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Chapter 7 
Conservation of Energy 
 
Conceptual Problems 
 
1 • [SSM] Two cylinders of unequal mass are connected by a massless 
cord that passes over a frictionless peg (Figure 7-34). After the system is released 
from rest, which of the following statements are true? (U is the gravitational 
potential energy and K is the kinetic energy of the system.) (a) ΔU < 0 and  
ΔK > 0, (b) ΔU = 0 and ΔK > 0, (c) ΔU < 0 and ΔK = 0, (d) ΔU = 0 and ΔK = 0, 
(e) ΔU > 0 and ΔK < 0. 
  
Determine the Concept Because the peg is frictionless, mechanical energy is 
conserved as this system evolves from one state to another. The system moves and 
so we know that ΔK > 0. Because ΔK + ΔU = constant, ΔU < 0. )( a is correct. 

 
2 • Two stones are simultaneously thrown with the same initial speed from 
the roof of a building. One stone is thrown at an angle of 30° above the 
horizontal, the other is thrown horizontally. (Neglect effects due to air resistance.) 
Which statement below is true? 
 
(a) The stones strike the ground at the same time and with equal speeds. 
(b)  The stones strike the ground at the same time with different speeds. 
(c) The stones strike the ground at different times with equal speeds. 
(d) The stones strike the ground at different times with different speeds. 
 
Determine the Concept Choose the zero of gravitational potential energy to be at 
ground level. The two stones have the same initial energy because they are thrown 
from the same height with the same initial speeds. Therefore, they will have the 
same total energy at all times during their fall. When they strike the ground, their 
gravitational potential energies will be zero and their kinetic energies will be 
equal.  Thus, their speeds at impact will be equal. The stone that is thrown at an 
angle of 30° above the horizontal has a longer flight time due to its initial upward 
velocity and so they do not strike the ground at the same time.  )( c is correct. 

 
3 • True or false: 
 
(a) The total energy of a system cannot change. 
(b) When you jump into the air, the floor does work on you increasing your 

mechanical energy. 
(c) Work done by frictional forces must always decrease the total mechanical 

energy of a system. 
(d) Compressing a given spring 2.0 cm from its unstressed length takes more 

work than stretching it 2.0 cm from its unstressed length. 
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(a) False. Forces that are external to a system can do work on the system to 
change its energy. 
 
(b) False. In order for some object to do work, it must exert a force over some 
distance. Your muscles increase the force exerted on the floor by your feet and, in 
turn, the normal force of the floor on your feet increases and launches you into the 
air. 
 
(c) False. The frictional force that accelerates a sprinter increases the total 
mechanical energy of the sprinter. 
  
(d) False. Because the work required to stretch a spring a given distance varies as 
the square of that distance, the work is the same regardless of whether the spring 
is stretched or compressed. 
 
4 • As a novice ice hockey player (assume frictionless situation), you have 
not mastered the art of stopping except by coasting straight for the boards of the 
rink (assumed to be a rigid wall). Discuss the energy changes that occur as you 
use the boards to slow your motion to a stop.  
 
Determine the Concept The boards don’t do any work on you. Your loss of 
kinetic energy is converted into thermal energy of your body and the boards. 
 
5 • True or false (The particle in this question can move only along the x 
axis and is acted on by only one force, and U(x) is the potential-energy function 
associated with this force.): 
 
(a) The particle will be in equilibrium if it is at a location where 0dU dx = . 
(b) The particle will accelerate in the –x direction if it is at a location where 

0dU dx > . 
(c)  The particle will both be in equilibrium and have constant speed if it is at a 

section of the x axis where 0dU dx =  throughout the section. 
(d) The particle will be in stable equilibrium if it is at a location where both 

0dU dx =  and 2 2 0d U dx > . 
(e) The particle will be in neutral equilibrium if it is at a location where both 

0dU dx =  and 2 2 0d U dx > . 
 

Determine the Concept dxdU is the slope of the graph of U(x) and 22 dxUd is 
the rate at which the slope is changing. The force acting on the object is given 
by dxdUF −= . 
 
(a) True. If 0=dxdU , then the net force acting on the object is zero (the 
condition for equilibrium). 
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(b) True. If 0>dxdU at a given location, then the net force acting on the object 
is negative and its acceleration is to the left. 
 
(c) True. If 0=dxdU over a section of the x axis, then the net force acting on the 
object is zero and its acceleration is zero. 
 
(d) True. If 0=dxdU  and 022 >dxUd at a given location, then U(x) is concave 
upward at that location (the condition for stable equilibrium). 
 
(e) False. If 0=dxdU  and 022 >dxUd at a given location, then U(x) is concave 
upward at that location (the condition for stable equilibrium). 
 
6 • Two knowledge seekers decide to ascend a mountain. Sal chooses a 
short, steep trail, while Joe, who weighs the same as Sal, chooses a long, gently 
sloped trail. At the top, they get into an argument about who gained more 
potential energy. Which of the following is true: 
 
(a) Sal gains more gravitational potential energy than Joe. 
(b) Sal gains less gravitational potential energy than Joe. 
(c) Sal gains the same gravitational potential energy as Joe. 
(d) To compare the gravitational potential energies, we must know the height of 

the mountain. 
(e) To compare the gravitational potential energies, we must know the length of 

the two trails. 
 
Determine the Concept The change in gravitational potential energy, over 
elevation changes that are small enough so that the gravitational field can be 
considered constant, is mgΔh, where Δh is the elevation change. Because Δh is the 
same for both Sal and Joe, their gains in gravitational potential energy are the 
same. )(c is correct. 
 
7 •  True or false: 
 
(a) Only conservative forces can do work. 
(b) If only conservative forces act on a particle, the kinetic energy of the particle 

can not change. 
(c) The work done by a conservative force equals the change in the potential 

energy associated with that force. 
(d) If, for a particle constrained to the x axis, the potential energy associated with 

a conservative force decreases as the particle moves to the right, then the 
force points to the left. 

(e) If, for a particle constrained to the x axis, a conservative force points to the 
right, then the potential energy associated with the force increases as the 
particle moves to the left. 
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(a) False. The definition of work is not limited to displacements caused by 
conservative forces. 
 
(b) False. Consider the work done by the gravitational force on an object in 
freefall. 
 
(c) False. The work done may change the kinetic energy of the system. 
 
(d) False. The direction of the force is given by dxdUF −= , so if the potential 
energy is decreasing to the right (the slope of U(x) is negative), F must be positive 
(that is, points to the right). 
 
(e) True. The direction of the force is given by dxdUF −= , so if F points to the 
right, the potential energy function must increase to the left. 
 
8 • Figure 7-35 shows the plot of a potential-energy function U versus x. 
(a) At each point indicated, state whether the x component of the force associated 
with this function is positive, negative, or zero. (b) At which point does the force 
have the greatest magnitude? (c) Identify any equilibrium points, and state 
whether the equilibrium is stable, unstable, or neutral 
 
Picture the Problem Fx is defined to be the negative of the derivative of the 
potential-energy function with respect to x; that is, dxdUFx −= . 

 
(a) Examine the slopes of the curve at 
each of the lettered points, 
remembering that Fx is the negative 
of the slope of the potential energy 
graph, to complete the table:  

Point dU/dx Fx 
   A + − 

B 0 0 
C − + 
D 0 0 
E + − 
F 0 0  

  
(b) Find the point where the slope is 
steepest: 
 

xF is greatest at point C. 

 

(c) If 022 <dxUd , then the curve is 
concave downward and the 
equilibrium is unstable.  

The equilibrium is unstable at point B.  
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If 022 >dxUd , then the curve is 
concave upward and the equilibrium 
is stable. 
 

The equilibrium is stable at point D.  
 

Remarks: At point F, if d2U/dx2 = 0 while the fourth derivative is positive, 
then the equilibrium is stable. 
 
9 • Assume that, when the brakes are applied, a constant frictional force is 
exerted on the wheels of a car by the road. If that is so, then which of the 
following are necessarily true?  (a) The distance the car travels before coming to 
rest is proportional to the speed of the car just as the brakes are first applied,  
(b) the car’s kinetic energy diminishes at a constant rate, (c) the kinetic energy of 
the car is inversely proportional to the time that has elapsed since the application 
of the brakes, (d) none of the above. 
 
Picture the Problem Because the constant friction force is responsible for a 
constant acceleration, we can apply the constant-acceleration equations to the 
analysis of these statements. We can also apply the work-energy theorem with 
friction to obtain expressions for the kinetic energy of the car and the rate at 
which it is changing. Choose the system to include the earth and car and assume 
that the car is moving on a horizontal surface so that ΔU = 0. 
 
(a) A constant frictional force causes 
a constant acceleration. The stopping 
distance of the car is related to its 
speed before the brakes were applied 
through a constant-acceleration 
equation.  
 

 Δ22
0

2 savv +=  
or, because v = 0, 

 Δ20 2
0 sav += ⇒  

2
Δ

2
0

a
vs −

=  

where a < 0. 
 
 

Thus, Δs ∝ 2
0v : 

 
Statement (a) is false. 

(b) Apply the work-energy theorem 
with friction to obtain: 
 

smgWK Δ−=−=Δ kf μ  
 

Express the rate at which K is 
dissipated: t

smg
t
K

Δ
Δ

−=
Δ
Δ

kμ  

 

Thus, v
t
K

∝
Δ
Δ and therefore not 

constant. 
 

Statement (b) is false. 
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(c) In Part (b) we saw that: K ∝ Δs 
 

Because Δs ∝ Δt and K ∝ Δt: Statement (c) is false. 
 

Because none of the above are 
correct: 

)( d is correct. 

 
10 •• If a rock is attached to a massless, rigid rod and swung in a vertical 
circle (Figure 7-36) at a constant speed, the total mechanical energy of the rock-
Earth system does not remain constant.  The kinetic energy of the rock remains 
constant, but the gravitational potential energy is continually changing. Is the total 
work done on the rock equal zero during all time intervals? Does the force by the 
rod on the rock ever have a nonzero tangential component? 
 
Determine the Concept No. From the work-kinetic energy theorem, no total 
work is being done on the rock, as its kinetic energy is constant.  However, the 
rod must exert a tangential force on the rock to keep the speed constant. The 
effect of this force is to cancel the component of the force of gravity that is 
tangential to the trajectory of the rock. 
 
11 •• Use the rest energies given in Table 7-1 to answer the following 
questions. (a) Can the triton naturally decay into a helion?  (b) Can the alpha 
particle naturally decay into helion plus a neutron?  (c) Can the proton naturally 
decay into a neutron and a positron? 
 
Determine the Concept 
(a) Yes, because the triton mass is slightly more than that of the helion (3He) 
mass. 
 
(b) No, because the total of the neutron and helion masses is 3747.96 MeV which 
is larger than the alpha particle mass. 
 
(c) No, because the neutron mass is already larger than that of the proton. 
 
Estimation and Approximation 
 
12 • Estimate (a) the change in your potential energy on taking an elevator 
from the ground floor to the top of the Empire State building, (b) the average 
force acting on you by the elevator to bring you to the top, and (c) the average 
power due to that force. The building is 102 stories high. 
 
Picture the Problem You can estimate your change in potential energy due to 
this change in elevation from the definition of ΔU. You’ll also need to estimate 
the height of one story of the Empire State building. We’ll assume your mass is 
70.0 kg and the height of one story to be 3.50 m. This approximation gives us a 
height of 1170 ft (357 m), a height that agrees to within 7% with the actual height 
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of 1250 ft from the ground floor to the observation deck. We’ll also assume that it 
takes 3 min to ride non-stop to the top floor in one of the high-speed elevators. 
 
(a) Express the change in your 
gravitational potential energy as you 
ride the elevator to the 102nd floor: 
 

hmgU Δ=Δ  

Substitute numerical values and 
evaluate ΔU: 

( )( )( )
kJ452kJ 2.245

m357m/s9.81kg70.0Δ 2

==

=U
 

 
(b) Ignoring the acceleration 
intervals at the beginning and the 
end of your ride, express the work 
done on you by the elevator in terms 
of the change in your gravitational 
potential energy: 

UFhW Δ== ⇒
h
UF Δ

=  

  
Substitute numerical values and 
evaluate F: 
 

N687
m357
kJ2.452

==F  

 
(c) Assuming a 3 min ride to the top, 
the average power delivered to the 
elevator is: 

( )( )
kW36.1

s/min60min3
kJ2.452

Δ
Δ

=

==
t
UP

 

 
13 • A tightrope walker whose mass is 50 kg walks across a tightrope held 
between two supports 10 m apart; the tension in the rope is 5000 N when she 
stands at the exact center of the rope. Estimate: (a) the sag in the tightrope when 
the acrobat stands in the exact center, and (b) the change in her gravitational 
potential energy from when she steps onto the tightrope to when she stands at its 
exact center. 
 
Picture the Problem The diagram depicts the situation when the tightrope walker 
is at the center of rope and shows a coordinate system in which the +x direction is 
to the right and +y direction is upward. M represents her mass and the vertical 
components of tensions 1T and ,2T  which are equal in magnitude, support her 
weight. We can apply a condition for static equilibrium in the vertical direction to 
relate the tension in the rope to the angle θ and use trigonometry to find Δy as a 
function of θ. 
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θ

y

L2
1

Δ y

0g =U

gM
r

1T
r

2T
r

x

 
 
(a) Use trigonometry to relate the sag 
Δy in the rope to its length L and θ : 
 

L
y

2
1

Δtan =θ ⇒ θtanΔ 2
1 Ly =    (1) 

 
Apply 0=∑ yF to the tightrope 
walker when she is at the center of 
the rope to obtain: 
 

0sin2 =− MgT θ  
where T is the magnitude of 1T and 2T . 

Solve for θ  to obtain: 
 ⎟

⎠
⎞

⎜
⎝
⎛= −

T
Mg
2

sin 1θ  

 
Substituting for θ in equation (1) 
yields: ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= −

T
MgLy
2

sintanΔ 1
2
1  

 
Substitute numerical values and evaluate Δy: 
 

( ) ( )( )
( ) cm 25m 2455.0

N50002
m/s9.81kg05sintanm 10Δ

2
1

2
1 ==⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= −y  

 
(b) Express the change in the 
tightrope walker’s gravitational 
potential energy as the rope sags: 
 

yMg
yMgUUU

Δ
Δ0Δ endcenterat 

=
+=−=

 

 
Substitute numerical values and 
evaluate ΔU: 

( )( )( )
kJ12.0

m0.2455m/s9.81kg50Δ 2

−=

−=U
 

 
14 •• The metabolic rate is defined as the rate at which the body uses 
chemical energy to sustain its life functions. The average metabolic rate 
experimentally has been found to be proportional to the total skin surface area of 
the body. The surface area for a 5-ft, 10-in. male weighing 175 lb is about 2.0 m2, 
and for a 5-ft, 4-in. female weighing 110 lb it is approximately 1.5 m2. There is 
about a 1 percent change in surface area for every three pounds above or below 
the weights quoted here and a 1 percent change for every inch above or below the 
heights quoted. (a) Estimate your average metabolic rate over the course of a day 
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using the following guide for metabolic rates (per square meter of skin area) for 
various physical activities:  sleeping, 40 W/m2; sitting, 60 W/m2; walking,  
160 W/m2; moderate physical activity, 175 W/m2; and moderate aerobic exercise, 
300 W/m2. How do your results compare to the power of a 100-W light bulb?  
(b) Express your average metabolic rate in terms of kcal/day (1 kcal = 4.19 kJ). 
(A kcal is the ″food calorie″ used by nutritionists.) (c) An estimate used by 
nutritionists is that each day the ″average person″ must eat roughly 12–15 kcal of 
food for each pound of body weight to maintain his or her weight. From the 
calculations in Part (b), are these estimates plausible? 
 
Picture the Problem We’ll use the data for the "typical male" described above 
and assume that he spends 8 hours per day sleeping, 2 hours walking, 8 hours 
sitting, 1 hour in aerobic exercise, and 5 hours doing moderate physical activity. 
We can approximate his energy utilization using activityactivityactivity tAPE Δ= , where A 
is the surface area of his body, activityP  is the rate of energy consumption in a given 
activity, and activitytΔ  is the time spent in the given activity. His total energy 
consumption will be the sum of the five terms corresponding to his daily 
activities. 
 
(a) Express the energy consumption of the hypothetical male: 
 

act. aerobicact. mod.sittingwalkingsleeping EEEEEE ++++=           (1) 
 

Evaluate sleepingE : 
 

( )( )( )( ) J1030.2s/h3600h8.0W/m40m2.0Δ 622
sleepingsleepingsleeping ×=== tAPE  

 
Evaluate walkingE : 
 

( )( )( )( ) J1030.2s/h3600h2.0W/m160m2.0Δ 622
walkingwalkingwalking ×=== tAPE  

 
Evaluate sittingE  
 

( )( )( )( ) J1046.3s/h3600h8.0W/m60m2.0Δ 622
sittingsittingsitting ×=== tAPE  

 
Evaluate act. mod.E .: 
 

( )( )( )( ) J1030.6s/h3600h5.0W/m175m2.0Δ 622
act. mod.act. mod.act. mod. ×=== tAPE  
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Evaluate act. aerobicE : 
 

( )( )( )( ) J1016.2s/h3600h1.0W/m300m2.0Δ 622
act. aerobicact. aerobicact. aerobic ×=== tAPE

 
Substitute numerical values in equation (1) and evaluate E: 
 

MJ 17J1016.5

J1016.2J1030.6J1046.3J1030.2J1030.2
6

66666

=×=

×+×+×+×+×=E
 

 
Express the average metabolic rate 
represented by this energy 
consumption: 
 

t
EP
Δav =  

Substitute numerical values and 
evaluate avP : ( )( ) kW0.19

s/h3600h24
J1016.5 6

av =
×

=P  

or about twice that of a 100 W light bulb. 
 

(b)  Express his average energy 
consumption in terms of kcal/day: 

Mcal/d3.9

kcal/d3938
J/kcal4190

J/d1016.5 6

≈

=
×

=E
 

 

(c)  
lb

kcal23
lb175
kcal3940

≈  is higher than the estimate given in the statement of the 

problem. However, by adjusting the day's activities, the metabolic rate can vary 
by more than a factor of 2.   
 
15 •• [SSM] Assume that your maximum metabolic rate (the maximum 
rate at which your body uses its chemical energy) is 1500 W (about 2.7 hp).  
Assuming a 40 percent efficiency for the conversion of chemical energy into 
mechanical energy, estimate the following: (a) the shortest time you could run up 
four flights of stairs if each flight is 3.5 m high, (b) the shortest time you could 
climb the Empire State Building  (102 stories high) using your Part (a) result. 
Comment on the feasibility of you actually achieving Part (b) result. 
 
Picture the Problem The rate at which you expend energy, that is do work, is 
defined as power and is the ratio of the work done to the time required to do the 
work. 
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(a) Relate the rate at which you can 
expend energy to the work done in 
running up the four flights of stairs: 
 

t
WP
Δ
Δ

=ε ⇒
P
Wt

ε
ΔΔ =  

where e is the efficiency for the 
conversion of chemical energy into 
mechanical energy. 
  

The work you do in climbing the 
stairs increases your gravitational 
potential energy: 
 

mghW =Δ  

Substitute for ΔW to obtain: 
P

mght
ε

=Δ                                 (1) 

 
Assuming that your mass is 70 kg, 
substitute numerical values in 
equation (1) and  evaluate Δt: 
 

( )( )( )
( )( )

s16

W150040.0
m3.54m/s 81.9kg 70Δ

2

≈

×
=t

 

 
(b) Substituting numerical values in equation (1) yields: 
 

( )( )( )
( )( ) min 8.6s 409

W150040.0
m3.5021m/s 81.9kg 70Δ

2

≈=
×

=t  

 
The time of about 6.8 min is clearly not reasonable. The fallacy is that you cannot 
do work at the given rate of 250 W for more than very short intervals of time. 
 
16 •• You are in charge of determining when the uranium fuel rods in a local 
nuclear power plant are to be replaced with fresh ones. To make this 
determination you decide to estimate how much the mass of a core of a nuclear-
fueled electric-generating plant is reduced per unit of electric energy produced. 
(Note:  In such a generating plant the reactor core generates thermal energy, 
which is then transformed to electric energy by a steam turbine.  It requires 3.0 J 
of thermal energy for each 1.0 J of electric energy produced.) What are your 
results for the production of (a) 1.0 J of thermal energy? (b) enough electric 
energy to keep a 100-W light bulb burning for 10.0 y? (c) electric energy at a 
constant rate of 1.0 GW for a year? (This is typical of modern plants.)  
 
Picture the Problem The intrinsic rest energy in matter is related to the mass of 
matter through Einstein’s equation .2

0 mcE =  
 
(a) Relate the rest mass consumed to 
the energy produced and solve for m: 2

02
0 c

E
mmcE =⇒=              (1) 
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Substitute numerical values and 
evaluate m: ( ) kg101.1

m/s10998.2
J1.0 17

28

−×=
×

=m

 
(b) Because the reactor core must 
produce 3 J of thermal energy for 
each joule of electrical energy 
produced: 
 

tPE Δ3=  
 

Substitute for E0 in equation (1) to 
obtain: 2

Δ3
c

tPm =                                 (2) 

 
Substitute numerical values in equation (2) and evaluate m: 
 

( )( )

( ) g1.1
m/s10998.2

h
s3600

d
h24

y
d365.24y10W1003

28
μ=

×

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=m  

 
(c) Substitute numerical values in equation (2) and evaluate m: 
 

( )( )

( ) kg1.1
m/s10998.2

h
s3600

d
h24

y
d365.24y1.0GW1.03

28
=

×

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=m  

 
17 •• [SSM] The chemical energy released by burning a gallon of gasoline 
is approximately 1.3 × 105 kJ. Estimate the total energy used by all of the cars in 
the United States during the course of one year. What fraction does this represent 
of the total energy use by the United States in one year (currently about  
5 × 1020 J)?  
 
Picture the Problem There are about 3 × 108 people in the United States.  On the 
assumption that the average family has 4 people in it and that they own two cars, 
we have a total of 1.5 × 108 automobiles on the road (excluding those used for 
industry). We’ll assume that each car uses about 15 gal of fuel per week. 
 
Calculate, based on the assumptions identified above, the total annual 
consumption of energy derived from gasoline: 
 

( ) J/y105.1
gal
kJ103.1weeks52

weekauto
gal15auto101.5 1958 ×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⋅
×

y
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Express this rate of energy use as a 
fraction of the total annual energy 
use by the United States: 

%3
J/y105
J/y101.5

20

19

≈
×
×  

 
18 •• The maximum efficiency of a solar-energy panel in converting solar 
energy into useful electrical energy is currently about 12 percent. In a region such 
as the southwestern United States the solar intensity reaching Earth’s surface is 
about 1.0 kW/m2 on average during the day. Estimate the area that would have to 
be covered by solar panels in order to supply the energy requirements of the 
United States (approximately 5 × 1020 J/y) and compare it to the area of Arizona. 
Assume cloudless skies.  
 
Picture the Problem The energy consumption of the U.S. works out to an 
average power consumption of about 1.6×1013 watt.  The solar constant is roughly 
103 W/m2 (reaching the ground), or about 120 W/m2 of useful power with a 12% 
conversion efficiency. Letting P represent the daily rate of energy consumption, 
we can relate the power available at the surface of the earth to the required area of 
the solar panels using IAP = . Using the internet, one finds that the area of 
Arizona is about 114,000 mi2 or 3.0 × 1011 m2. 
 
Relate the required area to the 
electrical energy to be generated by 
the solar panels: 
 

I
PA =  

where I is the solar intensity that 
reaches the surface of the Earth. 
 

Substitute numerical values and 
evaluate A: 

( ) 211
2

13

m107.2
W/m120

W101.62
×=

×
=A  

where the factor of 2 comes from the 
fact that the sun is only ″up″ for 
roughly half the day. 
 

Express the ratio of A to the area 
of Arizona to obtain: 90.0

m 103.0
m 107.2

211

211

Arizona

≈
×
×

=
A

A  

That is, the required area is about 90% 
of the area of Arizona. 
 

Remarks: A more realistic estimate that would include the variation of 
sunlight over the day and account for latitude and weather variations might 
very well increase the area required by an order of magnitude. 
 
19 •• Hydroelectric power plants convert gravitational potential energy into 
more useful forms by flowing water downhill through a turbine system to 
generate electric energy. The Hoover Dam on the Colorado River is 211 m high 
and generates 4 × 10−9 kW·h/y. At what rate (in L/s) must water be flowing 
through the turbines to generate this power? The density of water is 1.00 kg/L. 
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Assume a total efficiency of 90.0 percent in converting the water’s potential 
energy into electrical energy. 
 
Picture the Problem We can relate the energy available from the water in terms 
of its mass, the vertical distance it has fallen, and the efficiency of the process. 
Differentiation of this expression with respect to time will yield the rate at which 
water must pass through its turbines to generate Hoover Dam’s annual energy 
output. 
 
Assuming a total efficiencyε, use the 
expression for the gravitational 
potential energy near the earth’s 
surface to express the energy 
available from the water when it has 
fallen a distance h: 
 

mghE ε=  

Differentiate this expression with 
respect to time to obtain: [ ]

dt
dVgh

dt
dmghmgh

dt
dP ερεε ===  

 
Solving for dV/dt yields: 
 gh

P
dt
dV

ερ
=                               (1) 

 
Using its definition, relate the dam’s 
annual power output to the energy 
produced: 
 

t
EP

Δ
Δ

=  

 

Substituting for P in equation (1) 
yields: tgh

E
dt
dV

Δ
Δ

ερ
=  

 
Substitute numerical values and evaluate dV/dt: 
 

( )( )( )( )
L/s104.2

d
h 24d365.24m211m/s9.81kg/L1.0090.0

hkW104.00 5

2

9

×=
⎟
⎠
⎞

⎜
⎝
⎛ ×

⋅×
=

dt
dV  

 
Force, Potential Energy, and Equilibrium 

20 • Water flows over Victoria Falls, which is 128 m high, at an average 
rate of 1.4×106 kg/s. If half the potential energy of this water were converted into 
electric energy, how much electric power would be produced by these falls? 
 
Picture the Problem The water going over the falls has gravitational potential 
energy relative to the base of the falls. As the water falls, the falling water 
acquires kinetic energy until, at the base of the falls; its energy is entirely kinetic. 
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The rate at which energy is delivered to the base of the falls is given by 
.// dtdUdtdWP −==  

 
Express the rate at which energy is 
being delivered to the base of the 
falls; remembering that half the 
potential energy of the water is 
converted to electric energy: 
 

( )

dt
dmgh

mgh
dt
d

dt
dU

dt
dWP

2
1

2
1

−=

−=−==
 

 

Substitute numerical values and evaluate P: 
 

( )( )( ) GW88.0kg/s101.4m128m/s9.81 62
2
1 =×−−=P  

 
21 • A 2.0-kg box slides down a long, frictionless incline of angle 30º. It 
starts from rest at time t = 0 at the top of the incline at a height of 20 m above the 
ground. (a) What is the potential energy of the box relative to the ground at t = 0? 
(b) Use Newton’s laws to find the distance the box travels during the interval  
0.0 s < t < 1.0 s and its speed at t = 1.0 s. (c) Find the potential energy and the 
kinetic energy of the box at t = 1.0 s. (d) Find the kinetic energy and the speed of 
the box just as it reaches the ground at the bottom of the incline. 
 
Picture the Problem In the absence of friction, the sum of the potential and 
kinetic energies of the box remains constant as it slides down the incline. We can 
use the conservation of the mechanical energy of the system to calculate where 
the box will be and how fast it will be moving at any given time. We can also use 
Newton’s 2nd law to show that the acceleration of the box is constant and 
constant-acceleration equations to calculate where the box will be and how fast it 
will be moving at any given time.   

gF
r

nF
r

θ

θ

x

y

0g =U

h

m

m

00 =v

v
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(a) Express the gravitational 
potential energy of the box, relative 
to the ground, at the top of the 
incline: 
 

mghU =i  
 

Substitute numerical values and 
evaluate Ui: 

( )( )( )

kJ39.0

J392
m 20m/s 81.9kg 0.2 2

i

=

=
=U

 

 
(b) Using a constant-acceleration 
equation, relate the displacement of 
the box to its initial speed, 
acceleration and time-of-travel: 
 

2
2
1

0Δ attvx +=  
or, because v0 = 0, 

2
2
1Δ atx =                                (1) 

Apply ∑ = xx maF to the box as it 

slides down the incline and solve for 
its acceleration: 
 

maF =θsing  

or, because Fg = mg, 
mamg =θsin and 

θsinga =  
 

Substitute for a in equation (1) to 
obtain:  
 

( ) 2
2
1 sinΔ tgx θ=  

 

Substitute numerical values and 
evaluate Δx(t = 1.0 s): 

( ) ( )( )( )
m5.2m45.2

s1.0sin30m/s9.81s0.1Δ 22
2
1

==

°=x
 

 
Using a constant-acceleration 
equation, relate the speed of the box 
at any time to its initial speed and 
acceleration:  

atvv += 0  
or, because v0 = 0, 

( )tgatv θsin==  
 
 

Substitute numerical values and 
evaluate v(1.0 s): 

( ) ( )( )( )
m/s9.4m/s91.4

s0.130sinm/s81.9s0.1 2

==

°=v
 

 
(c) The kinetic energy of the box is 
given by: 
 

2
2
1 mvK =  

or, because ( )tgv θsin= , 
( ) ( ) 222

2
1 sin tmgtK θ=  

 
 
 



                                                                             Conservation of Energy 
 

 

611

Substitute numerical values and evaluate K(1.0 s): 
 

( ) ( )( ) ( )( ) J 24J 1.24s 0.130sinm/s 81.9kg 0.2s 0.1 2222
2
1 ===K  

 
Express the potential energy of the 
box after it has traveled for  
1.0 s in terms of its initial potential 
energy and its kinetic energy: 
 

kJ0.37

J24J923i

=

−=−= KUU
 

(d) Apply conservation of 
mechanical energy to the box-earth 
system as the box as it slides down 
the incline: 
 

0ΔΔext =+= UKW  
or, because Ki = Uf = 0, 

0if =−UK                              (2) 

Solving for fK  yields: 
 

kJ 39.0if == UK  

 
From equation (2) we have: 
 i

2
f2

1 Umv = ⇒
m
Uv i

f
2

=  

 
Substitute numerical values and 
evaluate fv : 

( ) m/s02
kg2.0

J3922
f ==v  

 
22 • A constant force Fx = 6.0 N is in the +x direction. (a) Find the 
potential-energy function U(x) associated with this force if U(x0) = 0. (b) Find a 
function U(x) such that U(4 .0 m) = 0. (c) Find a function U(x) such that  
U(6 .0 m) = 14 J. 
 

Picture the Problem The potential energy function U (x)  is defined by the 

equation ( ) ( ) ∫−=−
x

x

FdxxUxU
0

.0  We can use the given force function to determine 

U(x) and then the conditions on U(x) to determine the potential functions that 
satisfy the given conditions. 
 

(a) Use the definition of the potential 
energy function to find the potential 
energy function associated with Fx: 

( ) ( )

( ) ( )

( ) ( )( )00

0

0

N0.6

N6
0

0

xxxU

dxxU

dxFxUxU

x

x

x

x
x

−−=

−=

−=

∫

∫
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Because U(x0) = 0: ( ) ( )( )0N0.6 xxxU −−=  

 
(b) Use the result obtained in (a) to 
find U (x)  that satisfies the condition 
that U(4.0 m) = 0: 

( ) ( )( )
m0.40
m0.4N0.6m0.4

0

0

=⇒=
−−=

x
xU

 

and 
( ) ( )( )

( )x
xxU

N6.0J42

m0.4N0.6

−=

−−=
 

 
(c) Use the result obtained in (a) to 
find U(x) that satisfies the condition 
that U(6.0 m) = 14 J: 

( ) ( )( )

m 
3
25J14

m0.6N0.6m0.6

0

0

=⇒=

−−=

x

xU
 

and 

( ) ( )

( )x

xxU

N6.0J50

m
0.3

25N0.6

−=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

 
 
23 • A spring has a force constant of 41.0   10  N/m× . How far must the 
spring be stretched for its potential energy to equal (a) 50 J, and (b) 100 J? 
 

Picture the Problem The potential energy of a stretched or compressed ideal 
spring Us is related to its force (stiffness) constant k and stretch or compression Δx 
by .2

2
1

s kxU =  
 

(a) Relate the potential energy stored 
in the spring to the distance it has 
been stretched: 
 

2
2
1

s kxU = ⇒
k
Ux s2

=  

Substitute numerical values and 
evaluate x: 

( ) cm 10
N/m101.0
J502

4 =
×

=x  

 
(b) Proceed as in (a) with Us = 100 J: ( ) cm 14

N/m101.0
J1002

4 =
×

=x  

 
24 • (a) Find the force Fx associated with the potential-energy function U = 
Ax4, where A is a constant. (b) At what value(s) of x does the force equal zero? 
 
Picture the Problem Fx is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is, dxdUFx −= . Consequently, 
given U as a function of x, we can find Fx by differentiating U with respect to x. 
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(a) Evaluate :
dx
dUFx −=  ( ) 34 4AxAx

dx
dFx −=−=  

 
(b) Set Fx = 0 and solve for x to 
obtain: 

00 =⇒= xFx  

 
25 •• [SSM] The force Fx is associated with the potential-energy function 
U = C/x, where C is a positive constant. (a) Find the force Fx as a function of x. 
(b) Is this force directed toward the origin or away from it in the region x > 0?  
Repeat the question for the region x < 0. (c) Does the potential energy U increase 
or decrease as x increases in the region x > 0? (d) Answer Parts (b) and (c) where 
C is a negative constant. 
 
Picture the Problem Fx is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is dxdUFx −= . Consequently, 
given U as a function of x, we can find Fx by differentiating U with respect to x. 
 

(a) Evaluate :
dx
dUFx −=  

2x
C

x
C

dx
dFx =⎟

⎠
⎞

⎜
⎝
⎛−=  

 
(b) Because C > 0, if x > 0, Fx is positive and F points away from the origin. If  
x < 0, Fx is still positive and F  points toward the origin. 
 
(c) Because U is inversely proportional to x and C > 0, U(x) decreases with 
increasing x.  
 
(d) When C < 0, if x > 0, Fx is negative and F points toward the origin. If x < 0, 
Fx is negative and F  points away from the origin.  
 
Because U is inversely proportional to x and C < 0, U(x) becomes less negative as 
x increases and U(x) increases with increasing x. 
 
26 •• The force Fy is associated with the potential-energy function U(y). On 
the potential-energy curve for U versus y, shown in Figure 7-37, the segments AB 
and CD are straight lines. Plot Fy versus y. Include numerical values, with units, 
on both axes.  These values can be obtained from the U versus y plot. 
 
Picture the Problem Fy is defined to be the negative of the derivative of the 
potential-energy function with respect to y; that is, dydUFy −= . Consequently, 

we can obtain Fy by examining the slopes of the graph of U as a function of y. 
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The table to the right summarizes 
the information we can obtain 
from Figure 7-37: 
 

 Slope Fy 
Interval (N) (N) 
A→B −2 2 
B→C transitional 2 → −1.4 
C→D 1.4 −1.4  

 
The following graph shows F as a function of y: 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

y , m

F
, N

 
 
27 •• The force acting on an object is given by Fx = a/x2. At x = 5.0 m, the 
force is known to point in the –x direction and have a magnitude of 25.0 N.  
Determine the potential energy associated with this force as a function of x, 
assuming we assign a reference value of –10.0 J at x = 2.0 m for the potential 
energy. 
 
Picture the Problem xF  is defined to be the negative of the derivative of the 
potential-energy function with respect to x, i.e. dxdUFx −= . Consequently, 
given F as a function of x, we can find U by integrating xF  with respect to x. 
Applying the condition on xF x will allow us to determine the value of a and 
using the fact that the potential energy is –10.0 J at x = 2.00 m will give us the 
value of U0. 
 
Evaluate the integral of xF  with 
respect to x: 

( )

0

2

U
x
a

dx
x
adxFxU x

+=

−=−= ∫∫
      (1) 

 
Because ( ) N 0.25m 0.5 −=xF : 
 ( )

N 0.25
m 00.5 2 −=

a  
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Solving for a yields: 
 

2mN 625 ⋅−=a  

Substitute for a in equation (1) to 
obtain: ( ) 0

2mN 625 U
x

xU +
⋅−

=          (2) 

 
Applying the condition  
U(2.00 m) = −10.0 J yields: 
 

0

2

m 00.2
mN 625J 0.10 U+

⋅−
=−  

 
Solve for U0 to obtain: 
 

J 3030 =U  

Substituting for U0 in equation (2) 
yields: ( ) J 303mN 625 2

+
⋅−

=
x

xU  

 
28 •• The potential energy of an object constrained to the x axis is given by 
U(x) = 3x2 – 2x3, where U is in joules and x is in meters. (a) Determine the force 

xF  associated with this potential energy function. (b) Assuming no other forces 
act on the object, at what positions is this object in equilibrium? (c) Which of 
these equilibrium positions are stable and which are unstable? 
 
Picture the Problem xF  is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is, dxdUFx −= . Consequently, 
given U as a function of x, we can find xF  by differentiating U with respect to x. 
To determine whether the object is in stable or unstable equilibrium at a given 
point, we’ll evaluate 22 dxUd at the point of interest. 
 

(a) Evaluate :
dx
dUFx −=  ( ) ( )1623 32 −=−−= xxxx

dx
dFx  

 
(b) We know that, at equilibrium,  

xF  = 0: 
When xF  = 0, 6x(x – 1) = 0. Therefore, 
the object is in equilibrium at 

m.1and0 == xx  

 
(c) To decide whether the 
equilibrium at a particular point is 
stable or unstable, evaluate the 2nd 
derivative of the potential energy 
function at the point of interest: 
 

( ) 232 6623 xxxx
dx
d

dx
dU

−=−=  

and 

x
dx

Ud 1262

2

−=  



 Chapter 7    
 

 

616 

Evaluate 2

2

dx
Ud at x = 0: 

0atmequilibriustable

06
0

2

2

=⇒

>=
=

x

dx
Ud

x  

 

Evaluate 2

2

dx
Ud at x = 1 m: 

m1atmequilibriuunstable

0126
m1

2

2

=⇒

<−=
=

x

dx
Ud

x

 
 
29 •• [SSM] The potential energy of an object constrained to the x axis is 
given by U(x) = 8x2 – x4, where U is in joules and x is in meters. (a) Determine 
the force xF  associated with this potential energy function. (b) Assuming no other 
forces act on the object, at what positions is this object in equilibrium? (c) Which 
of these equilibrium positions are stable and which are unstable? 
 
Picture the Problem xF  is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is dxdUFx −= . Consequently, 
given U as a function of x, we can find xF  by differentiating U with respect to x. 
To determine whether the object is in stable or unstable equilibrium at a given 
point, we’ll evaluate 22 dxUd at the point of interest. 
 
(a) Evaluate the negative of the 
derivative of U with respect to x: 

( )
( )( )224164

8

3

42

−+=−=

−−=−=

xxxxx

xx
dx
d

dx
dUFx

 

 
(b) The object is in equilibrium 
wherever 0net == xFF : 

( )( )
.m2and,0,m2arepoints

mequilibriuthe0224

−=

⇒=−+

x

xxx

 
(c) To decide whether the 
equilibrium at a particular point is 
stable or unstable, evaluate the 2nd 
derivative of the potential energy 
function at the point of interest: 
 

( ) 23
2

2

1216416 xxx
dx
d

dx
Ud

−=−=
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Evaluating 22 dxUd at x = −2 m, 0 and x = 2 m yields the following results: 
 

x, m 22 dxUd Equilibrium
−2 −32 Unstable 
0 16 Stable 
2 −32 Unstable  

 
Remarks: You could also decide whether the equilibrium positions are stable 
or unstable by plotting F(x) and examining the curve at the equilibrium 
positions. 
 
30 •• The net force acting on an object constrained to the x axis is given by 
Fx(x) = x3 – 4x. (The force is in newtons and x in meters.) Locate the positions of 
unstable and stable equilibrium. Show that each of these positions is either stable 
or unstable by calculating the force one millimeter on either side of the locations. 
 
Picture the Problem The equilibrium positions are those values of x for which 
F(x) = 0. Whether the equilibrium positions are stable or unstable depends on 
whether the signs of the force either side of the equilibrium position are the same 
(unstable equilibrium) of opposite (stable equilibrium). 
 
Determine the equilibrium locations 
by setting ( ) 0net == xFF : 

F(x) = x3 – 4x = x(x2 – 4) = 0  
and the positions of stable and unstable 
equilibrium are at 

m 2and0,m 2−=x . 

 
Noting that we need only determine whether each value of F(x) is positive or 
negative, evaluate F(x) at x = −201 mm and x = −199 mm to determine the 
stability at x = −200 mm … and repeat these calculations at x = −1 mm, 1 mm 
and x = 199 mm, 201 mm to complete the following table: 
 

x, mm mm 1−xF  mm 1+xF  Equilibrium
−200 < 0 < 0 Unstable 

0 > 0 < 0 Stable 
200 > 0 > 0 Unstable  

 
Remarks: You can very easily confirm these results by using your graphing 
calculator to plot F(x). You could also, of course, find U(x) from F(x) and 
examine it at the equilibrium positions. 
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31 •• The potential energy of a 4.0-kg object constrained to the x axis is 
given by U = 3x2 – x3 for x ≤ 3.0 m and U = 0 for x ≥ 3.0 m, where U is in joules 
and x is in meters, and the only force acting on this object is the force associated 
with this potential energy function. (a) At what positions is this object in 
equilibrium? (b) Sketch a plot of U versus x. (c) Discuss the stability of the 
equilibrium for the values of x found in Part (a). (d) If the total mechanical energy 
of the particle is 12 J, what is its speed at x = 2.0 m? 
 
Picture the Problem xF x is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is dxdUFx −= . Consequently, 
given U as a function of x, we can find xF  by differentiating U with respect to x. 
To determine whether the object is in stable or unstable equilibrium at a given 
point, we can examine the graph of U. 
 

(a) Evaluate 
dx
dUFx −= for x ≤ 3.0 m: ( ) ( )xxxx

dx
dFx −=−−= 233 32  

 
Set xF  = 0 and solve for those values 
of x for which the 4.0-kg object is in 
equilibrium: 
 

3x(2 – x) = 0  
Therefore, the object is in equilibrium 
at m.0.2and0 == xx  

 
Because U = 0:  ( ) 0m3 =−=≥

dx
dUxFx  

 
Therefore, the object is in neutral equilibrium for x ≥ 3.0 m. 

 
(b) A graph of U(x) in the interval  –1.0 m ≤ x ≤ 3.0 m follows: 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

-1.0 0.0 1.0 2.0 3.0

x  (m)

U
 (J

)

 
 

(c) From the graph, U(x) is a minimum at x = 0 and so the equilibrium is stable at 
this point 
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From the graph, U(x) is a maximum at x = 2.0 m and so the equilibrium is 
unstable at this point. 
 
(d) Relate the kinetic energy of the 
object K to its total energy E and its 
potential energy U: 
 

UEmvK −== 2
2
1 ⇒ ( )

m
UEv −

=
2  

 
 

Substitute numerical values and evaluate v(2.0 m): 
 

( ) ( )( ) ( )( )( )( ) m/s0.2
kg4.0

m 0.2J/m 0.1m 0.2J/m 0.3J122m 0.2
3322

=
−−

=v  

 
32 •• A force is given by xF  = Ax–3, where A = 8.0 N⋅m3. (a) For positive 
values of x, does the potential energy associated with this force increase or 
decrease with increasing x? (You can determine the answer to this question by 
imagining what happens to a particle that is placed at rest at some point x and is 
then released.) (b) Find the potential-energy function U associated with this force 
such that U approaches zero as x approaches infinity. (c) Sketch U versus x. 
 
Picture the Problem xF  is defined to be the negative of the derivative of the 
potential-energy function with respect to x, that is dxdUFx −= . Consequently, 
given F as a function of x, we can find U by integrating xF  with respect to x. 
 

(a) Evaluate the negative of the 
integral of F(x) with respect to x: 

( ) ( )

02

3

2
1 U

x
A

dxAxxFxU

+=

−=−= ∫∫ −

 

where U0 is a constant whose value is 
determined by conditions on U(x). 
 

For x > 0: increases  as decreases xU  

 

(b) As x → ∞, 22
1

x
A

→ 0. Hence: U0 = 0  
and  

( )

3
2

2

3

2

mN0.4

mN0.8
2
1

2
1

⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
==

x

xx
AxU
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(c) The graph of U(x) follows: 

0
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400
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33 •• [SSM] A straight rod of negligible mass is mounted on a frictionless 
pivot, as shown in Figure 7-38. Blocks have masses m1 and m2 are attached to the 
rod at distances 1  and 2 . (a) Write an expression for the gravitational potential 
energy of the blocks-Earth system as a function of the angle θ made by the rod 
and the horizontal. (b) For what angle θ is this potential energy a minimum? Is the 
statement ″systems tend to move toward a configuration of minimum potential 
energy″ consistent with your result? (c) Show that if 1 1 2 2m m= , the potential 
energy is the same for all values of θ. (When this holds, the system will balance at 
any angle θ. This result is known as Archimedes’ law of the lever.) 
 

Picture the Problem The gravitational potential energy of this system of two 
objects is the sum of their individual potential energies and is dependent on an 
arbitrary choice of where, or under what condition(s), the gravitational potential 
energy is zero. The best choice is one that simplifies the mathematical details of the 
expression for U. In this problem let’s choose U = 0 where θ = 0. 
 

(a) Express U for the 2-object 
system as the sum of their 
gravitational potential energies; 
noting that because the object whose 
mass is m2 is above the position we 
have chosen for U = 0, its potential 
energy is positive while that of the 
object whose mass is m1 is negative: 
 

( )

( ) θ

θθ
θ

sin

sinsin

1122

1122

21

gmm

gmgm
UUU

−=

−=
+=
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(b) Differentiate U with respect to θ 
and set this derivative equal to zero 
to identify extreme values: 
 

( ) 0cos1122 =−= θ
θ

gmm
d
dU  

from which we can conclude that  
cosθ = 0 and θ = cos−10. 
 

To be physically meaningful, 
.22 πθπ ≤≤−  Hence: 

 

2πθ ±=  

Express the 2nd derivative of U with 
respect to θ and evaluate this 
derivative at :2πθ ±=  
 

( ) θ
θ

sin11222

2

gmm
d

Ud
−−=  

 

If we assume, in the expression for U 
that we derived in (a), that  
m2 2 – m1 1 > 0, then U(θ) is a sine 

function and, in the interval of 
interest,  

22 πθπ ≤≤− , 
takes on its minimum value when  
θ  = −π/2: 

and0
2

2

2

>
−πθd

Ud

  
2atminimumais πθ −=U

 

and 0
2

2

2

<
πθd

Ud

 
2atmaximumais πθ =U

 
 

(c) If m2 2 = m1 1, then: 02211 =− mm  
and 

. oft independen 0 θ=U
 

 
Remarks: An alternative approach to establishing that U is a maximum at  
θ = π/2 is to plot its graph and note that, in the interval of interest, U is 
concave downward with its maximum value at θ = π/2. Similarly, it can be 
shown that U is a minimum at θ = −π/2 (Part (b)). 
 
34 •• An Atwood’s machine (Figure 7-39) consists of masses m1 and m2, and 
a pulley of negligible mass and friction. Starting from rest, the speed of the two 
masses is 4.0 m/s at the end of 3.0 s. At that time, the kinetic energy of the system 
is 80 J and each mass has moved a distance of 6.0 m. Determine the values of m1 
and m2.  
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Picture the Problem In a simple Atwood’s machine, the only effect of the pulley 
is to connect the motions of the two objects on either side of it; that is, it could be 
replaced by a piece of polished pipe. We can relate the kinetic energy of the rising 
and falling objects to the mass of the system and to their common speed and relate 
their accelerations to the sum and difference of their masses … leading to 
simultaneous equations in m1 and m2.  
 
Relate the kinetic energy of the 
system to the total mass being 
accelerated: 
 

( ) 2
212

1 vmmK += ⇒ 221
2
v
Kmm =+  

   
 

Substitute numerical values and 
evaluate m1 + m2: 
 

( )
( )

kg0.10
m/s4.0

J802
221

=

=+ mm
               (1) 

 
In Chapter 4, the acceleration of the 
masses was shown to be: 
 

g
mm
mma

21

21

+
−

=  

Because v(t) = at, we can eliminate a 
in the previous equation to obtain: 
 

( ) gt
mm
mmtv

21

21

+
−

=  

Solving for 21 mm − yields: ( ) ( )
gt

tvmmmm 21
21

+
=−    

 
Substitute numerical values and 
evaluate 21 mm − : 

( )( )
( )( )

kg36.1
s3.0m/s9.81

m/s4.0kg10
221

=

=− mm
     (2) 

 
Solve equations (1) and (2) 
simultaneously to obtain: 

kg7.51 =m and kg3.42 =m  

 
35 ••• You have designed a novelty desk clock, as shown in Figure 7-40. You 
are worried that it is not ready for market because the clock itself might be in an 
unstable equilibrium configuration. You decide to apply your knowledge of 
potential energies and equilibrium conditions and analyze the situation.   The 
clock (mass m) is supported by two light cables running over the two frictionless 
pulleys of negligible diameter, which are attached to counterweights that each 
have mass M.  (a) Find the potential energy of the system as a function of the 
distance y. (b) Find the value of y for which the potential energy of the system is a 
minimum. (c) If the potential energy is a minimum, then the system is in 
equilibrium. Apply Newton’s second law to the clock and show that it is in 
equilibrium (the forces on it sum to zero) for the value of y obtained for Part (b). 
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(d) Finally, determine whether you are going to be able to market this gadget: is 
this a point of stable or unstable equilibrium?  
 
Picture the Problem Let L be the total length of one cable and the zero of 
gravitational potential energy be at the top of the pulleys. We can find the value of 
y for which the potential energy of the system is an extremum by differentiating 
U(y) with respect to y and setting this derivative equal to zero. We can establish 
that this value corresponds to a minimum by evaluating the second derivative of 
U(y) at the point identified by the first derivative. We can apply Newton’s 2nd law 
to the clock to confirm the result we obtain by examining the derivatives of U(y). 
 
(a) Express the potential energy of 
the system as the sum of the 
potential energies of the clock and 
counterweights: 
 

( ) ( ) ( )yUyUyU weightsclock +=  

Substitute for ( )yU clock and 
( )yUweights  to obtain: 

 

( ) ( )222 dyLMgmgyyU +−−−=
 

 

(b) Differentiate U(y) with respect to y: 
 

( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=+−+−=

22

22 22)(
dy

yMgmgdyLMgmgy
dy
d

dy
ydU  

 
For extreme values (relative maxima 
and minima):  02

22
=

+
−

dy'
y'Mgmg  

 
Solve for y′ to obtain: 
 22

2

4 mM
mdy'

−
=

 
 

Find ( )
2

2

dy
yUd : 

( ) 2322

2

222

2

2

2)(

dy
Mgd

dy
yMgmg

dy
d

dy
yUd

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−−=
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Evaluate ( )
2

2

dy
yUd at y = y′: ( )

( )

0

1
4

2

2

23

22

2

2322

2

2

2

>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

=

+
=

mM
m

Mgd

dy
Mgd

dy
yUd

y'y'

 

and the potential energy is a minimum 
at 

22

2

4 mM
mdy

−
=  

 
(c) The free-body diagram, showing 
the magnitudes of the forces acting 
on the support point just above the 
clock, is shown to the right: 
 

x

y

θ θ

mg

MgMg

 
 

Apply ∑ = 0yF to this point to 
obtain: 
 

0sin2 =− mgMg θ ⇒
M
m

2
sin =θ  

 
Express sinθ in terms of y and d: 

22
sin

dy
y
+

=θ
 

 
Equate the two expressions for sinθ  
to obtain: 
 

222 dy
y

M
m

+
=  

which is equivalent to the first equation 
in Part (b). 
 

(d) This is a point of stable equilibrium. If the clock is displaced downward, θ 
increases, leading to a larger upward force on the clock. Similarly, if the clock is 
displaced upward, the net force from the cables decreases. Because of this, the 
clock will be pulled back toward the equilibrium point if it is displaced away from 
it. 
 
Remarks: Because we’ve shown that the potential energy of the system is a 
minimum at y = y′ (i.e., U(y) is concave upward at that point), we can 
conclude that this point is one of stable equilibrium. 
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The Conservation of Mechanical Energy 
 
36 • A block of mass m on a horizontal frictionless tabletop is pushed 
against a horizontal spring, compressing it a distance x, and the block is then 
released. The spring propels the block along the tabletop, giving a speed v. The 
same spring is then used to propel a second block of mass 4m, giving it a speed 
3v. What distance was the spring compressed in the second case? Express your 
answer in terms of x. 
 
Picture the Problem The work done in compressing the spring is stored in the 
spring as potential energy. When the block is released, the energy stored in the 
spring is transformed into the kinetic energy of the block. Equating these energies 
will give us a relationship between the compressions of the spring and the speeds 
of the blocks.  

 
Let the numeral 1 refer to the first 
case and the numeral 2 to the second 
case.  Relate the compression of the 
spring in the second case to its 
potential energy, which equals its 
initial kinetic energy when released: 
 

( )( )
2
11

2
112

1

2
222

12
22

1

18

34

vm

vm

vmkx

=

=

=

 

Relate the compression of the spring 
in the first case to its potential 
energy, which equals its initial 
kinetic energy when released: 
 

2
112

12
12

1 vmkx = ⇒ 2
1

2
11 kxvm =  

Substitute for 2
11vm to obtain: 2

1
2
22

1 18kxkx = ⇒ 12 6xx =  
 
37 • A simple pendulum of length L with a bob of mass m is pulled aside 
until the bob is at a height L/4 above its equilibrium position. The bob is then 
released. Find the speed of the bob as it passes through the equilibrium position.  
Neglect any effects due to air resistance. 
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Picture the Problem The diagram 
shows the pendulum bob in its initial 
position. Let the zero of gravitational 
potential energy be at the low point of 
the pendulum’s swing, the equilibrium 
position, and let the system include the 
pendulum and the earth. We can find the 
speed of the bob at it passes through the 
equilibrium position by applying 
conservation of mechanical energy to 
the system.   0g =U

Δ Lh 4
1=

L

 
 

Apply conservation of mechanical 
energy to the system to obtain: 
 

UKW ΔΔext +=  
or, because Wext = 0, 

0ΔΔ =+ UK                            
 

Because 0fi =−UK : 
 

0if =−UK  

Substituting for fK and iU  yields: 
 

0Δ2
f2

1 =− hmgmv ⇒ hgv Δ2f =  
 

Express Δh in terms of the length L 
of the  pendulum: 4

Lh =Δ  

 
Substitute for Δh in the expression for 

fv  and simplify to obtain: 2f
gLv =  

 
38 • A 3.0-kg block slides along a frictionless horizontal surface with a 
speed of 7.0 m/s (Figure 7-41). After sliding a distance of 2.0 m, the block makes 
a smooth transition to a frictionless ramp inclined at an angle of 40° to the 
horizontal. What distance along the ramp does the block slide before coming 
momentarily to rest?  
 
Picture the Problem The pictorial representation shows the block in its initial, 
intermediate, and final states. It also shows a choice for Ug = 0. Let the system 
consist of the block, ramp, and the earth. Because the surfaces are frictionless, the 
initial kinetic energy of the system is equal to its final gravitational potential 
energy when the block has come to rest on the incline.  
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θ

x

0g =U0

0
0
=x

h

21

3

01 =x m 0.22 =x

03 =v

m/s 0.71 =v 2v

r+= m 0.23x

 
 
Apply conservation of mechanical 
energy to the system to obtain: 
 

UKW ΔΔext +=  
or, because Wext = 0, 

0ΔΔ =+ UK                            
 

Because K3 = U1 = 0: 
 

031 =+− UK  

Substituting for K1 and U3 yields: 
 02

12
1 =+− mghmv ⇒

g
vh
2

2
1=  

where h is the change in elevation of 
the block as it slides to a momentary 
stop on the ramp. 
 

Relate the height h to the 
displacement  of the block along the 
ramp and the angle the ramp makes 
with the horizontal: 
 

θsin=h  
 

Equate the two expressions for h and 
solve for  to obtain:  g

v
2

sin
2
1=θ ⇒

θsin2

2
1

g
v

=  

 
Substitute numerical values and 
evaluate : 

( )
( ) m9.3

sin40m/s9.812
m/s7.0

2

2

=
°

=  

 
39 • The 3.00-kg object in Figure 7-42 is released from rest at a height of 
5.00 m on a curved frictionless ramp. At the foot of the ramp is a spring of force 
constant 400 N/m. The object slides down the ramp and into the spring, 
compressing it a distance x before coming momentarily to rest. (a) Find x.  
(b) Describe the motion object (if any) after the block momentarily comes to rest? 
 
Picture the Problem Let the system consist of the earth, the block, and the spring. 
With this choice there are no external forces doing work to change the energy of 
the system. Let Ug = 0 at the elevation of the spring. Then the initial gravitational 
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potential energy of the 3.00-kg object is transformed into kinetic energy as it slides 
down the ramp and then, as it compresses the spring, into potential energy stored 
in the spring.  
 
(a) Apply conservation of 
mechanical energy to the system to 
relate the distance the spring is 
compressed to the initial potential 
energy of the block: 
 

0ext =Δ+Δ= UKW  
and, because ΔK = 0,  

02
2
1 =+− kxmgh ⇒

k
mghx 2

=  

Substitute numerical values and 
evaluate x: 

( )( )( )

m858.0

N/m400
m5.00m/s9.81kg3.002 2

=

=x
 

 
(b) The energy stored in the compressed spring will accelerate the block, launching 
it back up the incline and the block will retrace its path, rising to a height of  
5.00 m. 
 
40 • You are designing a game for small children and want to see if the 
ball’s maximum speed is sufficient to require the use of goggles. In your game, a 
15.0-g ball is to be shot from a spring gun whose spring has a force constant of 
600 N/m. The spring will be compressed 5.00 cm when in use. How fast will the 
ball be moving as it leaves the gun and how high will the ball go if the gun is 
aimed vertically upward? What would be your recommendation on the use of 
goggles?  
 
Picture the Problem With Ug chosen to be zero at the uncompressed level of the 
spring, the ball’s initial gravitational potential energy is negative. Let the system 
consist of the ball, the spring and gun, and the earth. The difference between the 
initial potential energy of the spring and the gravitational potential energy of the 
ball is first converted into the kinetic energy of the ball and then into gravitational 
potential energy as the ball rises and slows … eventually coming momentarily to 
rest.  

  
Apply conservation of mechanical 
energy to the system as the ball 
leaves the gun to obtain: 

0ΔΔΔ sgext =++= UUKW  

or, because Ki = Us,f = Ug,f = 0, 
02

2
12

f2
1 =−+ kxmgxmv  
 

Solving for fv  yields: 
 xgx

m
kv ⎟

⎠
⎞

⎜
⎝
⎛ −= 2f  
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Substitute numerical values and evaluate vf: 
 

( ) ( ) ( ) m/s .959m 0500.0m/s 81.92m 0500.0
kg 0.0150

N/m 600 2
f =⎥

⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=v  

This initial speed of the ball is fast enough to warrant the use of goggles. 
 
Apply conservation of mechanical 
energy to the system as the ball rises 
to its maximum height to obtain: 
 

0ΔΔΔ sgext =++= UUKW  

or, because ΔK = Us,f = 0, 
02

2
1 =−+ kxmgxmgh  

where h is the maximum height of the 
ball. 
 

Solving for h yields: 
x

mg
kxh −=
2

2

 

 
Substitute numerical values and 
evaluate h: 

( )( )
( )( )

m05.5

m0500.0
m/s9.81kg0.01502
m0.0500N/m600

2

2

=

−=h
 

 
41 • [SSM] A 16-kg child on a 6.0-m-long playground swing moves with a 
speed of 3.4 m/s when the swing seat passes through its lowest point. What is the 
angle that the swing makes with the vertical when the swing is at its highest 
point?  Assume that the effects due to air resistance are negligible, and assume 
that the child is not pumping the swing. 
 
Picture the Problem Let the system 
consist of the earth and the child. Then  
Wext = 0. Choose Ug = 0 at the child’s 
lowest point as shown in the diagram to 
the right. Then the child’s initial energy 
is entirely kinetic and its energy when 
it is at its highest point is entirely 
gravitational potential. We can 
determine h from conservation of 
mechanical energy and then use 
trigonometry to determineθ.  

θ

0g =U

L hL −

h
ivr

 
 
Using the diagram, relate θ to h and 
L: ⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −

= −−

L
h

L
hL 1coscos 11θ   (1) 
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Apply conservation of mechanical 
energy to the system to obtain: 

0ΔΔext =+= UKW  
or, because Kf = Ug,i = 0, 

0fg,i =+− UK  

 
Substituting for Ki and Ug,f yields: 

02
i2

1 =+− mghmv ⇒
g

vh
2

2
i=  

 
Substitute for h in equation (1) to 
obtain:  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
i1θ  

 
Substitute numerical values and 
evaluate θ : 

( )
( )( )

°=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

26

m6.0m/s9.812
m/s3.41cos 2

2
1θ

 

 
42 •• The system shown in Figure 7-44 is initially at rest when the lower 
string is cut. Find the speed of the objects when they are momentarily at the same 
height. The frictionless pulley has negligible mass.  
 
Picture the Problem Let the system include the two objects and the earth. Then 
Wext = 0. Choose Ug = 0 at the elevation at which the two objects meet. With this 
choice, the initial potential energy of the 3.0-kg object is positive and that of the  
2.0-kg object is negative. Their sum, however, is positive. Given our choice for  
Ug = 0, this initial potential energy is transformed entirely into kinetic energy.  

 
Apply conservation of mechanical 
energy to the system to obtain: 

0gext =Δ+Δ= UKW  

or, because Wext = 0, 
ΔK = −ΔUg 

 
Noting that m represents the sum of 
the masses of the objects as they are 
both moving in the final state, 
substitute for ΔK: 
 

g
2
i2

12
f2

1 Umvmv Δ−=−  

or, because vi = 0, 

g
2
f2

1 ΔUmv −=  ⇒ 
m

U
v g

f

2Δ−
=         

 
ΔUg is given by: ( )ghmmUUU 23ig,fg,g 0Δ −−=−=  

 
Substitute for ΔUg to obtain: ( )

m
ghmmv 23

f
2 −

=  
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Substitute numerical values and evaluate fv : 
 

( )( )( ) m/s1.4
kg0.2kg0.3

m/s9.81m0.50kg2.0kg3.02 2

f =
+

−
=v  

 
43 •• A block of mass m rests on an inclined plane (Figure 7-44).  The 
coefficient of static friction between the block and the plane is μs. A gradually 
increasing force is pulling down on the spring (force constant k). Find the 
potential energy U of the spring (in terms of the given symbols) at the moment the 
block begins to move.  
 
Picture the Problem Fs is the force 
exerted by the spring and, because the 
block is on the verge of sliding,  
fs = fs,max. We can use Newton’s 2nd 
law, under equilibrium conditions, to 
express the elongation of the spring as a 
function of m, k and θ  and then 
substitute in the expression for the 
potential energy stored in a stretched or 
compressed spring. 

gF
r

nF
r

θ

x

y

sF
r

max s,f
r

 
 
Express the potential energy of the 
spring when the block is about to 
move: 
 

2
2
1 kxU =  

Apply ,m∑ = aF under equilibrium 

conditions, to the block: 
 

0sinmaxs,s =−−=∑ θmgfFFx  

and 
∑ =−= 0cosn θmgFFy  

 
Using nsmax s, Ff μ=  and kxF =s , 
eliminate max s,f and sF  from the x 

equation and solve for x: 
 

( )
k

mgx θμθ cossin s+
=  

Substitute for x in the expression  
for U and simplify to obtain: 

( )

( )[ ]
k

mg

k
mgkU

2
cossin

cossin

2
s

2
s

2
1

θμθ

θμθ

+
=

⎥⎦
⎤

⎢⎣
⎡ +

=
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44 •• A 2.40-kg block is dropped onto a spring (Figure 7-45) with a force 
constant of 33 96 10.      N m×  from a height of 5.00 m. When the block is 
momentarily at rest, the spring is compressed by 25.0 cm.  Find the speed of the 
block when the compression of the spring is 15.0 cm. 
 
Picture the Problem Let the system 
include the block, the spring, and the 
earth. Let Ug = 0 where the spring is 
compressed 15.0 cm. Then the 
mechanical energy when the 
compression of the spring is 15.0 cm 
will be partially kinetic and partially 
stored in the spring. We can use 
conservation of mechanical energy to 
relate the initial potential energy of the 
system to the energy stored in the 
spring and the kinetic energy of block 
when it has compressed the spring  
15.0 cm.  

0g =U

cm 0.15=x

m 00.5=h

m

m

 

 
Apply conservation of mechanical 
energy to the system to obtain: 
 

0ΔΔext =+= KUW  
or  

0ifis,fs,ig,fg, =−+−+− KKUUUU  

 
Because 0iis,fg, === KUU : 0ffs,ig, =++− KUU  

 
Substitute to obtain: 
 

( ) 02
2
12

2
1 =+++− mvkxxhmg  

 
Solving for v yields: 

( )
m

kxxhgv
2

2 −+=  

 
Substitute numerical values and evaluate v: 
 

( )( ) ( )( ) m/s00.8
kg2.40

m0.150N/m103.96m0.150m5.00m/s9.812
23

2 =
×

−+=v  

 
45 •• [SSM] A ball at the end of a string moves in a vertical circle with 
constant mechanical energy E.  What is the difference between the tension at the 
bottom of the circle and the tension at the top? 
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Picture the Problem The diagram 
represents the ball traveling in a 
circular path with constant energy. Ug 
has been chosen to be zero at the 
lowest point on the circle and the 
superimposed free-body diagrams show 
the forces acting on the ball at the top 
(T) and bottom (B) of the circular path. 
We’ll apply Newton’s 2nd law to the 
ball at the top and bottom of its path to 
obtain a relationship between TT and TB 
and conservation of mechanical energy 
to relate the speeds of the ball at these 
two locations.  

R

m

m

m

 0g =U

 gmr

 gmr

 
TT
r

 vr

 
BT
r

 
 
Apply ∑ = radialradial maF to the ball at 

the bottom of the circle and solve for 
TB: 

R
vmmgT

2
B

B =−  

and 

R
vmmgT

2
B

B +=                             (1) 

 
Apply ∑ = radialradial maF to the ball at 

the top of the circle and solve for TT: R
vmmgT

2
T

T =+  

and 

R
vmmgT

2
T

T +−=                           (2) 

 
Subtract equation (2) from equation 
(1) to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

+=−

R
vmmg

R
vmmgTT

2
T

2
B

TB

 

mg
R
vm

R
vm 2

2
T

2
B +−=      (3) 

 
Using conservation of mechanical 
energy, relate the energy of the ball 
at the bottom of its path to its 
mechanical energy at the top of the 
circle: 
  

( )Rmgmvmv 22
T2

12
B2

1 +=  
or 

mg
R
vm

R
vm 4

2
T

2
B =−

 

Substituting in equation (3) yields: mgTT 6TB =−
 

 



 Chapter 7    
 

 

634 

46 •• A girl of mass m is taking a picnic lunch to her grandmother. She ties a 
rope of length R to a tree branch over a creek and starts to swing from rest at a 
point that is a distance R/2 lower than the branch. What is the minimum breaking 
tension for the rope if it is not to break and drop the girl into the creek? 
 
Picture the Problem Let the system 
consist of the girl and the earth and let 
Ug = 0 at the lowest point in the girl’s 
swing. We can apply conservation of 
mechanical energy to the system to 
relate the girl’s speed v to R. The force 
diagram shows the forces acting on the 
girl at the low point of her swing. 
Applying Newton’s 2nd law to her will 
allow us to establish the relationship 
between the tension T and her speed.  

0g =U

R R2
1

T
r

gmF rr
=g  

 
Apply ∑ = radialradial maF to the girl 

at her lowest point and solve for T: R
vmmgT

2

=−  

and 

R
vmmgT

2

+=                          (1) 

 
Apply conservation of mechanical 
energy to the system to obtain: 

0ΔΔext =+= UKW  
or, because Ki = Uf = 0, 

0if =−UK  
 

Substituting for Kf and Ui yields:  
 0

2
2

2
1 =−

Rmgmv ⇒ g
R
v

=
2

 

 
Substitute for v2/R in equation (1) 
and simplify to obtain: 

mgmgmgT 2=+=  

 
47 •• A 1500-kg roller coaster car starts from rest a height H = 23.0 m 
(Figure 7-46) above the bottom of a 15.0-m-diameter loop. If friction is 
negligible, determine the downward force of the rails on the car when the upside-
down car is at the top of the loop. 
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Picture the Problem Let the system 
include the car, the track, and the earth. 
The pictorial representation shows the 
forces acting on the car when it is 
upside down at the top of the loop. 
Choose Ug = 0 at the bottom of the 
loop. We can express Fn in terms of v 
and R by apply Newton’s 2nd law to the 
car and then obtain a second expression 
in these same variables by applying 
conservation of mechanical energy to 
the system. The simultaneous solution 
of these equations will yield an 
expression for Fn in terms of known 
quantities. 

nF
r

gF
r

R

0g =U

m

 

 
Apply ∑ = radialradial maF to the car at 

the top of the circle and solve for Fn: R
vmmgF

2

n =+  

and 

mg
R
vmF −=

2

n                         (1) 

 
Using conservation of mechanical 
energy, relate the energy of the car at 
the beginning of its motion to its 
energy when it is at the top of the 
loop: 
 

0ΔΔext =+= UKW  
or, because Ki = 0, 

0iff =−+ UUK  
 

Substitute for Kf, Uf, and Ui to 
obtain: 
 

( ) 022
2
1 =−+ mgHRmgmv  

Solving for 
R
vm

2

yields: ⎟
⎠
⎞

⎜
⎝
⎛ −= 22

2

R
Hmg

R
vm                 (2) 

 
Substitute equation (2) in equation 
(1) to obtain: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

−⎟
⎠
⎞

⎜
⎝
⎛ −=

52

22n

R
Hmg

mg
R
HmgF
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Substitute numerical values and evaluate Fn: 
 

( ) ( ) ( ) kN7.165
m7.50
m23.02m/s9.81kg1500 2

n =⎥
⎦

⎤
⎢
⎣

⎡
−=F  

 
48 •• A single roller-coaster car is moving with speed v0 on the first section 
of track when it descends a 5.0-m-deep valley, then climbs to the top of a hill that 
is 4.5 m above the first section of track.  Assume any effects of friction or of air 
resistance are negligible. (a) What is the minimum speed v0 required if the car is 
to travel beyond the top of the hill?  (b) Can we affect this speed by changing the 
depth of the valley to make the coaster pick up more speed at the bottom? 
Explain. 
 
Picture the Problem Let the system include the roller coaster, the track, and the 
earth and denote the starting position with the numeral 0 and the top of the second 
hill with the numeral 1. We can use the work-energy theorem to relate the 
energies of the coaster at its initial and final positions. Let m be the mass of the 
roller coaster. 

0g =U

m 5.91 =h

0

1

m 0.50 =h

m

m

 
 
(a) Use conservation of mechanical 
energy to relate the work done by 
external forces to the change in the 
energy of the system: 
  

UKEW Δ+Δ=Δ= sysext  
 
 

Because the track is frictionless,  
Wext = 0: 
 

0=Δ+Δ UK  
and 

00101 =−+− UUKK  
 

Substitute to obtain: 
 

001
2
02

12
12

1 =−+− mghmghmvmv  
 

Solving for v0 yields: ( )01
2
10 2 hhgvv −+=  

 
If the coaster just makes it to the top 
of the second hill, v1 = 0 and: 

( )010 2 hhgv −=  
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Substitute numerical values and 
evaluate v0: 

( )( )
m/s9.4

m5.0m9.5m/s9.812 2
0

=

−=v
 

 
(b) No. Note that the required speed depends only on the difference in the heights 
of the two hills.  
  
49 •• The Gravitron single-car roller coaster consists of a single loop-the-
loop.  The car is initially pushed, giving it just the right mechanical energy so the 
riders on the coaster will feel ″weightless″ when they pass through the top of the 
circular arc. How heavy will they feel when they pass through the bottom of the 
arc (that is, what is the normal force pressing up on them when they are at the 
bottom of the loop)? Express the answer as a multiple of mg (their actual weight).  
Assume any effects of friction or of air resistance are negligible. 
 
Picture the Problem Let the radius of the loop be R and the mass of one of the 
riders be m. At the top of the loop, the centripetal force on her is her weight (the 
force of gravity). The two forces acting on her at the bottom of the loop are the 
normal force exerted by the seat of the car, pushing up, and the force of gravity, 
pulling down.  We can apply Newton’s 2nd law to her at both the top and bottom 
of the loop to relate the speeds at those locations to m and R and, at b, to F, and 
then use conservation of mechanical energy to relate vt and vb. 

nF
r

R

0g =U

gm
r

gm
r

t

b

 
 
Apply radialradial maF =∑ to the rider 
at the bottom of the circular arc: 
 

R
vmmgF

2
b=− ⇒

R
vmmgF

2
b+=  (1) 

Apply radialradial maF =∑ to the rider 
at the top of the circular arc: 
 

R
vmmg

2
t= ⇒ gRv =2

t  
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Apply conservation of mechanical 
energy to the system to obtain: 
 

0tbtb =−+− UUKK  
or, because Ub = 0, 

0ttb =−− UKK  
 

Substitute for Kb, Kt, and Ut to 
obtain: 
 

022
t2

12
b2

1 =−− mgRmvmv  
 

Solving for 2
bv yields: gRv 52

b =  
 

Substitute for 2
bv  in equation (1) and 

simplify to obtain: 
 

mg
R
gRmmgF 65

=+=   

That is, the rider will feel six times 
heavier than her normal weight. 

 
50 •• A stone is thrown upward at an angle of 53° above the horizontal. Its 
maximum height above the release point is 24 m. What was the stone’s initial 
speed? Assume any effects of air resistance are negligible. 
 
Picture the Problem Let the system 
consist of the stone and the earth and 
ignore the influence of air resistance. 
Then Wext = 0. Choose Ug = 0 as shown 
in the figure. Apply conservation of 
mechanical energy to describe the 
energy transformations as the stone 
rises to the highest point of its 
trajectory. 

θ

0vr

0

y

x

h

0g =U  
 
Apply conservation of mechanical 
energy to the system: 
 

0ext =Δ+Δ= UKW  
and 

00101 =−+− UUKK  
 

Because U0 = 0: 
 

0101 =+− UKK  

Substitute for the kinetic and potential 
energies yields: 
 

02
2
12

2
1 =+− mghmvmvx  

In the absence of air resistance, the 
horizontal component of v is 
constant and equal to θcosvvx = :  
 

( ) 0cos 2
2
12

2
1 =+− mghmvvm θ  
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Solving for v yields: 
θ2cos1

2
−

=
ghv  

 
Substitute numerical values and 
evaluate v: 

( )( ) m/s27
53cos1

m24m/s9.812
2

2

=
°−

=v  

 
51 •• A 0.17-kg baseball is launched from the roof of a building 12 m above 
the ground. Its initial velocity is 30 m/s at 40° above the horizontal. Assume any 
effects of air resistance are negligible. (a) What is the maximum height above the 
ground the ball reaches? (b) What is the speed of the ball as it strikes the ground? 
 
Picture the Problem The figure shows 
the ball being thrown from the roof of 
the building. Let the system consist of 
the ball and the earth. Then Wext = 0. 
Choose Ug = 0 at ground level. We can 
use conservation of mechanical energy 
to determine the maximum height of 
the ball and its speed at impact with the 
ground.  

θ

x0g =U

m ,y

12

1h

H

2h

1v
r

 
 
(a) Apply conservation of 
mechanical energy to obtain: 

0ext =Δ+Δ= UKW  
or 

01212 =−+− UUKK  
 

Substitute for the energies to obtain: 
 

012
2
12

12
22

1 =−+− mghmghmvmv  

Note that, at point 2, the ball is 
moving horizontally and: 
 

θcos12 vv =  

Substitute for v2 and h2 to obtain: 
 

( )
0

cos

1

2
12

12
12

1

=−

+−

mgh
mgHmvvm θ

 

 
Solving for H yields: ( )1cos

2
2

2

1 −−= θ
g

vhH  

 
Substitute numerical values and 
evaluate H: 

( )
( )( )

m31

140cos
m/s9.812

m/s30m21 2
2

2

=

−°−=H
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(b) Apply conservation of 
mechanical energy to the system to 
relate the initial mechanical energy 
of the ball to its just-before-impact 
energy: 
 

0ext =Δ+Δ= UKW  
or, because Uf = 0, 

011f =−− UKK  
 
 

Substituting for Kf, K1, and U1 
yields: 
 

0i
2
i2

12
f2

1 =−− mghmvmv  

Solve for fv  to obtain: 
i

2
if 2ghvv +=  

 
Substitute numerical values and 
evaluate fv : 

( ) ( )( )
m/s34

m12m/s9.812m/s30 22
f

=

+=v
 

 
52 •• An 80-cm-long pendulum with a 0.60-kg bob is released from rest at 
an initial angle of θ0 with the vertical. At the bottom of the swing, the speed of the 
bob is 2.8 m/s. (a) What is θ0? (b) What angle does the pendulum make with the 
vertical when the speed of the bob is 1.4 m/s? Is this angle equal to 1

2 0θ ? Explain 
why or why not. 
 
Picture the Problem The figure shows 
the pendulum bob in its release position 
and in the two positions in which it is 
in motion with the given speeds. Let 
the system consist of the pendulum and 
the earth and choose Ug = 0 at the low 
point of the swing. We can apply 
conservation of mechanical energy to 
relate the two angles of interest to the 
speeds of the bob at the intermediate 
and low points of its trajectory.  

 0g =U

L

h
h'

L cosθ

θ
θ0

0

m

m fvr  'vr

Lcosθ

 
 
(a) Apply conservation of 
mechanical energy to the system to 
obtain: 

0ext =Δ+Δ= UKW  
or 

.0ifif =−+− UUKK  
 

Because Ki = Uf = 0: 
 

0if =−UK                                (1) 

Refer to the pictorial representation 
to see that Ui is given by: 
 

( )0i cos1 θ−== mgLmghU  
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Substitute for Kf and Ui in equation 
(1) to obtain: 
 

( ) 0cos1 0
2
f2

1 =−− θmgLmv  
 

Solving for θ0 yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
1

0θ  

 
Substitute numerical values and 
evaluate θ0: 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

60

m0.80m/s9.812
m/s2.81cos 2

2
1

0θ
 

 
(b) Letting primed quantities 
describe the indicated location, use 
conservation of mechanical energy to 
obtain : 
 

0ifif =−+− U'UK'K  
 

Because Ki = 0: 
 

0iff =−+ U'U'K  

Refer to the pictorial representation 
to see that 'U f is given by: 
 

( )θcos1f −== mgLmgh'U '  
 

Substitute for iff and, U'U'K : ( ) ( )
( ) 0cos1

cos1

0

2
f2

1

=−−
−+

θ
θ

mgL
mgL'vm  

 
Solving for θ  yields : ( )

⎥
⎦

⎤
⎢
⎣

⎡
+= −

0

2
f1 cos

2
'cos θθ

gL
v  

 
Substitute numerical values and evaluate θ : 
 

( )
( )( ) °=⎥

⎦

⎤
⎢
⎣

⎡
°+= − 5160cos

m0.80m/s9.812
m/s4.1cos 2

2
1θ  

 
No. The change in gravitational potential energy is linearly dependent on the 
cosine of the angle rather than on the angle itself. 
 
53 •• The Royal Gorge bridge over the Arkansas River is 310 m above the 
river. A 60-kg bungee jumper has an elastic cord with an unstressed length of 50 
m attached to her feet. Assume that, like an ideal spring, the cord is massless and 
provides a linear restoring force when stretched. The jumper leaps, and at her 
lowest point she barely touches the water. After numerous ascents and descents, 
she comes to rest at a height h above the water. Model the jumper as a point 
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particle and assume that any effects of air resistance are negligible. (a) Find h. (b) 
Find the maximum speed of the jumper. 
 
Picture the Problem Choose Ug = 0 
at the bridge and let the system be 
the earth, the jumper and the bungee 
cord. Then Wext = 0. We can use 
conservation of mechanical energy to 
relate to relate her initial and final 
gravitational potential energies to the 
energy stored in the stretched bungee 
cord Us. In Part (b), we’ll use a 
similar strategy but include a kinetic 
energy term because we are 
interested in finding her maximum 
speed.   
 
(a) Express her final height h above 
the water in terms of L, d and the 
distance x the bungee cord has 
stretched: 
 

h = L – d − x                              (1) 

Use conservation of mechanical 
energy to relate her gravitational 
potential energy as she just touches 
the water to the energy stored in the 
stretched bungee cord: 
 

0ext =Δ+Δ= UKW  
 
 

Because ΔK = 0 and  
ΔU = ΔUg + ΔUs: 
 

02
2
1 =+− ksmgL ⇒ 2

2
s
mgLk =  

where s is the maximum distance the 
bungee cord has stretched.  
 

Find the maximum distance the 
bungee cord stretches: 
 

s = 310 m – 50 m = 260 m. 

Substitute numerical values and 
evaluate k: 

( )( )( )
( )

N/m40.5
m260

m310m/s9.81kg602
2

2

=

=k
 

 
Express the relationship between 
the forces acting on her when she 
has finally come to rest x: 

0net =−= mgkxF  ⇒
k

mgx =  
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Substitute numerical values and 
evaluate x: 

( )( ) m109
N/m5.40

m/s9.81kg60 2

==x  

 
Substitute in equation (1) and 
evaluate h: km0.15

m151m109m50m310

=

=−−=h
 

 
(b) Using conservation of 
mechanical energy, express her 
total energy E: 
 

0isg ==++= EUUKE  

Because v is a maximum when K is 
a maximum, solve for K to obtain: 
 

( ) 2
2
1

sg

kxxdmg

UUK

−+=

−−=
               (2) 

 
Use the condition for an extreme 
value to obtain: 
 

 0=−= kxmg
dx
dK

⇒
k

mgx =  

Substitute numerical values and 
evaluate x: 

( )( ) m109
N/m5.40

m/s9.81kg60 2

==x  

 
From equation (2) we have: ( ) 2

2
12

2
1 kxxdmgmv −+=  
 

Solve for v to obtain: 
( )

m
kxxdgv

2

2 −+=  

 
Substitute numerical values and evaluate v for x = 109 m: 
 

( )( ) ( )( ) m/s45
kg60

m109N/m5.4m109m50m/s9.812
2

2 =−+=v  

 

Because ,02

2

<−= k
dx

Kd  x = 109 m corresponds to Kmax and so v is a maximum. 

 
54 •• A pendulum consists of a 2.0-kg bob attached to a light 3.0-m-long 
string. While hanging at rest with the string vertical, the bob is struck a sharp 
horizontal blow, giving it a horizontal velocity of 4.5 m/s. At the instant the string 
makes an angle of 30° with the vertical, what is (a) the speed, (b) the gravitational 
potential energy (relative to its value is at the lowest point), and (c) the tension in 
the string? (d) What is the angle of the string with the vertical when the bob 
reaches its greatest height? 



 Chapter 7    
 

 

644 

Picture the Problem Let the system be 
the earth and pendulum bob. Then  
Wext = 0. Choose Ug = 0 at the low 
point of the bob’s swing and apply 
conservation of mechanical energy to 
the system. When the bob reaches the 
30° position its energy will be partially 
kinetic and partially potential. When it 
reaches its maximum height, its energy 
will be entirely potential. Applying 
Newton’s 2nd law will allow us to 
express the tension in the string as a 
function of the bob’s speed and its 
angular position. 

 0g =U

L
L cos θ

m

1

2

m

θ

 

 
(a) Apply conservation of 
mechanical energy to relate the 
energies of the bob at points 1 and 2: 0

or
0

1212

ext

=−+−

=Δ+Δ=

UUKK

UKW
 

 
Because U1 = 0: 
 

02
2
12

12
22

1 =+− Umvmv             (1) 

The potential energy of the system 
when the bob is at point 2 is given 
by: 
 

( )θcos12 −= mgLU  
 

Substitute for U2 in equation (1) to 
obtain: 
 

( ) 0cos12
12

12
22

1 =−+− θmgLmvmv  

Solving for v2 yields: ( )θcos122
12 −−= gLvv  

 
Substitute numerical values and evaluate v2: 
 

( ) ( )( )( ) m/s5.3m/s52.3cos301m3.0m/s9.812m/s4.5 22
2 ==°−−=v  

 
(b) From (a) we have: 
 

( )θcos12 −= mgLU  
 

Substitute numerical values and evaluate U2: 
 

( )( )( )( ) J9.7cos301m3.0m/s9.81kg2.0 2
2 =°−=U  
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(c) Apply ∑ = radialradial maF to the 

bob to obtain: 
 

L
vmmgT

2
2cos =− θ  

Solving for T yields: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

L
vgmT

2
2cosθ  

 
Substitute numerical values and evaluate T: 
 

( ) ( ) ( ) N25
m3.0

m/s3.52cos30m/s9.81kg2.0
2

2 =⎥
⎦

⎤
⎢
⎣

⎡
+°=T  

 
(d) When the bob reaches its greatest 
height: 

( )

0
and

cos1

max1

maxmax

=+−

−==

UK

mgLUU θ
 

 
Substitute for K1 and maxU :  ( ) 0cos1 max

2
12

1 =−+− θmgLmv  
 

Solve for θmax to obtain: 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

gL
v

2
1cos

2
11

maxθ  

 
Substitute numerical values and 
evaluate θmax: 

( )
( )( )

°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

49

m3.0m/s9.812
m/s4.51cos 2

2
1

maxθ
 

 
55 ••  [SSM] A pendulum consists of a string of length L and a bob of 
mass m. The bob is rotated until the string is  horizontal.  The bob is then 
projected downward with the minimum initial speed needed to enable the bob to 
make a full revolution in the vertical plane. (a) What is the maximum kinetic 
energy of the bob? (b) What is the tension in the string when the kinetic energy is 
maximum?  
 
Picture the Problem Let the system consist of the earth and pendulum bob. Then 
Wext = 0. Choose Ug = 0 at the bottom of the circle and let points 1, 2 and 3 
represent the bob’s initial point, lowest point and highest point, respectively. The 
bob will gain speed and kinetic energy until it reaches point 2 and slow down 
until it reaches point 3; so it has its maximum kinetic energy when it is at point 2. 
We can use Newton’s 2nd law at points 2 and 3 in conjunction with conservation 
of mechanical energy to find the maximum kinetic energy of the bob and the 
tension in the string when the bob has its maximum kinetic energy. 
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m

m  0g =U

 gmr

 gmr

 vr

 T
r

3

1

2

2

L m

1

 
 
(a) Apply ∑ = radialradial maF to the 

bob at the top of the circle and solve 
for 2

3v : 
 

L
vmmg

2
3=  ⇒ gLv =2

3  

 

Apply conservation of mechanical 
energy to the system to express the 
relationship between K2, K3 and U3:  
 

02323 =−+− UUKK  
or, because U2 = 0, 

0323 =+− UKK  
 

Solving for K2 yields: 33max2 UKKK +==  
 

Substituting for K3 and U3 yields: ( )LmgmvK 22
32

1
max +=  

 
Substitute for 2

3v  and simplify to 
obtain: 
 

( ) mgLmgLgLmK 2
5

2
1

max 2 =+=  

 

(b) Apply cradial maF =∑  to the 

bob at the bottom of the circle 
and solve for T2: 
 

L
vmmgTF

2
2

2net =−=
 

and 

L
vmmgT

2
2

2 +=
                        (1) 

 
Use conservation of mechanical 
energy to relate the energies of the 
bob at points 2 and 3 and solve for 
K2: 
 

0where0 22323 ==−+− UUUKK  
and 

( )LmgmvUKK 22
32

1
332 +=+=  
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Substitute for 2
3v  and K2 to obtain:  ( ) ( )LmggLmmv 22

12
22

1 += ⇒ gLv 52
2 =  

 
Substitute for 2

2v  in equation (1) and 
simplify to obtain: 

mg
L
gLmmgT 65

2 =+=  

 
56 •• A child whose weight is 360 N swings out over a pool of water using a 
rope attached to the branch of a tree at the edge of the pool. The branch is 12 m 
above ground level and the surface of the water is 1.8 m below ground level. The 
child holds onto the rope at a point 10.6 m from the branch and moves back until 
the angle between the rope and the vertical is 23°. When the rope is in the vertical 
position, the child lets go and drops into the pool. Find the speed of the child just 
as he impacts the surface of the water.  (Model the child as a point particle 
attached to the rope 10.6 m from the branch.) 
 
Picture the Problem Let the system 
consist of the earth and child. Then 
Wext = 0. In the figure, the child’s 
initial position is designated with the 
numeral 1; the point at which the child 
releases the rope and begins to fall 
with a 2, and its point of impact with 
the water is identified with a 3. Choose 
Ug = 0 at the water level. While one 
could apply conservation of 
mechanical energy between points 1 
and 2 and then between points 2 and 3, 
it is more direct to consider the energy 
transformations between points 1 and 
3.  

θ

0g =U

( )cos1−L θ

h

1
2

3

L

 
 
Apply conservation of mechanical 
energy between points 1 and 3:  
 

0ext =Δ+Δ= UKW  

zero.areandwhere
0

13

1313

KU
UUKK =−+−

 

 
Substitute for K3 and U1;  ( )[ ] 0cos12

32
1 =−+− θLhmgmv  
 

Solving for v3 yields: ( )[ ]θcos123 −+= Lhgv  
 

Substitute numerical values and evaluate v3: 
 

( ) ( )( )[ ] m/s9.8cos231m10.6m3.2m/s9.812 2
3 =°−+=v  
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57 •• Walking by a pond, you find a rope attached to a stout tree limb that is 
5.2 m above ground level. You decide to use the rope to swing out over the pond. 
The rope is a bit frayed, but supports your weight. You estimate that the rope 
might break if the tension is 80 N greater than your weight. You grab the rope at a 
point 4.6 m from the limb and move back to swing out over the pond.  (Model 
yourself as a point particle attached to the rope 4.6 m from the limb.) (a) What is 
the maximum safe initial angle between the rope and the vertical at which it will 
not break during the swing? (b) If you begin at this maximum angle, and the 
surface of the pond is 1.2 m below the level of the ground, with what speed will 
you enter the water if you let go of the rope when the rope is vertical? 
 
Picture the Problem Let the system 
consist of you and the earth. Then there 
are no external forces to do work on the 
system and Wext = 0. In the figure, your 
initial position is designated with the 
numeral 1, the point at which you 
release the rope and begin to fall with a 
2, and your point of impact with the 
water is identified with a 3. Choose  
Ug = 0 at the water level. We can apply 
Newton’s 2nd law to the forces acting 
on you at point 2 and apply 
conservation of mechanical energy 
between points 1 and 2 to determine the 
maximum angle at which you can begin 
your swing and then between points 1 
and 3 to determine the speed with 
which you will hit the water. 

 

θ

0g =U

( )cos1−L θ

h

1
2

3

L

gmF
rr

=g

T
r

 

 
(a) Use conservation of mechanical 
energy to relate your speed at point 2 
to your potential energy there and at 
point 1: 

 

0ext =Δ+Δ= UKW  
or 

01212 =−+− UUKK  
 

Because K1 = 0: 
 ( )[ ] 0cos1

2
22

1

=+−−
+

mghmgL
mghmv

θ
 

 
Solve this equation for θ  to obtain: 

⎥
⎦

⎤
⎢
⎣

⎡
−= −

gL
v

2
1cos

2
21θ                   (1) 

 
Apply ∑ = radialradial maF to yourself 

at point 2 and solve for T: L
vmmgT

2
2=−  and 

L
vmmgT

2
2+=  
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Because you’ve estimated that the 
rope might break if the tension in it 
exceeds your weight by 80 N, it 
must be that: 
 

N80
2
2 =

L
vm ⇒

( )
m

Lv N802
2 =  

 

Let’s assume that your mass is 70 kg. 
Then: 
 

( )( ) 222
2 /sm26.5

kg 70
m4.6N80

==v  

 
Substitute numerical values in 
equation (1) to obtain: ( )( )

°=°=

⎥
⎦

⎤
⎢
⎣

⎡
−= −

2065.19

m4.6m/s9.812
/sm5.261cos 2

22
1θ

 

 
(b) Apply conservation of 
mechanical energy between points 1 
and 3: 
 

0ext =Δ+Δ= UKW  
or, because U3 = K1 = 0, 

013 =−UK  

Substitute for K3 and U1 to 
obtain: 
 

( )[ ] 0cos12
32

1 =−+− θLhmgmv  
 

Solving for v3 yields: ( )[ ]θcos123 −+= Lhgv  
 

Substitute numerical values and evaluate v3: 
 

( ) ( )( )[ ] m/s4.6cos19.651m4.6m8.1m/s9.812 2
3 =°−+=v  

 
58 ••• A pendulum bob of mass m is attached to a light string of length L and 
is also attached to a spring of force constant k. With the pendulum in the position 
shown in Figure 7-47, the spring is at its unstressed length. If the bob is now 
pulled aside so that the string makes a small angle θ with the vertical and 
released, what is the speed of the bob as it passes through the equilibrium 
position? Hint: Recall the small-angle approximations: if θ is expressed in 
radians, and if 1<θ , then sin θ ≈ tan θ ≈ θ and cos θ ≈ 1 – 21

2 θ . 
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Picture the Problem Choose Ug = 0 at 
point 2, the lowest point of the bob’s 
trajectory and let the system consist of 
the bob and the earth. Given this 
choice, there are no external forces 
doing work on the system. Because  
θ << 1, we can use the trigonometric 
series for the sine and cosine functions 
to approximate these functions. The 
bob’s initial energy is partially 
gravitational potential and partially 
potential energy stored in the stretched 
spring. As the bob swings down to 
point 2 this energy is transformed into 
kinetic energy. By equating these 
energies, we can derive an expression 
for the speed of the bob at point 2. 

 

θ

0g =U

θ

1
2

L

sinL

cosL θ

x
m

m
 

 
Apply conservation of mechanical 
energy to the system as the 
pendulum bob swings from point 1 
to point 2: 

0ΔΔext =+= UKW  
or, because K1 = U2 = 0, 

012 =−UK  
 
 

Substituting for K2 and U1 yields: 
 

( ) 0cos12
2
12

22
1 =−−− θmgLkxmv  

Note, from the figure, that when  
θ << 1, θsinLx ≈ :  
 

( ) ( ) 0cos1sin 2
2
12

22
1 =−−− θθ mgLLkmv
 

Also, when θ << 1: 2
2
11cosandsin θθθθ −≈≈  

 
Substitute for sinθ and cosθ  to 
obtain: 
 

( ) ( )[ ]2
2
12

2
12

22
1 11 θθ −−−− mgLLkmv  

Solving for v2 yields: 

L
g

m
kLv += θ2  

 
59 ••• [SSM] A pendulum is suspended from the ceiling and attached to a 
spring fixed to the floor directly below the pendulum support (Figure 7-48). The 
mass of the pendulum bob is m, the length of the pendulum is L, and the force 
constant is k. The unstressed length of the spring is L/2 and the distance between 
the floor and ceiling is 1.5L. The pendulum is pulled aside so that it makes an 
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angle θ with the vertical and is then released from rest. Obtain an expression for 
the speed of the pendulum bob as the bob passes through a point directly below 
the pendulum support.  
 
Picture the Problem Choose Ug = 0 at 
point 2, the lowest point of the bob’s 
trajectory and let the system consist of 
the earth, ceiling, spring, and pendulum 
bob. Given this choice, there are no 
external forces doing work to change 
the energy of the system. The bob’s 
initial energy is partially gravitational 
potential and partially potential energy 
stored in the stretched spring. As the 
bob swings down to point 2 this energy 
is transformed into kinetic energy. By 
equating these energies, we can derive 
an expression for the speed of the bob 
at point 2. 

L

θ

θ2
 2/L

 cosL θ

1

2x

 2/L

 

 
Apply conservation of mechanical 
energy to the system as the 
pendulum bob swings from point 1 
to point 2: 
 

0ΔΔΔ sgext =++= UUKW  

or, because K1 = Ug,2 = Us,2 = 0, 
0s,1g,12 =−− UUK  

   

Substituting for K2, Ug,1, and Us,2 
yields: 
 

( ) 0cos1 2
2
12

22
1 =−−− kxmgLmv θ   (1) 

Apply the Pythagorean theorem to the lower triangle in the diagram to obtain: 
 

( ) ( )[ ] [ ]
( )θ

θθθθθ

cos3

coscos3sincossin

4
132

2
4
9222

2
3222

2
1

−=

+−+=−+=+

L

LLLx
 

 
Take the square root of both sides of 
the equation to obtain: 
 

( )θcos34
13

2
1 −=+ LLx  

Solving for x yields: ( )[ ]2
1

4
13 cos3 −−= θLx  
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Substitute for x in equation (1) to obtain: 
 

( )[ ] ( )θθ cos1cos3
2

2
1

4
132

2
12

22
1 −+−−= mgLkLmv  

 
Solving for v2 yields: 
 

( ) ( ) 2

2
1

4
13

2 cos3cos12 −−+−= θθ
m
k

L
gLv  

 
Total Energy and Non-conservative Forces 

60 • In a volcanic eruption, 4.00 km3 of mountain with an average density 
of 1600 kg/m3 was raised an average height of 500 m. (a) What is the minimum 
amount of energy, in joules, that was released during this eruption? (b) The 
energy released by thermonuclear bombs is measured in megatons of TNT, where  
1 megaton of TNT = 4.2 × 1015 J. Convert your answer for Part (a) to megatons of 
TNT. 
 
Picture the Problem The energy of the eruption is initially in the form of the 
kinetic energy of the material it thrusts into the air. This energy is then 
transformed into gravitational potential energy as the material rises. 
 
(a) Express the energy of the 
eruption in terms of the height Δh to 
which the debris rises: 
 

hmgE Δ=  

Relate the mass of the material to its 
density and volume: 
 

Vm ρ=  

Substitute for m to obtain: hVgE Δ= ρ  
 

Substitute numerical values and evaluate E: 
 

( )( )( )( ) J1014.3m500m/s9.81km4.00kg/m1600 16233 ×==E  

 
(b) Convert 3.14×1016 J to megatons of TNT: 
 

TNTMton5.7
J104.2

TNTMton1J1014.3J1014.3 15
1616 =

×
××=×  
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61 • To work off a large pepperoni pizza you ate on Friday night, on 
Saturday morning you climb a 120-m-high hill. (a) Assuming a reasonable value 
for your mass, determine your increase in gravitational potential energy.  
(b) Where does this energy come from? (c) The human body is typically 20 
percent efficient.  How much energy was converted into thermal energy? (d) How 
much chemical energy is expended by you during the climb? Given that oxidation 
(burning) of a single slice of pepperoni pizza releases about 1.0 MJ (250 food 
calories) of energy, do you think one climb up the hill is enough? 
 
Picture the Problem The work you did equals the change in your gravitational 
potential energy and is enabled by the transformation of metabolic energy in your 
muscles. Let the system consist of you and the earth and apply the conservation of 
mechanical energy to this system. 
 
(a) Your increase in gravitational 
potential energy is: 
 

hmgU ΔΔ g =  

 

Assuming that your mass is 70 kg, 
your increase in gravitational 
potential energy is: 

( )( )( )

kJ 82

kJ 4.82
m120m/s9.81kg07Δ 2

g

=

=

=U
 

 
(b) The energy required to do this work comes from the conversion of stored 
internal chemical energy into gravitational potential energy and thermal energy. 
 
(c) Because 20% of the energy you 
expend is converted into 
gravitational potential energy, five 
times this amount is converted into 
thermal energy:   
 

gtherm Δ5Δ UE −=  

 

Substitute the numerical value of 
ΔUg and evaluate ΔEtherm:  

( )
kJ 410

kJ 412kJ 4.825Δ therm

−=

−=−=E
 

 
(d) Apply the conservation of 
mechanical energy to the system to 
obtain: 
 

0ΔΔΔ chemthermmechext =++= EEEW  
or, because you begin and end your 
ascent at rest, ΔK = 0 and, 

0ΔΔΔ chemthermg =++ EEU  

 
Solving for chemΔE yields: thermgchem ΔΔΔ EUE −−=  
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Substitute numerical values and 
evaluate chemΔE : 

( ) ( )
kJ 303

kJ 412kJ 4.82Δ chem

=

−−−=E
 

 
Given this small decrease in your mass, one climb of the hill is certainly not 
enough to rid yourself of the caloric intake of even one slice of pizza. 
 
62 • A 2000-kg car moving at an initial speed of 25 m/s along a horizontal 
road skids to a stop in 60 m. (a) Find the energy dissipated by friction. (b) Find 
the coefficient of kinetic friction between the tires and the road.  (Note: When 
stopping without skidding and using conventional brakes, 100 percent of  the 
kinetic energy is dissipated by friction within the brakes.  With regenerative 
braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy 
is dissipated.) 
 
Picture the Problem Let the car and the earth constitute the system. As the car 
skids to a stop on a horizontal road, its kinetic energy is transformed into internal 
(thermal) energy. Knowing that energy is transformed into heat by friction, we can 
use the definition of the coefficient of kinetic friction to calculate its value. 
 
(a) The energy dissipated by friction 
is given by: 
 

thermEsf Δ=Δ  

Apply the work-energy theorem for 
problems with kinetic friction: 
 

sfEEEW Δ+Δ=Δ+Δ= mechthermmechext  
or, because imech KKE −=Δ=Δ and 
Wext = 0, 

sfmv Δ+−= 2
i2

10 ⇒ 2
i2

1 mvsf =Δ  
 

Substitute numerical values and 
evaluate fΔs: 
 

( )( )
J 103.6J 1025.6

m/s25kg2000Δ
55

2
2
1

×=×=

=sf
 

 
(b) Relate the kinetic friction force to 
the coefficient of kinetic friction and 
the weight of the car: 
 

mgf kk μ= ⇒
mg
fk

k =μ            (1) 

Express the relationship between the 
energy dissipated by friction and the 
kinetic friction force: 
 

sfE ΔΔ ktherm = ⇒
s

Ef
Δ

Δ therm
k =  

Substitute for fk in equation (1) to 
obtain: smg

E
Δ

Δ
= therm

kμ  

 



                                                                             Conservation of Energy 
 

 

655

Substitute numerical values and 
evaluate μk: ( )( )( )

53.0

m60m/s9.81kg2000
J106.25

2

5

k

=

×
=μ

 

 
63 • An 8.0-kg sled is initially at rest on a horizontal road. The coefficient 
of kinetic friction between the sled and the road is 0.40. The sled is pulled a 
distance of 3.0 m by a force of 40 N applied to the sled at an angle of 30° above 
the horizontal. (a) Find the work done by the applied force. (b) Find the energy 
dissipated by friction. (c) Find the change in the kinetic energy of the sled.  
(d) Find the speed of the sled after it has traveled 3.0 m. 
 
Picture the Problem Let the system 
consist of the sled and the earth. Then 
the 40-N force is external to the system. 
The free-body diagram shows the 
forces acting on the sled as it is pulled 
along a horizontal road. The work done 
by the applied force can be found using 
the definition of work. To find the 
energy dissipated by friction, we’ll use 
Newton’s 2nd law to determine fk and 
then use it in the definition of work. 
The change in the kinetic energy of the 
sled is equal to the net work done on it. 
Finally, knowing the kinetic energy of 
the sled after it has traveled 3.0 m will 
allow us to solve for its speed at that 
location. 

 
 

gF
r

nF
r

θ x

y

kf
r

F
r

m

 

 
(a) The work done by the applied 
force is given by: 
 

θcosext FssFW =⋅=  
 

Substitute numerical values and 
evaluate Wext: 

( )( )
kJ 0.10J103.9

30cosm3.0N40ext

==

°=W
 

 
(b) The energy dissipated by friction 
as the sled is dragged along the 
surface is given by: 

xFxfE Δ=Δ=Δ nktherm μ            (1) 

 
Apply ∑ = yy maF to the sled: 0sinn =−+ mgFF θ  

 
Solving for Fn yields: θsinn FmgF −=  
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Substitute for Fn in equation (1) to 
obtain: 
 

( )θμ sinktherm FmgxE −Δ=Δ  
 

Substitute numerical values and  evaluate thermΔE : 
 

( )( ) ( )( )[ ( ) ] J70J2.70sin30N40m/s9.81kg8.0m3.040.0Δ 2
therm ==°−=E  

 
(c) Apply the work-energy theorem 
for systems with kinetic friction: 
 

sfEEEW Δ+Δ=Δ+Δ= mechthermmechext  
or, because UKE Δ+Δ=Δ mech  and  
ΔU = 0, 

thermext EKW Δ+Δ=  
 

Solving for ΔK yields: thermext ΔΔ EWK −=  
 

Substitute numerical values and 
evaluate ΔK: 
 

J34J33.7J70.2J03.91Δ ==−=K  

 

(d) Because Ki = 0: 2
f2

1
f mvKK =Δ= ⇒

m
Kv Δ

=
2

f  

 
Substitute numerical values and 
evaluate fv : 

( ) m/s2.9
kg8.0

J33.72
f ==v  

 
64  •• Using Figure 7-41, suppose that the surfaces described are not 
frictionless and that the coefficient of kinetic friction between the block and the 
surfaces is 0.30. Find (a) the speed of the block when it reaches the ramp, and (b) 
the distance that the block slides along the inclined surface before coming 
momentarily to rest. (Neglect any energy dissipated along the transition curve.) 
 
Picture the Problem The pictorial representation shows the block in its initial, 
intermediate, and final states. It also shows a choice for Ug = 0. Let the system 
consist of the block, ramp, and the earth. Then the kinetic energy of the block at 
the foot of the ramp is equal to its initial kinetic energy less the energy dissipated 
by friction. The block’s kinetic energy at the foot of the incline is partially 
converted to gravitational potential energy and partially converted to thermal 
energy (dissipated by friction) as the block slides up the incline. The free-body 
diagram shows the forces acting on the block as it slides up the incline. Applying 
Newton’s 2nd law to the block will allow us to determine fk and express the energy 
dissipated by friction. 
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gF
r

nF
r

θ

x

y

kf
r

0g =U
0

0
0
=x

h

θ
21

3

01 =x m 0.22 =x

03 =v

m/s 0.71 =v 2v

r+= m 0.23x

m m

m

m

 
 
(a) Apply conservation of energy to 
the system while the block is moving 
horizontally: 

sfUK
EEW

Δ+Δ+Δ=
Δ+Δ=  thermmechext  

or, because ΔU = Wext = 0, 
sfKKsfK Δ ΔΔ0 12 +−=+=  

 
Solving for K2 yields: sfKK Δ12 −=  

 
Substitute for K2, K1, and fΔs to 
obtain: 
 

xmgmvmv Δk
2
12

12
22

1 μ−=  
 

Solving for v2 yields: xgvv Δ2 k
2
12 μ−=  

 
Substitute numerical values and evaluate v2: 
 

( ) ( )( )( ) m/s6.1m/s6.10m2.0m/s9.810.302m/s7.0 22
2 ==−=v  

 
(b) Apply conservation of energy to 
the system while the block is on the 
incline: 
  

sfUK
EEW

Δ+Δ+Δ=
Δ+Δ=  thermmechext  

or, because K3 = U2 = Wext = 0, 
sfUK Δ0 32 ++−=                  (1) 

 
Apply ∑ = yy maF to the block 

when it is on the incline: 

θθ cos0cos nn mgFmgF =⇒=−  
 

Express fΔs: 
 

θμμ cosΔ knkk mgFfsf ===  

The final potential energy of the 
block is: 
 

θsin3 mgU =  

Substitute for U3, K2, and fΔs in 
equation (1) to obtain: 

θμθ cossin0 k
2
22

1 mgmgmv ++−=  
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Solving for  yields: 
( )θμθ cossin k

2
22

1

+
=

g
v  

 
Substitute numerical values and 
evaluate : 

( )
( ) ( )( )

m2.2

cos400.30sin40m/s9.81
m/s10.6

2

2
2
1

=

°+°
=

 

 
65 •• [SSM] The 2.0-kg block in Figure 7-49 slides down a frictionless 
curved ramp, starting from rest at a height of 3.0 m. The block then slides 9.0 m 
on a rough horizontal surface before coming to rest. (a) What is the speed of the 
block at the bottom of the ramp? (b) What is the energy dissipated by friction?  
(c) What is the coefficient of kinetic friction between the block and the horizontal 
surface?  
 
Picture the Problem Let the system include the block, the ramp and horizontal 
surface, and the earth. Given this choice, there are no external forces acting that 
will change the energy of the system. Because the curved ramp is frictionless, 
mechanical energy is conserved as the block slides down it. We can calculate its 
speed at the bottom of the ramp by using conservation of energy. The potential 
energy of the block at the top of the ramp or, equivalently, its kinetic energy at the 
bottom of the ramp is converted into thermal energy during its slide along the 
horizontal surface. 
 
(a) Let the numeral 1 designate the 
initial position of the block and the 
numeral 2 its position at the foot of 
the ramp. Choose Ug = 0 at point 2 
and use conservation of energy to 
relate the block’s potential energy at 
the top of the ramp to its kinetic 
energy at the bottom: 
 

thermmechext EEW Δ+Δ=  
or, because Wext = Ki = Uf = ΔEtherm = 0, 

00 2
22

1 =Δ−= hmgmv ⇒ hgv Δ= 22  
 

Substitute numerical values and 
evaluate v2: 
 

( )( )
m/s7.7

m/s67.7m3.0m/s9.812 2
2

=

==v
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(b) The energy dissipated by friction 
is responsible for changing the 
thermal energy of the system: 
 

0
ΔΔΔΔΔ thermf

=
++=++ UKEUKW  

Because ΔK = 0 for the slide: ( ) 112f UUUUW =−−=Δ−=  
 

Substituting for U1 yields: hmgW Δf =  
 

Substitute numerical values and 
evaluate U1: 

( )( )( )
J59

J9.58m3.0m/s9.81kg2.0 2
f

=

==W
 

 
(c) The energy dissipated by friction 
is given by: 
 

xmgsfE Δ=Δ=Δ ktherm μ  

Solving for μk yields: 
xmg

E
Δ

Δ
= therm

kμ  

 
Substitute numerical values and 
evaluate μk: ( )( )( )

33.0

m9.0m/s9.81kg2.0
J58.9

2k

=

=μ
 

 
66 •• A 20-kg girl slides down a playground slide with a vertical drop of  
3.2 m. When she reaches the bottom of the slide, her speed is 1.3 m/s. (a) How 
much energy was dissipated by friction? (b) If the slide is inclined at 20° with the 
horizontal, what is the coefficient of kinetic friction between the girl and the 
slide?  
 
Picture the Problem Let the system consist of the earth, the girl, and the slide. 
Given this choice, there are no external forces doing work to change the energy of 
the system. By the time she reaches the bottom of the slide, her potential energy at 
the top of the slide has been converted into kinetic and thermal energy. Choose  
Ug = 0 at the bottom of the slide and denote the top and bottom of the slide as 
shown in the figure.  We’ll use the work-energy theorem with friction to relate  
these quantities and the forces acting on her during her slide to determine the 
friction force that transforms some of her initial potential energy into thermal 
energy. 
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θ
θ

x

y

0g =U

kf
r

nF
r

gm
r

Δh

Δs
1

2

 
 
(a) Express the work-energy 
theorem: 
 

0thermext =Δ+Δ+Δ= EUKW  
 

Because U2 = K1 = Wext = 0: 

2
22

1
21therm

therm12

or
00

mvhmgKUE

EUK

−Δ=−=Δ

=Δ+−=
 

 
Substitute numerical values and evaluate ΔEtherm: 
 

( )( )( ) ( )( ) kJ61.0J611m/s1.3kg20m3.2m/s9.81kg20Δ 2
2
12

therm ==−=E  

 
(b) Relate the energy dissipated by 
friction to the kinetic friction force 
and the distance over which this 
force acts: 
 

sFsfE Δ=Δ=Δ nktherm μ        
                    
        

Solve for μk to obtain: 
sF

E
Δ

Δ
=

n

therm
kμ                              (1) 

 
Apply ∑ = yy maF to the girl and 

solve for Fn: 
 

0cosn =− θmgF ⇒ θcosn mgF =  
 

Referring to the figure, relate Δh 
to Δs and θ: θsin

hs Δ
=Δ  

 
Substitute for Δs and Fn in equation 
(1) and simplify to obtain: hmg

E
hmg

E
Δ

Δ
=

Δ
Δ

=
θ

θ
θ

μ tan

cos
sin

thermtherm
k  
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Substitute numerical values and  evaluate μk: 
 

( )
( )( )( ) 35.0

m3.2m/s9.81kg20
tan20J611

2k =
°

=μ  

 
67 •• In Figure 7-50, the coefficient of kinetic friction between the 4.0-kg 
block and the shelf is 0.35. (a) Find the energy dissipated by friction when the 
2.0-kg block falls a distance y. (b) Find the change in mechanical energy Emech of 
the two-block–Earth system during the time it takes the 2.0-kg block to fall a 
distance y. (c) Use your result for Part (b) to find the speed of either block after 
the 2.0-kg block falls 2.0 m.  
 
Picture the Problem Let the system consist of the two blocks, the shelf, and the 
earth. Given this choice, there are no external forces doing work to change the 
energy of the system. Due to the friction between the 4.0-kg block and the surface 
on which it slides, not all of the energy transformed during the fall of the 2.0-kg 
block is realized in the form of kinetic energy. We can find the energy dissipated 
by friction and then use the work-energy theorem with kinetic friction to find the 
speed of either block when they have moved the given distance. 
 
(a) The energy dissipated by friction 
when the 2.0-kg block falls a 
distance y is given by: 
 

gymsfE 1ktherm μ=Δ=Δ  

Substitute numerical values and 
evaluate thermΔE : 

( )( )( )
( ) ( )yy

yE

N14N7.13

m/s9.81kg4.035.0Δ 2
therm

==

=
 

 
(b) From the work-energy theorem 
with kinetic friction we have: 
 

thermmechext EEW Δ+Δ=  
or, because Wext = 0 and Emech,i = 0, 

( )yEE N14Δ thermmech −=−=  

 
(c) Express the total mechanical 
energy of the system: 
 

( ) 0Δ therm2
2

212
1 =+−+ Egymvmm  
 

Solving for v yields: ( )
21

therm2 Δ2
mm

Egymv
+
−

=       
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Substitute numerical values and evaluate v: 
 

( )( )( ) ( )( )[ ] m/s 0.2
kg 0.2kg 0.4

m 0.2N 7.13m 0.2m/s 81.9kg 0.22 2

=
+

−
=v  

 
68 •• A small object of mass m moves in a horizontal circle of radius r on a 
rough table. It is attached to a horizontal string fixed at the center of the circle. 
The speed of the object is initially v0. After completing one full trip around the 
circle, the speed of the object is 0.5v0. (a) Find the energy dissipated by friction 
during that one revolution in terms of m, v0, and r. (b) What is the coefficient of 
kinetic friction? (c) How many more revolutions will the object make before 
coming to rest? 
 
Picture the Problem Let the system consist of the particle, the table, and the 
earth. Then Wext = 0 and the energy dissipated by friction during one revolution is 
the change in the thermal energy of the system. 
 
(a) Apply the work-energy 
theorem with kinetic friction to 
obtain: 

thermext EUKW Δ+Δ+Δ=  
or, because ΔU = Wext = 0, 

therm0 EK Δ+Δ=  
 

Substitute for ΔKf and simplify to 
obtain: 

( )
( ) ( )[ ]
2
08

3

2
02

12
02

1
2
1

2
i2

12
f2

1
therm

mv

vmvm

mvmvE

=

−−=

−−=Δ

 

 
(b) Relate the energy dissipated by 
friction to the distance traveled and 
the coefficient of kinetic friction: 
 

( )rmgsmgsfE πμμ 2kktherm =Δ=Δ=Δ  
 
 

Substitute for ΔE and solve for 
μk to obtain: gr

v
mgr
mv

mgr
E

πππ
μ

16
3

22
Δ 2

0
2
08

3
therm

k ===  

 
(c) Because the object lost i4

3 K in one revolution, it will only require another 1/3 
revolution to lose the remaining i4

1 K  
 
69 •• [SSM] The initial speed of a 2.4-kg box traveling up a plane inclined 
37° to the horizontal is 3.8 m/s. The coefficient of kinetic friction between the box 
and the plane is 0.30. (a) How far along the incline does the box travel before 
coming to a stop? (b) What is its speed when it has traveled half the distance 
found in Part (a)?  
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Picture the Problem The box will slow down and stop due to the dissipation of 
thermal energy. Let the system be the earth, the box, and the inclined plane and 
apply the work-energy theorem with friction. With this choice of the system, there 
are no external forces doing work to change the energy of the system. The 
pictorial representation shows the forces acting on the box when it is moving up 
the incline. 

gF
r

nF
r

θ

θ

x

y

kf
r

0g =U
0

0
0
=x

L
x =

1

hm

m

 
 

(a) Apply the work-energy theorem 
with friction to the system: 

therm

thermmechext

EUK
EEW
Δ+Δ+Δ=

Δ+Δ=
     

           
Substitute for ΔK, ΔU, and thermEΔ  
to obtain: 
 

LFmghmvmv nk
2
02

12
12

10 μ++−=     (1) 

Referring to the free-body diagram, 
relate the normal force to the weight 
of the box and the angle of the 
incline:  
 

θcosn mgF =  

Relate h to the distance L along 
the incline: 

θsinLh =  

 
Substitute in equation (1) to obtain: 
 

0sincos 2
02

12
12

1
k =+−+ θθμ mgLmvmvmgL                (2) 

 
Solving equation (2) for L yields: 

( )θθμ sincos2 k

2
0

+
=

g
vL  
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Substitute numerical values and evaluate L: 
 

( )
( ) ( )[ ] m87.0m8747.0

sin37cos370.30m/s9.812
m/s3.8

2

2

==
°+°

=L  

 
(b) Let Lv

2
1  represent the box’s speed when it is halfway up the incline. 

Then equation (2) becomes: 
 

( ) ( ) 0sincos 2
12

02
12

2
1

2
1

k
2
1 =+−+ θθμ LmgmvmvLmg L  

 
Solving for Lv

2
1 yields :  

 
( )θμθ cossin k

2
0

2
1 +−= gLvv L  

 
Substitute numerical values and evaluate Lv

2
1 : 

 
( ) ( )( ) ( )[ ]] m/s7.2cos370.30sin37m 0.8747m/s9.81m/s 3.8 22

f =°+°−=v  
 
70 ••• A block of mass m rests on a plane inclined an angle θ with the 
horizontal (Figure 7-51).  A spring with force constant k is attached to 
the block. The coefficient of static friction between the block and plane is μs.  The 
spring is pulled upward along the plane very slowly. (a) What is the extension of 
the spring the instant the block begins to move? (b) The block stops moving just 
as the extension of the contracting spring reaches zero.  Express μk (the kinetic 
coefficient of friction) in terms of μs and θ. 
 
Picture the Problem Let the system 
consist of the earth, the block, the 
incline, and the spring. With this choice 
of the system, there are no external 
forces doing work to change the energy 
of the system. The free-body diagram 
shows the forces acting on the block 
just before it begins to move. We can 
apply Newton’s 2nd law to the block to 
obtain an expression for the extension 
of the spring at this instant. We’ll apply 
the work-energy theorem with friction 
to the second part of the problem. 

gF
r

nF
r

θ

x

y

max s,f
r

springF
r

m
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(a) Apply ∑ = aF m to the block 

when it is on the verge of sliding: 
∑ =−−= 0sinmaxs,spring θmgfFFx  

and 
∑ =−= 0cosn θmgFFy  

 
Eliminate Fn, fs,max, and Fspring 
between the two equations to obtain: 
 

0sincoss =−− θθμ mgmgkd  

Solving for d yields: ( )θμθ cossin s+=
k

mgd  

 
(b) Begin with the work-energy 
theorem with friction and no work 
being done by an external force: 
 

therm

thermmechext

EUUK
EEW

sg Δ+Δ+Δ+Δ=
Δ+Δ=

 

               

Because the block is at rest in both 
its initial and final states, ΔK = 0 
and: 
 

0therm =Δ+Δ+Δ EUU sg          (1) 

Let Ug = 0 at the initial position of 
the block. Then: θsin

0initialg,finalg,g

mgd
mghUUU

=

−=−=Δ
 

 
Express the change in the energy 
stored in the spring as it relaxes to its 
unstretched length: 

2
2
1

2
2
1

initials,finals,s 0

kd

kdUUU

−=

−=−=Δ
 

 
The energy dissipated by friction is: 

θμ
μ

cos
ΔΔ

k

nkktherm

mgd
dFdfsfE

=
===

 

 
Substitute in equation (1) to obtain: 
 

0cossin k
2

2
1 =+− θμθ mgdkdmgd  

or 
0cossin k2

1 =+− θμθ mgkdmg  
 

Substituting for d (from Part (a)) yields: 
 

( ) 0coscossinsin ks2
1 =+⎥⎦

⎤
⎢⎣
⎡ +− θμθμθθ mg

k
mgkmg  

 
Finally, solve for μk to obtain: ( )θμμ tans2

1
k −=  
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Mass and Energy 
 
71 • (a) Calculate the rest energy of 1.0 g of dirt. (b) If you could convert 
this energy completely into electrical energy and sell it for $0.10/kW⋅h, how 
much money would you take in? (c) If you could power a 100-W light bulb with 
this energy, for how long could you keep the bulb lit? 
 
Picture the Problem The intrinsic rest energy in matter is related to the mass of 
matter through Einstein’s equation .2

0 mcE =  
 
(a) The rest energy of the dirt is 
given by: 
 

2
0 mcE =  

 

Substitute numerical values and 
evaluate E0: 

( )( )
J100.9J10988.8

m/s10998.2kg101.0
1313

283
0

×=×=

××= −E
 

 
(b) Express kW⋅h in joules: ( )

J1060.3
h

s 3600h1J/s101hkW1

6

3

×=

⎟
⎠
⎞

⎜
⎝
⎛ ××=⋅

 

 
Convert 8.988 × 1013 J to kW⋅h: ( )

hkW1050.2

J103.60
hkW1

J10988.8J10988.8

7

6

1313

⋅×=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

⋅
×

×=×

 

 
Determine the price of the electrical 
energy: 

( )
6

7

105.2$

hkW
$0.10hkW102.50Price

×=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅×=

 

 
(c) Relate the energy consumed to its 
rate of consumption and the time: 
 

tPE Δ=Δ  ⇒
P
Et Δ

=Δ  



                                                                             Conservation of Energy 
 

 

667

Substitute numerical values and 
evaluate Δt: 

y102.8
s 103.156

y 1s10988.8

s109.0

s10988.8
W100

J10988.8Δ

4

7
11

11

11
13

×=

×
××=

×=

×=
×

=t

 

 
72 • One kiloton of TNT, when detonated, yields an explosive energy of 
roughly 4 × 1012 J. How much less is the total mass of the bomb remnants after 
the explosion than before? If you could find and reassemble the pieces, would this 
loss of mass be noticeable? 
 
Picture the Problem We can use the equation expressing the equivalence of 
energy and matter, 2ΔmcE = , to find the reduction in the mass of the bomb due 
to the explosion. 
 
Solve 2ΔmcE =  for Δm: 

2Δ
c
Em =  

 
Substitute numerical values and 
evaluate Δm: ( ) kg104

m/s102.998
J104Δ 5

28

12
−×≈

×

×
=m

 
Express the ratio of Δm to the mass 
of the bomb before its explosion: 
 

11

5

bomb

105
lb 2.2046

kg 1
ton

lb 2000kton 1

kg 104Δ

−

−

×≈

××

×
=

m
m

 

 
No, not noticeable! The mass change, compared to the mass of the bomb, is 
negligible. 
 
73 • Calculate your rest energy in both mega electron-volts and joules. If 
that energy could be converted completely to the kinetic energy of your car, 
estimate its speed. Use the nonrelativistic expression for kinetic energy and 
comment on whether or not your answer justifies using the nonrelativistic 
expression for kinetic energy. 
 
Picture the Problem Your rest energy is given by E0 = mc2.  
 
Your rest energy if given by: 
 

2
0 mcE =  
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Assuming that your mass is 70 kg, 
substitute numerical values and 
evaluate E0: 
 

( )( )
J 103.6J 10292.6

m/s 10998.2kg 70
1818

28
0

×=×=

×=E
 

 
Convert E0 to MeV to obtain: 
 

MeV 109.3
J 101.602

eV 1J 10292.6

31

19
18

0

×=

×
××= −E

 

 
The nonrelativistic expression for the 
kinetic energy of your car is: 
 

2
2
1 mvK = ⇒

m
Kv 2

=  

 
Assuming the mass of your car to be 
1.4 × 103 kg (approximately 3000 lb),  
substitute numerical values and 
evaluate v: 
 

( ) m/s 105.9
kg 10.41

J 10292.62 7
3

18

×≈
×

×
=v  

 

As expected, this result is close enough to the speed of light (and thus incorrect) 
because the non-relativistic expressions do not apply if the car’s energy is of the 
order of the magnitude of its rest energy. In this case we assumed they were 
equal. 
 
74 • If a black hole and a ″normal″ star orbit each other, gases from the 
normal star falling into the black hole can have their temperature increased by 
millions of degrees due to frictional heating. When the gases are heated that 
much, they begin to radiate light in the X-ray region of the electromagnetic 
spectrum (high-energy light photons).  Cygnus X-1, the second strongest known 
X-ray source in the sky, is thought to be one such binary system; it radiates at an 
estimated power of 4 × 1031 W.  If we assume that 1.0 percent of the in-falling 
mass escapes as X ray energy, at what rate is the black hole gaining mass? 
 
Picture the Problem We can differentiate the mass-energy equation to obtain an 
expression for the rate at which the black hole gains energy. 
 
Using the mass-energy relationship, 
express the energy radiated by the 
black hole: 
 

( ) 2010.0 mcE =  

Differentiate this expression to 
obtain an expression for the rate at 
which the black hole is radiating 
energy: 
 

( )[ ] ( )
dt
dmcmc

dt
d

dt
dE 22 010.0010.0 ==  

Solving for dtdm yields: 
( ) 2010.0 c

dtdE
dt
dm

=  
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Substitute numerical values and 
evaluate dtdm : ( )( )

kg/s104

m/s10998.2010.0
watt104

16

28

31

×≈

×

×
=

dt
dm

 

 
75 • [SSM] You are designing the fuel requirements for a small fusion 
electric-generating plant. Assume 33% conversion to electric energy. For the 
deuterium–tritium (D–T) fusion reaction in Example 7-18, calculate the number 
of reactions per second that are necessary to generate 1.00 kW of electric power. 
 
Picture the Problem The number of reactions per second is given by the ratio of 
the power generated to the energy released per reaction. The number of reactions 
that must take place to produce a given amount of energy is the ratio of the energy 
per second (power) to the energy released per second. 
 
In Example 7-18 it is shown that the energy per reaction is 17.59 MeV. Convert 
this energy to joules: 
 

( )( ) J1028.18J/eV101.602MeV17.59MeV59.17 1319 −− ×=×=  
 

Assuming 33% conversion to electric energy, the number of reactions per second 
is: 
 

( )( ) sreactions/101.1
J/reaction1028.1833.0

J/s1000 15
13 ×≈

× −  

 
76 • Use Table 7-1 to calculate the energy needed to remove one neutron 
from a stationary alpha particle, leaving a stationary helion plus a neutron with a 
kinetic energy of 1.5 MeV.  
 
Picture the Problem The energy required for this reaction is the sum of 1.5 MeV 
and the difference between the rest energy of 4He and the sum of the rest energies 
of a helion (3He) and a neutron. 
 
The required energy is given by: ntotal KEE +=                          (1) 

 
Express the reaction: 
 

nHeHe 34 +→  

The rest energy of a neutron  
(Table 7-1) is: 

939.573 MeV 

The rest energy of 4He (Table 7-1) is: 
 

3727.409 MeV 

The rest energy of 3He is:  2808.432 MeV 
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Substitute numerical values to find the difference in the rest energy of 4He and the 
sum of the rest energies of 3He and n: 
 

( )[ ] MeV596.20MeV573.939432.2808409.3727 =+−=E  
 

Substitute numerical values in 
equation (1) and evaluate totalE : MeV 1.22

MeV 5.1MeV 596.20total

=

+=E
 

 
77 • A free neutron can decay into a proton plus an electron and an electron 
antineutrino [an electron antineutrino (symbol eν ) is a nearly massless elementary 
particle]: eepn ν++→ − . Use Table 7-1 to calculate the energy released during 
this reaction. 
 
Picture the Problem The energy released during this reaction is the difference 
between the rest energy of a neutron and the sum of the rest energies of a proton 
and an electron.  
 
The rest energy of a proton  
(Table 7-1) is: 
 

938.280 MeV 

The rest energy of  an electron  
(Table 7-1) is: 
 

0.511 MeV 

The rest energy of  a neutron 
(Table 7-1) is: 
 

939.573 MeV 

Substitute numerical values to find 
the difference in the rest energy of a 
neutron and the sum of the rest 
energies of a positron and an 
electron: 

( )[ ]
MeV.7820

MeV511.0280.938573.939

=

+−=E
 

 
78 •• During one type of nuclear fusion reaction, two deuterons combine to 
produce an alpha particle. (a) How much energy is released during this reaction?  
(b) How many such reactions must take place per second to produce 1 kW of 
power? 
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Picture the Problem The reaction is E+→+ HeHH 422 . The energy released in 
this reaction is the difference between twice the rest energy of 2H and the rest 
energy of 4He. The number of reactions that must take place to produce a given 
amount of energy is the ratio of the energy per second (power) to the energy 
released per reaction. 
 
(a) The rest energy of 4He  
(Table 7-1) is: 
 

 
3727.409 MeV 

The rest energy of a deuteron, 2H, 
(Table 7-1) is: 
 

 
1875.628 MeV 

The energy released in the reaction 
is: 

( )[ ]

J103.82J103.820
eV

J 101.602MeV847.23

MeV409.3727628.18752

1212

19

−−

−

×=×=

×
×=

−=E

 

 
(b) The number of reactions per second is: 
 

sreactions/1062.2
J/reaction10820.3

J/s101.00 14
12

3

×=
×

×
−  

 
79 •• A large nuclear power plant produces 1000 MW of electrical power by 
nuclear fission. (a) By how many kilograms does the mass of the nuclear fuel 
decrease by in one year? (Assume an efficiency of 33 percent for a nuclear power 
plant.) (b) In a coal-burning power plant, each kilogram of coal releases 31 MJ of 
thermal energy when burned. How many kilograms of coal are needed each year 
for a 1000-MW coal-burning power plant? (Assume an efficiency of 38 percent 
for a coal-burning power plant.) 
 
Picture the Problem The annual consumption of matter by the fission plant is 
the ratio of its annual energy output to the square of the speed of light. The 
annual consumption of coal in a coal-burning power plant is the ratio of its 
annual energy output to energy per unit mass of the coal. 
 
(a) The yearly consumption of 
matter is given by: 2Δ

c
Em

ε
=                                  

where E is the energy to be generated 
and ε  is the efficiency of the plant. 
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Because the energy to be generated 
is the product of the power output of 
the plant and the elapsed time: 
 

2 
ΔΔ
c

tPm
ε

=                                  (1) 

Substitute numerical values and evaluate Δm: 
 

( )

( ) ( ) kg 1.1
m/s 102.998 0.33
y

s 103.156y 1MW 1000
Δ 28

7

=
×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

=m  

 
(b) For a coal-burning power 
plant, equation (1) becomes: 

⎟
⎠
⎞

⎜
⎝
⎛

=

massunit 
releasedenergy  

ΔΔ coal

ε

tPm  

 
Substitute numerical values and evaluate Δmcoal: 
 

( )

( ) ( ) kg 107.2
MJ/kg 31 0.38

y
s 103.156y 1MW 1000

Δ 9

7

coal ×=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×

=m  

 
Remarks: 2.7 × 109 kg is approximately 3 million tons! 
 
Quantization of Energy 

80 •• A mass on the end of a spring with a force constant of 1000 N/kg 
oscillates at a frequency of 2.5 oscillations per second. (a) Determine the quantum 
number, n, of the state it is in if it has a total energy of 10 J. (b) What is its ground 
state energy? 
 
Picture the Problem The energy number n of a state whose energy is E is given 
by ( )hfnE 2

1+= where h is Planck’s constant and f is the frequency of the state. 
 
(a) The energy of the vibrational 
state is given by: 

( )hfnE 2
1+=  

or, because we expect n to be very 
large, 

nhfE ≈ ⇒
hf
En =  

 



                                                                             Conservation of Energy 
 

 

673

Substitute numerical values and 
evaluate n: 
 

( )( )
33

134

100.6

s 5.2sJ 1063.6
J 10

×=

⋅×
= −−n

 

 
(b) The ground state energy of the 
oscillator is the energy of the system 
when n = 0: 
 

hfE 2
1

0 =  

Substitute numerical values and 
evaluate E0: 

( )( )
J 103.8

s 5.2sJ 1063.6
34

134
2
1

0

−

−−

×=

⋅×=E
 

 
81 •• Repeat Problem 80, but consider instead an atom in a solid vibrating at 
a frequency of 1.00 × 1014 oscillations per second and having a total energy of  
2.7 eV. 
 
Picture the Problem The energy number n of a state whose energy is E is given 
by ( )hfnE 2

1+= where h is Planck’s constant and f is the frequency of the state. 
 
(a) The energy of the vibrational 
state is given by: 
 

( )hfnE 2
1+= ⇒

2
1

−=
hf
En  

 
Substitute numerical values and 
evaluate n: 
 ( )( )

6

2
1

s 01sJ 1063.6
eV

J 101.602eV 7.2
11434

-19

=

−
⋅×

×
×

= −−n  

 
(b) The ground state energy of the 
oscillator is the energy of the system 
when n = 0: 
 

hfE 2
1

0 =  

Substitute numerical values and 
evaluate E0: 

( )( )

eV 21.0
J 101.602

eV 1J 10315.3

s 01sJ 1063.6

19
20

11434
2
1

0

=
×

××=

⋅×=

−
−

−−E

 

 
General Problems 

82 • A block of mass m, starting from rest, is pulled up a frictionless 
inclined plane that makes an angle θ with the horizontal by a string parallel to the 
plane. The tension in the string is T. After traveling a distance L, the speed of the 
block is vf. Derive an expression for work done by the tension force.   
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Picture the Problem Let the system consist of the block, the earth, and the 
incline. Then the tension in the string is an external force that will do work to 
change the energy of the system. Because the incline is frictionless; the work done 
by the tension in the string as it displaces the block on the incline is equal to the 
sum of the changes in the kinetic and gravitational potential energies. 

m

θ

h

m

m

1

2

Δ
L

 T
r

 T
r

 
 
Relate the work done on the block 
by the tension force to the changes 
in the kinetic and gravitational 
potential energies of the block: 
 

KUWW Δ+Δ== extforcetension     (1) 

Referring to the figure, express the 
change in the potential energy of 
the block as it moves from position 
1 to position 2: 
 

θsinmgLhmgU =Δ=Δ  

Because the block starts from rest: 
 

2
f2

1
2Δ mvKK ==  

Substitute for ΔU and ΔK in 
equation (1) to obtain: 

2
f2

1
forcetension sin mvmgLW += θ  

 
83 • A block of mass m slides with constant speed v down a plane inclined 
at angle θ with the horizontal. Derive an expression for the energy dissipated by 
friction during the time interval Δt. 
 
Picture the Problem Let the system include the earth, the block, and the inclined 
plane. Then there are no external forces to do work on the system and 0ext =W . 
Apply the work-energy theorem with friction to find an expression for the energy 
dissipated by friction.  



                                                                             Conservation of Energy 
 

 

675

m

θ

h

m

m

Δ
L

 vr

 vrv   tΔ

 
 
Apply the work-energy theorem 
with friction to the block: 
 

0thermext =Δ+Δ+Δ= EUKW  

Because the velocity of the block is 
constant, ΔK = 0 and: 
 

hmgUE Δ−=Δ−=Δ therm  
 

In time Δt the block slides a 
distance tvΔ . From the figure: 
 

θsinΔΔ tvh −=  

Substitute for Δh to obtain: θsinΔΔ therm tmgvE =  

 
84 • In particle physics, the potential energy associated with a pair of 
quarks bound together by the strong nuclear force is in one particular theoretical 
model written as the following function:  ( ) ( )U r r krα= − / + , where k and α are 
positive constants, and r is the distance of separation between the two quarks.  
(a) Sketch the general shape of the potential-energy function. (b) What is a 
general form for the force each quark exerts on the other?   (c) At the two 
extremes of very small and very large values of r, what does the force simplify to? 
 

Picture the Problem The force between the two quarks is given by ( )
dr

rdUF −= .

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Chapter 7    
 

 

676 

(a) The following graph was plotted using a spreadsheet program. α was set to 1 
and k was set to 5. 

-12

-10

-8

-6

-4

-2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

r , arbitrary units

U
, a

rb
itr

ar
y 

un
its

-alpha/r
kr
-alpha/r + kr

 
 

(b) F is given by: 
 

( )
dr

rdUF −=  

 
Substitute for U(r) and evaluate F to 
obtain: 
 

k
r

kr
rdr

dF +−=⎟
⎠
⎞

⎜
⎝
⎛ +−−= 2

αα  

 
(c) For r >> 1: 
 

kFr →>>1  
 

For r << 1: 
21 r

Fr
α

−→<<  

 
85 • [SSM]  You are in charge of ″solar-energizing″ your grandfather’s 
farm. At the farm’s location, an average of 1.0 kW/m2 reaches the surface during 
the daylight hours on a clear day.  If this could be converted at 25% efficiency to 
electric energy, how large a collection area would you need to run a 4.0-hp 
irrigation water pump during the daylight hours? 
 
Picture the Problem The solar constant is the average energy per unit area and 
per unit time reaching the upper atmosphere. This physical quantity can be 
thought of as the power per unit area and is known as intensity. 
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Letting surfaceI  represent the intensity 
of the solar radiation at the surface of 
the earth, express surfaceI  as a function 
of power and the area on which this 
energy is incident: 
 

A
PI =surfaceε  ⇒

surfaceI
PA

ε
=  

where ε is the efficiency of conversion 
to electric energy. 

Substitute numerical values and 
evaluate A: 

( )( )
2

2 m 12
kW/m 0.10.25

hp
 W746hp 0.4

=
×

=A  

 
86 •• The radiant energy from the Sun that reaches Earth’s orbit is  
1.35 kW/m2.  (a) Even when the Sun is directly overhead and under dry desert 
conditions, 25% of this energy is absorbed and/or reflected by the atmosphere 
before it reaches Earth’s surface. If the average frequency of the electromagnetic 
radiation from the Sun is 145 5 10.      Hz× , how many photons per second would be 
incident upon a 1.0-m2 solar panel?   (b) Suppose the efficiency of the panels for 
converting the radiant energy to electrical energy and delivering it is a highly 
efficient 10.0%.  How large a solar panel is needed to supply the needs of a 5.0-hp 
solar-powered car (assuming the car runs directly off the solar panel and not 
batteries) during a race in Cairo at noon on March 21?  (c) Assuming a more-
realistic efficiency of 3.3% and panels capable of rotating to be always 
perpendicular to the sunlight, how large an array of solar panels is needed to 
supply the power needs of the International Space Station (ISS)?   The ISS 
requires about 110 kW of continuous electric power. 
 
Picture the Problem The number of photons n incident on a solar panel is related 
to the energy E of the incident radiation ( nhfE = ) and the intensity of the solar 
radiation is the rate at which it delivers energy per unit area. 
 
(a) The number of photons n incident 
on the solar panel is related to the 
energy E of the radiation: 
 

nhfE = ⇒
hf
En =                  (1) 

The intensity I of the radiation is 
given by: 
 

tA
E

A
PI

Δ
== ⇒ tIAE Δ=  

Substituting for E in equation (1) 
yields: 
 

hf
tIAn Δ

=  
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The number of photons arriving per 
unit time is given by: 
 

hf
IA

t
n

=
Δ

or 
hf
I'A

t
n ε

=
Δ

 

where I′ is the unreduced solar constant 
and ε  is the percentage of the energy 
absorbed. 
 

Substitute numerical values and 
evaluate the number of photons 
arriving per unit time: 

( )( )( )
( )( )

121

11434

22

s 108.2

s 105.5sJ 1063.6
m 0.1kW/m 35.175.0

Δ
−

−−

×=

×⋅×
=

t
n

 

 
(b) The effective intensity of the 
radiation is given by: A

PI
ε

=  ⇒ 
I

PA
ε

=                (2) 

where ε is the efficiency of energy  
conversion. 
 

Substitute numerical values and 
evaluate A: 

( )( )
2

2 m 82
kW/m 35.110.0
hp

 W746hp 0.5
=

×
=A  

 
(c) Substitute numerical values in 
equation (2) to obtain: 

( )( )
2

2 m 48
kW/m 35.1033.0
hp

 W746hp 0.5
=

×
=A  

 
87 •• In 1964, after the 1250-kg jet-powered car Spirit of America lost its 
parachute and went out of control during a run at Bonneville Salt Flats, Utah, it 
left skid marks about 8.00 km long. (This earned a place in the Guinness Book 
of World Records for longest skid marks.) (a) If the car was moving initially 
at a speed of about 800 km/h, and was still going at about 300 km/h when it 
crashed into a brine pond, estimate the coefficient of kinetic friction μk. (b) What 
was the kinetic energy of the car 60 s after the skid began? 
 
Picture the Problem Let the system include the earth and the Spirit of America. 
Then there are no external forces to do work on the car and Wext = 0. We can use 
the work-energy theorem for problems with kinetic friction to relate the 
coefficient of kinetic friction to the given information. A constant-acceleration 
equation will yield the car’s velocity when 60 s have elapsed. 
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(a) Apply the work-energy theorem 
with friction to relate the 
coefficient of kinetic friction μk  to 
the initial and final kinetic energies 
of the car: 
 

0ΔΔΔ thermext =++= EUKW  
or 

0Δk
2
i2

12
f2

1 =+− smgmvmv μ  
 
 

Solving for μk yields: 
 sg

vv
Δ2

2
f

2
i

k
−

=μ  

 
Substitute numerical values and evaluate μk: 
 

( )( ) 270.0
km8.00m/s9.812

s 3600
h 1

h
km003

h
km008

2

222

k =
⎟
⎠
⎞

⎜
⎝
⎛×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

=μ  

 
(b) The kinetic energy of the car 
as a function of its speed is: 
 

2
2
1 mvK =                                    (1) 

Using a constant-acceleration 
equation, relate the speed of the car 
to its acceleration, initial speed, 
and the elapsed time: 
 

atvv += 0                                 (2) 

Express the braking force acting on 
the car: 
 

mamgfF =−=−= kknet μ  
 

Solving for a yields: 
 

ga kμ−=  

Substitute for a in equation (2) to 
obtain: 
 

gtvv k0 μ−=  
 

Substituting for v in equation (1) 
yields an expression for the kinetic 
energy of car as a function of the 
time it has been skidding: 
 

( ) ( )2
k02

1 gtvmtK μ−=  

Substitute numerical values and evaluate K(60 s): 
 

( ) ( ) ( )( )( )] GJ54s60m/s9.810.270
s 3600

h 1
h

km008kg1250s 60 22
2
1 =−⎢⎣

⎡ ×=K  
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88 •• A T-bar tow is planned in a new ski area. At any one time, it will be 
required, to pull a maximum of 80 skiers up a 600-m slope inclined at 15° above 
the horizontal at a speed of 2.50 m/s. The coefficient of kinetic friction between 
the skiers skis and the snow is typically 0.060. As the manager of the facility, 
what motor power should you request of the construction contractor if the mass of 
the average skier is 75.0 kg. Assume you want to be ready for any emergency and 
will order a motor whose power rating is 50% larger than the bare minimum. 
 
Picture the Problem The free-body 
diagram shows the forces acting on a 
skier as he/she is towed up the slope at 
constant speed. We can apply the work-
energy theorem to find the minimum 
rate at which the motor will have to 
supply energy to tow the skiers up an 
incline whose length is . gF

r

nF
r

θ

θ

x

y

F
r

kf
r

0g =U  
 
Apply the work-energy theorem 
to the skiers: 
 

thermg

thermmechext

ΔΔΔ
ΔΔ

EUK
EEW
++=

+=
 

 
Because ΔK = 0, kthermΔ fE = , and 

θsinΔ totg gmU = : 

 

ktotext sin fgmW += θ            (1)  

The external work done by the 
electric motor is given by: 
 

v
PtPW minminext Δ ==  

where v is the speed with which the 
skiers are towed up the incline. 
 

The kinetic friction force is given by: 
 

θμμ costotknkk gmFf ==  

Substituting for Wext and fk in 
equation (1) yields: 
 

θμθ cossin totktotmin gmgm
v

P +=  

Solve for minP  to obtain: ( )θμθ cossin ktotmin += gvmP  
 

Because you want a safety factor 
of 50%, the power output of the 
motor you should order should 
be 150% of minP : 
 

( )θμθ cossin5.1 ktot += gvmP  
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Substitute numerical values and evaluate P: 
 

( )( )( )( )( ) ( )[ ]
kW70

0.15cos060.00.15sinm/s2.50m/s9.81kg75.0805.1 2

=

°+°=P
 

 
Remarks: We could have solved this problem using Newton’s 2nd law. 
 
89 •• A box of mass m on the floor is connected to a horizontal spring of 
force constant k (Figure 7-52). The coefficient of kinetic friction between the box 
and the floor is μk.  The other end of the spring is connected to a wall.  The spring 
is initially unstressed.  If the box is pulled away from the wall a distance d0 and 
released, the box slides toward the wall. Assume the box does not slide so far that 
the coils of the spring touch. (a) Obtain an expression for the distance d1 the box 
slides before it first comes to a stop, (b) Assuming d1 > d0, obtain an expression 
for the speed of the box when has slid a distance d0 following the release.  
(c) Obtain the special value of μk such that d1 = d0. 
 
Picture the Problem Let the system include the Earth, the box, and the surface 
on which the box slides and apply the work-energy theorem for problems with 
kinetic friction to the box to derive the expressions for distance the box slides and 
the speed of the box when it first reaches its equilibrium position.  The pictorial 
representation summarizes the salient features of this problem. 

nF
r

gF
r

kf
r

y

sF
r

m

0d

01 =v

1d

m m
x

0=v 0vv =
0=x

 
 
(a) Apply the work-energy theorem 
for problems with kinetic friction to 
the box as it moves from x = 0 to  
x = d1 to obtain: 

thermmechsysext ΔΔΔ EEEW +==  
or, because Wext = ΔK = ΔUg = 0, 
ΔEtherm = fkΔx, and smech ΔΔ UE = , 

0ΔΔ ks =+ xfU  
 

Substitute for ΔUs and Δx to obtain: 
 

( ) 01k
2
02

12
012

1 =+−− dfkdddk       (1) 
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Apply 0=∑ yF to the box to obtain: 
 

0gn =− FF ⇒ mgFF == gn  
 

kf  is given by: 
 

mgFf knkk μμ ==  
 

Substituting for kf  in equation (1) 
yields: 
 

( ) 01k
2
02

12
012

1 =+−− mgdkdddk μ  

Solve for d1 to obtain: 
 k

mgdd k
01

22 μ
−=  

 
(b) Apply the work-energy theorem 
to the box as it moves from x = 0 to  
x = d0 to obtain: 

thermmechsysext ΔΔΔ EEEW +==  
or, because Wext = ΔUg = 0, 

0ΔΔΔ therms =++ EUK  
 

Noting that 0s,f0 == UK , substitute 
for ΔK, ΔUs, and thermΔE  to obtain: 
 

00k
2
02

12
02

1 =+− dfkdmv  
 

Substituting the expression for kf  
obtained in (a) yields: 
 

00k
2
02

12
02

1 =+− mgdkdmv μ  
 
 

Solving for 0v  yields: 
 0k

2
00 2 gdd

m
kv μ−=  

 
(c) Let 01 dd = in the expression for 

1d derived in (a) to obtain: 
 

k
mgdd k

00
22 μ

−= ⇒
mg

kd
2

0
k =μ  

 
Remarks: You can obtain the same Part (c) result by setting 00 =v  in the 
expression derived in Part (b). 
 
90 •• You operate a small grain elevator near Champaign, Illinois. One of 
your silos uses a bucket elevator that carries a full load of 800 kg through a 
vertical distance of 40 m.  (A bucket elevator works with a continuous belt, like a 
conveyor belt.) (a) What is the power provided by the electric motor powering 
the bucket elevator when the bucket elevator ascends with a full load at a speed 
of 2.3 m/s? (b) Assuming the motor is 85% efficient, how much does it cost you 
to run this elevator, per day, assuming it runs 60 percent of the time between  
7:00 A.M. and 7:00 P.M. with and average load of 85 percent of a full load?  
Assume the cost of electric energy in your location is 15 cents per kilowatt hour. 
 
Picture the Problem The power provided by a motor that is delivering sufficient 
energy to exert a force F  on a load which it is moving at a speed v  is vF ⋅ . 
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(a) The power provided by the motor 
is given by: 
 

θcosFvvFP =⋅=                
or, because F and v are in the same 
direction, FvP =                       (1) 
 

Because the elevator is ascending 
with constant speed, the required 
force is: 
 

gmF load=  

Substitute for F in equation (1) to 
obtain: 
 

gvmP load=  
 

Substitute numerical values and 
evaluate P: 

( )( )( )
kW81kW05.81

m/s2.3m/s9.81kg800 2

==

=P
 

 
(b) The daily cost of operating the 
elevator is given by: 
 

cEC useddaily =                            (2) 

where c is the per unit cost of the 
energy. 
 

The energy used by the motor is: 
 

tPE Δmotor
used ε

=  

where ε is the efficiency of the motor 
and Δt is the number of hours the 
elevator operates daily. 
 

Substituting for usedE in equation (2) 
yields: ε

tcPC Δmotor
daily =  

 
Substitute numerical values and evaluate dailyC : 
 

( )( )
93.22$

85.0
kWh

15.0$0.60h 12kW 8.051
daily =

⎟
⎠
⎞

⎜
⎝
⎛×

=C  

 
91 •• To reduce the power requirement of elevator motors, elevators are 
counterbalanced with weights connected to the elevator by a cable that runs over 
a pulley at the top of the elevator shaft.  Neglect any effects of friction in the 
pulley. If a 1200-kg elevator that carries a maximum load of 800 kg is 
counterbalanced with a mass of 1500 kg, (a) what is the power provided by the 
motor when the elevator ascends fully loaded at a speed of 2.3 m/s? (b) How 
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much power is provided by the motor when the elevator ascends at 2.3 m/s 
without a load?  
 
Picture the Problem The power provided by a motor that is delivering sufficient 
energy to exert a force F  on a load which it is moving at a speed v  is vF ⋅ .The 
counterweight does negative work and the power of the motor is reduced from 
that required with no counterbalance. 
 
(a) The power provided by the 
motor is given by: 
 

θcosFvvFP =⋅=                
or, because F and v are in the same 
direction, 

FvP =                                      (1) 
 

Because the elevator is 
counterbalanced and ascending with 
constant speed, the tension in the 
support cable(s) is: 
 

( )gmmmF cwloadelev −+=  

Substitute for F in equation (1) to 
obtain: 
 

( )gvmmmP cwloadelev −+=  
 

Substitute numerical values and evaluate P: 
 

( )( )( ) kW11kW28.11m/s2.3m/s9.81kg0051kg008kg2001 2 ==−+=P  
 

(b) Without a load: ( )gmmF cwelev −=  
and 

( )gvmmFvP cwelev −==  
 

Substitute numerical values and evaluate P: 
 

( )( )( ) kW8.6kW77.6m/s2.3m/s9.81kg0051kg2001 2 −=−=−=P  
 
92 •• In old science fiction movies, writers attempted to come up with novel 
ways of launching spacecraft toward the moon.  In one hypothetical case, a 
screenwriter envisioned launching a moon probe from a deep, smooth tunnel, 
inclined at 65.0o above the horizontal.  At the bottom of the tunnel a very stiff 
spring designed to launch the craft was anchored.  The top of the spring, when the 
spring is unstressed, is 30.0 m from the upper end of the table.  The screenwriter 
knew from his research that to reach the moon, the 318-kg probe should have a 
speed of at least 11.2 km/s when it exits the tunnel.  If the spring is compressed by 
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95.0 m just before launch, what is the minimum value for its force constant to 
achieve a successful launch? Neglect friction with the tunnel walls and floor. 
 
Picture the Problem Let the system 
consist of the earth, spring, tunnel, and 
the spacecraft and the zero of 
gravitational potential energy be at the 
surface of the earth. Then there are no 
external forces to do work on the 
system and Wext = 0. We can use 
conservation of mechanical energy to 
find the minimum value of the force 
constant that will result in a successful 
launch. The pictorial representation 
summarizes the details of the launch. 
Note that the spacecraft slows 
somewhat over the last 30 m of its 
launch.  

m

θ

0g =U

00 =x
00 =v

1v
m 0.951 =x

m 1252 =x

spring fully compressed

spring relaxed

km/s 2.112 =v

 
 
(a) Apply conservation of 
mechanical energy to the spacecraft 
as it moves from x = x0 to x = x2 to 
obtain: 
 

mechext ΔEW =  
or, because Wext = 0, 

0Δ mech =E                                 (1) 
 

The change in the mechanical 
energy of the system is: 
 

s,0s,2

g,0g,202

sgmech ΔΔΔΔ

UU
UUKK

UUKE

−+

−+−=

++=

 

 
Because K0 = Ug,2 = Us,2 = 0: 
 

s,0g,02mechΔ UUKE −−=  
 

Substituting for K2, Ug,0, and Us,0 
yields: 

( )
2
12

1
2

2
22

1

2
12

1
2

2
22

1
mech

sin

sinΔ

kxmgxmv

kxmgxmvE

−+=

−−−=

θ

θ
 

 
Substituting for ΔEmech in equation 
(1) yields: 
 

0sin 2
12

1
2

2
22

1 =−+ kxmgxmv θ  

Solving for k yields: 
2
1

2
2
2 sin2

x
mgxmvk θ+

=  
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Substitute numerical values and evaluate k: 
 

( )( ) ( )( )( )
( )

kN/m 1042.4

m 0.95
0.65sinm 125m/s 81.9kg 3182km/s 2.11kg 318

3

2

22

×=

°+
=k

 

 
93 •• [SSM]  In a volcanic eruption, a 2-kg piece of porous volcanic rock 
is thrown straight upward with an initial speed of 40 m/s. It travels upward a 
distance of 50 m before it begins to fall back to Earth. (a) What is the initial 
kinetic energy of the rock? (b) What is the increase in thermal energy due to air 
resistance during ascent? (c) If the increase in thermal energy due to air resistance 
on the way down is 70% of that on the way up, what is the speed of the rock 
when it returns to its initial position? 
 

Picture the Problem Let the system consist of the earth, rock and air. Given this 
choice, there are no external forces to do work on the system and Wext = 0. Choose 
Ug = 0 to be where the rock begins its upward motion. The initial kinetic energy of 
the rock is partially transformed into potential energy and partially dissipated by 
air resistance as the rock ascends. During its descent, its potential energy is 
partially transformed into kinetic energy and partially dissipated by air resistance. 
 
(a) The initial kinetic energy of the 
rock is given by: 

 

2
i2

1
i mvK =  

 

Substitute numerical values and 
evaluate Ki: 
 

( )( ) kJ1.6m/s40kg2.0 2
2
1

i ==K  

 

(b) Apply the work-energy theorem 
with friction to relate the energies of 
the system as the rock ascends: 
 

0therm =Δ+Δ+Δ EUK  
or, because Kf = 0, 

0thermi =Δ+Δ+− EUK  
 

Solving for thermEΔ yields: UKE Δ−=Δ itherm  
 

Substitute numerical values and evaluate thermEΔ : 
 

( )( )( ) kJ0.6kJ0.619m50m/s9.81kg2.0kJ6.1Δ 2
therm ==−=E  

 
(c) Apply the work-energy theorem 
with friction to relate the energies of 
the system as the rock descends:  

0Δ70.0ΔΔ therm =++ EUK  



                                                                             Conservation of Energy 
 

 

687

 
Because Ki = Uf = 0: 0Δ70.0 thermif =+− EUK  

 
Substitute for the energies to obtain: 
 

0Δ70.0 therm
2
f2

1 =+− Emghmv  
 

Solve for fv to obtain: 
m
Eghv therm

f
Δ40.12 −=  

 
Substitute numerical values and evaluate fv : 
 

( )( ) ( ) m/s23
kg2.0

kJ0.6191.40m50m/s9.812 2
f =−=v  

 
94 •• A block of mass m starts from rest at a height h and slides down a 
frictionless plane inclined at angle θ with the horizontal, as shown in Figure 7-53. 
The block strikes a spring of force constant k. Find the distance the spring is 
compressed when the block momentarily stops. 
 
Picture the Problem Let the distance the block slides before striking the spring 
be . The pictorial representation shows the block at the top of the incline (x0 = 0), 

just as it strikes the spring (x1 =  ), and the block against the fully compressed 

spring (x2 =  + x). Let the block, spring, and the earth comprise the system. Then 

Wext = 0. Let Ug = 0 where the spring is at maximum compression. We can apply 
the work-energy theorem to the block to relate the energies of the system as the 
block slides down the incline and compresses the spring. 

m

θ

0g =U

0
0

=x

0
0

=v

1v

spring fully compressed

spring relaxed
h

r=
1x

x
x

+=r
2

0
2

=v

m

m

m

 
 

Apply the work-energy theorem to 
the block from x0 to x2: 

0sg =Δ+Δ+Δ UUK  

or 
0Δ s,0s,2g,0g,2 =−+−+ UUUUK  
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Because ΔK = Ug,2 = Us,0 = 0: 
 

0s,2g,0 =+− UU  

Substitute for each of these energy 
terms to obtain: 
 

02
2
1

0 =+− kxmgh                    (1) 
where x is the distance the spring 
compresses. 
 

h0 is given by: 
 

( ) θθ sinsin20 xxh +==  

Substitute for h0 in equation (1) to 
obtain: 
 

( ) 0sin 2
2
1 =++− kxxmg θ  

Rewrite this equation explicitly 
as a quadratic equation to obtain: 
 

0sin2sin22 =−−
k

mgx
k

mgx θθ  

Solving for x yields: 
 

θθθ sin2sinsin 2
2

k
mg

k
mg

k
mgx +⎟

⎠
⎞

⎜
⎝
⎛+=  

Note that the negative sign between the two terms leads to a non-physical solution 
and has been ignored. 
 
95 •• [SSM] A block of mass m is suspended from a wall bracket by a 
spring and is free to move vertically (Figure 7-54). The +y direction is downward 
and the origin is at the position of the block when the spring is unstressed. (a) 
Show that the potential energy as a function of position may be expressed as 

21
2U ky mgy= − , (b) Using a spreadsheet program or graphing calculator, make 

a graph of U as a function of y with k = 2 N/m and mg = 1 N. (c) Explain how 
this graph shows that there is a position of stable equilibrium for a positive value 
of y. Using the Part (a) expression for U, determine (symbolically) the value of y 
when the block is at its equilibrium position. (d) From the expression for U, find 
the net force acting on m at any position y. (e) The block is released from rest 
with the spring unstressed; if there is no friction, what is the maximum value of y 
that will be reached by the mass? Indicate ymax on your graph/spreadsheet. 

 
Picture the Problem Given the potential energy function as a function of y, we 
can find the net force acting on a given system from dydUF /−= . The maximum 
extension of the spring; that is, the lowest position of the mass on its end, can be 
found by applying the work-energy theorem. The equilibrium position of the  
system can be found by applying the work-energy theorem with friction … as can 
the amount of thermal energy produced as the system oscillates to its equilibrium 
position. In Part (c), setting dU/dy equal to zero and solving the resulting equation 
for y will yield the value of y when the block is in its equilibrium position 
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(a) The potential energy of the 
oscillator is the sum of the 
gravitational potential energy of 
block and the energy stored in the 
stretched spring: 
 

sg UUU +=  

Letting the zero of gravitational 
potential energy be at the oscillator’s 
equilibrium position yields: 
 

mgykyU −= 2
2
1  

where y is the distance the spring is 
stretched. 

(b) A graph of U as a function of y follows. Because k and m are not specified, k 
has been set equal to 2 and mg to 1.  

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

y  (m)

U
 (J

)

 
(c) The fact that U is a minimum near y = 0.5 m tells us that this is a position of 
stable equilibrium. 
 
Differentiate U with respect to y to 
obtain: 
 

( ) mgkymgyky
dy
d

dy
dU

−=−= 2
2
1  

Setting this expression equal to 
zero for extrema yields: 
 

0=− mgky ⇒
k

mgy =  

(d) Evaluate the negative of the 
derivative of U with respect to y: 

( )

mgky

mgyky
dy
d

dy
dUF

+−=

−−=−= 2
2
1
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(e) Apply conservation of energy 
to the movement of the mass from 
y = 0 to maxyy = : 
 

0therm =Δ+Δ+Δ EUK  

Because ΔK = 0 (the object starts 
from rest and is momentarily at 
rest at maxyy = ) and (no friction), 
it follows that:  
 

( ) ( ) 00Δ max =−= UyUU  

Because U(0) = 0: ( ) 0max =yU  ⇒ 0max
2
max2

1 =− mgyky  
 

Solve for maxy  to obtain: 
k
mgy 2

max =  

On the graph, maxy is at (1.0, 0.0). 
 
96 •• A spring-loaded gun is cocked by compressing a short, strong spring 
by a distance d. It fires a signal flare of mass m directly upward. The flare has 
speed v0 as it leaves the spring and is observed to rise to a maximum height h 
above the point where it leaves the spring. After it leaves the spring, effects of 
drag force by the air on the flare are significant. (Express answers in terms of m, 
v0, d, h, and g.) (a) How much work is done on the spring during the 
compression? (b) What is the value of the force constant k? (c) Between the time 
of firing and the time at which maximum elevation is reached, how much 
mechanical energy is dissipated into thermal energy? 
 
Picture the Problem The energy stored in the compressed spring is initially 
transformed into the kinetic energy of the signal flare and then into gravitational 
potential energy and thermal energy as the flare climbs to its maximum height. 
Let the system contain the earth, the air, and the flare so that Wext = 0. We can use 
the work-energy theorem with friction in the analysis of the energy 
transformations during the motion of the flare. 
 
(a) The work done on the spring in 
compressing it is equal to the kinetic 
energy of the flare at launch:  
 

2
02

1
flarei,s mvKW ==  
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(b) Ignoring changes in gravitational 
potential energy (that is, assume that 
the compression of the spring is small 
compared to the maximum elevation 
of the flare), apply the conservation of 
mechanical energy to the 
transformation that takes place as the 
spring decompresses and gives the 
flare its launch speed: 
 

0s =Δ+Δ UK  
or 

0is,fs,if =−+− UUKK  

 

Because 0f s,i == UK : 

 

0is,f =−UK  

Substitute for is,f and UK to obtain: 

 
02

2
12

02
1 =− kdmv ⇒ 2

2
0

d
mvk =  

 
(c) Apply the work-energy theorem 
with friction to the upward trajectory 
of the flare: 
 

0thermg =Δ+Δ+Δ EUK  

Solve for thermEΔ : 

fifi

gtherm

UUKK
UKE

−+−=

Δ−Δ−=Δ
 

 
Because 0if == UK : mghmvE −=Δ 2

02
1

therm  
 
97 •• Your firm is designing a new roller-coaster ride. The permit process 
requires the calculation of forces and accelerations at various important locations 
on the ride. Each roller-coaster car will have a total mass (including passengers) 
of 500 kg and will travel freely along the winding frictionless track shown in 
Figure 7-55.  Points A, E, and G are on horizontal straight sections, all at the 
same height of 10 m above the ground. Point C is at a height of 10 m above the 
ground on an inclined section of slope angle 30°. Point B is at the crest of a hill, 
while point D is at ground level at the bottom of a valley; the radius of curvature 
at both of these points is 20 m.  Point F is at the middle of a banked horizontal 
curve with a radius of curvature of 30 m, and at the same height as points A, E, 
and G. At point A the speed of the car is 12 m/s.  (a) If the car is just barely to 
make it over the hill at point B, what must be the height of point B above the 
ground? (b) If the car is to just barely make it over the hill at point B, what should 
be the magnitude of the force exerted by the track on the car at that point?  
(c) What will be the acceleration of the car at point C?  (d) What will be the 
magnitude and direction of the force exerted by the track on the car at point D? 
(e) What will be the magnitude and direction of the force exerted by the track on 
the car at point F? (f) At point G a constant braking force is to be applied to the 
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car, bringing it to a halt in a distance of 25 m. What is the magnitude of this 
required braking force? 
 
Picture the Problem Let UD = 0. 
Choose the system to include the earth, 
the track, and the car. Then there are no 
external forces to do work on the 
system and change its energy and we 
can use Newton’s 2nd law and the work-
energy theorem to describe the 
system’s energy transformations to 
point G … and then the work-energy 
theorem with friction to determine the 
braking force that brings the car to a 
stop. The free-body diagram for point C 
is shown above. 

 

θ x

y

nF
r

gF
r

C
m

 
 
The free-body diagrams for the rollercoaster cars at points D and F are shown 
below. 
 

x

y

nF
r

gF
r

m
D

 

x

y

nF
r

gF
r

m
F

F
r

 
 
(a) Apply the work-energy theorem 
to the system’s energy 
transformations between A and B:  
 

0=Δ+Δ UK  
or 

0ABAB =−+− UUKK  

If we assume that the car arrives at 
point B with vB = 0, then: 02

A2
1 =Δ+− hmgmv ⇒

g
vh
2

Δ
2
A=  

where Δh is the difference in elevation 
between A and B. 
 

The height above the ground is 
given by: g

vhhh
2

Δ
2
A+=+  
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Substitute numerical values and 
evaluate h + Δh: 

( )
( )

m17

m 3.17
m/s9.812

m/s12m10Δ 2

2

=

=+=+ hh
 

 
(b) If the car just makes it to point B; 
i.e., if it gets there with vB = 0, then 
the force exerted by the track on the 
car will be the normal force: 
 

mgFF == ncarontrack  

 

Substitute numerical values and 
evaluate carontrackF : 

( )( )
kN4.91

m/s9.81kg500 2
carontrack

=

=F
 

 
(c) Apply ∑ = xx maF to the car at 

point C (see the FBD) and solve for 
a: 
 

mamg =θsin ⇒ θsinga =  
 

Substitute numerical values and 
evaluate a: 
 

( ) 22 m/s4.9sin30m/s9.81 =°=a  

 

(d) Apply ∑ = yy maF to the car at 

point D (see the FBD) and solve for 
Fn: 
 

R
vmmgF

2
D

n =−  ⇒ 
R

2
D

n
vmmgF +=  

 

Apply the work-energy theorem to 
the system’s energy transformations 
between B and D: 
 

0=Δ+Δ UK  
or 

0BDBD =−+− UUKK  

Because KB = UD = 0: 
 

0BD =−UK  

Substitute to obtain: ( ) 02
D2

1 =Δ+− hhmgmv  
 

Solving for 2
Dv  yields: 

 
( )hhgv Δ+= 22

D  

Substitute for 2
Dv  in the expression 

for Fn and simplify to obtain: 
( )

( )
⎥⎦
⎤

⎢⎣
⎡ +

+=

+
+=+=

R
hhmg

R
hhgmmg

R
vmmgF

Δ21

Δ22
D

n
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Substitute numerical values and 
evaluate Fn: 

( )( ) ( )

upward.directedkN,13

m20
m17.321m/s9.81kg500 2

n

=

⎥
⎦

⎤
⎢
⎣

⎡
+=F

 

 
(e) F  has two components at point 
F; one horizontal (the inward force 
that the track exerts) and the other 
vertical (the normal force). Apply 
∑ = aF m to the car at point F: 

 

∑ =⇒=−= mgFmgFFy nn 0  

and 

∑ ==
R
vmFFx

2
F

c  

Express the resultant of these two 
forces: ( )

2
2

4
F

2
22

F2
n

2
c

g
R
vm

mg
R
vmFFF

+=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+=

 

 
Substitute numerical values and 
evaluate F: ( ) ( )

( )
( )

kN5.5

m/s9.81
m30

m/s12kg500 22
2

4

=

+=F
 

 
The angle the resultant makes with 
the x axis is given by: ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −−

2
F

1

c

n1 tantan
v
gR

F
Fθ  

 
Substitute numerical values and 
evaluate θ : 

( )( )
( )

°=

°=⎥
⎦

⎤
⎢
⎣

⎡
= −

64

9.63
m/s12

m30m/s9.81tan 2

2
1θ

 

 
(f) Apply the work-energy theorem 
with friction to the system’s energy 
transformations between F and the 
car’s stopping position: 
 

0thermG =Δ+− EK  
and 

2
G2

1
Gtherm mvKE ==Δ  

The work done by friction is also 
given by: 

dFsfE braketherm =Δ=Δ  
where d is the stopping distance. 
 

Equate the two expressions for 
thermEΔ  and solve for brakeF : d

mvF
2

2
F

brake =  
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Substitute numerical values and 
evaluate brakeF : 

( )( )
( ) kN1.4

m252
m/s12kg500 2

brake ==F  

 
98 •• The cable of a 2000-kg elevator has broken, and the elevator is moving 
downward at a steady speed of 1.5 m/s. A safety braking system that works on 
friction prevents the downward speed from increasing. (a) At what rate is the 
braking system converting mechanical energy to thermal energy? (b) While the 
elevator is moving downward at 1.5 m/s, the braking system fails and the elevator 
is in free-fall for a distance of 5.0 m before hitting the top of a large safety spring 
with force constant of 1.5 × 104 N/m.  After the elevator hits the top of the spring, 
find the distance d that the spring is compressed before the elevator is brought to 
rest.  
 
Picture the Problem The rate of 
conversion of mechanical energy can 
be determined from .vF ⋅=P  The 
pictorial representation shows the 
elevator moving downward just as it 
goes into freefall as state 1. In state 2 
the elevator is moving faster and is 
about to strike the relaxed spring. The 
momentarily at rest elevator on the 
compressed spring is shown as state 3. 
Let Ug = 0 where the spring has its 
maximum compression and the system 
consist of the earth, the elevator, and 
the spring. Then Wext = 0 and we can 
apply conservation of mechanical 
energy to the analysis of the falling 
elevator and compressing spring. 

 
 

= 5.0 mh

d

M

M

M
0g =U

1 2 3  

 
(a) Express the rate of conversion of 
mechanical energy to thermal energy 
as a function of the speed of the 
elevator and braking force acting on 
it: 
 

0brakingvFP =  

Because the elevator is moving with 
constant speed, the net force acting 
on it is zero and: 
 

MgF =braking  

Substitute for brakingF  to obtain: 0MgvP =  



 Chapter 7    
 

 

696 

Substitute numerical values and 
evaluate P: 
 

( )( )( )
kW29

m/s1.5m/s9.81kg2000 2

=

=P
 

 
(b) Apply the conservation of 
mechanical energy  to the falling 
elevator and compressing spring: 
 

0sg =Δ+Δ+Δ UUK  

or 
0s,1s,3g,1g,313 =−+−+− UUUUKK  

Because K3 = Ug,3 = Us,1 = 0: ( ) 02
2
12

02
1 =++−− kddhMgMv  

 
Rewrite this equation as a quadratic 
equation in d, the maximum 
compression of the spring: 
 

( ) 022 2
0

2 =+−⎟
⎠
⎞

⎜
⎝
⎛− vgh

k
Md

k
Mgd  

Solve for d to obtain: ( )2
02

22

2 vgh
k
M

k
gM

k
Mgd ++±=  

 
Substitute numerical values and evaluate d: 
 

( )( )

( ) ( )
( ) ( )( ) ( )[ ]

m2.5

m/s5.1m0.5m/s81.92
N/m105.1
kg2000

N/m105.1
m/s81.9kg2000

N/m105.1
m/s81.9kg2000

22
424

222

4

2

=

+
×

+
×

+

×
=d

 

 
99 ••• [SSM] To measure the combined force of friction (rolling friction 
plus air drag) on a moving car, an automotive engineering team you are on turns 
off the engine and allows the car to coast down hills of known steepness. The 
team collects the following data: (1) On a 2.87° hill, the car can coast at a steady 
20 m/s. (2) On a 5.74° hill, the steady coasting speed is 30 m/s. The total mass of 
the car is 1000 kg. (a) What is the magnitude of the combined force of friction at 
20 m/s (F20) and at 30 m/s (F30)? (b) How much power must the engine deliver to 
drive the car on a level road at steady speeds of 20 m/s (P20) and 30 m/s (P30)?  
(c) The maximum power the engine can deliver is 40 kW. What is the angle of 
the steepest incline up which the car can maintain a steady 20 m/s? (d) Assume 
that the engine delivers the same total useful work from each liter of gas, no 
matter what the speed. At 20 m/s on a level road, the car gets 12.7 km/L. How 
many kilometers per liter does it get if it goes 30 m/s instead? 
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Picture the Problem We can use Newton’s 2nd law to determine the force of 
friction as a function of the angle of the hill for a given constant speed. The power 
output of the engine is given by vF ⋅= fP . 
 
FBD for (a): 

gF
r

nF
r

θ
x

y

fF
r

 

FBD for (c): 

gF
r

nF
r

θ

x

y

F
r

fF
r

 
 
(a) Apply ∑ = xx maF to the car: 0sin =− Fmg θ ⇒ θsinmgF =  

 
Evaluate F  for the two speeds: ( )( ) ( )

N491

2.87sinm/s9.81kg1000 2
20

=

°=F
 

and 
( )( ) ( )

N981

5.74sinm/s9.81kg1000 2
30

=

°=F
 

 
(b) The power an engine must 
deliver on a level road  in order to 
overcome friction loss is given by: 
 

vFP f=  
 

Evaluate this expression for  
v = 20 m/s and 30 m/s: 

( )( ) kW9.8m/s20N49120 ==P  

and 
( )( ) kW29m/s30N98130 ==P  

 
(c) Apply ∑ = xx maF to the car: ∑ =−−= 0sin fFmgFFx θ  

 
Solving for F yields: fsin FmgF += θ  

 
Relate F to the power output of the 
engine and the speed of the car: 
 

v
PF =  
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Equate these expressions for F to 
obtain: fsin Fmg

v
P

+= θ  

 
Solving for θ yields: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
= −

mg

F
v
P

f
1sinθ  

 
Substitute numerical values and 
evaluate θ  for 20f FF = : 

( )( )

°=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −
= −

8.8

m/s9.81kg1000

N491
m/s20
kW40

sin 2
1θ

 

 
(d) Express the equivalence of the 
work done by the engine in driving 
the car at the two speeds: 
 

( ) ( )30302020engine sFsFW Δ=Δ=  

Let ΔV represent the volume of fuel 
consumed by the engine driving the 
car on a level road and divide both 
sides of the work equation by ΔV to 
obtain: 
 

( ) ( )
V
s

F
V
s

F
Δ
Δ

=
Δ
Δ 30

30
20

20  

Solve for 
( )

V
s

Δ
Δ 30 : 

( ) ( )
V
s

F
F

V
s

Δ
Δ

=
Δ
Δ 20

30

2030  

 
Substitute numerical values and 

evaluate 
( )

V
s

Δ
Δ 30 : 

( ) ( )

km/L6.36

km/L12.7
N981
N49130

=

=
Δ
Δ

V
s

 

 
100 •• (a) Calculate the kinetic energy of a 1200-kg car moving at 50 km/h. 
(b) If friction (rolling friction and air drag) results in a retarding force of 300 N at 
a speed of 50 km/h, what is the minimum energy needed to move the car a 
distance of 300 m at a constant speed of 50 km/h?  
 
Picture the Problem While on a horizontal surface, the work done by an 
automobile engine changes the kinetic energy of the car and does work against 
friction. These energy transformations are described by the work-energy theorem 
with friction. Let the system include the earth, the roadway, and the car but not 
the car’s engine. 
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(a) The kinetic energy of the car is: 
 ( )

MJ0.12

s3600
h1

h
km50kg1200

2

2
1

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=K

 

 
(b) The required energy equals the 
energy dissipated by friction: 
 

sfE Δ=Δ therm  

Substitute numerical values and 
evaluate thermΔE : 

( )( ) kJ90.0m300N300Δ therm ==E  

 
101 ••• A pendulum consists of a string of length L with a small bob of mass 
m. The bob is held to the side with the string horizontal (see Figure 7-56).  Then 
the bob is released from rest. At the lowest point of the swing, the string catches 
on a thin peg a distance R above the lowest point. Show that R must be smaller 
than 2L/5 if the string is to remain taut as the bob swings around the peg in a full 
circle.  
 
Picture the Problem Assume that the 
bob is moving with speed v as it passes 
the top vertical point when looping 
around the peg.  There are two forces 
acting on the bob:  the tension in the 
string (if any) and the force of gravity, 
Mg; both point downward when the 
ball is in the topmost position.  The 
minimum possible speed for the bob to 
pass the vertical occurs when the 
tension is 0; from this, gravity must 
supply the centripetal force required to 
keep the ball moving in a circle. We 
can use conservation of mechanical 
energy to relate v to L and R. 

m

T
r

gM
r

0g =U

R

 
 
Express the condition that the bob 
swings around the peg in a full 
circle: 
 
 
 

 
2

Mg
R
vM > ⇒ g

R
v

>
2

            (1) 
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Use conservation of mechanical 
energy to relate the kinetic energy of 
the bob at the bottom of the loop to 
its potential energy at the top of its 
swing: 
 

( )22
2
1 RLMgMv −=  

Solving for v2 yields: ( )RLgv 222 −=  
 

Substitute for v2 in equation (1) to 
obtain: 

( ) g
R

RLg
>

− 22
⇒ LR

5
2 <  

 
 
102 •• A 285-kg stunt boat is driven on the surface of a lake at a constant 
speed of 13.5 m/s toward a ramp, which is angled at 25.0° above the horizontal.  
The coefficient of friction between the boat bottom and the ramp’s surface is 
0.150, and the raised end of the ramp is 2.00 m above the water surface.   
(a) Assuming the engines are cut off when the boat hits the ramp, what is the 
speed of the boat as it leaves the ramp? (b) What is the speed of the boat when it 
strikes the water again?  Neglect any effects due to air resistance. 
 
Picture the Problem The pictorial representation summarizes the details of the 
problem. Let the system consist of the earth, the boat, and the ramp. Then no 
external forces do work on the system. We can use the work-energy theorem for 
problems with kinetic friction to find the speed of the boat at the top of the ramp 
and the work-energy theorem to find the speed of the boat when it hits the water.  

m 00.2=h

gF
r

nF
r

kf
r

θ

x

0
0

=x

1x

m/s 5.13
0
=v

1v

2v

y

0g =U
 

 
(a) Apply the work-energy theorem 
to the boat as it slides up the ramp to 
obtain: 

thermmechext ΔΔ EEW +=  
or, because Wext = 0, 

0ΔΔ thermmech =+ EE                  (1) 
 

mechΔE  is given by: 
 

g,0g,101

gmech ΔΔΔ

UUKK

UKE

−+−=

+=
 

or, because Ug,0 = 0, 
g,101mechΔ UKKE +−=  
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Substituting for K1, K0, and Ug,1 
yields: 
 

mghmvmvE +−= 2
02

12
12

1
mechΔ  

thermΔE  is given by: 
 

1nk1kthermΔ xFxfE μ==  
 

Because θcosn mgF = : 
 

θμ cosΔ 1ktherm mgxE =  

Substituting for mechΔE and thermΔE  in 
equation (1) yields: 
 

0cos1k
2
02

12
12

1 =++− θμ mgxmghmvmv
 

Referring to the pictorial 
representation, express x1 in terms of 
h to obtain: 
 

θsin1
hx =  

Substituting for x1 yields: 0
sin

cosk2
02

12
12

1 =++−
θ

θμ mghmghmvmv  

 
Solve for v1 to obtain: 
 

( )θμ cot12 k
2
01 +− ghvv  

 
Substitute numerical values and evaluate v1: 
 

( ) ( )( ) ( ) ( )[ ]
m/s 4.11

m/s 42.110.25cot150.01m 00.2m/s 81.92m/s 5.13 22
1

=

=°+−=v
 

 
(b) Apply the work-kinetic energy 
theorem to the boat while it is 
airborne: 
 

gext ΔΔ UKW +=  
or, because Wext = 0, 

0ΔΔ g =+ UK  
 

Substitute for ΔK and ΔUg to obtain: 
 

02
12

12
22

1 =−− mghmvmv  

Solving for v2 yields: 
 

ghvv 22
12 +=  

 
Substitute numerical values and evaluate v2: 
 

( ) ( )( ) m/s 0.13m 00.2m/s 81.92m/s 42.11 22
2 =+=v  

 
103 •• A standard introductory-physics lab-experiment to examine the 
conservation of energy and Newton’s laws is shown in Figure 7-57. A glider is 
set up on a linear air track and is attached by a string over a massless-frictionless 
pulley to a hanging weight.  The mass of the glider is M, while the mass of the 
hanging weight is m.  When the air supply to the air track is turned on, the track 
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becomes essentially frictionless. You then release the hanging weight and 
measure the speed of the glider after the weight has fallen a given distance (y). To 
show that the measured speed is the speed predicted by theory; (a) apply 
conservation of mechanical energy and calculate the speed as a function of y.  To 
verify this calculation; (b) apply Newton’s second and third laws directly by 
sketching a free-body diagram for each of the two masses and applying Newton’s 
laws to find their accelerations.  Then use kinematics to calculate the speed of the 
glider as a function of y. 
 
Picture the Problem For Part (a), we’ll let the system include the glider, track, 
weight, and the earth. The speeds of the glider and the falling weight will be the 
same while they are in motion. Let their common speed when they have moved a 
distance Y be v and let the zero of potential energy be at the elevation of the 
weight when it has fallen the distance Y. We can use conservation of mechanical 
energy to relate the speed of the glider (and the weight) to the distance the weight 
has fallen. In Part (b), we’ll let the direction of motion be the x direction, the 
tension in the connecting string be T, and apply Newton’s 2nd law to the glider and 
the weight to find their common acceleration. Because this acceleration is 
constant, we can use a constant-acceleration equation to find their common speed 
when they have moved a distance Y. 
 
(a) Apply the work-energy theorem 
to the system to obtain: 
 

0ΔΔext =+= UKW  
or, because Wext = 0, 

0ifif =−+− UUKK  
 

Because the system starts from rest 
and  fU = 0: 
 

0if =−UK  

Substitute for fK  and iU  to obtain: 02
2
12

2
1 =−+ mgYMvmv  
 

Solving for v yields: 

mM
mgYv

+
=

2  

 
(b) The free-body diagrams for the 
glider and the weight are shown to 
the right:  
 

nF
r

gM
r

gm
r

1T
r

2T
r

x

x

y

M m
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Apply Newton’s 3rd law to obtain: T== 21 TT  

 
Apply maFx =∑ to the glider: 
 

MaT =  

Apply maFx =∑ to the hanging 
weight: 
 

maTmg =−  

Add these equations to eliminate 
T and obtain: 
 

maMamg += ⇒
Mm

mga
+

=  

Using a constant-acceleration 
equation, relate the speed of the 
glider to its initial speed and to the 
distance that the weight has fallen: 
 

aYvv 22
0

2 +=  
or, because v0 = 0, 

aYv 22 =  

Substitute for a and solve for v to 
obtain: mM

mgYv
+

=
2 , the same result we 

obtained in Part (a). 
 
104 •• In one model of a person jogging, the energy expended is assumed to 
go into accelerating and decelerating the feet and the lower portions of the legs.  If 
the jogging speed is v then the maximum speed of the foot and lower leg is about 
2v.  (From the moment a foot leaves the ground, to the moment it next contacts 
the ground, the foot travels nearly twice as far as the torso, so it must be going, on 
average, nearly twice as fast as the torso.) If the mass of the foot and lower 
portion of a leg is m, the energy needed to accelerate the foot and lower portion of 
a leg from rest to speed 2v is ( )2 21

2 2 2m v mv= , and the same energy is needed to 
decelerate this mass back to rest for the next stride. Assume that the mass of the 
foot and lower portion of a man’s leg is 5.0 kg and that he jogs at a speed of  
3.0 m/s with 1.0 m between one footfall and the next. The energy he must provide 
to each leg in each 2.0 m of travel is 2mv2, so the energy he must provide to both 
legs during each second of jogging is 6mv2.  Calculate the rate of the man’s 
energy expenditure using this model, assuming that his muscles have an 
efficiency of 20 percent. 
 
Picture the Problem We’re given dtdWP /= and are asked to evaluate it under 
the assumed conditions. 
 
We’re given that the rate of energy 
expenditure by the man is: 
 

26mvP =  
 

Substitute numerical values and 
evaluate P: 

( )( ) W045m/s3.0kg106 2 ==P  
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Express the rate of energy 
expenditure P′ assuming that his 
muscles have an efficiency of 20%: 
 

P'P 5
1= ⇒ PP' 5=  

Substitute numerical values and 
evaluate P′: 

( ) kW7.2W5405 ==P'  

 
105 •• [SSM] A high school teacher once suggested measuring the 
magnitude of free-fall acceleration by the following method: Hang a mass on a 
very fine thread (length L) to make a pendulum with the mass a height H above 
the floor when at its lowest point P. Pull the pendulum back so that the thread 
makes an angle θ0 with the vertical. Just above point P, place a razor blade that is 
positioned to cut through the thread as the mass swings through point P. Once the 
thread is cut, the mass is projected horizontally, and hits the floor a horizontal 
distance D from point P. The idea was that the measurement of D as a function of 
θ0 should somehow determine g. Apart from some obvious experimental 
difficulties, the experiment had one fatal flaw: D does not depend on g! Show 
that this is true, and that D depends only on the angle θ0.  
 
Picture the Problem The pictorial 
representation shows the bob swinging 
through an angle θ before the thread is 
cut and the ball is launched 
horizontally. Let its speed at position 1 
be v. We can use conservation of 
mechanical energy to relate v to the 
change in the potential energy of the 
bob as it swings through the angle θ . 
We can find its flight time Δt from a 
constant-acceleration equation and then 
express D as the product of v and Δt.   
  
Relate the distance D traveled 
horizontally by the bob to its launch 
speed v and time of flight Δt: 
 

tvD Δ=                                     (1) 

Use conservation of mechanical 
energy to relate its launch speed v to 
the length of the pendulum L and the 
angle θ : 
 

00101 =−+− UUKK  
or, because U1 = K0 = 0, 

001 =−UK  
 

Substitute for K1 and U0 to obtain: 
 

( ) 0cos12
2
1 =−− θmgLmv  
 

Solving for v yields: ( )θcos12 −= gLv  
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In the absence of air resistance, the 
horizontal and vertical motions of 
the bob are independent of each 
other and we can use a constant-
acceleration equation to express the 
time of flight (the time to fall a 
distance H): 
 

( )2
2
1

0 tatvy yy Δ+Δ=Δ  
or, because Δy = −H, ay = −g, and  
v0y = 0, 

( )2
2
1 tgH Δ−=− ⇒ gHt /2=Δ  

Substitute in equation (1) and 
simplify to obtain: ( )

( )θ

θ

cos12

2cos12

−=

−=

HL

g
HgLD

 

which shows that, while D depends on 
θ, it is independent of g. 

 
106 ••• The bob of a pendulum of length L is pulled aside so that the string 
makes an angle θ0 with the vertical, and the bob is then released. In Example 7-5, 
the conservation of energy was used to obtain the speed of the bob at the bottom 
of its swing. In this problem, you are to obtain the same result using Newton’s 
second law. (a) Show that the tangential component of Newton’s second law 
gives dv/dt = –g sin θ, where v is the speed and θ is the angle between the string 
and the vertical. (b) Show that v can be written v = L dθ/dt. (c) Use this result and 

the chain rule for derivatives to obtain dv dv v
dt d Lθ

= . (d) Combine the results of 

Parts (a) and (c) to obtain v dv = –gL sin θ dθ. (e) Integrate the left side of the 
equation in Part (d) from v = 0 to the final speed v and the right side from θ = θ0 
to θ = 0, and show that the result is equivalent to 2v gh= , where h is the 
original height of the bob above the bottom of its swing.  
 
Picture the Problem The free-body 
diagram shows the forces acting on 
the pendulum bob. The application 
of Newton’s 2nd law leads directly to 
the required expression for the 
tangential acceleration. Recall that, 
provided θ is in radian measure,  
s = Lθ. Differentiation with respect 
to time produces the result called for 
in Part (b). The remaining parts of 
the problem simply require 
following the directions for each 
part. 

L

h

Lcosθ

θ

m

m vr
 gmr

θ
s

x
 T
r
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(a) Apply ∑ = xx maF to the bob:  tantan sin mamgF =−= θ  
 

Solving for atan yields: θsin/tan gdtdva −==  

 
(b) Relate the arc distance s to the 
length of the pendulum L and the 
angle θ : 
 

θLs =  

Differentiate s with respect to time: dtLdvdtds // θ==
 

 

(c) Multiply
dt
dv  by 

θ
θ

d
d  and 

substitute for
dt
dθ  from Part (b): 

 

⎟
⎠
⎞

⎜
⎝
⎛===

L
v

d
dv

dt
d

d
dv

d
d

dt
dv

dt
dv

θ
θ

θθ
θ  

(d) Equate the expressions for dtdv  
from (a) and (c) to obtain: 

θ
θ

sing
L
v

d
dv

−=⎟
⎠
⎞

⎜
⎝
⎛

 
 

Separating the variables yields: θθ dgLvdv sin−=
 

 
(e) Integrate the left side of the 
equation in Part (d) from v = 0 to the 
final speed v and the right side 
from 0θθ =  to 0=θ : 
 

∫∫ −=
0

0 0

sin
θ

θθ dgLvdv
v

 

Integrate both sides of the equation  
to obtain: 
 

( )0
2

2
1 cos1 θ−= gLv  

Note, from the figure, that  
( )0cos1 θ−= Lh . Substitute to 

obtain: 

ghv =2
2
1 ⇒ ghv 2=  

 

 
107 ••• A rock climber is rappelling down the face of a cliff when his hold 
slips and he slides down over the rock face, supported only by the bungee cord he 
attached to the top of the cliff. The cliff face is in the form of a smooth quarter-
cylinder with height (and radius) H = 300 m (Figure 7-58). Treat the bungee cord 
as a spring with force constant k = 5.00 N/m and unstressed length L = 60.0 m. 
The climber’s mass is 85.0 kg. (a) Using a spreadsheet program, make a graph of 
the rock climber’s potential energy as a function of s, his distance from the top of 
the cliff measured along the curved surface. Use values of s between 60.0 m and 
200 m. (b) His fall began when he was a distance si = 60.0 m from the top of the 
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cliff, and ended when he was a distance sf = 110 m from the top. Determine how 
much energy is dissipated by friction between the time he initially slipped and the 
time when he came to a stop. 
 
Picture the Problem The potential energy of the climber is the sum of his 
gravitational potential energy and the potential energy stored in the spring-like 
bungee cord. Let θ be the angle which the position of the rock climber on the cliff 
face makes with a vertical axis and choose the zero of gravitational potential 
energy to be at the bottom of the cliff.  We can use the definitions of Ug and 
Uspring to express the climber’s total potential energy and the work-energy theorem 
for problems with friction to determine how energy is dissipated by friction 
between the time he initially slipped and finally came to a stop. 
 
(a) The total potential energy of 
the climber is the sum of  

cord bungeeU and Ug: 
 

( ) gcord bungee UUsU +=               (1) 
 

cord bungeeU is given by: ( )2
2
1

cord bungee LskU −=  
 

Ug is given by: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

==

H
sMgH

MgHMgyU

cos

cosg θ
 

 
Substitute for Ubunge cord and Ug in 
equation (1) to obtain: ( ) ⎟

⎠
⎞

⎜
⎝
⎛+−=

H
sMgHLsksU cos)( 2

2
1  

 
A spreadsheet solution is shown below. The constants used in the potential energy 
function and the formulas used to calculate the potential energy are as follows: 
 

Cell Content/Formula Algebraic Form 
B3 300 H 
B4 5.00 k 
B5 60.0 L 
B6 85.0 M 
B7 9.81 g 

D11 60.0 s 
D12 D11+1 s + 1 
E11 0.5*$B$4*(D11−$B$5)^2 

+$B$6*$B$7*$B$3*(cos(D11/$B$3)) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+−

H
sMgHLsk cos2

2
1
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 A B C D E 
1      
2      
3 H = 300 m   
4 k = 5.00 N/m   
5 L = 60.0 m   
6 m = 85.0 kg   
7 g = 9.81 m/s2   
8      
9    s U(s) 
10    (m) (J) 
11    60 2.452E+05 
12    61 2.450E+05 
13    62 2.448E+05 
14    63 2.447E+05 
15    64 2.445E+05 
      

59    108 2.399E+05 
60    109 2.398E+05 
61    110 2.398E+05 
62    111 2.397E+05 
63    112 2.397E+05 
       

 
The following graph was plotted using the data from columns D (s) and E (U(s)).  

238

239

240

241

242

243

244

245

246

50 70 90 110 130 150 170 190 210

s  (m)

U
 (k

J)

 
 
(b) Apply the work-kinetic energy 
theorem for problems with friction to 
the climber to obtain: 

( ) thermext ΔΔΔ EsUKW ++=  
or, because Wext = ΔK = 0, 

( ) 0ΔΔ therm =+ EsU  
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Solve for the energy dissipated by friction to obtain: 
 

( ) ( ) ( )( ) ( ) ( )m 0.06m 110m 0.06m 110ΔΔ therm UUUUsUE +−=−−=−=  
 
Substituting for U(110 m) and U(60.0 m) and simplifying yields: 
 

( )

( )

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛+

−+⎟
⎠
⎞

⎜
⎝
⎛−−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−+

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−−=

H
MgH

Lk
H

MgHLk

H
MgHLk

H
MgHLkE

m 0.06cos

m 0.06m 110cosm 110

m 0.06cosm 0.06

m 110cosm 110Δ

2
2
12

2
1

2
2
1

2
2
1

therm

 

 
Because L = 60.0 m, the third term is zero. Simplifying yields: 
 

( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−−−=

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−−−=

HH
MgHLk

H
MgH

H
MgHLkE

m 0.06cosm 110cosm 110

m 0.06cosm 110cosm 110Δ

2
2
1

2
2
1

therm

 

 
Substitute numerical values and evaluate thermΔE : 
 

( )( )

( )( )( ) ( ) ( )
kJ 4.5

m 300
m 0.06cos

m 300
m 110cosm 300m/s 81.9kg 0.85

m 0.60m 110N/m 00.5Δ

2

2
2
1

therm

≈

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−=E

 

 
Remarks: You can obtain this same result by examining the partial 
spreadsheet printout or the graph shown above. 
 
108 ••• A block of wood (mass m) is connected to two massless springs, as 
shown in Figure 7-59. Each spring has unstressed length L and force constant k. 
(a) If the block is displaced a distance x, as shown, what is the change in the 
potential energy stored in the springs? (b) What is the magnitude of the force 
pulling the block back toward the equilibrium position? (c) Using a spreadsheet 
program or graphing calculator, make a graph of the potential energy U as a 
function of x for 0 ≤ x ≤ 0.20 m. Assume k = 1.0 N/m, L = 0.10 m, and m = 1.0 kg. 
(d) If the block is displaced a distance x = 0.10 m and released, what is its speed as 
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it passes through the equilibrium point? Assume that the block is resting on a 
frictionless surface.   
 
Picture the Problem The diagram shows the forces the springs exert on the 
block. Because the block is resting on a horizontal surface and they have no role 
in the motion of the block, the gravitational force and the normal force are not 
shown. The change in the potential energy stored in the springs is due to the 
elongation of both springs when the block is displaced a distance x from its 
equilibrium position and we can find ΔU using ( )2

2
1 Lk Δ . We can find the 

magnitude of the force pulling the block back toward its equilibrium position by 
finding the sum of the magnitudes of the y components of the forces exerted by 
the springs. In Part (d) we can use conservation of mechanical energy to find the 
speed of the block as it passes through its equilibrium position.  

θ
m  

2
2

x
L +

 L

 x  F F

 
 
(a) Express the change in the 
potential energy stored in the springs 
when the block is displaced a 
distance x: 
 

( )[ ] ( )22
2
12 LkLkU Δ=Δ=Δ  

where ΔL is the change in length of 
either spring. 

Use the diagram to express ΔL: 
 

LxLL −+=Δ 22  
 

Substitute for ΔL to obtain: ( )2
22 LxLkU −+=Δ  

 
(b) Sum the forces acting on the 
block to express restoringF : 

22

restoring

2

cos2cos2

xL
xLk

LkFF

+
Δ=

Δ== θθ
 

 
Substitute for ΔL to obtain: 
 ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

+
−+=

22

22

22
restoring

12

2

xL
Lkx

xL
xLxLkF

 

 
(c) A spreadsheet program to calculate U(x) is shown below. The constants used 
in the potential energy function and the formulas used to calculate the potential 
energy are as follows: 
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Cell Content/Formula Algebraic Form 
B1 0.1 L 
B2 1.0 k 
B3 1.0 M 
C8 C7+0.01 x 
D7 $B$2*((C7^2+$B$1^2)^0.5−$B$1)^2 U(x)  

 
 A B C D 
1 L = 0.1 m  
2 k = 1.0 N/m  
3 m = 1.0 kg  
4     
5   x U(x) 
6   (m) (J) 
7   0 0 
8   0.01 2.49E−07 
9   0.02 3.92E−06 
10   0.03 1.94E−05 
11   0.04 5.93E−05 
12   0.05 1.39E−04 
     

23   0.16 7.86E−03 
24   0.17 9.45E−03 
25   0.18 1.12E−02 
26   0.19 1.32E−02 
27   0.20 1.53E−02  
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The following graph was plotted using the data from columns C (x) and D (U(x)). 
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(d) Use conservation of mechanical 
energy to relate the kinetic energy of 
the block as it passes through the 
equilibrium position to the change in 
its potential energy as it returns to its 
equilibrium position: 
 

UK Δ=mequilibriu  
or 

Umv Δ2
2
1 = ⇒ 

m
Uv Δ2

=  

Substitute for ΔU and simplify to 
obtain: ( )

( )
m
kLxL

m
LxLkv

2

2

22

2
22

−+=

−+
=

 

 
Substitute numerical values and evaluate v: 
 

( ) ( ) ( ) cm/s9.5
kg0.1
N/m0.12m10.0m10.0m10.0 22 =⎟

⎠
⎞⎜

⎝
⎛ −+=v  

 
 
 


