + MgH cos (Ej

A spreadsheet solution is shown below. The constants used in the potential energy
function and the formulas used to calculate the potential energy are as follows:

Cell Content/Formula Algebraic Form

B3 300 H

B4 5.00 K

B5 60.0 L

B6 85.0 M

B7 9.81 g

D11 60.0 s

D12 D11+1 s+ 1

El1l 0.5*$B$4*(D11-$B$5)"2 > S
+SBS6*SBST*SBS3*(cos(D11/3B$3)) | FK(S—L) +MgH cos| =
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A B C D E
1
2
3 H=300 m
4 k=15.00 N/m
5 =160.0 m
6 m=]85.0 kg
7 g=19.81 m/s’
8
9 S U(s)
10 (m) J)
11 60 2.452E+05
12 61 2.450E+05
13 62 2.448E+05
14 63 2.447E+05
15 64 2.445E+05
59 108 2.399E+05
60 109 2.398E+05
61 110 2.398E+05
62 111 2.397E+05
63 112 2.397E+05

The following graph was plotted using the data from columns D (S) and E (U(s)).

246
245 £\ /
244 \\ /
243 |
2 242
o]
241 - \
240 N \/
239
238 : : : :
50 70 90 110 130 150 170 190 210
S (m)
(b) Apply the work—kine.tic energy W, =AK+AU(s)+AE,,. .
theorem for problems with friction to or, because Wey = AK = 0,

the climber to obtain: A U(s) +AE -0

therm —
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Solve for the energy dissipated by friction to obtain:

AE ~AU(s)=—(U(110m)-U(60.0m)) = -U(110 m)+ U(60.0 m)

therm —

Substituting for U(110 m) and U(60.0 m) and simplifying yields:

AE, = {%k(l 10m—L)* +MgH cos(l lgmﬂ

+[§k(60.0 m—-L)* +MgH cos(60|'_(|) mﬂ

=-1k(110m-L)* -~ MgH cos(l lgmj+%k(60.0m— L)’

+ MgH cos(6o'omj

Because L = 60.0 m, the third term is zero. Simplifying yields:

AE o == 1K(110m ~ L) ~MgH COS(I 1gmj+ MgH c08(60£mj
e (5]

Substitute numerical values and evaluate AE :

therm *

=—1(5.00 N/m)(110 m - 60.0 m)’

~(85.0kg)(9.81m/s*)(300 m){COS((;ég r;)] - COS((63(())'(()) rrnn)ﬂ

~|54KkJ

AE

therm

Remarks: You can obtain this same result by examining the partial
spreadsheet printout or the graph shown above.

108 <= A block of wood (mass m) is connected to two massless springs, as
shown in Figure 7-59. Each spring has unstressed length L and force constant k.
(a) If the block is displaced a distance X, as shown, what is the change in the
potential energy stored in the springs? (b) What is the magnitude of the force
pulling the block back toward the equilibrium position? (¢) Using a spreadsheet
program or graphing calculator, make a graph of the potential energy U as a
function of X for 0 <x <0.20 m. Assume k= 1.0 N/m, L = 0.10 m, and m = 1.0 kg.
(d) If the block is displaced a distance x = 0.10 m and released, what is its speed as
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it passes through the equilibrium point? Assume that the block is resting on a
frictionless surface.

Picture the Problem The diagram shows the forces the springs exert on the
block. Because the block is resting on a horizontal surface and they have no role
in the motion of the block, the gravitational force and the normal force are not
shown. The change in the potential energy stored in the springs is due to the
elongation of both springs when the block is displaced a distance X from its

equilibrium position and we can find AU using%k(AL)z. We can find the

magnitude of the force pulling the block back toward its equilibrium position by
finding the sum of the magnitudes of the y components of the forces exerted by
the springs. In Part (d) we can use conservation of mechanical energy to find the
speed of the block as it passes through its equilibrium position.

(a) Express the change in the AU = 2Bk(AL)2J: k(AL)2
potential energy stored in the springs

when the block is displaced a where AL is the change in length of

either spring.

distance X:
Use the diagram to express AL: AL =+ 12+x2—L
Substitute for AL to obtain: AU = k( el L)Z
(b) Sum the forces acting on the Fcsioring = 2F cos @ = 2kAL cos @
block to express F, . in : X
= 2kAL

VL + X7
Substitute for AL to obtain: o = 2k( 2 x - L) X

L? + x?

_ zkx[l_;j
NIEES'S

() A spreadsheet program to calculate U(X) is shown below. The constants used
in the potential energy function and the formulas used to calculate the potential
energy are as follows:
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Cell Content/Formula Algebraic Form
B1 0.1 L
B2 1.0 k
B3 1.0 M
C8 C7+0.01 X
D7 | $B$2*((C7"2+$B§172)"0.5-$B$1)"2 U(x)
A B C D

1 L=]0.1 m

2 k=]1.0 N/m

3| m=]1.0 kg

4

5 X U(x)

6 (m) M)

7 0 0

8 0.01 2.49E-07

9 0.02 3.92E-06

10 0.03 1.94E-05

11 0.04 5.93E-05

12 0.05 1.39E-04

23 0.16 7.86E—03

24 0.17 9.45E-03

25 0.18 1.12E-02

26 0.19 1.32E-02

27 0.20 1.53E-02
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The following graph was plotted using the data from columns C (X) and D (U(X)).

16

14

12

10

U (mJ)

0
0.00 0.05 0.10 0.15 0.20
X (m)
(d) Use conservation of mechanical =AU
equilibrium

energy to relate the kinetic energy of or

the block as it passes through the
equilibrium position to the change in Iy’ =AU= v = fZA_U
m

its potential energy as it returns to its

equilibrium position:

Substitute for AU and simplify to — 2

obtain: v =J2k(VL X _L)
m

=(W—L) 2k

m

Substitute numerical values and evaluate v:

v=(\/(0.10m)2+(0.10m)2 —O.lOm) /2—(11‘3)1121”“) =[5.9¢cm/s
Okg




