Chapter 5
Additional Applications of Newton’s Laws

Conceptual Problems

1 - [SSM] Various objects lie on the bed of a truck that is moving along
a straight horizontal road. If the truck gradually speeds up, what force acts on the
objects to cause them to speed up too? Explain why some of the objects might
stay stationary on the floor while others might slip backward on the floor.

Determine the Concept The forces acting on the objects are the normal and
frictional forces exerted by the truck bed and the gravitational force exerted by
Earth., and t The static (if the objects do not slip) frictional forces exerted by the
floor of the truck bed cause them to speed up. Because the objects are speeding up
(accelerating), there must be a net force acting on them. Of these forces, the only
one that acts in the direction of the acceleration is the ‘static friction force|. The
maximum acceleration is determined not by the mass of the objects but instead by
the value of the coefficient of static friction. This will vary from object to object
depending on its material and surface characteristics.

2 Blocks made of the same material but differing in size lie on the bed of
a truck that is moving along a straight horizontal road. All of the blocks will slide
if the truck’s acceleration is sufficiently great. How does the minimum
acceleration at which a small block slips compare with the minimum acceleration
at which a much heavier block slips?

Determine the Concept The forces

acting on an object are the normal force y
exerted by the floor of the truck, the
gravitational force exerted by the earth, n
and the friction force; also exerted by
the floor of the truck. Of these forces, f
the only one ‘fhat acts in the direction of J777 7Y
the acceleration (chosen to be to the
right) is the static friction force. Apply vF .
Newton’s 2™ law to the object to

determine how the critical acceleration

depends on its weight.

Taking the positive x direction to be f.=uF, =pmg=ma,
to the right, apply £Fx = may to the
object:

Solving for a, yields: a, =19
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Because a, 1s independent of m and F,, the critical accelerations are the same.

3 °

A block of mass m rests on a plane that is inclined at an angle € with

the horizontal. It follows that the coefficient of static friction between the block
and plane is (2) 1 > g, (b) 1 = tan 6, (C) 1 < tan 6, (d) s > tan 6.

Determine the Concept The forces
acting on the block are the normal force

FH exerted by the incline, the weight of
the block Fg exerted by the earth, and

the static friction force f. exerted by an

external agent. We can use the
definition of x4 and the conditions for
equilibrium to determine the

relationship between 4 and 6.

Apply Z F, = ma, to the block:

Apply z F, =ma, in the y direction:

Divide equation (1) by equation (2)
to obtain:

Substitute for f; (< 4Fy,) and simplify
to obtain:

4 e

Sf.—F,sin@=0
or, because F, = mg,
f.—mgsin@ =0 (1)
F, —mgcosf =0 (2)
tan€:L
Fn
u.F .
tanf < ? = u, and| (d) |is correct.

n

A block of mass m is at rest on a plane that is inclined at an angle of

30° with the horizontal, as shown in Figure 5-56. Which of the following
statements about the magnitude of the static frictional force f; is necessarily true?
(@) fs>mg. (b) fs> mg cos 30°. (¢) fs=mg cos 30°. (d) f;=mg sin 30°. (e) None of

these statements is true.
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Determine the Concept The block is in
equilibrium under the influence

of F, F,, and f,; thatis,
F,+F+f=0
We can apply Newton’s 2™ law in the x

direction to determine the relationship
between f; and F; = mg.

Apply z F. =0 to the block: f,—mgsind =0

Solve for f; to obtain: f. =mgsin @ and| (d) |is correct.
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5 e On anicy winter day, the coefficient of friction between the tires of a
car and a roadway is reduced to one-quarter of its value on a dry day. As a result,
the maximum speed Vmax dry at which the car can safely negotiate a curve of radius

R is reduced. The new value for this speed is (&) Vmax dry> (0) 0.71Vmax dry, (C)

0.50Vmax dry, (d) 0.25Vimax ary» (€) reduced by an unknown amount depending on the

car’s mass.

Picture the Problem The forces acting
on the car as it rounds a curve of radius
R at maximum speed are shown on the
free-body diagram to the right. The
centripetal force is the static friction
force exerted by the roadway on the
tires. We can apply Newton’s 2™ law to
the car to derive an expression for its
maximum speed and then compare the

speeds under the two friction conditions
described.

Apply Zf = ma to the car: Z E_f

x — 's,max

— m V]TlaX
R

and
> F,=F,—-mg=0

From the y equation we have: F,=mg

Express f; max in terms of F, in the X V... =+40R
equation and solve for Vi to obtain:

(1)
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When g, = : Vi = V4L OR @)
Dividing equation (2) by equation Vo H' gR 7
(1) yields: Voo 1.0R N\
Solve for V', to obtain: '
V'max = > Vmax
Hq
Evaluate V'max for ILI'S = %ILIS : V'max = \/;Vlnax = O'SVH’I&X = SO%Vmax

and | (¢) |is correct.

6 ee Ifitis started properly on the frictionless inside surface of a cone
(Figure 5-57), a block is capable of maintaining uniform circular motion. Draw
the free-body diagram of the block and identify clearly which force (or forces or
force components) is responsible for the centripetal acceleration of the block.

Determine the Concept The forces
acting on the block are the normal force

f‘n exerted by the surface of the cone
and the gravitational force Fg exerted
by the earth. The horizontal component

of Fn is responsible for the centripetal
force on the block.

7 e Here is an interesting experiment that you can perform at home: take a
wooden block and rest it on the floor or some other flat surface. Attach a rubber
band to the block and pull gently and steadily on the rubber band in the horizontal
direction. At some point, the block will start moving, but it will not move
smoothly. Instead, it will start moving, stop again, start moving again, stop again,
and so on. Explain why the block moves this way. (The start-stop motion is
sometimes called “stick-slip” motion.)

Determine the Concept As the spring is extended, the force exerted by the spring
on the block increases. Once that force is greater than the maximum value of the
force of static friction on the block, the block will begin to move. However, as it
accelerates, it will shorten the length of the spring, decreasing the force that the
spring exerts on the block. As this happens, the force of kinetic friction can then
slow the block to a stop, which starts the cycle over again. One interesting

application of this to the real world is the bowing of a violin string: The string
under tension acts like the spring, while the bow acts as the block, so as the bow is
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dragged across the string, the string periodically sticks and frees itself from the
bow.

8 o Viewed from an inertial reference frame, an object is seen to be
moving in a circle. Which, if any, of the following statements are true.

(a) A non-zero net force is acting acts the object. (b) The object cannot have a
radially outward force acting on it. (C) At least one of the forces acting on the
object must point directly toward the center of the circle.

(a) True. The velocity of an object moving in a circle is continually changing
independently of whether the object’s speed is changing. The change in the
velocity vector and the acceleration vector and the net force acting on the object all
point toward the center of circle. This center-pointing force is called a centripetal
force.

(b) False. The only condition that must be satisfied in order that the object move
along a circular path is that the net force acting on it be radially inward.

(c) False. The only condition that must be satisfied in order that the object move
along a circular path is that the net force acting on it be radially inward.

9 e« A particle is traveling in a vertical circle at constant speed. One can
conclude that the magnitude of its is constant. (@) velocity,
(b) acceleration, (C) net force, (d) apparent weight.

Determine the Concept A particle traveling in a vertical circle experiences a
downward gravitational force plus an additional force that constrains it to move
along a circular path. Because the speed of the particle is constant, the magnitude
of its velocity is constant. Because the magnitude of its velocity is constant, its
acceleration must be constant. Because the magnitude of its acceleration is
constant, the magnitude of the net force acting on it must be constant. Therefore,

(a) |,| (b) |,and | (¢) | are correct.

10 <= You place a lightweight piece of iron on a table and hold a small
kitchen magnet above the iron at a distance of 1.00 cm. You find that the magnet
cannot lift the iron, even though there is obviously a force between the iron and
the magnet. Next, again holding the magnet 1.00 cm above the iron, you drop
them from arm’s length, releasing them from rest simultaneously. As they fall,
the magnet and the piece of iron bang into each other before hitting the floor.

(a) Draw free-body diagrams illustrating all of the forces on the magnet and the
iron for each demonstration. (b) Explain why the magnet and iron move closer
together while they are falling, even though the magnet cannot lift the piece of
iron when it is sitting on the table.

Determine the Concept We can analyze these demonstrations by drawing force
diagrams for each situation. In both diagrams, h denotes "hand”, g denotes
"gravitational”, m denotes "magnetic”, and n denotes "normal.”
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(a) Demonstration 1: Demonstration 2:

Magnet

- Vi v
t

Iron

Iz

=T

i

(b) Because the magnet doesn’t lift the iron in the first demonstration, the force
exerted on the iron must be less than its (the iron’s) weight. This is still true when
the two are falling, but the motion of the iron is not restrained by the table, and the
motion of the magnet is not restrained by the hand. Looking at the second
diagram, the net force pulling the magnet down is greater than its weight, implying
that its acceleration is greater than g. The opposite is true for the iron: the
magnetic force acts upwards, slowing it down, so its acceleration will be less than
g. Because of this, the magnet will catch up to the iron piece as they fall.

11 e [SSM] The following question is an excellent "braintwister”
invented by Boris Korsunsky. Two identical blocks are attached by a massless
string running over a pulley as shown in Figure 5-58. The rope initially runs over
the pulley at the rope’s midpoint, and the surface that block 1 rests on is
frictionless. Blocks 1 and 2 are initially at rest when block 2 is released with the
string taut and horizontal. Will block 1 hit the pulley before or after block 2 hits
the wall? (Assume that the initial distance from block 1 to the pulley is the same
as the initial distance from block 2 to the wall.) There is a very simple solution.

Picture the Problem The following free-body diagrams show the forces acting
on the two objects some time after block 2 is dropped. Note that, whilef’1 # Tz, T
= T,. The only force pulling block 2 to the left is the horizontal component of the
tension T,. Because this force is smaller than the magnitude of the tension, the

acceleration of block 1, which is identical to block 2, to the right (T, = T,) will
always be greater than the acceleration of block 2 to the left.

¥
AI?n,l
T2
T
1 - - X
V4 V4
mg mg

Y
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Because the initial distance from block 1 to the pulley is the same as the initial
distance of block 2 to the wall, block 1 will hit the pulley before block 2 hits the
wall.

12 -« Inclass, most professors do the following experiment while discussing
the conditions under which air drag can be neglected while analyzing free-fall.
First, a flat piece of paper and a small lead weight are dropped next to each other,
and clearly the paper’s acceleration is less than that of the lead weight. Then, the
paper is crumpled into a small wad and the experiment repeated. Over the
distance of a meter or two, it is clear the acceleration of the paper is now very
close to that of the lead weight. To your dismay, the professor calls on you to
explain why the paper’s acceleration changed so dramatically. Repeat your
explanation here!

Determine the Concept Air drag depends on the frontal area presented. Reducing
it by crumpling the paper makes the force of air drag a lot less so that gravity is
the most important force. The paper will thus accelerate at approximately g (until
speeds are high enough for drag forces to come back into play in spite of the
reduced area).

13 e« [SSM] Jim decides to attempt to set a record for terminal speed in
skydiving. Using the knowledge he has gained from a physics course, he makes
the following plans. He will be dropped from as high an altitude as possible
(equipping himself with oxygen), on a warm day and go into a "knife” position in
which his body is pointed vertically down and his hands are pointed ahead. He
will outfit himself with a special sleek helmet and rounded protective clothing.
Explain how each of these factors helps Jim attain the record.

Determine the Concept On a warm day the air is less dense. The air is also less
dense at high altitudes. Pointing his hands results in less area being presented to
air drag forces and, hence, reduces them. Rounded and sleek clothing has the
same effect as pointing his hands. All are attempts to maximize his acceleration to
near g for a good part of the drop by minimizing air drag forces.

14 e« You are sitting in the passenger seat in a car driving around a circular,
horizontal, flat racetrack at a high speed. As you sit there, you "feel” a "force”
pushing you toward the outside of the track. What is the true direction of the force
acting on you, and where does it come from? (Assume that you do not slide across
the seat.) Explain the sensation of an “outward force” on you in terms of the
Newtonian perspective.

Determine the Concept In your frame of reference (the accelerating reference
frame of the car), the direction of the force must point toward the center of the
circular path along which you are traveling; that is, in the direction of the
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centripetal force that keeps you moving in a circle. The friction between you and
the seat you are sitting on supplies this force. The reason you seem to be
"pushed" to the outside of the curve is that your body’s inertia "wants", in
accordance with Newton’s first law (the law of inertia), to keep it moving in a
straight line—that is, tangent to the curve.

15 [SSM] The mass of the moon is only about 1% of that of Earth.
Therefore, the force that keeps the moon in its orbit around Earth (a) is much
smaller than the gravitational force exerted on the moon by Earth, (b) is much
greater than the gravitational force exerted on the moon by Earth, (C) is the
gravitational force exerted on the moon by Earth, (d) cannot be answered yet,
because we have not yet studied Newton’s law of gravity.

Determine the Concept The centripetal force that keeps the moon in its orbit
around the earth is provided by the gravitational force the earth exerts on the
moon. As described by Newton’s 3™ law, this force is equal in magnitude to the

force the moon exerts on the earth. | (¢) |is correct.

16 - A block is sliding on a frictionless surface along a loop-the-loop, as in
Figure 5-59. The block is moving fast enough so that it never loses contact with
the track. Match the points along the track to the appropriate free-body diagrams
in the figure.

Determine the Concept The only forces acting on the block are its weight and the
force the surface exerts on it. Because the loop-the-loop surface is frictionless, the
force it exerts on the block must be perpendicular to its surface.

At point A the weight is downward and the normal force is to the right. The
normal force is the centripetal force. Free-body diagram 3 matches these
forces.

At point B the weight is downward, the normal force is upward, and the
normal force is greater than the weight so that their difference is the
centripetal force. Free-body diagram 4 matches these forces.

At point C the weight is downward and the normal force is to the left. The
normal force is the centripetal force. Free-body diagram 5 matches these
forces.

At point D both the weight and the normal forces are downward. Their sum is the
centripetal force. Free-body diagram 2 matches these forces.
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17 = [SSM] (a) A pebble and a feather held at the same height above the
ground are simultaneously dropped. During the first few milliseconds following
release the drag force on the pebble is less than that on the feather, but later on
during the fall the opposite is true. Explain. (b) In light of this result, explain how
the pebble’s acceleration can be so obviously larger than that of the feather. (Hint:
Draw a free-body diagram of each object.)

Determine the Concept The drag force

acting on the objects is given by

F, =1CApV?, where A is the projected i A
surface area, V is the object’s speed, pis F. . Fa pebbic
the density of air, and C is a d. feather
dimensionless  coefficient. We’ll %4 '
assume that, over the height of the fall, '

the density of air p is constant. The Fg father
free-body diagrams for a feather and a |
pebble several milliseconds into their Fg, pebble
fall are shown to the right. The forces

acting on both objects are the

downward gravitational force Fg and an

upward drag force F, -

(a) The drag force on an object is proportional to some power of its speed. For a
millisecond or two following release, the speeds of both the pebble and the feather
are negligible, so the drag forces are negligible and they both fall with the same
free-fall acceleration g. During this brief period their speeds remain equal, so the
object that presents the greater area has the greater drag force. It is the feather
that presents the greater area, so during this brief period the drag force on the
feather is greater than that on the pebble.

A short time after the initial period the feather reaches terminal speed, after which
the drag force on it remains equal to the gravitational force on it. However, the
gravitational force on the pebble is much greater than that on the feather, so the
pebble continues to gain speed long after the feather reaches terminal speed. As
the pebble continues to gain speed, the drag force on it continues to increase. As a
result, the drag force on the pebble eventually exceeds the drag force on the
feather.

(b) The acceleration of the feather rapidly decreases because the drag force on it
approaches the gravitational force on it shortly after release. However, the drag
force on the pebble does not approach the gravitational force on it until much
higher speeds are attained, which means the acceleration of the pebble remains
high for a longer period of time.
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18 e Two pucks of masses m; and m; are lying on a frictionless table and
are connected by a massless spring of force constant k. A horizontal force F;
directed away from m, is then exerted on m;. What is the magnitude of the
resulting acceleration of the center of mass of the two-puck system? (a) F;/m;.
(b) Fi/(my + my). (c) (Fy + kx)/(m; + my), where X is the amount the spring is
stretched. (d) (ml + mz)Fl/mlmz.

Determine the Concept The acceleration of the center of mass of a system of
particles is described by ﬁnet,ext = Zf’ = Ma_,_, where M is the total mass of the

iext

system.
Express the acceleration of the Fee« . F
center of mass of the two pucks: oM m, +m,

because the spring force is an internal

force. | (b) |is correct.

19 e»  The two pucks in Problem 18 lie unconnected on a frictionless table.
A horizontal force F; directed away from m, is then exerted on m;. How does the
magnitude of the resulting acceleration of the center of mass of the two-puck
system compare to the acceleration of m;? Explain your reasoning.

Determine the Concept The acceleration of the puck whose mass is m; is related
to the net force F; acting on it through Newton’s 2" law.

Because the pucks are no longer _F
aCM,disconneCted -

connected, the acceleration of the m,
center of mass is:

From Problem 18: F

aCM, connected =
m 1 + n’l2

F, F, ) .
Because —- > ——1— the acceleration of m; is greater.
m, m +m,

20 e»  Ifonly external forces can cause the center of mass of a system of
particles to accelerate, how can a car on level ground ever accelerate? We
normally think of the car’s engine as supplying the force needed to accelerate the
car, but is this true? Where does the external force that accelerates the car come
from?

Determine the Concept There is only one force which can cause the car to move
forward—the friction of the road! The car’s engine causes the tires to rotate, but if
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the road were frictionless (as is closely approximated by icy conditions) the
wheels would simply spin without the car moving anywhere. Because of friction,
the car’s tire pushes backwards against the road—from Newton’s third law, the
frictional force acting on the tire must then push it forward. This may seem odd,
as we tend to think of friction as being a retarding force only, but true.

21 = When we push on the brake pedal to slow down a car, a brake pad is
pressed against the rotor so that the friction of the pad slows the wheel’s rotation.
However, the friction of the pad against the rotor cannot be the force that slows
the car down, because it is an internal force (both the rotor and the wheel are parts
of the car, so any forces between them are purely internal to the system). What is
the external force that slows down the car? Give a detailed explanation of how
this force operates.

Determine the Concept The friction of the tire against the road causes the car to
slow down. This is rather subtle, as the tire is in contact with the ground without
slipping at all times, and so as you push on the brakes harder, the force of static
friction of the road against the tires must increase.

22 +=  Give an example of each of the following. (a) A three-dimensional
object that has no matter at its center of mass. (b) A solid object whose center of
mass is outside of it. (C) A solid sphere whose center of mass does not lie at its
geometrical center. (d) A long wooden stick whose center of mass does not lie at
its middle.

(a) A solid spherical shell, or donut, or tire.

(b) A solid hemispherical shell.

(c) Any sphere with one side a different density than the other, or a density
variation that isn’t radially symmetric.

(d) Any stick with a non-uniform and non-symmetric density variation. A baseball
bat is a good example of such a stick.

23 *» [SSM] When you are standing upright, your center of mass is
located within the volume of your body. However, as you bend over (say to pick
up a package), its location changes. Approximately where is it when you are bent
over at right angles and what change in your body caused the center of mass
location to change? Explain.

Determine the Concept Relative to the ground, your center of mass moves
downward. This is because some of your mass (hips) moved backward, some of
your mass (your head and shoulders) moved forward, and the top half of your
body moved downward.
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24 e+« Early on their three-day (one-way) trip to the moon, the Apollo team
(late 1960s to early 1970s) would explosively separate the lunar ship from the third-
stage booster (that provided the final "boost”) while still fairly close to Earth.
During the explosion, how did the velocity of each of the two pieces of the system
change? How did the velocity of the center of mass of the system change? What
would be your answers if you were talking about a time a few hours after the
explosion? (Hint: The system is still well within the gravitational field of Earth and
the moon is still far enough away that its gravitational force is much less than that
of Earth.)

Determine the Concept The spacecraft speed increased toward the moon. The
speed of the third-stage booster decreased but the booster continued to move away
from Earth and toward the moon. Right after the explosion the center of mass
velocity was the same as before the explosion. A few hours after the explosion,
however, the backward pull of gravity of Earth will cause the speed of the center
of mass of the system to decrease because the speeds of both the lunar ship and
the booster decrease.

25 e« You throw a boomerang and for a while it "flies” horizontally in a
straight line at a constant speed, while spinning rapidly. Draw a series of pictures,
as viewed vertically down from overhead, of the boomerang in different rotational
positions as it moves parallel to the surface of Earth. On each picture, indicate the
location of the boomerang’s center of mass and connect the dots to trace the
trajectory of its center of mass. What is the center of mass’s acceleration during
this part of the flight?

Determine the Concept The diagram shows a spinning boomerang with its
center of mass at the location of the circle. As viewed from above, the center of
mass moves in a straight line as the boomerang spins about it. The acceleration of
the center of mass is zero.

Estimation and Approximation

26 e To determine the acrodynamic drag on a car, automotive engineers
often use the "coast-down” method. The car is driven on a long, flat road at some
convenient speed (60 mi/h is typical), shifted into neutral, and allowed to coast to
a stop. The time that it takes for the speed to drop by successive 5-mi/h intervals
is measured and used to compute the net force slowing the car down. (a) One day,
a group measured that a Toyota Tercel with a mass of 1020 kg coasted down from
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60.0 mi/h to 55.0 mi/h in 3.92 s. Estimate the average net force slowing the car
down in this speed range. (b) If the coefficient of rolling friction for this car is
known to be 0.020, what is the force of rolling friction that is acting to slow it
down? Assuming that the only two forces acting on the car are rolling friction and
aerodynamic drag, what is the average drag force acting on the car? (C) The drag

force has the form } CpAv’, where A is the cross-sectional area of the car facing

into the air, Vv is the car’s speed, p is the density of air, and C is a dimensionless
constant of order 1. If the cross-sectional area of the car is 1.91 mz, determine C
from the data given. (The density of air is 1.21 kg/m’; use 57.5 mi/h for the speed
of the car in this computation.)

Picture the Problem The forces acting on the Tercel as it slows from 60 to 55
mi/h are a rolling-friction force exerted by the roadway, an air-drag force exerted
by the air, the normal force exerted by the roadway, and the gravitational force
exerted by the earth. The car is moving in the positive X direction. We can use
Newton’s 2™ law to calculate the average force from the rate at which the car’s
speed decreases and the rolling force from its definition. The drag force can be
inferred from the average- and rolling-friction forces and the drag coefficient
from the defining equation for the drag force.

f‘rolling

(@) ApplyZ F, =ma, to the car to F ) A\t/

relate the average force acting on it to
its average velocity:

Substitute numerical values and evaluate F_,:

v

srﬁlx1.609mx361§0 Xloﬁim
F,, =(1020kg) m3192 5 = 581N =/ 0.58kN
LS
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(b) The rolling-friction force is the Jrotiing = HeotiingFrn = rging™8
product of the coefficient of rolling
friction and the normal force:

Substitute numerical values and Froting = (0.020)(1020 kg)(g,g 1m/s? )
evaluate f, . -

=| 0.20kN
Assuming that only two forces are F, =F;+ foin

acting on the car in the direction of and
its motion, express their relationship F-F — s8N —200N
and solve for and evaluate the drag d Jroting
force: =| 0.38kN

(c) Using the definition of the drag
force and its calculated value from
(b) and the average speed of the car
during this 5 mph interval, solve for
C:

2F,

F,=1CpAv’= C= e

Substitute numerical values and evaluate C:

c- 2(381N) 030

. 3 2
(121kg/m?)(1.91m?)| 57.5 ™1, 1-00%km  Th  107m
h mi 3600s  km

27 e+ [SSM] Using dimensional analysis, determine the units and
dimensions of the constant b in the retarding force bv" if (@) n=1 and (b) n = 2.
(c) Newton showed that the air resistance of a falling object with a circular cross
section should be approximately | pzr°v*, where p=1.20 kg/m’, the density of
air. Show that this is consistent with your dimensional analysis for part (b).

(d) Find the terminal speed for a 56.0-kg skydiver; approximate his cross-
sectional area as a disk of radius 0.30 m. The density of air near the surface of
Earth is 1.20 kg/m’. () The density of the atmosphere decreases with height
above the surface of Earth; at a height of 8.0 km, the density is only 0.514 kg/m’.
What is the terminal velocity at this height?
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Picture the Problem We can use the dimensions of force and velocity to
determine the dimensions of the constant b and the dimensions of p, r, and Vv to
show that, for n = 2, Newton’s expression is consistent dimensionally with our
result from part (b). In Parts (d) and (e), we can apply Newton’s 2" law under
terminal velocity conditions to find the terminal velocity of the sky diver near the
surface of the earth and at a height of 8 km. Assume that g = 9.81 m/s* remains
constant. (Note: At 8 km, g = 9.78 m/s>. However, it will not affect the result in
Part (e).)

(a) Solve the drag force equation for b F
b withn=1: v
Substitute the dimensions of F4 and ML
v and simplify to obtain: [6]= ™ _|M
L T
T
and the units of b are | kg/s
(b) Solve the drag force equation for b F
b with n=2: v’
Substitute the dimensions of F4 and ML
v and simplify to obtain: [6]= ™ _|M
L) LL
T
and the units of b are | kg/m

(c) Express the dimensions of

FI=lepms = Moy (5]

Newton’s expression: e T
ML
= F
From Part (b) we have: 2
A N e
L AT T
(d) Letting the downward direction be 1 2 =0 | 2mg
the positive y direction, apply Mg =z p vV =0=v = onr’

Z F, =ma, to the sky diver:
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Substitute numerical values and B \/ 2(56 kg)(9 81m/s ) —|57m/s
evaluate Vi: n( 1.2kg/m’ ) (0.30mY’
(e) Evaluate V; at a height of 8 km: ~ 2(56 kg)(9.81m/52)
T \/ #(0.514kg/m’ )(0.30m)’
=| 87m/s

28 <+ Estimate the terminal velocity of an average sized raindrop and a golf-
ball- sized hailstone. (Hint: See Problems 26 and 27.)

Picture the Problem From Newton’s 2™ law, the equation describing the motion
of falling raindrops and large hailstones is mg — F4 = ma where
F, =1 prr’v’ =bv’is the drag force. Under terminal speed conditions (a = 0),

the drag force is equal to the weight of the falling object. Take the radius of a
raindrop to be 0.50 mm and the radius of a golf-ball sized hailstone to be 2.0 cm.

Express the relationship between Vv, by — ~[mg |
and the weight of a falling object Ve =M=V, =4~ (1)

under terminal speed:

Using b=47pr?, evaluate by: b, =L x(1.2kg/m’)(0.50x10~ m)
=4.71x10"" kg/m

Evaluating by, yields: b, = _7;(1 2kg/m’ )(2 0x10~ m)2
=7.54x10"* kg/m

Express the mass of a sphere in
terms of its volume and density: 3

Using pr = 1.0 x 10° kg/m’, evaluate 47(0.50x107 m) (1.0x10° kg/m®)
m =
m;: r 3

=5.24x107" kg

Using p, = 920 kg/m’, evaluate my: . 4n(2.0>< 107 m)3 (920 kg/m3)
L=
3

~3.08x10 2 kg
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Substitute numerical values in (5 24x1077 kg)(9.8 1m/s’ )

equation (1) and evaluate Vi,: Vir = 4.71x107" kg/m
=|3.3m/s

Substitute numerical values in (3.08 x107 kg)(9.8 1 m/sz)

equation (1) and evaluate Vi: Vin = 7.54%107* kg/m

=| 20m/s

29 o Estimate the minimum coefficient of static friction needed between a
car’s tires and the pavement in order to complete a left turn at a city street
intersection at the posted straight-ahead speed limit of 25 mph and on narrow
inner-city streets. Comment on the wisdom of attempting such a turn at that
speed.

Picture the Problem In order to perform this estimate, we need to determine a
rough radius of curvature for the car’s turn in a normal city intersection.
Assuming the car goes from right-hand lane to right-hand lane, and assuming
fairly normal dimensions of 40 feet for the width of the street, the center of the
car’s path travels along a circle of, say, 30 feet in radius. The net centripetal force
is provided by the force of static friction and the acceleration of the car is equal to
this net force divided by the mass of the car. Finally, we solve for the coefficient
of static friction.

A diagram showing the forces acting
on the car as it rounds the curve is
shown to the right.

F v ~fs, max

g

Apply 2 F, = ma _ to the car’s tires: v?
-f; max = max = m _

' r
or, because f.

s, max

= uF,

2 2

\4 my
F=m—= =

ﬂs n r ﬂS rF

n

(1)

Apply X F, = ma to the car’s tires: F,-F,=0

or, because F, = mg,
F -mg=0=>F =mg
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Substituting for F;, in equation (1) B mv? B v’

yields: # " mg  rg

Substitute numerical values and mi 1h 1609 m )\’
—X X

evaluate z4: u h 3600s mi

(30 fi x 0.3048 rfrt‘j(9.81 m/s’ )

=14

This is probably not such a good idea. Tires on asphalt or concrete have a
maximum coefficient of static friction of about 1.

30 = Estimate the widest stance you can take when standing on a dry, icy
surface. That is, how wide can you safely place your feet and not slip into an
undesired "split?” Let the coefficient of static friction of rubber on ice be roughly
0.25.

Picture the Problem We need to estimate the forces active at the place of each
foot. Assuming a symmetrical stance, with the defining angle being the angle
between each leg and the ground,é, we can then draw a force diagram and apply
Newton’s 2™ law to your foot. The free-body diagram shows the normal force,
exerted by the icy surface, the maximum static friction force, also exerted by the
icy surface, and the force your weight exerts on your foot.

A free-body diagram showing the
forces acting on one foot is shown to
the right.

Apply X F = mai to one of your feet: z Fo=f o —F,c0s0=0
and

> F,=F,—F,sind=0
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Because F, = mg and fs max = Fn: uF —mgcos@=0 (1)

and

F, =mgsin6
Substituting for F, in equation (1) umgsin@ —mgcos@ =0
yields:
Solving for@ yields: (1

@ =tan | —

H

Substitute numerical values and 4 1

O=tan" | — |=76°
evaluate &

This angle corresponds to an angle between your legs of about 28°.

Friction

31 - [SSM] A block of mass m slides at constant speed down a plane
inclined at an angle of @ with the horizontal. It follows that (&) 4 = mg sin 6,
(b) 14 =tan 6, (C) tic =1 —cos 6, (d) 14 = cos O—sin 0.

Picture the Problem The block is in equilibrium under the influence of F,, mg,
and fk; that is, Fn +mg + fk = 0. We can apply Newton’s 2" law to determine
the relationship between fi, 6, and mg.

A pictorial representation showing
the forces acting on the sliding block

is shown to the right. X
Using its definition, express the 4 = £ )
coefficient of kinetic friction: « F

Apply Z F. =ma, to the block: f, —mgsind =ma,

or, because a, =0,
f, =mgsiné
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Apply Z F, =ma, to the block:

Substitute for fy and F, in
equation (1) and simplify to
obtain:

32 e

F, —mgcosd =ma,

or, because ay = 0,

F, =mgcosd

ﬂk = M = tan 0
mg cos &

and | (b) |is correct.

A block of wood is pulled at constant velocity by a horizontal string
across a horizontal surface with a force of 20 N. The coefficient of kinetic friction

between the surfaces is 0.3. The force of friction is (&) impossible to determine
without knowing the mass of the block, (b) impossible to determine without
knowing the speed of the block, (¢) 0.30 N, (d) 6.0 N, or (e) 20 N.

Picture the Problem The block is in

equilibrium under the influence of Fn ,
F,, F,,, and f,; thatis

F,+F+F,_+f=0

We can apply Newton’s 2" law to
determine f.

Apply Z F, = ma, to the block:

33 + [SSM]

¥
A
Fl"l
E— FaPP
—— |——X

THrTTTX 77777
&

Y

Fop — f =ma,
or, because a, =0,
f.=F,, =20N and | (e)

1s correct.

A block weighing 20-N rests on a horizontal surface. The

coefficients of static and kinetic friction between the surface and the block are
s =0.80 and g4 = 0.60. A horizontal string is then attached to the block and a
constant tension T is maintained in the string. What is the subsequent force of
friction acting on the block if (a) T=15 N or (b) T =20 N?
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Picture the Problem Whether the y

friction force is that due to static A

friction or kinetic friction depends on F,

whether the applied tension is greater

than the maximum static friction force. e 4_T>, X
We can apply the definition of the 777/ Y777 7777
maximum static friction to decide K

whether f; ax or T is greater. VF 2

Noting that F, = F,, calculate the Somax = WF, = u.F, = (0.80)(20 N)
maximum static friction force: =16 N

(a) Because fmax > T: f=f=T=|15N

(b) Because T > f; pax: f=1f =uF =uF,

=(0.60)(20N)={ 12N

34 A block of mass m is pulled at a constant velocity across a horizontal
surface by a string as shown in Figure 5-60. The magnitude of the frictional force

is (a) s mg, (b) T cos 6, (C) s (T —mg), (d) 24 T sin 6, or (&) 4 (Mg — T sin 6).

Picture the Problem The block is in equilibrium under the influence of the forces
T, fk, Fn,and Fg; that is T + fk +Fg+Fn = 0. We can apply Newton’s 2" Jaw

to determine the relationship between T and fy.

A free-body diagram showing the |
forces acting on the block is shown to

the right. 7\ "
__ _9_1 I

77777 Ve
fi
Fg
Apply z F, = ma, to the block: —Tcos@+ f, =ma,
Because ax = 0: f, =T cosé@ and | (b) |is correct.

35 o [SSM] A 100-kg crate rests on a thick-pile carpet. A weary worker
then pushes on the crate with a horizontal force of 500 N. The coefficients of
static and kinetic friction between the crate and the carpet are 0.600 and 0.400,
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respectively. Find the subsequent frictional force exerted by the carpet on the
crate.

Picture the Problem Whether the y
friction force is that due to static A
friction or kinetic friction depends on F,
whether the applied tension is greater
than the maximum static friction force. Fp
If it is, then the box moves and the S e
L : . T 777777
friction force is the force of kinetic
friction. If it is less, the box does not F,
move. Y
The maximum static friction Somx = B, F,
force is given by: or, because F, = F, =mg,
Somo = B
Substitute numerical values and Somax = (0.600)(100 kg)(9.81m/sz)
evaluate fgmax: — 580N
Because f, . >F, ,thebox does F,, = f, = S00N

not move and :

36 ¢ A box weighing 600 N is pushed along a horizontal floor at constant
velocity with a force of 250 N parallel to the floor. What is the coefficient of
kinetic friction between the box and the floor?

Picture the Problem Because the y
box is moving with constant A
velocity, its acceleration is zero and F,
it is in equilibrium under the

: r ra F,
influence of F,_ ., F,, F,, andf,; £ L

that is, F, +F,+F+f,= 0. We T 777777

can apply Newton’s 2™ law to
determine the relationship between fi Y £
and mg.

The definition of g is: (1)
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Apply )" F, =ma, to the box: F,—F,=ma,

or, because ay = 0,
F,-F,=0=F, =F,=mg =600N

Apply Z F, = ma, to the box: Fop — f. =ma,

or, because a, =0,
Foo = fi =250N

Substitute numerical values in 250N

equation (1) and evaluate z4: A= m =|0.417

37 [SSM] The coefficient of static friction between the tires of a car and
a horizontal road is 0.60. Neglecting air resistance and rolling friction, (a) what is
the magnitude of the maximum acceleration of the car when it is braked?

(b) What is the shortest distance in which the car can stop if it is initially traveling
at 30 m/s?

Picture the Problem Assume that the car is traveling to the right and let the
positive X direction also be to the right. We can use Newton’s 2" law of motion
and the definition of z4 to determine the maximum acceleration of the car. Once
we know the car’s maximum acceleration, we can use a constant-acceleration
equation to determine the least stopping distance.

(a) A pictorial representation showing y
the forces acting on the car is shown to
the right.

Applyz F, = ma, to the car:

Apply Y F, =ma, to the car and F,-F,=ma,

solve for F: Fo—w=ma,=0
or, because ay = 0 and F, = mg,
F, =mg 2)
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Substitute for F,, in equation (1) to — foma = —HmMg =ma,
obtain:
Solving fora, .. yields: A max = A
Substitute numerical values and a, . =(0.60)(9.81m/s*) = 5.89 m/s*
luatea, .. :

evaluatea, . _[59m/s
(b) Using a constant-acceleration V2 =v,, +2a,AX
equation, relate the stopping distance or, because Vy = 0,
of the car to its initial velocity and its ) —v
acceleration: 0=Voy +28,Ax= Ax = ’a
Using ay = —5.89 m/s” because the —(30my/s)’

. . Ax = =|76m
acceleration of the car is to the left, 2(~5.89m/s?)

substitute numerical values and
evaluate AX:

38 o The force that accelerates a car along a flat road is the frictional force
exerted by the road on the car’s tires. (&) Explain why the acceleration can be
greater when the wheels do not slip. (b) If a car is to accelerate from 0 to 90 km/h
in 12 s, what is the minimum coefficient of friction needed between the road and
tires? Assume that the drive wheels support exactly half the weight of the car.

Picture the Problem We can use the definition of acceleration and apply
Newton’s 2™ law to the horizontal and vertical components of the forces to
determine the minimum coefficient of friction between the road and the tires.

(a) The free-body diagram shows the y
forces acting on the tires on the drive A
. , ) F
wheels, the tires we’re assuming n
support half the weight of the car.
/s
TTT77 W 77"

ng

Because y, > p, , f will be greater if the wheels do not slip.

(b) Applyz F, = ma, to the car: f.=uF =ma, (1)



Applyz F, =ma, to the car and

solve for Fy:
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1 —
. —2Mg =ma,

or, because ay = 0 and F, =1mg,

=F, =1mg

Substituting for F, in equation (1)

X

%/Llsmg:ma'X:> ILIS:

yields:
Substitute for ay, to obtain: _ 2Av
/us -
gAt
Substitute numerical values and 5 90 km 10°m 1h
—X X
evaluate z4: h km  3600s

a (9.81“21](129

S

=10.42

39 e A 5.00-kg block is held at rest against a vertical wall by a horizontal
force of 100 N. (a) What is the frictional force exerted by the wall on the block?
(b) What is the minimum horizontal force needed to prevent the block from
falling if the static coefficient of friction between the wall and the block is 0.400?

Picture the Problem The block is in Y Y
equilibrium under the influence of the : 1/
forces shown on the force diagram. We ]fs
can use Newton’s 2" law and the |
definition of 1 to solve for f; and F,. - k L L0ON
/
/
Fl [
/
(@) Applyz F, =ma, to the f,—mg=ma,

block: or, because ay = 0,
f.-mg=0=f, =mg

Substitute numerical values and
evaluate f; :

£, =(5.00kg)(9.81m/s? )= 49.1N

(b) Use the definition of 4 to L.
express Fy: 7



402 Chapter 5

Substitute numerical values and F - 49.1N 23N

evaluate F,: " 0400

40 e+ A tired and overloaded student is attempting to hold a large physics
textbook wedged under his arm, as shown in Figure 5-61. The textbook has a
mass of 3.2 kg, while the coefficient of static friction of the textbook against the
student’s underarm is 0.320 and the coefficient of static friction of the book
against the student’s shirt is 0.160. (&) What is the minimum horizontal force that
the student must apply to the textbook to prevent it from falling? (b) If the student
can only exert a force of 61 N, what is the acceleration of the textbook as it slides
from under his arm? The coefficient of kinetic friction of arm against textbook is
0.200, while that of shirt against textbook is 0.090.

Picture the Problem We can apply Newton’s 2™ law to relate the minimum
force required to hold the book in place to its mass and to the coefficients of static
friction. In Part (b), we can proceed similarly to relate the acceleration of the book
to the coefficients of kinetic friction.

(a) The force diagram shows the forces e h L h
acting on the book. The normal force is B
the net force the student exerts in

squeezing the book. Let the horizontal

direction be the x direction and upward Fo
the y direction. Note that the normal

force is the same on either side of the

book because it is not accelerating in

the horizontal direction. The book could

be accelerating downward. mg

i
Tipler/Mosca
>

Apply Zf = Ma to the book: ZFx =F, = F i =0
and

ZFy = ﬂs,lE,min +lus,2F2,min _mg = 0

Noting that F, ., = F, ;,solve the y Fo-_™m8
equation for Fpyp: op,
Substitute numerical values and 2
w F_B2ke)08Ims)
evaluate Fpin: mn 0.320+0.160
(b) Apply Y F, =ma, with the > F, = u,F +p,F —mg =ma

book accelerating downward, to
obtain:
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Solving for ay yields: Mo+ U,
ay = "~ F
m
Substitute numerical values and 0.200 +0.090
evaluate ay: L T j(61N)—9.81m/s2

=| 4.3m/s*, downward

41 e+ Youare racing in a rally on a snowy day when the temperature is near
the freezing point. The coefficient of static friction between a car’s tires and an
icy road is 0.080. Your crew boss is concerned about some of the hills on the
course and wants you to think about switching to studded tires. To address the
issue, he wants to compare the actual hill angles on the course to see which of
them your car can negotiate. (a) What is the angle of the steepest incline that a
vehicle with four-wheel drive can climb at constant speed? (b) Given that the hills
are icy, what is the steepest possible hill angle for the same four-wheel drive car
to descend at constant speed?

Picture the Problem We can use the definition of the coefficient of static friction
and Newton’s 2™ law to relate the angle of the incline to the forces acting on the
car.

(a) The free-body diagram shows the
forces acting on the car when it is either
moving up the hill or down the hill
without acceleration. The friction force
that the ground exerts on the tires is the
force f; shown acting up the incline.

Apply Zf’ = ma to the car: ZFx =f,—F,;sin0=0 (1)
and
sz =F,—F,cos0=0 (2)

Because F, = mg, equations (1) and f.—mgsin@ =0 3)
(2) become: and

F,—mgcos@ =0 4)
Solving equation (3) for f; and f, =mgsiné
equation (4) for F, yields: and

F. =mgcos@
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Use the definition of s to relate f f, _mgsingd _

U o=—= tan &
and Fy: F, mgcosé
Solving for@yields: 6 = tan"' (1 ) = tan'(0.080) = | 4.6°
(b) Proceed exactly as in (a) to 6 = tan"'(0.080) = | 4.6°
obtain:

42 = A 50-kg box that is resting on a level floor must be moved. The
coefficient of static friction between the box and the floor is 0.60. One way to
move the box is to push down on the box at an angle &below the horizontal.
Another method is to pull up on the box at an angle #above the horizontal.

(a) Explain why one method requires less force than the other. (b) Calculate the
minimum force needed to move the box by each method if 6= 30° and compare
the answer with the results when 8= 0°.

Picture the Problem The free-body

diagrams for the two methods are ' y
shown to the right. Method 1 results in A |
the box being pushed into the floor,  M"' |F, Mewod2 BF, g

increasing the normal force and the
static friction force. Method 2 partially [ - x A -

lifts the box,, reducing the normal force 4 0 F// e s
and the static friction force. We can F
apply Newton’s 2™ law to obtain F, F,
expressions that relate the maximum
static friction force to the applied
force F.

(2) Method 2 is preferable because it reduces F,, and, therefore, f.

(b) Applyz F, = ma, to the box: Fcosd—f,=Fcos@—uF, =0
Method 1: Apply Z F, =ma, to the F,—-mg-Fsin@d=0

block and solve for F: and

F,=mg+Fsind

Relate f__to Fy: f . =uF =u(mg+Fsing) (1)

s,max s,max
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Method 2: Apply Z F, =ma, to the F,-mg+Fsin@d=0

forces in the y direction and solve for and
F,: F,=mg—Fsind
Relate f  to Fy: fomax = M Fy = 14 (mg - Fsind) (2)
Express the condition that must be fomx = FcOSO 3)
satisfied to move the box by either
method:
Method 1: Substitute (1) in (3) and _ H,mg
F = : “4)
solve for F: cos@ — u, sinf
Method 2: Substitute (2) in (3) and E - H,Mg (5)
solve for F: > cos@+ u, sind
Substitute numerical values and F(30°)= (0.60)(50 kg)(9.81 m/sz)
evaluate equations (4) and (5) with : "~ c0s30°— (O.60)sin 30°
6= 30 ~[0.52kN
and
2
F(30°) = (0.60)(50 kg)(9.8}m/s )
c0s30°+(0.60)sin 30°
=| 0.25kN
Evaluate equations (4) and (5) with F(0°)= (0.60)(50 kg)(9.81m/s?)
0=0°: : c0s0°—(0.60)sin 0°
=| 0.29kN
and
2
F(0°)= (0.60)(50 kg)(9.8}m/s )
cos0°+ (O.60)sm 0°
=| 0.29kN

43 e= [SSM] A block of mass m; =250 g is at rest on a plane that makes
an angle of &= 30° with the horizontal. The coefficient of kinetic friction between
the block and the plane is 0.100. The block is attached to a second block of mass
m, =200 g that hangs freely by a string that passes over a frictionless, massless
pulley (Figure 5-62). When the second block has fallen 30.0 cm, what will be its
speed?
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Picture the Problem Choose a coordinate system in which the +x direction is up
the incline for the block whose mass is m; and downward for the block whose
mass is M,. We can find the speed of the system when it has moved a given
distance by using a constant-acceleration equation. We’ll assume that the string is
massless and that it does not stretch. Under the influence of the forces shown in
the free-body diagrams, the blocks will have a common acceleration a. The
application of Newton’s 2" law to each block, followed by the elimination of the
tension T and the use of the definition of fi, will allow us to determine the
acceleration of the system.
y

vF

g2

X
Using a constant-acceleration v =v, +2a Ax
equation, relate the speed of the
system to its acceleration and
displacement:

and, because Vox =0,

vl =2a Ax =v_ =,2a Ax (1)

Apply Zf‘ = ma to the block whose

mass is my:

Because Fg; = m;g, equations (2)
and (3) can be written as:

Using fx = wFn 1, substitute equation
(5) in equation (4) to obtain:

Apply Z F, =ma, to the block

whose mass is mjy:

Add equations (6) and (7) to
eliminate T and solve for ay to
obtain:

ZFx =T-f,—F,,sin30°=ma,(2)

and

Y F,=F, —F, cos30°=0 3)

T-f, —mgsin30°=ma, 4)

and

F,, =m gcos30° (5)

T - p,m gcos30°—m,gsin30° ©)
= mlax

F,-T=ma,

or, because Fg»> = myg,

m,g—T =m,a, )

(m2 — p,m,; cos30°—m, sin 30°)g

a =

X

m,+m,
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Substituting for ay in equation (1) and simplifying yields:

. 2[m, —m (1, cos30° +sin30°)[gAx
B m1+m2

Substitute numerical values and evaluate Vy:

2[0.200 kg —(0.250 kg }((0.100)cos 30° +sin 30°)](9.81m/s )(0.300 m)
o 0.250 kg +0.200 kg

=| &84 m/s

44 e In Figure 5-62 m; = 4.0 kg and the coefficient of static friction
between the block and the incline is 0.40. (a) Find the range of possible values for
m, for which the system will be in static equilibrium. (b) Find the frictional force
on the 4.0-kg block if m; = 1.0 kg?

Picture the Problem Choose a coordinate system in which the +x direction is up
the incline for the block whose mass is m; and downward for the block whose
mass is My. We’ll assume that the string is massless and that it does not stretch.
Under the influence of the forces shown in the free-body diagrams, the blocks are
in static equilibrium. While fs can be either up or down the incline, the free-body
diagram shows the situation in which motion is impending up the incline. The
application of Newton’s 2™ law to each block, followed by the elimination of the
tension T and the use of the definition of f;, will allow us to determine the range of
values for m,.
y A

T

om2

Ve

X
(a) Noting that F,  =m,g, apply Y F =T+ f . —mgsin30°=0 (1)
ZF’ = ma to the block whose mass and
is my: ZFy =F, —mgcos30°=0 2)
Using f_ .. =uF,, substitute T+ pmgcos30°—m,gsin30°=0 (3)

equation (2) in equation (1) to
obtain:
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Noting that F,, =m,g, apply m,g-T =0 4)
Z F, = ma, to the block whose mass

1S My:

Add equations (3) and (4) to m, = ml(i M, cos30°+sin 30°) (5)
eliminate T and solve for m,:

Substitute numerical values to m, = (4.0kg)[+(0.40)cos30° +sin 30°]
obtain:

Denoting the value of m, with a plus m,, =3.4kg and m, =0.61kg

sign as My and the value of m, with and

the minus sign as M, . determine the 0.61kg < m, <3.4kg

range of values of m, for which the
system is in static equilibrium:

(b) With m, = 1 kg, the impending T+ f,—mgsin30°=0 (6)
motion is down the incline and the

static friction force is up the incline.

Apply > F, =ma, to the block

whose mass is mMy:

Apply > F, =ma, to the block mg-T=0 (7)

whose mass is m,:

Add equations (6) and (7) and solve f, = (mlsin30° —m, )g

for f, to obtain:

Substitute numerical values and f.= [(4.0 kg)sin30°—-1.0 kg](9.8 1m/s’ )
evaluate fg: 98N

45 e In Figure 5-62, m; = 4.0 kg, m, = 5.0 kg, and the coefficient of kinetic
friction between the inclined plane and the 4.0-kg block is z4 = 0.24. Find the
magnitude of the acceleration of the masses and the tension in the cord.

Picture the Problem Choose a coordinate system in which the +x direction is up
the incline for the block whose mass is m; and downward for the block whose
mass is My. We’ll assume that the string is massless and that it does not stretch.
Under the influence of the forces shown in the free-body diagrams, the blocks will
have a common acceleration a. The application of Newton’s 2™ law to each
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block, followed by the elimination of the tension T and the use of the definition of
fi, will allow us to determine the acceleration of the system. Finally, we can
substitute for the tension in either of the motion equations to determine the
acceleration of the masses.

y A

T

n

Ve

X
Noting that F,, =m,g, apply ZFx =T—-f,—mgsin30°=ma (1)
Zf‘ = ma to the block whose mass and
is m;: >F, =F,, —mgcos30°=0 )
Using f, = 4, F, , substitute equation T —p.m gcos30° 3)
(2) in equation (1) to obtain: —m,gsin30°=m,a,
Apply Z F. = ma, to the block whose m,g—-T =m,a, “4)
mass is my:

Add equations (3) and (4) to eliminate q = (m2 — p,m, cos30°—m, sin 30°)g

T and solve for ay to obtain: m, +m,

Substituting numerical values and evaluating ay yields:

. _[5:0ke—(0.24)(4.0 kg)cos30° - (4.0 ke)sin30°] (9.81mys?)

. =|2.4m/s’
4.0kg+5.0kg

Solving equation (3) for T yields:
T =ma,+|p, cos30°+sin30°)m,g

Substitute numerical values and evaluate T:

T = (4.0kg)(2.36 m/s? )+ [(0.24)cos 30° +sin 30°(4.0 kg )(9.81 m/s* )= [ 37N
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46 = A 12-kg turtle rests on the bed of a zookeeper’s truck, which is
traveling down a country road at 55 mi/h. The zookeeper spots a deer in the road,
and slows to a stop in 12 s. Assuming constant acceleration, what is the minimum
coefficient of static friction between the turtle and the truck bed surface is needed
to prevent the turtle from sliding?

Picture the Problem We can y
determine the acceleration necessary A F
for the truck and turtle by considering
the displacement of both during the
given time interval. The static friction
force must provide the necessary
acceleration for the turtle. The turtle, if
it is not to slip, must have this
acceleration which is produced by the vF
static friction force acting on it

The required coefficient of static [

L M, = (1)
friction is given by: F,
Letting m represent the mass of the XF . =—f =ma, 2)
turtle, apply 3. F = ma to the turtle: and

2F,=F -F,=ma, 3)

Solving equation (2) for f; yields: f.=—ma_
Because ay = 0 and F, = mg, F,=F,=mg

equation (3) becomes:

Substituting for f; and F;, in equation _—ma, -—a,
(1) and simplifying yields: mg g
The acceleration of the truck and q = Av Ve Vi,
turtle is given by: At At
or, because Vex = 0,
B vi X
a, =—=
At
Substitute for ay in equation (4) to e Vi,

obtain: gAt
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Substitute numerical values and 55 @ y 1609 m y 1h
evaluate 4 ___h  mi__ 3600s _[5]
AT ostms?)(12s)

47 e [SSM] A 150-g block is projected up a ramp with an initial speed of
7.0 m/s. The coefficient of kinetic friction between the ramp and the block is
0.23. (@) If the ramp is inclined 25° with the horizontal, how far along the surface
of the ramp does the block slide before coming to a stop? (b) The block then
slides back down the ramp. What is the minimum coefficient of static friction
between the block and the ramp?

Picture the Problem The force
diagram shows the forces acting on
the block as it slides up the ramp.
Note that the block is accelerated by

fk and the X component of Fg.We

can use a constant-acceleration
equation to express the displacement
of the block up the ramp as a
function of its acceleration and
Newton’s 2™ law to find the
acceleration of the block as it slides
up the ramp.

(a) Use a constant-acceleration v:=v. +2a Ax
equation to relate the distance the

3 R . or, because vy = 0,
block slides up the incline to its

2
initial speed and acceleration: 0=vl, +2a Ax=Ax = _2V0x (1)
ax
Apply ¥ F = ma to the block: LF, =—f —F,sinf=ma, (2)
and

2F,=F —-F,cos8=0 3)

Substituting f, = 4 F,and F, = mg —uF —mgsin@ =ma_ 4)
in equations (2) and (3) yields: and

F, —mgcos@ =0 %)
Eliminate F, between equations (4) —pmgcos@—-mgsind = ma,

and (5) to obtain:

Solving for ay yields: a, =—(u, cos@+sinf)g
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Substitute for a in equation (1) to
obtain:

2
va

Ax =

(g, cos@+sinf)g

Substitute numerical values and evaluate AX:

3 (7.0 m/s)’
~ 2[(0.23)cos 25° +5in 25°] (9.81 m/s

)23.957m= 4.0m

(b) At the point at which the block is
instantaneously at rest, static friction
becomes operative and, if the static
friction coefficient is too high, the
block will not resume motion, but
will remain at the high point. We can
determine the minimum value of the
coefficient of static friction for which
this occurs by considering the
equality of the static friction force
and the component of the weight of
the block down the ramp.

Apply 3 F = ma to the block when 2F, = f o F,sin0=0 (%)
it is in equilibrium at the point at and
which it is momentarily at rest: D F,=F,—F,cos0=0 (6)

Solving equation (6) for F, yields: F, = F,cos@

Because f; .. = 4 F,, equation (5)

n

u.F,cos@—-F,sinf=0
becomes: or
M, cos@—sinf =0= py =tanl

Substitute the numerical value of &

M, =tan25°=| 0.47
and evaluate z4:

48 e An automobile is going up a 15° grade at a speed of 30 m/s. The
coefficient of static friction between the tires and the road is 0.70. (a) What
minimum distance does it take to stop the car? (b) What minimum distance would
it take to stop if the car were going down the grade?

Picture the Problem We can find the stopping distances by applying Newton’s
2" law to the automobile and then using a constant-acceleration equation. The
friction force the road exerts on the tires and the component of the car’s weight
along the incline combine to provide the net force that stops the car. The pictorial
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representation summarizes what we know about the motion of the car. We can use
Newton’s 2™ law to determine the acceleration of the car and a constant-
acceleration equation to obtain its stopping distance.

t,=0
x, =0
v, =30m/s

(a) Using a constant-acceleration v =y + 24, X

equation, relate the final speed of or, because Vi, = 0,

the car to its initial speed, _y?

acceleration, and displacement; Xin = 2a o (1)

solve for its displacement:

Draw the free-body diagram for
the car going up the incline:

Noting that F, = mg,apply DY F =—f —mgsinb=ma, (2)
Zﬁ' =ma to the car: and

> F,=F,—mgcosf=0 3)
Substitute f, . = uF and F, from Ay =9 (14, cos @ +sin )

equation (3) in equation (2) and
solve for a__ ,:

max,X

in equation (1) Ve,

Substituting for a
xmin =

yields: 2g(p, cos@+sinf)

‘max,X

Substitute numerical values and evaluate Xyn:

(30 m/s)
X . =
™ 2(9.81m/s?)((0.70)cos 15° +sin 15°)

=49m
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(b) When the car is going down the
incline, the static friction force is up
the incline as shown in the free-body
diagram to the right. Note the
change in coordinate system from

Part (a).
Apply ZF =Mma to the car: ZFx =mgsin@-f . =ma,
and
ZFy =F —mgcosf =0
Proceed as in (@) to obtain: A = g(sin 0 — p, cos 9)
Substituting fora,,, , in equation (1) . - —v,.
yields: ™ 2g(sin@ -y, cosf)

Substitute numerical values and evaluate Xpin:

—(30mysy
X . =
™" 2(9.81m/s? )(sin15°—(0.70)cos15°)

=| 0.11km

49 e» A rear-wheel-drive car supports 40 percent of its weight on its two
drive wheels and has a coefficient of static friction of 0.70 with a horizontal
straight road. (a) Find the vehicle’s maximum acceleration. (b) What is the
shortest possible time in which this car can achieve a speed of 100 km/h?
(Assume the engine has unlimited power.)

Picture the Problem The friction force the road exerts on the tires provides the
net force that accelerates the car. The pictorial representation summarizes what
we know about the motion of the car. We can use Newton’s 2™ law to determine
the acceleration of the car and a constant-acceleration equation to calculate how
long it takes it to reach 100 km/h.

s s
0 : — 20O . X

7Y V4 71
t, =0 t,=?
x,=0 x, =7

v, =0 v, =100 km/h
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(a) Because 40% of the car’s weight
is on its two drive wheels and the F,
accelerating friction forces act just
on these wheels, the free-body QQE f

diagram shows just the forces acting x

on the drive wheels.

v 0.4mg

Apply Zﬁ‘ =ma to the drive DF = f n=ma,, (1)
wheels: and

> F,=F,-04mg=0 2)
Use the definition of f_ _ in a,..=04ug
equation (1) and eliminate F,
between the two equations to obtain:
Substitute numerical values and Qo = 0.4(0.70)(9.81m/52)

luate a_,  :
EVATALE nax.x =2.747 m/s* =| 2.7m/s’
(b) Using a constant-acceleration Ve =Vo, t @, At
equation, relate the initial and final or, because Vo, = 0 and At =t,,
velocities of the car to its v,
acceleration and the elapsed time; L= a ’
solve for the time: s
Substitute numerical values and 10 Ok7m y lh « 1000 m
evaluate t;: { = h  3600s km _[qgq
1 2
2.747m/s

50 e+ You and your best pal make a friendly bet that you can place a 2.0-kg
box against the side of a cart, as in Figure 5-63, and that the box will not fall to
the ground, even though you guarantee to use no hooks, ropes, fasteners, magnets,
glue, or adhesives of any kind. When your friend accepts the bet, you begin
pushing the cart in the direction shown in the figure. The coefficient of static
friction between the box and the cart is 0.60. (2) Find the minimum acceleration
for which you will win the bet. (b) What is the magnitude of the frictional force in
this case? (C) Find the force of friction on the box if the acceleration is twice the
minimum needed for the box not to fall. (d) Show that, for a box of any mass, the
box will not fall if the magnitude of the forward acceleration is a > g/u, where g4
is the coefficient of static friction.
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Picture the Problem To hold the box y
in place, the acceleration of the cart and A
box must be great enough so that the Somax
static friction force acting on the box ’
will equal the weight of the box. We /|
can use Newton’s 2" law to determine y
the minimum acceleration required. /

/

(a) Noting that F, = mg,apply z F.=F, =ma_ (1)
ZF =ma to the box: and
2 F = —mg =0 2)

Substituting u F, for f in uF —mg=0

s, max

equation (2) yields:

Substitute for F,, from equation (1)

to obtain: K (mamin,x )_ mg = 0=a =—

min,x

Substitute numerical values and _9.81m/ s?

_ 2
evaluate @, : iy = 060 16m/s

(b) From equation (2) we have: Simax = Mg

Substitute numerical values and [ = (2_0 kg)(9.81 m/s> ) =| 20N
evaluate f : ’

s, max *

(c) If a is twice that required to hold fi.. =|20N
the box in place, fs will still have its ’
maximum value given by:

(d) Because a,,;,, = g/ 4, , the box will not fall if a > g/,

min,x

51 <= Two blocks attached by a string (Figure 5-64) slide down a 10° incline.
Block 1 has mass m; = 0.80 kg and block 2 has mass m; = 0.25 kg. In addition,
the kinetic coefficients of friction between the blocks and the incline are 0.30 for
block 1 and 0.20 for block 2. Find (a) the magnitude of the acceleration of the
blocks, and (b) the tension in the string.
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Picture the Problem Assume that the string is massless and does not stretch.
Then the blocks have a common acceleration and the tension in the string acts on
both blocks in accordance with Newton’s third law of motion. Let down the
incline be the positive X direction. Draw the free-body diagrams for each block
and apply Newton’s second law of motion and the definition of the kinetic friction
force to each block to obtain simultaneous equations in ay and T.

Draw the free-body diagram for
the block whose mass is m;:

Apply ZF = ma to the upper block: ZFx =—fu+T +mgsinf

(1
=ma,
and
> F,=F, —mgcosf =0 )
The relationship between fi; and F, S = F, (3)
is:
Eliminate fy ; and F,; between (1), — H m gcos@+T +mgsinf A
(2), and (3) to obtain: —ma, )
Draw the free-body diagram for the
block whose mass is m,:
Apply ZF = ma to the block: ZFx =—fo—T,+m,gsinf )
=m,a, .
and

sz =F,-m,gcosfd=0 (6)
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The relationship between fi ; and Jio = 1, F,, (7)
Fpo is:

Eliminate fy, and F, > between (5), — My ,m,gcosf@—T, +m,gsinf 5

(6), and (7) to obtain: =ma, (8)

Noting that T, = T; =T, add
equations (4) and (8) to eliminate T, ‘ahx

sin@— K m, + Jy,m, cosf |g
m, + m,

and solve for ‘al x‘ :

Substitute numerical values and evaluate a; x:

0.20)(0.25kg)+(0.30)(0.80 kg)
0.25kg+0.80kg

‘al,x‘ = sin10°—( cosloo}(9.8lm/sz*

={ 0.96 m/s’

(b) Eliminate a between equations T m,m, (,uk,z — l)g cost
(4) and (8) and solve for T=T, =T, m, +m,
to obtain:

Substitute numerical values and evaluate T:

0.25kg)(0.80 kg)(0.30 -0.20)(9.81my/s* Jeos10° _
0.25kg +0.80 kg

T=( 0.18N

52 oo Two blocks of masses m; and m; are sliding down an incline as shown
in Figure 5-64. They are connected by a massless rod. The coefficients of kinetic
friction between the block and the surface are x4 for block 1 and s for block 2.
(2) Determine the acceleration of the two blocks. (b) Determine the force that the
rod exerts on each of the two blocks. Show that the forces are both 0 when 1 =
and give a simple, nonmathematical argument why this is true.

Picture the Problem The free-body diagrams show the forces acting on the two
blocks as they slide down the incline. Down the incline has been chosen as the
positive X direction. T is the force transmitted by the rod; it can be either tensile

(T > 0) or compressive (T < 0). By applying Newton’s 2™ law to these blocks, we
can obtain equations in T and ax from which we can eliminate either by solving
them simultaneously. Once we have expressed T, the role of the rod will become
apparent.
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(a) Apply ZF = ma to block 1:

Apply Zﬁ = ma to block 2:

Letting Ty = T, = T, use the definition
of the kinetic friction force to
eliminate fy ; and F,; between the
equations for block 1 and fx, and Fy,
between the equations for block 2 to
obtain:

Add equations (1) and (2) to
eliminate T and solve for ay:

(b) Rewrite equations (1) and (2)
by dividing both sides of (1) by m;
and both sides of (2) by m, to
obtain.

Subtracting (4) from (3) and
rearranging yields:

ZFx =T +mgsin@-f, ,=ma,
and
ZFy =F, —mgcosd=0

ZFx =m,gsin@-T, - f, =m,a,
and
ZFy =F,,—m,gcosf=0

ma, =mgsin@+T —pumgcosfd (1)
and
m,a_=m,gsin@—T — pu,m,gcosl (2)

a_ = g(sinﬁ—mcos ej
m, +m,

a, =gsin0+1—,u1gcost9 (3)
1
and
. T
a,=gsinf———p,gcosl 4)
m,

[ =|| ——2_ — p2]
[ l : J(,ul My )g cos

If 14 = 1o, T = 0 and the blocks move down the incline with the same acceleration
of g(sind— ucos ). Inserting a stick between them can’t change this; therefore,
the stick must exert no force on either block.
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53 e [SSM] A block of mass m rests on a horizontal table (Figure 5-65).
The block is pulled by a massless rope with a force F at an angle 6. The
coefficient of static friction is 0.60. The minimum value of the force needed to
move the block depends on the angle &. (a) Discuss qualitatively how you would
expect this force to depend on €. (b) Compute the force for the angles = 0°, 10°,
20°, 30°, 40°, 50°, and 60°, and make a plot of F versus & for mg =400 N. From
your plot, at what angle is it most efficient to apply the force to move the block?

Picture the Problem The vertical Jl’

component of Freduces the normal F F
force; hence, the static friction force 1 n

between the surface and the block. The m /9(
horizontal component is responsible for A - - =X

any tendency to move and equals the 7 7 4 Vo4

static friction force until it exceeds its
maximum value. We can apply
Newton’s 2™ law to the box, under F,=mg
equilibrium conditions, to relate F to 6.

(a) The static-frictional force opposes the motion of the object, and the maximum
value of the static-frictional force is proportional to the normal force Fy. The
normal force is equal to the weight minus the vertical component Fy of the force
F. Keeping the magnitude F constant while increasing € from zero results in an
increase in Fy and a decrease in F,; thus decreasing the maximum static-frictional
force fax. The object will begin to move if the horizontal component Fy of the
force F exceeds fnax. An increase in @ results in a decrease in Fy. As @ increases
from 0, the decrease in Fy is larger than the decrease in Fy, so the object is more
and more likely to slip. However, as € approaches 90°, Fy approaches zero and
no movement will be initiated. If F is large enough and if € increases from 0,
then at some value of @ the block will start to move.

(b) Apply > F =md to the block: > F,=Fcosf-f =0 (1)
and
> F,=F,+Fsind-mg=0 (2)

Assuming that f;= f; ;ax, eliminate f; F= M1, Mg
and F, between equations (1) and (2) cos@+ u, sinf
and solve for F:
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Use this function with mg =400 N to generate the following table:

0| (deg)| 0 | 10 | 20|30 |40 | 50 | 60
F| (N) | 240|220 210|206 | 208 | 218 | 235

The following graph of F(6) was plotted using a spreadsheet program.

240

235

230
225

220 /
215

. \

205

FN)

0 10 20 30 40 50 60
theta (degrees)

From the graph, we can see that the minimum value for F occurs when 6 = 32°.

Remarks: An alternative to manually plotting F as a function of @ or using a
spreadsheet program is to use a graphing calculator to enter and graph the
function.

54 e Consider the block in Problem 53. Show that, in general, the
following results hold for a block of mass m resting on a horizontal surface whose
coefficient of static friction is /. (&) If you want to apply the minimum possible
force to move the block, you should apply it with the force pulling upward at an
angle Gnin = tan ! Us, and (b) the minimum force necessary to start the block

moving isF_. = ( w1+ 12 )m g . (¢) Once the block starts moving, if you want

to apply the least possible force to keep it moving, should you keep the angle at
which you are pulling the same? increase it? decrease it?
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Picture the Problem The free-body y

diagram shows the forces acting on the | F
block. We can apply Newton’s 2™ law, 1F n

under equilibrium conditions, to relate m /9(

F to @ and then set its derivative with /s — - —X

respect to 6 equal to zero to find the 7777 77777

value of &that minimizes F.

(a) Apply ZF' = md to the block: Z F,=Fcosd-f, =0 (1)
and
> F,=F,+Fsind-mg=0 (2)

Assuming that f;= f; ;ax, eliminate f; F= M, Mg
and F, between equations (1) and (2) cos@+ u, sinf
and solve for F:

€)

To find Gnin, differentiate F with respect to € and set the derivative equal to zero
for extrema of the function:

dE (cos @+ 1, sin 6)(39(ysmg)_ umg ddg(cos€+ 1,8in @)

do (cos@+ u, sin O (cos @+ p, sin @)
= ,usmg(— sin0 +les C(;S 0) = 0 for extrema
(cos@+ 1, sin B)
Solving for Gy, yields: 0. = tan ! 1,
(b) Use the reference triangle shown E - H,mg

below to substitute for cos@and siné

_+_
in equation (3): 1+ H NIES7s
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(c) The coefficient of kinetic friction is less than the coefficient of static friction.
An analysis identical to the one above shows that the minimum force one should
apply to keep the block moving should be applied at an angle given by
0. =tan"' u . Therefore, once the block is moving, the coefficient of friction

will decrease, so the angle can be decreased.

55 e Answer the questions in Problem 54, but for a force F that pushes
down on the block at an angle &below the horizontal.

Picture the Problem The vertical component of F increases the normal force and
the static friction force between the surface and the block. The horizontal
component is responsible for any tendency to move and equals the static friction
force until it exceeds its maximum value. We can apply Newton’s 2™ law to the
box, under equilibrium conditions, to relate F to 6.

(a) As @increases from zero, F y
increases the normal force exerted by )
the surface and the static friction force. F,

As the horizontal component of F
decreases with increasing 6, one would
expect F to continue to increase.

r "R
TITIN R

F

F, =mgy

(b) Apply > F =md to the block: D> F,=Fcosf—f =0 (1)
and
> F,=F, -Fsind-mg=0 (2)

Assuming that f;= f; .x, eliminate f E- H,mg 3)
and F, between equations (1) and (2) cos@ — u sin@
and solve for F:

Use this function with mg =400 N to generate the table shown below.

€ |(deg)| O | 10 | 20 | 30 | 40 | 50 60
F | (N) | 240 | 273 | 327 | 424 | 631 | 1310 | very
large
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The following graph of F as a function of &, plotted using a spreadsheet program,
confirms our prediction that F continues to increase with 6.

1400

1200 A

1000 -

800

F M)

600 -

400 /
——1
200 A

0

0 10 20 30 40 50
theta (degrees)

(a) From the graph we see that: _[o°

min

(b) Evaluate equation (3) for 8= 0° E_ H,mg
to obtain: c0s0°— x, sin0°

=| umg

(¢) You should keep the angle at 0°.

Remarks: An alternative to the use of a spreadsheet program is to use a
graphing calculator to graph the function.

56 = A 100-kg mass is pulled along a frictionless surface by a horizontal

force F such that its acceleration is a, = 6.00 m/s” (Figure 5-66). A 20.0-kg mass
slides along the top of the 100-kg mass and has an acceleration of a, = 4.00 m/s”.
(It thus slides backward relative to the 100-kg mass.) (a) What is the frictional
force exerted by the 100-kg mass on the 20.0-kg mass? (b) What is the net force
acting on the 100-kg mass? What is the force F? (c) After the 20.0-kg mass falls
off the 100-kg mass, what is the acceleration of the 100-kg mass? (Assume that
the force F does not change.)

Picture the Problem The forces acting on each of these masses are shown in the
free-body diagrams below. m; represents the mass of the 20.0-kg mass and m; that
of the 100-kg mass. As described by Newton’s 3™ law, the normal reaction force
Fn1 and the friction force fi; (= fx2) act on both masses but in opposite directions.
Newton’s 2™ law and the definition of kinetic friction forces can be used to
determine the various forces and the acceleration called for in this problem.



(a) Draw a free-body diagram
showing the forces acting on the
block whose mass is 20 kg:

Apply ZF = Md to this mass:

Substitute numerical values in
equation (1) and evaluate fy ;:

(b) Draw a free-body diagram
showing the forces acting on the
block whose mass is 100 kg:

Apply Z F, =ma, to the 100-kg

object and evaluate Fpe:

Express F in terms of Fy and fi »:

Substitute numerical values and
evaluate F:

(c) When the 20.0-kg object falls
off, the 680-N force acts just on the
100-kg object and its acceleration
is given by Newton’s 2™ law:
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y
AFn,l
m,
¢ S
TINTT7T "
vFg =mg
ZFx = fk,l =ma,, (D
and
> F=F,-mg=0 @)

£, = (20.0kg)(4.00m/s>)=[ 80.0N

y
f
ELZ
m, F
e X
7 / /
VFg.2 =m,g
I’ml
\ ]

F,, =m,a,, = (100kg)(6.00m/s*)
=[ 600N
F = Fnet + fk,Z

F =600N+80.0N=| 680N

a= Fo _ 680N _ 6.80m/s’

m 100kg
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57 e

A 60.0-kg block slides along the top of a 100-kg block. The 60.0-kg

block has an acceleration of 3.0 m/s” when a horizontal force of 320 N is applied,
as in Figure 5-67. There is no friction between the 100-kg block and a horizontal
frictionless surface, but there is friction between the two blocks. (a) Find the
coefficient of kinetic friction between the blocks. (b) Find the acceleration of the
100-kg block during the time that the 60.0-kg block remains in contact.

Picture the Problem The forces acting
on each of these blocks are shown in
the free-body diagrams to the right. m;
represents the mass of the 60-kg block
and m, that of the 100-kg block. As
described by Newton’s 3™ law, the
normal reaction force F,; and the
friction force fx; (= fc2) act on both
objects but in opposite directions.
Newton’s 2™ law and the definition of
kinetic friction forces can be used to
determine the coefficient of kinetic
friction and acceleration of the 100-kg
block.

(a) Apply Y F =md to the 60-
kg block:

Apply z F, =ma, to the 100-kg
block:

Using equation (2), express the
relationship between the kinetic
friction forces ﬁjland ]‘k,z:

Substitute for fi ; in equation (1) and
solve for uy:

Substitute numerical values and
evaluate zy:

ZFx = F_fk,l =ma,, (D
and

> F=F,-mg=0 )
Soo=ma,, (3)

fk,l = fk,2 =f=uF,=pmg 4
F-ma,
p =——
mg
_ 2
320N (60kg)(3.0m/s ):0‘238

(60kg)(9.81m/s)
=[0.24




Applications of Newton’s Laws 427

(b) Substitute for fi, in equation (3) g = HM8

and solve for a, to obtain: 2 m,

Substitute numerical values and _ (0.238)(60 kg)(9.8lm/s2)

evaluate a: e = 100kg
=|1.4m/s’

58 e+ The coefficient of static friction between a rubber tire and the road
surface is 0.85. What is the maximum acceleration of a 1000-kg four-wheel-drive
truck if the road makes an angle of 12° with the horizontal and the truck is

() climbing and (b) descending?

Picture the Problem Choose a
coordinate system in which the +X
direction is up the incline and apply
Newton’s 2™ law of motion. The free-
body diagram shows the truck climbing
the incline with maximum acceleration.

(a) Apply Zﬁ' = ma to the truck ZFx = foma —Mgsin@ =ma_ (1)
when it is climbing the incline: and

ZFy=Fn—mgcos¢9=0 2)
Solve equation (2) for F, and use fomax = 4,Mgcosd 3)

the definition f___ to obtain:

s, max

Substitute f_ . in equation (1) and a, = g(u, cos@—sinf)

s,max

solve for ay:

Substitute numerical values and a,= (9.8 1m/s? )[(0.85)005 12° —sin12°]
evaluate ay:

=| 6.1m/s*
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(b) When the truck is descending the
incline with maximum acceleration,
the static friction force points down
the incline; that is, its direction is
reversed Apply Z F. =ma, to the

truck under these conditions to
obtain:

Substitute for f

S,max

(4) and solve for ay:

in equation

Substitute numerical values and
evaluate ay:

59 (1]

“4)

~ fimx —MgSin@ =ma,

a, =—g(u, cos@+sinh)

X

a, =(-9.81m/s>)[(0.85)cos12° +sin12°]
=| -10m/s’

A 2.0-kg block sits on a 4.0-kg block that is on a frictionless table

(Figure 5-68). The coefficients of friction between the blocks are 14 =0.30 and
= 0.20. (a) What is the maximum horizontal force F that can be applied to the
4.0-kg block if the 2.0-kg block is not to slip? (b) If F has half this value, find the
acceleration of each block and the force of friction acting on each block. (¢) If F
is twice the value found in (a), find the acceleration of each block..

Picture the Problem The forces acting
on each of the blocks are shown in the
free-body diagrams to the right. m;
represents the mass of the 2.0-kg block
and my that of the 4.0-kg block. As
described by Newton’s 3™ law, the
normal reaction force F,, and the
friction force fs» (= fs4) act on both
objects but in opposite directions.
Newton’s 2™ law and the definition of
the maximum static friction force can
be used to determine the maximum
force acting on the 4.0-kg block for
which the 2.0-kg block does not slide.

(a) Apply > F =md to the 2.0-kg
block:

zFx = -fs,Z,max = m2a2,max (1)

and

>F,=F,,-mg=0 )



Apply ZF = Mma to the 4.0-kg
block:

Using equation (2), express the
relationship between the static
friction forces ﬁ and fs

,2,max ,4,max *

Substitute for £, in equation

,2,max

(1) and solve for a, .. :

Solve equation (3) for F = Fpx
and substitute for a, ., and a, .

to obtain:

Substitute numerical values and
evaluate F.x:

(b) Use Newton’s 2™ law to express
the acceleration of the blocks moving
as a unit:

Substitute numerical values and
evaluate a:

Because the friction forces are an
action-reaction pair, the friction
force acting on each block is given
by:

Substitute numerical values and
evaluate fg:
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ZFx = F - f‘s,Z,max = m4a4,max (3)
and
sz:Fn,4_Fn,2_m4g:0 (4)

f‘s,2,max = fs,4,max = lustg (5)

aZ,max = /"sg

Fmax = m4ﬂsg+ ﬂstg
= (m4 + m2) sg

Fue = (4.0kg +2.0kg)(0.30)9.81m/s)

=17.66 N=| 18N
F %Enax
a = =
Y omi+m, m+m,
1
; :M=1.472 m/s’
2.0kg+4.0kg
=|1.5m/s?
f;:mlax

£, =(2.0kg)(1.472m/s>)=[ 29N
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(¢) If F = 2Fax, then the 2.0-kg f=fi=pmg
block slips on the 4.0-kg block and
the friction force (now kinetic) is

given by:
Use z F. =ma, to relate the S = um g =mya,
acceleration of the 2.0-kg block to and
the net force acting on it and solve a,.=Kn8
for ax x:
Substitute numerical values and a,, = (0.20)(9.81 m/s’ ) =1.96m/s’
evaluate a, x: _ 5 0ms
Use Z F, =ma, to relate the F—-pym,g=ma,.
acceleration of the 4.0-kg block
to the net force acting on it:
Solving for as yields: 4 = F-um,g

4.x

m,

Substitute numerical values and evaluate a4 x:

a. = 2(17-66N)— (0.20)(2.0kg)(9.81m/sz)

x =| 7.8m/s’
’ 4.0kg

60 e A 10.0-kg block rests on a 5.0-kg bracket, as shown in Figure 5-69.
The 5.0-kg bracket sits on a frictionless surface. The coefficients of friction
between the 10.0-kg block and the bracket on which it rests are z = 0.40 and

i = 0.30. (a) What is the maximum force F that can be applied if the 10.0-kg
block is not to slide on the bracket? (b) What is the corresponding acceleration of
the 5.0-kg bracket?



Picture the Problem The top diagram
shows the forces action on the 10-kg
block and the bottom diagram shows
the forces acting on the 5.0-kg bracket.
If the block is not to slide on the

bracket, the maximum value for F must
equal the maximum value of fs. This

value for F will produce the maximum
acceleration of block and bracket
system. We can apply Newton’s 2™ law
and the definition of fim. to first
calculate the maximum acceleration
and then the maximum value of F.

Apply ZF =ma to the 10-kg

block when it is experiencing its
maximum acceleration:

Express the static friction force
acting on the 10-kg block:

Eliminate f

$,max

equations (1), (2) and (3) to obtain:

and F, ;o from

Apply Z F, =ma, to the bracket to

obtain:

Because as max = @10,max, denote this
acceleration by a_, . Eliminate F

from equations (4) and (5) and solve
fora_, :

(b) Substitute numerical values and
evaluatea,_ :

Solve equation (4) for F =F__ :
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d
“Fn,l()
FITL ..
] £
[ |
m,gy
A
FnA,S
2F
[ . —— |- X
f; _Fn,IO
\ |
ymsg
zFx = f;,max _F = mlOalo,max (1)
and
ZFy:Fn,IO_mIOg:O (2)
-fs,max = /‘lan,lO (3)
umg—F=ma, . 4)
2F —pum,g=msa; . (5)

— HAIME
my+2m,

max

(0.40)(10kg)(9.81m/s?)
5.0kg+2(10kg)

=1.57m/s* =| 1.6m/s*

max

F = ﬂsmlog_mloamax = mlO(ﬂsg_amax)
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(a) Substitute numerical values and evaluate F:

F =(10kg)[(0.40)(0.81m/s?)-1.57m/s*|=[ 24N

61 e« You and your friends push a 75.0-kg greased pig up an aluminum
slide at the county fair, starting from the low end of the slide. The coefficient of
kinetic friction between the pig and the slide is 0.070. (a) All of you pushing
together (parallel to the incline) manage to accelerate the pig from rest at the
constant rate of 5.0 m/s* over a distance of 1.5 m, at which point you release the
pig. The pig continues up the slide, reaching a maximum vertical height above its
release point of 45 cm. What is the angle of inclination of the slide? (b) At the
maximum height the pig turns around and begins to slip down once slide, how
fast is it moving when it arrives at the low end of the slide?

Picture the Problem The free-body diagram shows the forces acting on the pig
sometime after you and your friends have stopped pushing on it but before it has
momentarily stopped moving up the slide. We can use a constant-acceleration
equations and Newton’s 2™ law to find the angle of inclination of the slide and
the pig’s speed when it returns to bottom of the slide. The pictorial representation
assigns a coordinate system and variable names to the variables that we need to
consider in solving this problem.

(@) Apply X F = ma to the pig: LF,=-f—F,sinf=ma, (1)
and
2F,=F —F,cos6=0 (2)
Substitute f, =y F,and F, = mgin —u F,—mgsin@ =ma, 3)

equation (1) to obtain:

Solving equation (2) for F, yields: F, = F,cos@
Substitute for F, in equation (3) to —umgcosf@—mgsinf =ma_
obtain:

Solving for ay yields: a, =gy, cos@+sind) 4)



Use a constant-acceleration equation
to relate the distance d the pig slides
up the ramp to its speed after you and
your friends have stopped pushing,
its final speed, and its acceleration:

Substituting for ay from equation (4)
yields:

Use a constant-acceleration equation
to relate the pig’s speed v, after being
accelerated to the distance AX over
which it was accelerated:

Substitute for v in equation (5) to
obtain:

Use trigonometry to relate the
vertical distance h risen by the pig
during its slide to the distance d it
moves up the slide:

Substituting for d in equation (6)
yields:

Solve for @to obtain:

Substitute numerical values and
evaluate @

(b) Use a constant-acceleration
equation to express Vs as a function
of the pig’s acceleration down the
incline agown, its initial speed V,, the
distance Ad it slides down the
incline:
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v:=v+2a.d
or, because v, = 0,
0=v]+2a.d

0=v'—2g( cos@+sin@)d (5)

)

v, =v, +2a Ax

or, because vo =0,
2 _

v, =2a Ax

0=2a Ax—2g(u cos@+sinB)d (6)

h

sin @

h=dsinf=d =

0=2a,Ax—2g(u, cosf+sind) L

sin@
1 uh
0 = tan —axAx i
L &
0= tan- (0.070)(0.45 m)
2
5.0m/s*)(1.5m) o
9.81m/s’
=5.719°=|5.7°

2 .2
v; =v, +2a,..Ad

or, because v, =0,

v:=2a, Ad=v,=.2a, Ad (7)
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When the pig is sliding down the Qo = g(sin&’ — M, COS 9)
incline, the kinetic friction force

shown in the free-body diagram is

reversed (it points up the incline ...

opposing the pig’s motion) and the

pig’s acceleration is:

Substitute for a, , in equation (7) to v, = \/ 2 g(sin¢9 — H4, cOs G)Ad (8)
obtain:

Ad is the sum of the distances the pig B d
was pushed and then slid to a Ad=15m+ sin@

momentary stop:

Substituting for Ad in equation (8) yields:

v3:\/2g(sin0—,ukcosﬁ)(l.5m+ _d )

sin@

Substitute numerical values and evaluate vs:

=1.9m/s

sin5.719°

v3=\/2(9.81m/s2)[sin5.7190_(0.070)cos5,7190] (1.5m+ﬂ)

62 e« A 100-kg block on an inclined plane is attached to another block of
mass M via a string, as in Figure 5-70. The coefficients of static and kinetic
friction for the block and the incline are 4 = 0.40 and z4 = 0.20 and the plane is
inclined 18° with horizontal. (a) Determine the range of values for m, the mass of
the hanging block, for which the 100-kg block will not move unless disturbed, but
if nudged, will slide down the incline. (b) Determine a range of values for m for
which the 100-kg block will not move unless nudged, but if nudged will slide up
the incline.

Picture the Problem The free-body diagram shows the block sliding down the
incline under the influence of a friction force, its weight, and the normal force
exerted on it by the inclined surface. We can find the range of values for m for the
two situations described in the problem statement by applying Newton’s 2™ law
of motion to, first, the conditions under which the block will not move or slide if
pushed, and secondly, if pushed, the block will move up the incline.
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(a) Assume that the block is sliding
down the incline with a constant
velocity and with no hanging weight
(m=0) and apply ZF’ =Mma to the
block:

Using f, = F,, eliminate F,
between the two equations and solve
for the net force acting on the block:

If the block is moving, this net force
must be nonnegative and:

This condition requires that:

Because 4 = 0.2, this condition is
satisfied and:

To find the maximum value, note
that the maximum possible value for
the tension in the rope is mg. For the
block to move down the incline, the
component of the block’s weight
parallel to the incline minus the
frictional force must be greater than
or equal to the tension in the rope:

Solving for m__ yields:

Substitute numerical values and
evaluate m_ :

F,=Mg

Y F, =—f +Mgsing=0
and
sz =F —Mgcos@=0

F  =-u Mgcos@+Mgsin@

(— 4, cos@ +sin@)Mg >0

M, <tan @ = tan18° = 0.325

m. =0

min

Mg sin & — ¢, Mg cos & > mg

m, .. <M(sin— s, cosé)

ma:

m,_ <(100kg)sin18°—(0.20)cos18°]
=11.9kg



436 Chapter 5

The range of values for m is:

(b) If the block is being dragged up
the incline, the frictional force will
point down the incline, and:

Solve for m_, :

Substitute numerical values and
evaluate m_. :

If the block is not to move unless
pushed:

Solve for m__ :

Substitute numerical values and
evaluate m__:

max

The range of values for m is:

63 00

0<m<12kg

Mgsin@+ 1, Mgcosd <m_. g

m, ., > M (sin @+ 4, cos@)

m_. > (100kg)[sin18° +(0.20)cos18°]
=49.9kg

Mgsin@+ g Mgcosd>m_. g

M, < M (sin @+ s, cos6)

max

m_ < (100kg)[sin18°+(0.40)cos18°]
= 68.9kg

50kg <m <69kg

A block of mass 0.50 kg rests on the inclined surface of a wedge of

mass 2.0 kg, as in Figure 5-71. The wedge is acted on by a horizontal applied

force F and slides on a frictionless surface. (a) If the coefficient of static friction
between the wedge and the block is s = 0.80 and the wedge is inclined 35° with
the horizontal, find the maximum and minimum values of the applied force for
which the block does not slip. (b) Repeat part (a) with 4 = 0.40.

Picture the Problem The free-body
diagram shows the forces acting on
the 0.50-kg block when the
acceleration is a minimum. Note the
choice of coordinate system that is

consistent with the direction of F .
Apply Newton’s 2™ law to the block
and to the block-plus-incline and
solve the resulting equations for Fy,
and Fax.




(a) The maximum and minimum
values of the applied force for which
the block does not slip are related to
the maximum and minimum
accelerations of the block:

Apply ZF = ma to the 0.50-kg
block:

Under minimum acceleration,
fo="f Express the relationship

between f and F,:

s, max

s, max *

Substitute f

s, max

(4) and solve for F:

for f; in equation

Substitute for F, and f___ in equation

s, max

(3)and solve for a_ =a__ :

Xx,min *

Substitute for ax min in equation (2) to
obtain:
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Fmax = mtotax,max (1)
and
Fmin = mtotax,min (2)

where My 1S the combined mass of the
block and incline.

ZFx =F sin@- f.cos@ =ma, (3)

and
D> F, =F,cos@+ f sind—mg =0 (4)

fs,max = /us Fn

F=—
" cos@+ p sind

sin@— u cos@

x,min

cos@+ u, sinf

sin@— p, cos@
Fmin = mtotg[ ﬂs . J
cos@+ u sinf

Substitute numerical values and evaluate F . :

Fmin =

(2.5 kg)(9.81m/s2)[

To find the maximum acceleration,
reverse the direction of fs and apply

Zf‘ = ma to the block:

Proceed as above to obtain:

Substitute for ay, max in equation (1)
to obtain:

sin35°—(0.80)c0s35°
c0s35° +(0.80)sin35°

=1.6 N

ZFx =F sin@+ f,cos@ =ma,
and
ZFy =F cos@—f sind-mg =0

sin @+ u, cos @

=gcos6?—,us sin@

sin @ + u, cos @
F = mtotg[ ﬂs . J
cos@—u, sinf
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Substitute numerical values and evaluate F__ :

=| 84N

max

F, =(2.5kg)(9.81m/s2{5in350+(0-80)005350}

c0s35°—(0.80)sin35°

(b) Repeat Part (a) with s = 0.40 to F_ =|58N |andF__=|37N
obtain:

64 <= In your physics lab, you and your lab partners push a block of wood
with a mass of 10.0 kg (starting from rest), with a constant horizontal force of 70
N across a wooden floor. In the previous week’s laboratory meeting, your group
determined that the coefficient of kinetic friction was not exactly constant, but
instead was found to vary with the object’s speed according to

e =0.11/(1 +2.3 x 10* v*)>. Write a spreadsheet program using Euler’s method
to calculate and graph both the speed and the position of the block as a function of
time from 0 to 10 s. Compare this result to the result you would get if you
assumed the coefficient of kinetic friction had a constant value of 0.11.

Picture the Problem The kinetic friction force fy is the product of the coefficient
of sliding friction g4 and the normal force F, the surface exerts on the sliding
object. By applying Newton’s 2™ law in the vertical direction, we can see that, on
a horizontal surface, the normal force is the weight of the sliding object. We can
apply Newton’s 2" law in the horizontal (x) direction to relate the block’s
acceleration to the net force acting on it. In the spreadsheet program, we’ll find
the acceleration of the block from this net force (which is speed dependent),
calculate the increase in the block’s speed from its acceleration and the elapsed
time and add this increase to its speed at end of the previous time interval,
determine how far it has moved in this time interval, and add this distance to its
previous position to find its current position. We’ll also calculate the position of
the block X,, under the assumption that s = 0.11, using a constant-acceleration
equation.

-

AR,
p— ;: —
—_— —— —
| f |
t=0 S t
x=0 \Fm:é X
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The spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form

C9 C8+$BS%6 t+ At

D9 D8+F9*§B$6 v+ aAt

E9 | $B$5—($B$3)*($B$2)*$BS$5/ F 4, mg

(18B$4*D9"2)"2 (1+2.34x10"v?)

F9 E10/$B$5 F./M

G9 G9+D10*$B$6 X + VAt

K9 0.5*5.922*110"2 Lat?

L9 J10-K10 X—X,

A B C | D E |F| G H I J
1 g=19.81 m/s”
2 |Coeffl=|0.11
3 |Coeff2=|2.30E-04
4 m=|10 kg
5 Fapp=]70 N
6 At=|0.05 ]
7
8 t X X2 | X=X
9 t Vv Foet | &, X Hariable | Heonstant
10 | 0.00 0.00 0.00 0.00/ 0.00 | 0.00 | 0.00
11| 0.05 0.30 [59.22|5.92| 0.01 0.05| 0.01 | 0.01 | 0.01
12| 0.10 0.59 [59.2215.92| 0.04 0.10] 0.04 | 0.03 | 0.01
13| 0.15 0.89 [59.22|5.92| 0.09 0.15| 0.09 | 0.07 | 0.02
14| 0.20 1.18 [59.2215.92| 0.15 0.20| 0.15 | 0.12 | 0.03
15| 0.25 1.48 [59.23|5.92| 0.22 0.25| 0.22 | 0.19 | 0.04
205| 9.75 61.06 [66.84/6.68|292.37 9.75|292.37|281.48 |10.89
206 9.80 61.40 ]66.88]6.69|295.44 9.801295.441284.37|11.07
207| 9.85 61.73 166.91/6.69]/298.53 9.85|298.53|287.28 |11.25
208| 9.90 62.07 166.9416.69/301.63 9.90/301.63]290.21 |11.42
209 9.95 62.40 ]66.97|6.70|304.75 9.951304.75[293.15|11.61
210| 10.00 62.74 167.00/6.70/307.89] [10.00]/307.89[296.10]11.79

The position of the block as a function of time, for a constant coefficient of
friction (z4 = 0.11) is shown as a solid line on the following graph and for a
variable coefficient of friction, is shown as a dotted line. Because the coefficient
of friction decreases with increasing particle speed, the particle travels slightly
farther when the coefficient of friction is variable.
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The speed of the block as a function of time, with variable coefficient of kinetic
friction, is shown in the following graph.
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65 e In order to determine the coefficient of kinetic friction of a block of
wood on a horizontal table surface, you are given the following assignment: Take
the block of wood and give it an initial velocity across the surface of the table.
Using a stopwatch, measure the time At it takes for the block to come to a stop
and the total displacement Ax of the block travels following the push. (a) Using
Newton’s laws and a free-body diagram of the block, show that the expression for
the coefficient of kinetic friction is given by z4 = 2Ax/[(At)*g]. (b) If the block
slides a distance of 1.37 m in 0.97 s, calculate 4. () What was the initial speed of
the block?
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Picture the Problem The free-body y
diagram shows the forces acting on the A
block as it moves to the right. The F

kinetic friction force will slow the
block and, eventually, bring it to rest.

We can relate the coefficient of kinetic — m —x
friction to the stopping time and 777—77
distance by applying Newton’s 2" Jaw ’ l ;:k

and then using constant-acceleration F, =mg
equations. Y ¢

(a) Apply Zﬁ’ = ma to the block of ZFx =—f,=ma,

wood: and

Using the definition of fi, eliminate a,=-ug (1)

F. between the two equations to

obtain:

Use a constant-acceleration equation Ax=v, At+1a (Ar) )
y X

to relate the acceleration of the block
to its displacement and its stopping

time:
Relate the initial speed of the block, vy, v,
Vo, to its displacement and stopping Ax =v, At = 2 At
distance: or, because vV =0,
Ax=5v, At 3)
Use this result to eliminate v, in Ax=-1la, (At)2 4)
equation (2):
Substitute equation (1) in equation 2Ax
(4) and solve for : M = g( At)2
(b) Substitute for Ax =1.37 m and B 2(1.37m) _T030
At=0.97 s to obtain: M= (9.81m/32 )(0.97 s) -
c tion (3) to find vy: .
(c) Use equation (3) to find vy v0:2Ax=2(1 37m)= 2 3ms
At 0.97s
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66 e (@) A block is sliding down an inclined plane. The coefficient of
kinetic friction between the block and the plane is g4, the angle the plane makes
with the horizontal is #and the acceleration of the plane is ax. Show that a graph
of ay/cos Aversus tan & (where a is the acceleration down the incline and &is the
angle the plane is inclined with the horizontal) would be a straight line with slope
g and intercept —4g. (b) The following data show the acceleration of a block
sliding down an inclined plane as a function of the angle £ that the plane is
inclined with the horizontal

0 (degrees) | Acceleration (m/s?)
25.0 1.69
27.0 2.10
29.0 241
31.0 2.89
33.0 3.18
35.0 3.49
37.0 3.79
39.0 4.15
41.0 433
43.0 4.72
45.0 5.11

Using a spreadsheet program, graph these data and fit a straight line (a Trendline
in Excel parlance) to them to determine g4 and g. What is the percentage

difference between the obtained value of g and the commonly specified value of
9.81 m/s*?

Picture the Problem The free-body
diagram shows the forces acting on the
block as it slides down an incline. We

can apply Newton’s 2" law to these RN F,
forces to obtain the acceleration of the ~ Q

block and then manipulate this ;\

expression algebraically to show that a k

graph of a/cos@ versus tand will be //9 ~
linear with a slope equal to the / X
acceleration due to gravity and an /

intercept whose absolute value is the F,=mg

coefficient of kinetic friction.

(a) Apply Z F = ma to the block as ZFX =mgsinf— f, =ma,
it slides down the incline: and

ZFy =F —-mgcos@ =0
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Substitute iF, for fi and eliminate a, = g(sin@—p, cos)
F. between the two equations to

obtain:

Divide both sides of this equation by % [ otanf—
cos@to obtain: cos@ glanv =8k

Note that this equation is of the form y = mx + b. Thus, if we graph a/cosé versus
tané, we should get a straight line with slope g and y-intercept —0 4.

(b) A spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
C7 %
D7 a
E7 TAN(C7*PI()/180) ( Vs ]
tan| @x —
180
F7 | D7/COS(C7*PI()/180) a
cos(@xj
180
C D E F
6 0 a tand a/cosd
7 25.0 1.69 0.466 1.866
8 27.0 2.10 0.510 2.362
9 29.0 241 0.554 2.751
10 31.0 2.89 0.601 3.370
11 33.0 3.18 0.649 3.786
12 35.0 3.49 0.700 4.259
13 37.0 3.78 0.754 4.735
14 39.0 4.15 0.810 5.338
15 41.0 4.33 0.869 5.732
16 43.0 4.72 0.933 6.451
17 45.0 5.11 1.000 7.220




444 Chapter 5

A graph of a/cos@ versus tand follows. From the curve fit (Excel’s Trendline
2.62m/s>
9.77 m/s’

0.268 |.

was used), g =|9.77m/s’ | and g, =

\
y = 9.7681x - 2.6154 /»
R?=0.9981

—

o
/

\

a/cos(theta)
O B N W A U1 O N ©®

o
N

0.5 0.6 0.7 0.8 0.9 1.0
tan(theta)

The percentage error in g from the commonly accepted value of 9.81 m/s” is:

0.408%

2 2
100 9.81m/s 9.727m/s _
9.81m/s

Drag Forces

67 < [SSM] A Ping-Pong ball has a mass of 2.3 g and a terminal speed of 9.0
m/s. The drag force is of the form bv’. What is the value of b?

Picture the Problem The ping-pong ball experiences a downward gravitational
force exerted by the earth and an upward drag force exerted by the air. We can
apply Newton’s 2™ law to the Ping-Pong ball to obtain its equation of motion.
Applying terminal speed conditions will yield an expression for b that we can
evaluate using the given numerical values. Let the downward direction be the +y
direction.

Apply Z F, =ma, to the Ping-Pong mg —bv’ = ma,

ball:

Whep the Ping-Pong ball reaches its mg—bv> =0= b= m_?
terminal speed V= Vv;and a, = 0: v

t



Applications of Newton’s Laws 445

Substitute numerical values and b (2.3 x107 kg)(9.81m/sz)
evaluate b: - (9.0m/s)’

=|2.8x10*kg/m

68 A small pollution particle settles toward Earth in still air. The terminal
speed is 0.30 mm/s, the mass of the particle is 1.0 x 10™'* g and the drag force is
of the form bv. What is the value of b?

Picture the Problem The pollution particle experiences a downward gravitational
force exerted by the earth and an upward drag force exerted by the air. We can
apply Newton’s 2" law to the particle to obtain its equation of motion. Applying
terminal speed conditions will yield an expression for b that we can evaluate
using the given numerical values. Let the downward direction by the +y direction.

Apply > F, =ma, to the particle: mg —bv=ma,

Whep the particle reaches its mg—bv, =0= b= mg
terminal speed V= Vv;and a, = 0: vV,
Substitute numerical values and b (1 0x 10‘13kg)(9.8 lm/sz)
evaluate b: - 3.0x10"* m/s

3.3x107" kg/s

69 e [SSM] A common classroom demonstration involves dropping
basket-shaped coffee filters and measuring the time required for them to fall a
given distance. A professor drops a single basket-shaped coffee filter from a
height h above the floor, and records the time for the fall as At. How far will a
stacked set of n identical filters fall during the same time interval At? Consider
the filters to be so light that they instantaneously reach their terminal velocities.
Assume a drag force that varies as the square of the speed and assume the filters
are released oriented right-side up.

Picture the Problem The force I\
diagram shows n coffee filters
experiencing an upward drag force | | |
exerted by the air that varies with the
square of their terminal velocity and a /
downward gravitational force exerted
by the earth. We can use the definition
of average velocity and Newton’s 2™
law to establish the dependence of the Y
distance of fall on n. y

F, :—Cvf}
|

F, = nmgj
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Express the distance fallen by 1 d\ e = VoA (D
coffee filter, falling at its terminal
speed, in time At:

Express the distance fallen by n d, i =V, niiner M ()
coffee filters, falling at their terminal
speed, in time At:
Divide equation (2) by equation (1) viters VentiesDF Vi ufiers
to obtain: - -
d, giier Vii e A Y 1 filter
Solving for dp fiers yields: o
t, n filters
n filters dl filter (3 )
t, 1 filter
_ 2
Apply ZFy = ma ,to the coffee nmg —Cv; =ma,
filters: or, because ay = 0,
nmg —Cv; =0
Solving for v; yields: nmg mg
vt,nﬁlters = C = C \/;
m
or, because v, . = _g’
’ C
vt,nﬁlters = vt,lﬁlter\/;
i for v in ion
Subst t}lt'e Or V. n filters 1N €quation (3) (Vs \/; ; B \/_d
to obtain: n filters ttitter — | VI @y gpger
vt,lﬁlter

This result tells us that n filters will fall farther, in the same amount of time, than
1 filter by a factor of Jn .

70 = A skydiver of mass 60.0 kg can slow herself to a constant speed of

90 km/h by orienting her body horizontally, looking straight down with arms and
legs extended. In this position she presents the maximum cross-sectional area and
thus maximize the air-drag force on her. (&) What is the magnitude of the drag
force on the skydiver? (b) If the drag force is given by bv?, what is the value of b?
(c) At some instant she quickly flips into a "knife” position, orienting her body
vertically with her arms straight down. Suppose this reduces the value of b by 55
percent from the value in Parts (a) and (b). What is her acceleration at the instant
she achieves the "knife” position?
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Picture the Problem The skydiver experiences a downward gravitational force
exerted by the earth and an upward drag force exerted by the air. Let the upward

direction be the +y direction and apply Newton’s 2™ law to the sky diver.

() Apply D F, =ma, to the sky F,—mg =ma, (1)
diver: or, because ay =0,
F, =mg (2)

Substitute numerical values and

F, =(60.0kg)(9.81m/s?)=588.6N

evaluate Fy: _[ 589N
(b) Substitute Fq = bv; in equation bv? = mg =b = m_29 _ ig
(2) to obtain: Vi VY
Substitute numerical values and b 588.6 N - 0.9418kg/m
evaluate b: km 1h
90 —x
h  3600s

=| 0.94kg/m
(¢) Solving equation (1) for ay yields: _ | F,

y ; -8
Because b is reduced to 55 percent of (0.55)(588.6 N) )
: . . a,= -9.81m/s
its value in Part (b), so is Fg. y 60.0 kg
Substitute numerical values and 5

) =| 4.41m/s”, downward

evaluate ay:

71 e

Your team of test engineers is to release the parking brake so an 800-

kg car will roll down a very long 6.0% grade in preparation for a crash test at the
bottom of the incline. (On a 6.0 % grade the change in altitude is 6.0% of the
horizontal distance traveled.) The total resistive force (air drag plus rolling
friction) for this car has been previously established to be Fg= 100 N +

(1.2 N-s*’m*V?, where m and v are the mass and speed of the car. What is the
terminal speed for the car rolling down this grade?
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Picture the Problem The free-body
diagram shows the forces acting on the
car as it descends the grade with its
terminal velocity and a convenient
coordinate system. The application of
Newton’s 2™ law with a = 0 and Fq
equal to the given function will allow
us to solve for the terminal velocity of
the car.

Apply z F, =ma, to the car:

Substitute for F4 to obtain:

Solving for v; yields:

mgsind—F, = ma,

or, because V=Vv;and a, =0,
mgsind—F, =0

mgsin@—100N—(1.2N-s>/m*)v> =0

v = mgsind—-100N
' 1.2N-s*/m’

Substitute numerical values and evaluate Vvi:

25m/s

. _ |(800kg)(9.81m/s’ Jsin 6.0°~ 100N _
C 1.2N-s*/m? -

72

Small slowly moving spherical particles experience a drag force given

by Stokes’ law: Fq = 67z7rv, where r is the radius of the particle, v is its speed, and
n is the coefficient of viscosity of the fluid medium. (a) Estimate the terminal
speed of a spherical pollution particle of radius 1.00 x 10~ m and density of

2000 kg/m”. (b) Assuming that the air is still and that 7 is 1.80 x 10~ N-s/m’,
estimate the time it takes for such a particle to fall from a height of 100 m.

Picture the Problem Let the downward direction be the +y direction and apply
Newton’s 2™ law to the particle to obtain an equation from which we can find the

particle’s terminal speed.

(a) Apply Z F, =ma, to a pollution
particle:

mg —6xnrv=ma,
or, because ay = 0,

mg
onnr

mg—o6xnrv, =0=>vy, =
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Express the mass of a sphere in Y 41’
terms of its volume: m=pv=p 3
Substitute for m to obtain: v = 2r’pg
=
o

Substitute numerical values and evaluate Vvi:

_ 2(1.00x10 m)* (2000kg/m’ (9.8 1ms?)

¢ — B =2.422cm/s =| 2.42cm/s
9(1.80x10° N -s/m?)

(b) Use distance equals average ‘e 10* cm
speed times the fall time to find the 2422 cm/s
time to fall 100 m at 2.42 cm/s:

=4.128x10°s =| 1.15h

73 eee  [SSM] You are on an environmental chemistry internship, and in
charge of a sample of air-containing pollution particles of the size and density
given in Problem 72. You capture the sample in an 8.0-cm-long test tube. You
then place the test tube in a centrifuge with the midpoint of the test tube 12 cm
from the center of the centrifuge. You set the centrifuge to spin at 800 revolutions
per minute. (a) Estimate the time you have to wait so that nearly all of the
pollution particles settle to the end of the test tube. (b) Compare this to the time
required for a pollution particle to fall 8.0 cm under the action of gravity and
subject to the drag force given in Problem 72.

Picture the Problem The motion of the centrifuge will cause the pollution
particles to migrate to the end of the test tube. We can apply Newton’s 2™ law and
Stokes’ law to derive an expression for the terminal speed of the sedimentation
particles. We can then use this terminal speed to calculate the sedimentation time.
We’ll use the 12 cm distance from the center of the centrifuge as the average
radius of the pollution particles as they settle in the test tube. Let R represent the
radius of a particle and r the radius of the particle’s circular path in the centrifuge.

(a) Express the sedimentation time in _ AX

. . Atsediment - (1)
terms of the sedimentation speed V;: v,
Apply z Fradial = maradial toa 67277th = mac

pollution particle:
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Express the mass of the particle in m=pV =47zR’p
terms of its radius R and density p:

Express the acceleration of the 27rY
pollution particles due to the motion V2 T 47
of the centrifuge in terms of their 2 = r  r T2

orbital radius r and period T:

Substitute for m and a; and simplify

2 3 3
SRV, = %HR%(M rj _l6z’pIR

to obtain: T2 3T 2
Solving forv, yields: v = 87r2p rR?
t T ?
Substitute forv, in equation (1) At A 9T AX
and simplify to obtain: dmet = @12 prR? 872 pIR?
onT?
Substitute numerical values and evaluate At . :
2
of 1.8x10 8 L | gocm)
m? 200 rev 1 min
Atsediment = K min_ 60 =38.47ms=| 38 ms
8n2(2ooog3j (0.12m)10* m)’
m
(b) In Problem 72 it was shown that At = Ax _ 80cm _ 331
the rate of fall of the particles in air oy 242em/s
is 2.42 cm/s. Find the time required
to fall 8.0 cm in air under the
influence of gravity:
Find the ratio of the two times: Aty _ 331s _
At 38.47ms

sediment

With the drag force in Problem 72 it takes about 86 times longer than it does
using the centrifuge.
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Motion Along a Curved Path

74 . A 0.050-kg ball at the end of a string rotates at constant speed in a
vertical circle with a radius of 0.20 m. What is the maximum speed of the ball so
that the tension is not to exceed 10 N?

Picture the Problem The tension in
the string is a maximum when the /:
ball is at the bottom of the vertical r '
circle. We can use Newton’s 2™ law A
to relate the tension in the string to \ / T,
the mass m of the ball, the radius r of AN P
its path, and the constant speed of the ~ -
ball along its circular path. T =-O="
F,=mg

Y

Apply 2 F, g, = ma,,g, to the ball: v,
Tmax - mg = m —
r
Solving for V. yields: ( T j
vmax = e - g r
m
Substitute numerical values and 10N
: v = || ————-9.81m/s” |(0.20m
evaluate Vpax: max \/( 0.050 kg j( )
=| 6.2m/s

75 [SSM] A 95-g stone is whirled in a horizontal circle on the end of an
85-cm-long string. The stone takes 1.2 s to make one complete revolution.
Determine the angle that the string makes with the horizontal.

Picture the Problem The only forces
acting on the stone are the tension in
the string and the gravitational force.
The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve
the problem for the general case in
which the angle with the horizontal is &
by applying Newton’s 2™ law of
motion to the forces acting on the
stone.
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Apply z F = ma to the stone:

Use the right triangle in the diagram
torelater, L, and &:

Eliminate T and r between equations
(1), (2) and (3) and solve for v;:

Express the speed of the stone in
terms of its period:

Eliminate v between equations (4)
and (5) and solve for 4:

Substitute numerical values and
evaluate 6:

ZFX=TCOSH=maC=m

and

> F,=Tsind-mg=0

r=Lcos@

v? = gLcot@cosd

2ar
v=""

tl rev
6 =sin"
6 =sin™

[ (90.81m/s?)(1.25)?

Ot7 ey
47°L

v

r

47°(0.85m)

2

}:

(1)

(2)

€)

“4)

)

25°

76 e A 0.20-kg stone is whirled in a horizontal circle on the end of an 0.80-
m-long string. The string makes an angle of 20° with the horizontal. Determine

the speed of the stone.

Picture the Problem The only forces
acting on the stone as it moves in a
horizontal circle are the tension in the
string and the gravitational force. The
centripetal force required to maintain
the circular motion is a component of
the tension. We’ll solve the problem for
the general case in which the angle with
the horizontal is € by applying
Newton’s 2™ law of motion to the
forces acting on the stone.

Apply Zﬁ‘ = md to the stone:

V2
D F,=Tcosf=ma, = m-— (1)

and

D> F, =Tsind-mg=0

2



Use the right triangle in the diagram
torelater, L, and &

Eliminate T and r between equations
(1), (2), and (3) and solve for v:

Substitute numerical values and
evaluate Vv:

77 e
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r=Lcos@ 3)

vV =./gLcotfcosd

<
I

J(0.81m/s?)(0.80 m)cot 20°cos 20°
=| 4.5m/s

A 0.75-kg stone attached to a string is whirled in a horizontal circle of

radius 35 cm as in the tetherball Example 5-11. The string makes an angle of 30°
with the vertical. (a) Find the speed of the stone. (b) Find the tension in the string.

Picture the Problem The only forces
acting on the stone are the tension in
the string and the gravitational force.
The centripetal force required to
maintain the circular motion is a
component of the tension. We’ll solve
the problem for the general case in
which the angle with the vertical is 6
by applying Newton’s 2™ law of
motion to the forces acting on the
stone.

(a) Apply Zﬁ = Ma to the stone:

Eliminate T between equations
(1) and (2) and solve for v:

Substitute numerical values and
evaluate Vv:

(b) Solving equation (2) for T yields:

Substitute numerical values and
evaluate T:

V2
D F,=Tsinf =ma, =m-- (1)

and
ZFy =Tcosfd—-mg=0

v =./rgtan®

(2)

v =/(0.35m)(9.81m/s? Jtan30°

=|1.4m/s
T--M9
cosd
2
r_(075ke)081m/s*)
c0s30°
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78 e» A pilot with a mass of 50 kg comes out of a vertical dive in a circular
arc such that at the bottom of the arc her upward acceleration is 3.59. (2) How
does the magnitude of the force exerted by the airplane seat on the pilot at the
bottom of the arc compare to her weight? (b) Use Newton’s laws of motion to
explain why the pilot might be subject to a blackout. This means that an above
normal volume of blood "pools” in her lower limbs. How would an inertial
reference frame observer describe the cause of the blood pooling?

shows the forces acting on the pilot

Picture the Problem The diagram /

when her plane is at the lowest point r '
of its dive. F,is the force the A
airplane seat exerts on her. We’ll \ F, /
apply Newton’s 2™ law for circular ~ -
motion to determine F, and the NG 7
radius of the circular path followed - O=
by the airplane.
F,=mg

\/
(a) Apply Z Fradial = maradial to the Fn - mg = maC:> Fn = m(g + ac)
pilot:
Because a, =3.5¢9 : F. :m(g +3.59):4.5mg
The ratio of F,, to her weight is: F, _45mg _ 45

mg  mg :

(b) An observer in an inertial reference frame would see the pilot’s blood continue
to flow in a straight line tangent to the circle at the lowest point of the arc. The
pilot accelerates upward away from this lowest point and therefore it appears,
from the reference frame of the plane, as though the blood accelerates downward.

79 = A 80.0-kg airplane pilot pulls out of a dive by following, at constant
speed, the arc of a circle whose radius is 300 m. At the bottom of the circle, where
his speed is 180 km/h, (a) what are the direction and magnitude of his
acceleration? (b) What is the net force acting on him at the bottom of the circle?
(c) What is the force exerted on the pilot by the airplane seat?
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shows the forces acting on the pilot
when her plane is at the lowest point of

Picture the Problem The diagram /|

= r
its dive. F, is the force the airplane seat A
exerts on her. We’ll use the definitions \ F,
of  centripetal  acceleration  and o 7
centripetal force and apply Newton’s . 7
2" law to calculate these quantities and - -O=
the normal force acting on her.

Fg =mg
y

(a) The pilot’s acceleration is a 2 d
centripetal and given by: o T o upwar
Substitute numerical values and ( km 1h jz
evaluate a.: W

‘ g =~ 0 3600s) _g333.

300 m

=| 8.33m/s*, upward

(b) The net force acting on her at F._ =ma_ =(80.0 kg)(8.333 m/sz)
the bottom of the circle is the 667N, upward
force responsible for her

centripetal acceleration:

(c) Apply D_F, =ma, to the pilot: F -mg=ma=F =m(g+a,)

Substitute numerical values and F. =(80.0 kg)(9.81 m/s® +8.33 m/sz)
evaluate F, - —_[1.45KN, upward

80 e A small object of mass m; moves in a circular path of radius r on a
frictionless horizontal tabletop (Figure 5-72). It is attached to a string that passes
through a small frictionless hole in the center of the table. A second object with a
mass of M, is attached to the other end of the string. Derive an expression for I in
terms of m;, m,, and the time T for one revolution.
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Picture the Problem Assume that the
string is massless and that it does not
stretch. The free-body diagrams for the n
two objects are shown to the right. The AF
hole in the table changes the direction
the tension in the string (which F
provides the centripetal force required Q X — €—
to keep the object moving in a circular
path) acts. The application of Newton’s =
2" law and the definition of centripetal Y mag
force will lead us to an expression for r % Ymg
as a function of m;, my, and the time T

for one revolution.

Apply z F. = ma, to both objects m,g-F, =0

and use the definition of centripetal and
acceleration to obtain: v

Because F; = F, we can eliminate

mg-m—=0 (1)
both of them between these r
equations to obtain:

Express the speed v of the object in 27
terms of the distance it travels each T
revolution and the time T for one

revolution:

Substitute for v in equation (1) to az’r m,gT

obtain: m9-M— =0=r= 4z°m,

81 e [SSM] A block of mass m; is attached to a cord of length L;, which
is fixed at one end. The block moves in a horizontal circle on a frictionless
tabletop. A second block of mass mj is attached to the first by a cord of length L,
and also moves in a circle on the same frictionless tabletop, as shown in Figure 5-
73. If the period of the motion is T, find the tension in each cord in terms of the
given symbols.



Picture the Problem The free-body
diagrams show the forces acting on
each block. We can use Newton’s 2™
law to relate these forces to each other
and to the masses and accelerations of

the blocks.

Apply Z F, =ma, to the block

whose mass is m;:

Apply Z F, =ma, to the block

whose mass is my:

Relate the speeds of each block to
their common period T and their

distance from the center of the circle:

In the second force equation,
substitute for v,, and simplify to
obtain:

Substitute for T, and v, in the first
force equation to obtain:

82 o
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AE AR.»
T 7, 7
X — —— > v — €— 1
Ymg ¥ m{é
2
V
_'|'2 =m, i
Ll
2
Vv
= m2 2
L +L,
2 27z(L + L
— 1 and V2 _ ( 1 2)

- (2]

=| [m,(L, +L,)+mL ] ﬁ-”jz

A particle moves with constant speed in a circle of radius 4.0 cm. It

takes 8.0 s to complete each revolution. (&) Draw the path of the particle to scale,
and indicate the particle’s position at 1.0-s intervals. (b) Sketch the displacement
vectors for each interval. These vectors also indicate the directions for the
average-velocity vectors for each interval. (C) Graphically find the magnitude of
the change in the average velocity |Az7| for two consecutive 1-s intervals.

Compare |Az7| /At, measured in this way, with the magnitude of the instantaneous

acceleration computed from a, = var.

Picture the Problem (a) and (b) The path of the particle and its position at 1-s
intervals are shown in the following diagram. The displacement vectors are also
shown. The velocity vectors for the average velocities in the first and second
intervals are along 7, and r,,respectively. Av points toward the center of the

circle.
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(c) Use the diagram below to show
that:

/122.5°

Express the magnitude of the
average velocity of the particle along
the chords:

Using the diagram below, express AV
in terms of V| (= V,):

Express AV usingV, as Vi:

Express a = Av :
At

Ar =2rsin22.5°

_ﬂ_ 2rsin22.5°
At At

—

av

Av =2y, 5in 22.5°

Av = 2(Mj sin22.5°
At

_4r sin?22.5°
At

4rsin®22.5°
At _ 4rsin®22.5°

At (At)




Substitute numerical values and
evaluate a:

The radial acceleration of the particle
is given by:

Express the speed vV (=Vv; =V, ...) of
the particle along its circular path:

Substituting for v in the expression
for a. yields:

Substitute numerical values and
evaluate a.:

Compare a. and a by taking their
ratio:

83 oo
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4(4.0 cm)sin® 22.5°

. . =2.34cm/s’
(1.0 s)
=|23cm/s’
v2
a,=—
r
27r
y=—-
T
2 )’
T A’y
a = R
r T
2
a, = w()(;m) =2.47 cm/s*
(8.0s)
=| 2.5cm/s’
2
&:M:1,06 =a,=|1.1a
a 234cm/s

You are swinging your younger sister in a circle of radius 0.75 m, as

shown in Figure 5-74. If her mass is 25 kg and you arrange it so she makes one
revolution every 1.5 s, () what is the magnitude and direction of the force that
must be exerted by you on her? (Assume her to be a point particle.) (b) What is
the magnitude and direction of the force she exerts on you?

Picture the Problem The diagram to
the right has the free-body diagram for
the child superimposed on a pictorial
representation of her motion. The force

you exert on your sister is Fand the
angle it makes with respect to the
direction we’ve chosen as the positive y
direction is €. We can infer her speed
from the given information concerning
the radius of her path and the period of
her motion. Applying Newton’s 2™ law
will allow us to find both the direction

and magnitude of F .
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s g 2
(a) Apply ZF = Ma to the child: z F. = Fsind= mV_
-

and
sz =Fcosf-mg =0

Eliminate F between these equations v?
and solve for @ to obtain: 0 = tan a
Express v in terms of the radius and V= 27ar

period of the child’s motion: T
Substitute for v in the expression for 9 Ll 4xcr
@to obtain: = tan gT>

Substitute numerical values and L 4R’ (0.75 m)
) 6 =tan 5 > |=53.3°
evaluate @: (9.81m/s )(1 5s)

=| 53° |above horizontal

Solve the y equation for F: F-_Md
cosd
. . 2
Substitute numerical values and Fe (25 kg)(9.81m/s ) _[041KkN
evaluate F: c0s53.3°

(b) The force your sister exerts on you is the reaction force to the force you exert
on her. Thus its magnitude is the same as the force you exert on her (0.41 kN) and
its direction is 53° below horizontal.

84 e+ The string of a conical pendulum is 50.0 cm long and the mass of the
bob is 0.25 kg. (a) Find the angle between the string and the horizontal when the
tension in the string is six times the weight of the bob. (b) Under those conditions,
what is the period of the pendulum?

Picture the Problem The diagram to the right has the free-body diagram for the
bob of the conical pendulum superimposed on a pictorial representation of its

motion. The tension in the string is F and the angle it makes with respect to the
direction we’ve chosen as the positive X direction is€. We can find@ from the y
equation and the information provided about the tension. Then, by using the
definition of the speed of the bob in its orbit and applying Newton’s 2" law as it
describes circular motion, we can find the period T of the motion.
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-
mg

- = 2
(a) Apply ZF—mato the ZFX _ Fcosé?:mv—
pendulum bob: r

and
D> F,=Fsinf-mg=0

Using the given informatiqn that 0 —sin( ™8 ) _in| ™8 | _[9¢°
F = 6mg, solve the y equation for & 6mg
and simplify to obtain:

(b) With F = 6mg, solve the x v =,/6rgcosé

equation for v:

Relate the period T of the motion to T = 2zv _ 2x;r

the speed of the bob and the radius of v \/ 6rgcosd

the circle in which it moves:

From the diagram, one can see that: r=Lcos@

Substitute for r in the expression for T_o L

the period and simplify to obtain: i @

Substitute numerical values and T -2 0.50m 0,58
evaluate T: B 6(9.81m/s?) 985

85 e» A 100-g coin sits on a horizontally rotating turntable. The turntable
makes exactly 1.00 revolution each second. The coin is located 10 cm from the
axis of rotation of the turntable. (a) What is the frictional force acting on the coin?
(b) If the coin slides off the turntable when it is located more than 16.0 cm from
the axis of rotation, what is the coefficient of static friction between the coin and
the turntable?
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Picture the Problem The static friction
force fs is responsible for keeping the
coin from sliding on the turntable. F
Using Newton’s 2" Jaw of motion, the
definition of the period of the coin’s

]

motion, and the definition of the X— = — 1 -
maximum static friction force, we can TI7T77777Y7777
find the magnitude of the friction force J F.=mg
and the value of the coefficient of static | &
friction for the two surfaces.
(a) Appl ZF = ma to the coin: v?
PPy 7= | D Fo=f=m=— (1)
r
and
> F,=F,-mg=0
If T is the period of the coin’s v 27r
motion, its speed is given by: T
Substitute for v in equation (1) and . 4z*mr
simplify to obtain: S
Substitute numerical values and f= 411:2((0.100 kg) 0.10 m)
evaluate f: - (1.00s)
=| 040N
(b) Determine F, from the y equation: Fn=mg
If the coin is on the verge of sliding 4z’mr
atr=16 cm, f;=f;maux. Solve for s s = fs _ T 4r7*r
in terms of f; e and Fy: ©F, mg gT’
Substitute numerical values and 4n? (O. 160 m)
) o, = 5 >=|0.644
evaluate s (9.81m/s%)(1.00s)

86 e« A 0.25-kg tether ball is attached to a vertical pole by a 1.2-m cord.
Assume the radius of the ball is negligible. If the ball moves in a horizontal circle

with the cord making an angle of 20° with the vertical, (a) what is the tension in
the cord? (b) What is the speed of the ball?



Picture the Problem The forces acting
on the tetherball are shown
superimposed on a pictorial
representation of the motion. The
horizontal component of Tis the
centripetal force. Applying Newton’s
2" law of motion and solving the
resulting equations will yield both the
tension in the cord and the speed of the
ball.

(a) Apply > F =md to the
tetherball:

Solve the y equation for T:

Substitute numerical values and
evaluate T:

(b) Eliminate T between the force
equations and solve for v to obtain:

Note from the diagram that:

Substitute for r in the expression
for v to obtain:

Substitute numerical values and
evaluate v:

87 )
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L-20°

5

2

SF, =Tsin20° = m—
-

and
D F,=Tcos20°-mg =0

_ Mg
cos20°

0.25kg)(9.81m/s?)
cos20°

V =,/rgtan20°

T=( =|2.6N

r = Lsin20°

V= \/gLsin 20°tan 20°

v =1/(9.81m/s)(1.2m)sin20° tan 20°
=/ 1.2m/s

A small bead with a mass of 100 g (Figure 5-75) slides without

friction along a semicircular wire with a radius of 10 cm that rotates about a
vertical axis at a rate of 2.0 revolutions per second. Find the value of & for which
the bead will remain stationary relative to the rotating wire.
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Picture the Problem The semicircular
wire of radius 10 cm limits the motion
of the bead in the same manner as
would a 10-cm string attached to the
bead and fixed at the center of the
semicircle. The horizontal component
of the normal force the wire exerts on
the bead is the centripetal force. The
application of Newton’s 2" law, the
definition of the speed of the bead in its
orbit, and the relationship of the
frequency of a circular motion to its
period will yield the angle at which the
bead will remain stationary relative to
the rotating wire.

Applny’ = Ma to the bead:

Eliminate F, from the force
equations to obtain:

The frequency of the motion is the
reciprocal of its period T. Express
the speed of the bead as a function of
the radius of its path and its period:

Using the diagram, relate r to L and
0:

Substitute for r and v in the
expression for tan&and solve for 6:

Substitute numerical values and
evaluate 9:

SF, = Fnsin9=mVT
ZFy:Fncosﬁ—mg:O

v
tand = —

81m/s)(0.50s)

52°

6 =cos™ {(9

47*(0.10m)
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Centripetal Force

88 - A car speeds along the curved exit ramp of a freeway. The radius of
the curve is 80.0 m. A 70.0-kg passenger holds the armrest of the car door with a
220-N force in order to keep from sliding across the front seat of the car. (Assume
the exit ramp is not banked and ignore friction with the car seat.) What is the car’s
speed?

Picture the Problem The force F the y
passenger exerts on the armrest of the A
car door is the radial force required to Fn
maintain the passenger’s speed around passenger
the curve and is related to that speed F
through Newton’s 2" law of motion. - ) X
vFg =mg

Appl F, =ma, to the forces 2

pply > F,=ma, FemY oyo [TF
acting on the passenger: r m
Substitute numerical values and

| b (80.0m)(220N) _ 591

evaluate v: 70.0kg

89 - [SSM] The radius of curvature of the track at the top of a loop-the-
loop on a roller-coaster ride is 12.0 m. At the top of the loop, the force that the
seat exerts on a passenger of mass m is 0.40mg. How fast is the roller-coaster car
moving as it moves through the highest point of the loop.

—_
Vv

Picture the Problem The speed of the
roller coaster is embedded in the
expression for its radial acceleration.
The radial acceleration is determined
by the net radial force acting on the
passenger. We can use Newton’s 2nd
law to relate the net force on the

passenger to the speed of the roller
coaster.

Appl F ...=ma_. to th ’ [ 2
pply Z radial radial LO U1C mg + ()40mg = mv—:>v = 140g1’
passenger: r
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Substitute numerical values and y= \/ (1 _40)(9. 81m/s> )(1 2.0m)
evaluate v:

=|12.8m/s

90 e« On arunway of a decommissioned airport, a 2000-kg car travels at a
constant speed of 100 km/h. At 100-km/h the air drag on the car is 2000 N.
Assume that rolling friction is negligible. (a) What is the force of static friction
exerted on the car by the surface, and what is the minimum coefficient of static
friction necessary for the car to sustain this speed? (b) The car continues to travel
at 100 km/h, but now along a path with radius of curvature r. For what value of r
will the angle between the static frictional force vector and the velocity vector
equal 45.0°, and for what value of r will it equal 83.0°? (¢) What is the minimum
coefficient of static friction necessary for the car to hold this last radius of
curvature without skidding? Comment on whether you think it is realistic to
expect the car to take this curve.

Picture the Problem (a) We can apply Newton’s 2™ law to the car to find the
force of static friction exerted on the car by the surface and use the definition of
the coefficient of static friction to find the minimum coefficient of static friction
necessary for the car to sustain its speed. In Part (b), we can again apply Newton’s
ond law, this time in both tangential and radial form, to find the values of r for the
given angles.

(a) The forces acting on the car as it Jy
moves at a constant speed of 100 km/h A F
are shown in the pictorial

. . — Q)
representation to the right. F é}\
5977._5 X

Ymg

Apply Zf‘zmiito the car to Z‘Fx=fs—Fd =0 (1)
obtain: and

> F,=F,-mg=0 2)
Solving equation (1) for f yields: f.=F,=| 2000 N
Use the definition of the coefficient u o = f.
of static friction to obtain: mF,
From equation (2), F, = mg ; hence: uo = A

mg



Substitute numerical values and
evaluate g . -

(b) The horizontal forces acting on the
car (shown as a top view) as it travels
clockwise along a path of radius of
curvature  are shown in the diagram
to the right.

Apply Z il = Ma_ to the car to

obtain:

Appling Z Fiangential = M, to the car
yields:

Divide equation (1) by equation (2):

Substitute numerical values and
evaluate r for 8 = 45.0°:

Substitute numerical values and
valuate r for 8= 83.0°:

(c) The minimum coefficient of
static friction necessary for the car to
hold this last radius of curvature
without skidding is given by:
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_ 2000 N _
Hamin = 2000 kg)(0.81m/s?)

0.102

2

f sin@=m’ (1)
r
f,cosd—-F, =0
or
f.cosd=F, (2)
mv? mv?
tan@ = =r=
rk, F,tand
km 10°'m 1h Y
(2000kg)| 100~
o h  km 3600s
N (2000 N)tan 45.0°
=|772m
km 10°'m 1h Y
(2000 kg) 100—rn
o km 3600
N (2000 N)tan 83.0°
=9474m=|94.7m
v2
f ' m— v2
lus,mm == =
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Substitute numerical values and

evaluate g .-

Although 0.830 is a rather high value for a coefficient of static friction, it is
possible that a car could safely navigate this curve at the given speed.

91 =  Suppose you ride a bicycle in a 20-m-radius circle on a horizontal
surface. The resultant force exerted by the surface on the bicycle (normal force
plus frictional force) makes an angle of 15° with the vertical. (a) What is your
speed? (b) If the frictional force on the bicycle is half its maximum possible

3
(1001“"-10 o

h  km 3600s

lus, min

=| 0.830

value, what is the coefficient of static friction?

Picture the Problem The forces acting
on the bicycle are shown in the force
diagram. The static friction force is the
centripetal force exerted by the surface
on the bicycle that allows it to move in
a circular path. F, + ﬁ makes an angle

¢ with the vertical direction. The
application of Newton’s 2™ law will
allow us to relate this angle to the speed
of the bicycle and the coefficient of

static friction.

(a) Apply ZF = ma to the bicycle:

Relate F,, and f; to &:

Solving for v yields:

(94.74m)(9.81m/s” )
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Substitute numerical values and y= \/ (20 m)(9.81m/s2 )tan15°
evaluate v:
=|73m/s
(b) Relate fs to Ms and Fn: fs = % fs,max = %/Jsmg
Solve for x4 and substitute for f; C2f, 2v?
to obtain: ol mg  rg
Substitute numerical values and 3 2(7.25m/s) _[05a
evaluate 11 A= om)o.81mis?) ~ =

92 e« Anairplane is flying in a horizontal circle at a speed of 480 km/h. The
plane is banked for this turn, its wings tilted at an angle of 40° from the horizontal
(Figure 5-76). Assume that a lift force acting perpendicular to the wings acts on
the aircraft as it moves through the air. What is the radius of the circle in which
the plane is flying?

Picture the Problem The diagram
shows the forces acting on the plane
as it flies in a horizontal circle of
radius r. We can apply Newton’s 2™
law to the plane and eliminate the lift
force in order to obtain an expression
for r as a function of v and 6.

Apply ZF = Ma to the plane: ZFx _F, sinf= m
r

and
Z F, =Fjcosf-mg =0

Eliminate Fj;s between these v? 2

. . tanf =—=r =
equations to obtain: rg gtan@
Substitute numerical values and km 1h 2
evaluate r: 4 h X 36005

=|2.2km

(9.81m/s? Jtan40°
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93 e An automobile club plans to race a 750-kg car at the local
racetrack. The car needs to be able to travel around several 160-m-radius curves at
90 km/h. What should the banking angle of the curves be so that the force of the
pavement on the tires of the car is in the normal direction? (Hint: What does this
requirement tell you about the frictional force?)

Picture the Problem Under the
conditions described in the problem
statement, the only forces acting on the
car are the normal force exerted by the
road and the gravitational force exerted
by the earth. The horizontal component
of the normal force is the centripetal
force. The application of Newton’s 2™
law will allow us to express € in terms
ofv, r,and g. I

2
ZFX = FnsinG:mV—
i

Apply ZF = Ma to the car:

and
sz =F cosd-mg =0

Eliminate F, from the force equations V2 A
. tand = — =6 = tan
to obtain: r rg

Substitute numerical values and 9
—X

evaluate & 0 — tan” [ h  3600s
(160m)(9.81m/s)

km 1h )2
—[ 22°

94 e« A curve of radius 150 m is banked at an angle of 10°. An 800-kg car
negotiates the curve at 85 km/h without skidding. Neglect the effects of air drag
and rolling friction. Find (a) the normal force exerted by the pavement on the
tires, (b) the frictional force exerted by the pavement on the tires, (C) the
minimum coefficient of static friction between the pavement and the tires.



Applications of Newton’s Laws 471

Picture the Problem Both the
normal force and the static friction
force contribute to the centripetal
force in the situation described in this
problem. We can apply Newton’s 2™
law to relate f, and F, and then solve
these equations simultaneously to
determine each of these quantities.

— _ - . 2
(2) Apply > F =mi to the car: S F, = F,sinf+ f,cos6 = m>—
r
and
Y F,=F,cos@— f,sinf—mg =0

Multiply the X equation by siné and . : :
UHPLY T T EqUAtion by STl f.sin@cos@+F,sin’ @ =m —sin@

the y equation by cosé to obtain: r
and
F, cos’ @ — f.sin@cos@—mgcosd =0

2

Add these equations to eliminate f: Voo
d ’ F, —mgcosf = m—sind
r

2

Solve for Fy: F. =mgcosd+ mv—sin 2l
r

VZ

= m(g cost9+Tsin9]

Substitute numerical values and evaluate F:
2
[85 k;n * 3610}; j
F, = (800kg)| (9.81m/s” )cos10°+ 5/_§in10° |=8.245kN
150m
=| 8.3kN

(b) Solve the y equation for f: f= F cos@—-mg

sin @
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Substitute numerical values and evaluate fg:

(8.245kN)cos10° - (800kg)(9.81m/s? )

f = . ~1.565kN =| 1.6 kN
sin10°
(C) Express fis min in terms of f; and _
ﬂs,min - =
F.: F.
Substitute numerical values and o = 1.565 kN _[0.19
evaluate /4 min: v 8.245kN '

95 e« On another occasion, the car in Problem 94 negotiates the curve at

38 km/h. Neglect the effects of air drag and rolling friction. Find (a) the normal
force exerted on the tires by the pavement, and (b) the frictional force exerted on
the tires by the pavement.

Picture the Problem Both the
normal force and the static friction
force contribute to the centripetal
force in the situation described in
this problem. We can apply
Newton’s 2™ law to relate f, and F,
and then solve these equations
simultaneously to determine each of
these quantities.

a_ - X 2
(@) Apply ZF_matothecar. Z:Fx:Fn sin0+fscos¢9:mv—
r

and
ZFy =F, cos@— f.sin@-mg =0

Multiply the X tion by sin@ and 2
HEHpLy the £ equatiofl by Sine an fssinﬁcosﬁ—i-FnsinZH:mV—sinH

the y equation by cosé: r
F, cos’@ - f sinfcos@®—mgcosd =0

2

Add these equations to eliminate f: Voo
a ’ F, —mgcosf =m—sind
r
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2

Solving for F;, yields: F —mgcosd+ mv—sinH
r

VZ
= m(g cost9+Tsin9]

Substitute numerical values and evaluate F,;:

2
[ saan,)
F, = (800kg) (9.81m/s? )cos10°+ 5/ $in10° | = 7.83kN
150m
—[7.8kN
(b) Solve the y equation for f: f - F, cos@—-mg _ F.cot- mg

sin@ sin@

Substitute numerical values and evaluate f,:

(800kg)(9.81m/s?)
sin10°

The negative sign tells us that f; points upward along the inclined plane rather

than as shown in the force diagram.

f. =(7.83kN)cot10°— —[—0.78 kN

96 ee» Asa civil engineer intern during one of your summers in college, you
are asked to design a curved section of roadway that meets the following
conditions: With ice on the road, when the coefficient of static friction between
the road and rubber is 0.080, a car at rest must not slide into the ditch and a car
traveling less than 60 km/h must not skid to the outside of the curve. Neglect the
effects of air drag and rolling friction. What is the minimum radius of curvature of
the curve and at what angle should the road be banked?

Picture the Problem The free-body diagram to the left is for the car at rest. The
static friction force up the incline balances the downward component of the car’s
weight and prevents it from sliding. In the free-body diagram to the right, the
static friction force points in the opposite direction as the tendency of the moving
car is to slide toward the outside of the curve.
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Apply ZF = Ma to the car that is at

rest:

Substitute fs = fsmax = 4&Fn in
equation (2) and solve for the
maximum allowable value of 6:

Substitute numerical values and
evaluate 0:

Apply Zf‘ = Ma to the car that is

moving with speed V:

Substitute fs = 14F, in equations (3)
and (4) and simplify to obtain:

Substitute numerical values in
equations (5) and (6) to obtain:

Eliminate F, between these equations
and solve forr:

sz =F cos@+ f sind-mg=0 (1)

and
D F, =F,sind— f cosd =0 ()

6 = tan”" (u,)

6 = tan"'(0.080) = 4.57° = | 4.6°

D> F, =F,cosf—fsind-mg=0 (3)
2

v
D> F =F,sinf+ fcosf=m— (4

r
F, (cosé? — M, sin 9) =mg (5)
and
V2

F (1.Cos@ +sin@)= m=— (6)
0.9904F, =mg
and

V2
0.1595F = mT

V2

r=—
0.1610g
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evaluate r: 6OTX 3600s
r= 2o =[0.18km
0.1610(9.81m/s”)

Substitute numerical values and ( km 1h jz

97 eee A curve of radius 30 m is banked so that a 950-kg car traveling at
40.0 km/h can round it even if the road is so icy that the coefficient of static
friction is approximately zero. You are commissioned to tell the local police the
range of speeds at which a car can travel around this curve without skidding.
Neglect the effects of air drag and rolling friction. If the coefficient of static
friction between the road and the tires is 0.300, what is the range of speeds you
tell them?

Picture the Problem The free-body diagram to the left is for the car rounding the
curve at the minimum (not sliding down the incline) speed. The static friction
force up the incline balances the downward component of the car’s weight and
prevents it from sliding. In the free-body diagram to the right, the static friction
force points in the opposite direction as the tendency of the car moving with the
maximum safe speed is to slide toward the outside of the curve. Application of
Newton’s 2™ law and the simultaneous solution of the force equations will yield
Vmin and Viax.

Vi
z F.=F sinfd =m-—™t
around the curve when the coefficient r

of static friction is zero: and
z F, = F,cosf—-mg =0

Apply ZF = Ma to a car traveling

Divide the first of these equations by V2 [Vz j

—_ — -1
the second to obtain: tan 6 = . =6 =tan -
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Substitute numerical values and evaluate the banking angle:

40—x
h

—

0 =tan"

km 103m><
km 3600s

2

lh

=22.76°

Apply Zﬁ’ = Ma to the car traveling

around the curve at minimum speed:

Substitute f =f =uF, in

s,max

the force equations and simplify
to obtain:

Evaluate these equations for
60 =22.876 and 15 = 0.300:

Eliminate F, between these two
equations and solve for v_, :

Substitute numerical values and
evaluate v__ :

Apply ZF = Ma to the car traveling

around the curve at maximum speed:

Substitute f, = f . =uF, inthe

n

force equations and simplify to
obtain:

(30m)(9.81m/s )

2

ZFX =F sin@ - f cosf = m Ymin
r

and
ZFy =F cos@+ f sinfd-mg =0

2

F.(sin@— u, cosf)= meTi“

and
F.(cos@ + 1, sin@)=mg

2

0.1102F,=mmn and 1.038F, = mg
r

v_. =./0.106rg

v, =1/0.106(30m)(9.81m/s? )
= 5.6 m/s ~ 20 km/h

2

ZFX =F, sin@+ f cosd = mv"%

and
ZFy =F cos@ — f sind —mg =0

2

Fn(/us cosd + siné?): me%

and
F.(cos@— u sin@)=mg
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Evaluate these equations for Vﬁl N
6 =22.76° and s = 0.300: 0.6635F, = mT

and
0.8061F, =0.8061mg

Eliminate F, between these two Vo =+/0.8231rg
equations and solve for Vpgy:

Substitute numerical values and y_ = \/(0.823 1)(30m)(9.81m/sz)

evaluate Viax: =16m/s = 56 km/h

You should tell them that the safe range of speeds is| 20 km/m < v <56 km/h |.

Euler’s Method

98 ¢ You are riding in a hot air balloon when you throw a baseball straight
down with an initial speed of 35.0 km/h. The baseball falls with a terminal speed
of 150 km/h. Assuming air drag is proportional to the speed squared, use Euler’s
method (spreadsheet) to estimate the speed of the ball after 10.0 s. What is the
uncertainty in this estimate? You drop a second baseball, this one released from
rest. How long does it take for it to reach 99 percent of its terminal speed? How
far does it fall during this time?

Picture the Problem The free-body
diagram shows the forces acting on the
baseball sometime after it has been
thrown downward but before it has
reached its terminal speed. In order to
use Euler’s method, we’ll need to
determine how the acceleration of the
ball varies with its speed. We can do

this by applying Newton’s 2™ law to A
the ball and using its terminal speed to F,=mgj
express the constant in the acceleration Y
equation in terms of the ball’s terminal y

speed. We can then use v,,, =V, +a,At
to find the speed of the ball at any

given time.
obtain: dt  dt m
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When the ball reaches its terminal
speed, its acceleration is zero:

Substitute in equation (1) to obtain:

Express the position of the ball to

obtain;

Letting a, be the acceleration of the
ball at time t,, express its speed when

t=t+1:

O:g—vi:>B:g2
m m v
ﬂ—g l_ﬁ
dt v
n+1= n—i_anrl—l_Vn At
2

Vi, =V, +a,At
2

where a, = g( —V—gj and At is an
v

t

arbitrarily small interval

of time.

A spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
Al10 B9+3$BS§1 t+ At
% %
B10 | B9+0.5*(C9+C10)*$B$1 X =X + vn+12+vn At
C10 C9+D9*$BS§1 Vn+1 = Vnt @pAt
D10 | $B$4*(1-C1072/$B$5"2) ( VZJ
a,=g91-—+>
Vt
A B C D
1 At= 0.5 s
2 Xo= 10 m
3 Vo= | 9.722 m/s
4 ao= | 9.81 m/s’
5 Vi= | 41.67 m/s
6
7 t X v a
8 (s) (m) (m/s) (m/s°)
9 0.0 0 9.7 9.28
10 0.5 6 14.4 8.64
11 1.0 14 18.7 7.84
12 1.5 25 22.6 6.92
28 9.5 317 41.3 0.17
29 10.0 337 41.4 0.13
30 10.5 358 41.5 0.10
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38 14.5 524 41.6 0.01
39 15.0 545 41.7 0.01
40 15.5 566 41.7 0.01
41 16.0 587 41.7 0.01
42 16.5 608 41.7 0.00

From the table we can see that the speed of the ball after 10 s is approximately

41.4m/s. | We can estimate the uncertainty in this result by halving At and

recalculating the speed of the ball at t = 10 s. Doing so yields V(10 s) = 41.3 m/s,

a difference of about

0.02%.

The following graph shows the velocity of the ball thrown straight down as a

function of time.

45

Ball Thrown Straight Down

40 -
35

30

25
20
15 1

Vv (m/s)

10

10
t(s)

15

20

Reset At to 0.5 s and set Vo = 0. Ninety-nine percent of 41.67 m/s is approximately

41.3 m/s. Note that the ball will reach this speed in about

distance it travels in this time is about | 322 m.

10.5s

and that the

The following graph shows the

distance traveled by the ball dropped from rest as a function of time.
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Ball Dropped From Rest

400
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99 e+ [SSM] You throw a baseball straight up with an initial speed of
150 km/h. The ball’s terminal speed when falling is also 150 km/h. (a) Use
Euler’s method (spreadsheet) to estimate its height 3.50 s after release.

(b) What is the maximum height it reaches? (c) How long after release
does it reach its maximum height? (d) How much later does it return to
the ground? (e) Is the time the ball spends on the way up less than, the
same as, or greater than the time it spends on the way down?

Picture the Problem The free-body
diagram shows the forces acting on the
baseball after it has left your hand. In
order to use Euler’s method, we’ll need
to determine how the acceleration of
the ball varies with its speed. We can
do this by applying Newton’s 2" law to
the baseball. We can then wuse
V,, =V, +a,At and X ,, =X, +V,Atto

find the speed and position of the ball.

dv
—bvjv]-mg = -

where |v| =V for the upward part of the

flight of the ball and |v| = —v for the
downward part of the flight.

Apply Z F, =ma, to the baseball:
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Solve for dv/dt to obtain: dv b
X g-Lp
dt m
Under terminal speed conditions 0=—g+2v* and b _ %
(v = -v,): m v,
Substituting for b/m yields: dv g V|V|
— =-g-SVV=-g| 1+
dt : h
Letting a, be the acceleration of the You =Y, +%(Vn +V, )At
ball at time t,, express its position and
and speed when t =t,+ 1: V. =V +aAt
n+l 7 Fn n

V, |V
where a, = —g(l + MJ and At is an
\'

t

arbitrarily small interval of time.

A spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
DIl D10+$B$6 t+ At
E10 41.7 Vo
Ell E10-$B$4* V,, =V, +a,At
(1+E10*ABS(E10)/($B$52))*$B$6
F10 0 Yo
F11 F10+0.5*(E10+E11)*$B$6 You = Yo +1(V, +V, )AL
G10 0 Yo
Gl1 $E$10*D11-0.5*$B$4*D11/2 vt—1gt?
A| B | C D E F G
=19.81 | m/s’

4

5 | ve |41.7 | m/s
6 |At=]0.1 |s
7
8
9

t \' y Yno drag
10 0.00 41.70 0.00 0.00
11 0.10 39.74 4.07 4.12
12 0.20 37.87 7.95 8.14
40 3.00 3.01 60.13 81.00

41 3.10 2.03 60.39 82.18
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42 3.20 1.05 60.54 83.26
43 3.30 0.07 60.60 84.25
44 3.40 —0.91 60.55 85.14
45 3.50 —-1.89 60.41 85.93
46 3.60 -2.87 60.17 86.62
78 6.80 -28.34 6.26 56.98
79 6.90 —28.86 341 54.44
80 7.00 —29.37 0.49 51.80
81 7.10 -29.87 -2.47 49.06

(8) When t =3.50 s, the height of the ball is about| 60.4m |.

(b) The maximum height reached by the ball is| 60.6m |.

(c) The time the ball takes to reach its maximum height is about | 3.0s |.

(d) The ball hits the ground at aboutt=| 7.0s

(e) Because the time the ball takes to reach its maximum height is less than half
its time of flight, the time the ball spends on the way up less than the time it
spends on the way down

100 = A 0.80-kg block on a horizontal frictionless surface is held against a
massless spring, compressing it 30 cm. The force constant of the spring is

50 N/m. The block is released and the spring pushes it 30 cm. Use Euler’s method
(spreadsheet) with At = 0.005 s to estimate the time it takes for the spring to push
the block the 30 cm. How fast is the block moving at this time? What is the
uncertainty in this speed?

Picture the Problem The pictorial representation shows the block in its initial
position against the compressed spring, later as the spring accelerates it to the
right, and finally when it has reached its maximum speed at X = 0.30 m. In order
to use Euler’s method, we’ll need to determine how the acceleration of the block
varies with its position. We can do this by applying Newton’s 2™ law to the box.
We can then use v, =V, +a,At and X, =X +V,Atto find the speed and

position of the block.
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=

=
I[]

x=0 x=03m
Yo~ 8 Vn V= Vinax
ag="*%m (0.3 m) ay=km (0.3 -x,) ar=0

Apply z F, = ma, to the block: k(0.30m -X, ) =ma,

Solve for a: . _5(0 30m— x )
n_m . n

Express the position and speed of X
the block when t =t,+ 1:

ne = X, VAL

and
V., =V, +aAt

where a, =£(O.30m—xn) and At is
m

an arbitrarily small interval of time.

A spreadsheet solution is shown below. The formulas used to calculate the
quantities in the columns are as follows:

Cell Formula/Content Algebraic Form
Al10 A9+$B§1 t+ At
B10 B9+C10*$B$1 X, +V, At
C10 C9+D9*$B$1 v, +a,At
D10 | ($B$4/$B$5)*(0.30-B10) £(0.30—x”)
m
A B C D

1 At= | 0.005 s

2 Xo= |0 m

3 Vo= | 0 m/s

4 k=150 N/m

5 m=0.80 kg

6

7 t X Vv a

8 ) (m) (ws) | (s’

9 0.000 0.00 0.00 18.75

10 0.005 0.00 0.09 18.72

11 0.010 0.00 0.19 18.69

12 0.015 0.00 0.28 18.63

45 0.180 0.25 241 2.85
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46 0.185 0.27 242 2.10
47 0.190 0.28 243 1.34
48 0.195 0.29 2.44 0.58
49 0.200 0.30 244 -0.19

From the table we can see that it took about| 0.200s |for the spring to push the

block 30 cm and that it was traveling about | 2.44m/s |at that time. We can

estimate the uncertainty in this result by halving At and recalculating the speed of
the ball att =10 s. Doing so yields v(0.20 s) = 2.41 m/s, a difference of about

1.2%.

Finding the Center of Mass

101 - Three point masses of 2.0 kg each are located on the X axis. One is at
the origin, another at X = 0.20 m, and another at x = 0.50 m. Find the center of
mass of the system.

Picture the Problem We can use its definition to find the center of mass of this
system.

The X coordinate of the center of =X +myx, +m;x,

cm

mass is given by: m,+m,+m,

Substitute numerical values and evaluate Xcp:

_ (2.0kg)(0)+(2.0kg)(0.20m)+ (2.0kg)(0.50m) _ .
cm 20kg+20kg+20kg o

Because the point masses all lie Y., = 0and the center of mass of this
along the X axis:

system of particles is at| (0.23m,0) |.

102 - On a weekend archeological dig, you discover an old club-ax that
consists of a symmetrical 8.0-kg stone attached to the end of a uniform 2.5-kg
stick. You measure the dimensions of the club-ax as shown in Figure 5-77. How
far is the center of mass of the club-ax from the handle end of the club-ax?

Picture the Problem Let the left end of the handle be the origin of our coordinate
system. We can disassemble the club-ax, find the center of mass of each piece,
and then use these coordinates and the masses of the handle and stone to find the
center of mass of the club-ax.
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Express the center of mass of the « - Mot Xemstick T Matone Xemstone
. cm

handle plus stone system: My + M.

Assume that the stone is drilled and Xem.siick = 49cm

the stick passes through it. Use
symmetry considerations to locate
the center of mass of the stick:

Use symmetry considerations to X e sione = 39 €M

locate the center of mass of the

stone:

Substitute numerical values and w = (2.5kg)(49cm)+(8.0kg)(89cm)

evaluate Xem: o 2.5kg+8.0kg
=|79cm

103 - Three balls A, B, and C, with masses of 3.0 kg, 1.0 kg, and 1.0 kg,
respectively, are connected by massless rods, as shown in Figure 5-78. What are
the coordinates of the center of mass of this system?

Picture the Problem We can treat each of balls as though they are point objects
and apply the definition of the center of mass to find (Xem, Yem)-

The x coordinate of the center of y = MaX, Xy meXe

cm

mass is given by: m, +mg+mg;

Substitute numerical values and evaluate X.p:

. - (3.0kg)(2.0m)+(1.0kg)(1.0m)+(1.0kg)(3.0m) _ S om
o 3.0kg+1.0kg+1.0kg -

The y coordinate of the center of _my,tmpy,+meyc

cm

mass is given by: m, +mg+m;

Substitute numerical values and evaluate Yp,:

_ (3.0kg)(2.0m)+(1.0kg)(1.0m)+(1.0kg)(0) lam
em 3.0kg+1.0kg+1.0kg o

The center of mass of this system of balls is at | (2.0m,1.4m) |.
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Alternate Solution Using Vectors

Picture the Problem We can use the vector expression for the center of mass to
find (Xem, Yem)-

The vector expression for the Zm,;r,
— - - 1
center of mass is: Mr,, = %miri or r,, = Y (1)
where

A A
- A

rcm = xCl’l’ll + yij + szk

The position vectors for the objects 7, = (2,0f +2.0)+ Ol@)m,
located at A, B, and C are: P, = f+}+ ok ,

and

7. = (3.00 +0j + 0k Jm

Substitute numerical values in (1) and simplify to obtain:

, 1 s e o
= 3.0ke)(2.08 +2.0j + 0k Jm + (1.0 kg)|i + j+ 0k
o = (3.0kg +1.0kg +1.0 kg)[( g)( LReBTE )m+( g)(l it )m

+(1.0kg)(3.08 +0 + 04 )m]
=(2.0m)i +(1.4m)j + 0k

The center of mass of this system of balls is at (2.0 m,1.4m, 0) .

104 - By symmetry, locate the center of mass of an equilateral triangle with
edges of length a. The triangle has one vertex on the y axis and the others at
(-a/2, 0) and (+a/2, 0).

Picture the Problem The figure shows
an equilateral triangle with its y-axis
vertex above the X axis. The bisectors
of the vertex angles are also shown. We
can find X coordinate of the center-of-
mass by inspection and the y coordinate
using trigonometry.

From symmetry considerations: X =0
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Express the trigonometric tan30° = Fem
relationship between a/2, 30°, and Ja

yClTl :

Solve for y_, and simplify to obtain: Y. =3atan30°=0.29a

The center of mass of an equilateral triangle oriented as shown above is at
(0,0.29a) |.

105 e [SSM] Find the center of mass of the uniform sheet of plywood in
Figure 5-79. Consider this as a system of effectively two sheets, letting one have a
"negative mass” to account for the cutout. Thus, one is a square sheet of 3.0-m
edge length and mass m; and the second is a rectangular sheet measuring

1.0 m x 2.0 m with a mass of —m,. Let the coordinate origin be at the lower left
corner of the sheet.

Picture the Problem Let the subscript 1 refer to the 3.0-m by 3.0-m sheet of
plywood before the 2.0-m by 1.0-m piece has been cut from it. Let the subscript 2
refer to 2.0-m by 1.0-m piece that has been removed and let o be the area density
of the sheet. We can find the center-of-mass of these two regions; treating the
missing region as though it had negative mass, and then finding the center-of-
mass of the U-shaped region by applying its definition.

Express the coordinates of the center « = M Xemy = My Xep 0

cm

of mass of the sheet of plywood: m,—m,

and
ml ycm,l - m2 ycm,2
m, —m,

Yom =

Use symmetry to find Xem,1, Yem,15 Xy =1.5m, y  ; =1.5m
Xcm,2, and ycm,2: and

Xemo = 1.5m, Y, =2.0m

Determine m; and m;: m, = oA =90 kg

and

m, = oA, =20kg
Substitute numerical values and « - (9o kg)(1.5m)—-(20kg)(1.5kg)
evaluate X : em 9okg-20kg

=1.5m
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evaluate y__: o 9o0kg—-20kg
=1.4m

Substitute numerical values and y (9o kg)(1.5m)—-(20kg)(2.0m)

The center of mass of the U-shaped sheet of plywood is at (1 Sm,1.4 m) .

106 <= A can in the shape of a symmetrical cylinder with mass M and height
H is filled with water. The initial mass of the water is M, the same mass as the
can. A small hole is punched in the bottom of the can, and the water drains out.
(a) If the height of the water in the can is X, what is the height of the center of
mass of the can plus the water remaining in the can? (b) What is the minimum
height of the center of mass as the water drains out?

Picture the Problem We can use its definition to find the center of mass of the
can plus water. By setting the derivative of this function equal to zero, we can
find the value of X that corresponds to the minimum height of the center of mass
of the water as it drains out and then use this extreme value to express the
minimum height of the center of mass.

(a) Using its definition, express the H X
location of the center of mass of the M ? +Mm 5

. X = 1
can + water: em M +m (D)
Let the cross-sectional area of the M m _ X\
cup be A and use the definition of P A& H

density to relate the mass m of water
remaining in the can at any given
time to its depth x:

Substitute for m in equation (1) and simplify to obtain:
2
M H RV R 14| X
X = 2 H 2 = i —H

M+ M 2
H

T
H
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(b) Differentiate x_ with respect to X and set the derivative equal to zero for

oo e ) T
g D N

Simplify this expression to obtain a x \? X
quadratic equation in X/H: (ﬁj + 2(ﬁj -1=0
Solving for x/H yields: X = H (\/5 _ l)z 0.414H

where we’ve kept the positive solution
because a negative value for X/H would
make no sense.

Use your graphing calculator to convince yourself that the graph of X, as a

function of X is concave upward at X ~ 0.414H and that, therefore, the minimum
value of X, occurs atX ~ 0.414H.

Evaluate x_, at X =H (\/E - 1) to obtain: H(W/2 =1 :
1+
el (V2-1) T HV2 -1
1+
H
= HW2-1)

107 = [SSM] Two identical uniform rods each of length L are glued
together so that the angle at the joint is 90°. Determine the location of the center
of mass (in terms of L) of this configuration relative to the origin taken to be at
the joint. (Hint: You do not need the mass of the rods (why?), but you should start
by assuming a mass m and see that it cancels out.)
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Picture the Problem A pictorial y
representation of the system is shown L
to the right. The X and y coordinates |
of the two rods are ity ,
(xl,cm’yl,cm): (O’ %L) : ///
and Piem = 4L |+
| /
(xZ,cm’yZ,cm): (%L’O ) : L7
We can use the definition of the | o ()
center of mass to find the coordinates L ’
(xcm’ycm)' ‘y ,,,,,,,, +,,,4n2,,,+,x
Xy =31 L
The X coordinate of the center of X M+ X, m,
mass is given by: Xom = m+m
1 2
Substitute numerical values and (0)m, +(1 L)m,
. me =
evaluate X¢m: m, +m,
or, because m; =m, =m,
0)m + (L L)m
Ot
m-+m
The y coordinate of the center of ViemMy + Voo,
mass is given by: Yem =
g y m +m,
Substitute numerical values and o = (L L)m, +(0)m,
evaluate Yem: em m, +m,
or, because m; =m, =m,
L L)m +(0)m
L Lo,
m-+m

The center of mass of this system is located at | (3 L, 1 L)

Remarks: Note that the center of mass is located at a distanced =1 Lcos45°
from the vertex on the axis of symmetry bisecting the two arms.

108 ee= Repeat the analysis of Problem 107 with a general angle & at the joint
instead of 90°. Does your answer agree with the specific 90°- angle answer in
Problem 107 if you set #equal to 90°? Does your answer give plausible results
for angles of zero and 180°?



Picture the Problem The pictorial
representation of the system is shown
to the right. The X and y coordinates of
the two rods are

(xl,cm’ yl,cm) = (0’ %L)
and
(xz,cm ’ y2,cm) = (%L’O )

We can use the definition of the center
of mass to find the coordinates

(xcm > y cm )

The X coordinate of the center of
mass is given by:

Substitute numerical values and
evaluate X¢m:

X

cm
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xl.cm x2,cm LCOSG L

_ xl,cmml + x2,cmm2

m +m,

B (% Lcos 0)m1 + (% L)m2

cm

m,+m,

or, because m; =m, =m,

The y coordinate of the center of
mass is given by:

Substitute numerical values and
evaluate Yen:

Yem

(L Lcos@)m + (L L)m
m+m
=1L(1+cosd)

cm

_ yl,cmml + y2,cmm2

m +m,

B (% Lsin 0)m1 + (O)m2

cm

m,+m,
or, because m; =m, =m,
L
_ (L Lsin@)m +(0)m _1lsing
o m+m ‘

The center of mass of this system of rods is located at

For 8 =0°:

(L L(1+cos@),+ Lsin@)= (L L(1+c0s0°),+ Lsin 0°)=

For 8 =90°:

(L L(1+cos@), L Lsin@) |.

(3L.0)

as expected.

(L L(1+cos@), L Lsin @)= (& L(1+ c0s90°),+ Lsin 90°)

-[GLiD)

in agreement with Problem 107.
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For & =180°:

(L L(1+cos@),+ Lsin@)= (L L(1+cos180°),+ Lsin180°)=| (0,0) | as expected.

Remarks: Note that the center of mass is located at a distance
d =1/2L/1+cos@ from the vertex on an axis that makes an angle

4 = tan” sin @
1+cos@

jlWith the x axis.

*Finding the Center of Mass by Integration

109 e Show that the center of mass of a uniform semicircular disk
of radius R is at a point 4R/(3 ) from the center of the circle.

Picture the Problem A semicircular Yy
disk and a surface element of area dA is
shown in the diagram. Because the disk
is a continuous object, we’ll use

Mr,, = j rdmand symmetry to find its

center of mass.

Express the coordinates of the center X, =0 by symmetry.
of mass of the semicircular disk: J‘ yo dA 1
ycm - M ( )
Express y as a function of r and &: y=rsiné
Express dA in terms of r and & dA=rd@dr
Express M as a function of r and 6 M =0A, 4 =3 0mR’
Substitute i tion (1) and T
ubstitute in equation (1) an a”rzsinedﬁdr
evaluate Yen: 208,
Yo, =—2 = I rdr
M M ¢
= 2_0- R3 = i R
3M RY/4
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110 <=  Find the location of the center of mass of a nonuniform rod 0.40 m in
length if its density varies linearly from 1.00 g/cm at one end to 5.00 g/cm at the
other end. Specify the center-of-mass location relative to the less-massive end of
the rod.

Picture the Problem The pictorial representation summarizes the information
we’re given about the non-uniform rod. We can use the definition of the center of
mass for a continuous object to find the center of mass of the non-uniform rod.

dx

——————————————————— X, cm
0 40
u(x)=1.00 g/cm? w(x)=5.00 g/em?
The X coordinate of the center of J' xdm
mass of the non-uniform rod is given X, =
by: J.dm

or, because dm = u(x )dx,
Ix,u x )dx
res

By symmetry: Yem =0

(1)

Use the given information regarding ,u(x) =1.00 g/cm + (0,10 g/cm’ )x
the linear variation in the density of

the non-uniform rod to express z4X):

Substituting for z4(X) in equation (1 40¢m
vields: #00 In equation (1) [ x[1.00 grem +(0.10 g/em? ) e
xcm = 4?)0
[11-00 grem +(0.10 g/em® e
0
Evaluate these integrals to obtain: x,, =24cm

The coordinates of the center of mass of the non-uniform rod are| (24 cm, 0) |.

111 ee=  You have a thin uniform wire bent into part of a circle that is described
by a radius R and angle &, (see Figure 5-80). Show that the location of its center
of mass is on the X axis and located a distance x_, = (R sin &m)/&m, where G, is
expressed in radians. Double check by showing that this answer gives the
physically expected limit for &, = 180°. Verify that your answer gives you the
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result in the text (in the subsection Finding the Center of Mass by Integration) for

the special case of 8, = 90°.

Picture the Problem We can use the
definition of the center of mass for a
continuous object to find the center
of mass of the non-uniform rod.

The X coordinate of the center of
mass of the thin uniform wire is
given by:

By symmetry:

Because x = Rcosé, equation (1)
becomes:

Evaluate these integrals to obtain:

B jxdm

Fom = Jdm

or, because dm = Ads = ARd@6,

0, 0,
xXARdGO xd@

] ]

8, 8,

Xom =, = (1)
[Ardo a6
0, =0,
Yem =0
6, 6.,
IRcosﬁdO R J‘cos0d¢9
X =g ="
(a6 [a6
-0, b
_ Rsin@,
xcm - 0

m

The coordinates of the center of mass of the thin uniform wire are

6,

m

(Rsina

—OJ |
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=180° = 1ans : Rsi
For 8 =180° = 7 radians X - sinz _ @as expected.
V4
For 6 =90°= % radians : Rsin(ﬂ) R
X, = _\2) 2R as expected.
T T
2

112 <= A long, thin wire of length L has a density given by A — Bx, where A
and B are positive constants and X is the distance from the more massive end.

(a) A condition for this problem to be realistic is that A > BL. Explain why.

(b) Determine X, in terms of L, A, and B. Does your answer makes sense if

B = 0?7 Explain.

Picture the Problem The pictorial representation summarizes the information
we’re given about the long thin wire. We can use the definition of the center of
mass for a continuous object to find the center of mass of the non-uniform rod.

dx
EEEEPPPEPE ESEEEEEEERREPE -
0 X L
A(0)=4 Alx)=4-Bx ML)=A-BL

(a) At the end, the density has to be positive, so A—BL>0 or A>BL.

(b) The x coordinate of the center of J‘ xdm
mass of the non-uniform rod is given X, = (1)
by: Jdm
By symmetry: Ve =0
The density of the long thin wire dm = (A - Bx)dx
decreases with distance according to:
Substituting for dm in equation (1) L
yields: I x(A~ Bx)dx
_0
Xem = L
j (A - Bx)dx
0
Evaluate these integrals to obtain: { 2BL
v L. 34
cm 2 1 B ﬂ
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The coordinates of the center of mass of the long thin wire are

Because 4> BL, both the numerator and denominator are positive. Because the
denominator is always larger than the numerator, it follows that x,, <1 L. This

makes physical sense because the mass of the rod decreases with distance and so
most of it is to the left of the midpoint of the rod. Note also that if B = 0, our

result predicts a uniform density (of A) and the center of mass is at the midpoint
of the rod (as it should be).

Motion of the Center of Mass

113 - [SSM] Two 3.0-kg particles have velocities
9, =(2.0m/s) i+(3.0m/s) j and @, = (4.0 m/s) i —(6.0 m/s) j. Find the
velocity of the center of mass of the system.

Picture the Problem The velocity of the center of mass of a system of particles is
related to the total momentum of the system through P = z my, =My_ .

Use the expression for the total
momentum of a system to relate the
velocity of the center of mass of the
two-particle system to the momenta
of the individual particles:

—

2 My my +m.v
_ i _ My, +M,v,

cm
M m, +m,

Substitute numerical values and evaluate v__ :

o (.0kg)|(2.0mis)i+(3.0ms)j |+ (3.0ke)|(4.0mis)i — (6.0 mis)j]

o 3.0kg+3.0kg
=| (3.0m/s)i —(1.5m/s)j

114 - A 1500-kg car is moving westward with a speed of 20.0 m/s, and a
3000-kg truck is traveling east with a speed of 16.0 m/s. Find the velocity of the
center of mass of the car-truck system.
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Picture the Problem Choose a coordinate system in which east is the positive X
direction and use the relationship P = z m.y, = My__ to determine the velocity of

the center of mass of the system.

Use the expression for the total z m.v, R .
- - my, +myy,

momentum of a system to relate the v, =— =

velocity of the center of mass of the M M, + M

two-vehicle system to the momenta

of the individual vehicles:

Express the velocity of the truck: v, =(16.0m/s)i

Express the velocity of the car: v, =(-20.0 m/s)f

Substitute numerical values and evaluate v__ :

ﬁcm:(30001<g)(16.0m/s)i+(15001<g)(—20.0m/s)i: (4.00m)s) 7
3000kg +1500kg

115 - Aforce F = 12N i is applied to the 3.0-kg ball in Figure 5-78 in
Problem 103. (No forces act on the other two balls.) What is the acceleration of
the center of mass of the three-ball system?

Picture the Problem The acceleration of the center of mass of the ball is

related to the net external force through Newton’s 2™ law: If’net,ext =Ma_, .
Use Newton’s 2" law to express - Fnet’ext
the acceleration of the ball: Pom = M
Substitute numerical values and . (12 N)zA
aq acm =
evaluate @, : 3.0kg+1.0kg+1.0kg
= (2.4 m/s’ )IA

116 +» A block of mass m is attached to a string and suspended inside an
otherwise empty box of mass M. The box rests on a scale that measures the
system’s weight. (a) If the string breaks, does the reading on the scale change?
Explain your reasoning. (b) Assume that the string breaks and the mass m falls
with constant acceleration g. Find the magnitude and direction of the acceleration
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of the center of mass of the box—block system. (¢) Using the result from (b),
determine the reading on the scale while m is in free-fall.

Picture the Problem Choose a coordinate system in which upward is the positive
y direction. We can use Newton’s 2" law, F = Ma__,to find the acceleration

net,ext cm?

of the center of mass of this two-body system.

(a) Yes; initially the scale reads (M + m)g. While the block is in free fall, the
reading is Mg.

(b) Using Newton’s 2™ law, express . Fron

the acceleration of the center of mass Pem m
of the system:

tot

Substitute to obtain: ~ mg -
acm = - .]
M +m
(c) Use Newton’s 2" law to express Fretex = (M + m)g -(M +ma,_,

the net force acting on the scale
while the block is falling:

Substitute for a.m and simplify to
obtain:

mg
Free = (M ~(M
net,ext ( +m)g ( +m)(M +m}

as expected, given our answer to ().

117 = [SSM] The bottom end of a massless, vertical spring of force
constant K rests on a scale and the top end is attached to a massless cup, as in
Figure 5-81. Place a ball of mass my, gently into the cup and ease it down into an
equilibrium position where it sits at rest in the cup. (&) Draw the separate free-
body diagrams for the ball and the spring. (b) Show that in this situation, the
spring compression d is given by d = m,g/K. (C) What is the scale reading under
these conditions?

Picture the Problem (b) We can apply Newton’s 2™ law to the ball to find an
expression for the spring’s compression when the ball is at rest in the cup. (C) The
scale reading is the force exerted by the spring on the scale and can be found
from the application of Newton’s 2" law to the cup (considered as part of the

spring).
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(a) The free-body diagrams for the ball and spring follow. Note that, because the
ball has been eased down into the cup, both its speed and acceleration are zero.

A

by spring
on ball

()

F by Earth
on ball

(b) Letting the upward direction be
the positive y direction, apply

D F, =ma, to the ball when it is at
rest in the cup and the spring has
been compressed a distance d:

Because F,, ., =kd and
on ball
Fby Earth — mbg :
on ball

(c) Apply z F, =ma, to the spring:

Because F ... =Fy o > adding

on ball on spring

equations (1) and (2) yields:

Solving for F, . yields:

on spring

118 [X1)

by scale
on spring

Consider the cup as

part of the spring.
F by ball
on spring
by spring Fby Earth — mba‘y
on ball on ball

or, because ay = 0,

I:by spring Fby Earth — 0 (1)
on ball on ball

kd-m,g=0 = d =

Fby scale I:by ball mspringay (2)
on spring on spring

or, because ay = 0,

Fby scale I:by ball 0
on spring on spring

Fby scale Fby Earth — 0
on spring on ball

Fby scale Fby Barth — mbg
on spring on ball

In the Atwood’s machine in Figure 5-82 the string passes over a fixed

cylinder of mass m.. The cylinder does not rotate. Instead, the string slides on its
frictionless surface. (a) Find the acceleration of the center of mass of the two-
block-cylinder-string system. (b) Use Newton’s second law for systems to find the
force F exerted by the support. (C) Find the tension T in the string connecting the

blocks and show that F = m.g + 2T.
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Picture the Problem Assume that the object whose mass is m; is moving
downward and take that direction to be the positive direction. We’ll use
Newton’s 2™ law for a system of particles to relate the acceleration of the center
of mass to the acceleration of the individual particles.

(a) Relate the acceleration of the Ma, =ma, +m,a, +ma,
center of mass to m;, m;, m. and
their accelerations:

Because m; and m; have a common 4 g M-—m
acceleration @ and a. = 0: o m +m, +m,
From Problem 4-84 we have:: - m, —m,
m, +m,
Substitute to obtain: a m, —m, m,—m,
olm +m, m, +m, +m,
2
— (ml — mz)
(m, +m, )(m, +m, +m,)

(b) Use Newton’s 2™ law for a F-Mg=-Ma,_,
system of particles to obtain: where M =m; + m, + m. and F is
positive upwards.

Solve for F, substitute for a.ny _ 2
F =Mg-Ma_ =Mg _Mg

from Part (@), and simplify to m, +m,
obtain:
{ 4m,m, }
=||——+m_|g
m, +m,
(c) From Problem 4-84 we have: T_ 2m,m,
m, +m,

Substitute in our result from Part (b) and simplify to obtain:

F :{22m+mz+mc}g :{2I+mc}g = 2T +m.g
m, +m, g

119 eee  Starting with the equilibrium situation in Problem 117, the whole
system (scale spring, cup, and ball) is now subjected to an upward acceleration of
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magnitude a (for example, in an elevator). Repeat the free-body diagrams and
calculations in Problem 117.

Picture the Problem Because the whole system is accelerating upward, the net
upward force acting on the system must be upward. Because the spring is
massless, the two forces acting on it remain equal and are oppositely directed. (b)
We can apply Newton’s 2" law to the ball to find an expression for the spring’s
compression under the given conditions. (C) The scale reading, as in Problem 117,
is the force the scale exerts on the spring and can be found from the application of
Newton’s 2™ law to the spring.

(a) The free-body diagrams for the ball and spring follow. Note that, because the

system is accelerating upward, F, . >F ., whereasF .. =F .,
on ball on ball on spring on spring
A
. F by scale
l;z sbp’;rﬁng on spring
@D X Consider the cup as
part of the spring.
F by Earth
on ball
Fby ball
v on spring
(b) Letting the upward direction be Foy spring = Py gartn = My, (1)
ol . . on ball on ball
the positive y direction, apply
z Fy =ma, to the ball when the
spring is compressed a distance d':
Because F. .. =k'd,ay=a, and m. (g+a
e T @ -m,g=ma=g = WO
Fby Earth — mbg :
on ball
(C) Apply z I:y = may to the Spring: I:by scale Fby ball = 0 (2)
on spring on spring
Because Fby spring = Fby ball and by scale Fby Earth — mba
on ball on spring on spring on ball

ay = a, adding equations (1) and (2)
yields:
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Solving for Fby wale yields: Fby e =M a+ Fby Earth
on spring on spring on ball
Substitute for ng Earh and simplify to Foy e =| M, (a+g)

on spring

obtain:

Remarks: Note that the two forces acting on the spring and the upward force
acting on the ball, while still equal, are larger (because the system is
accelerating upward) than they were in Problem 117.

General Problems

120 - In designing your new house in California, you are prepared for it to
withstand a maximum horizontal acceleration of 0.50g. What is the minimum
coefficient of static friction between the floor and your prized Tuscan vase so that
the vase does not slip on the floor under these conditions?

Picture the Problem The forces acting ¥

on the vase are the gravitational force AF

F, =mgexerted by the earth, the !

normal force Fn exerted by the floor,

and the static friction forceiS , also x_- - =) _ _ .
exerted by the floor. We can apply 1

Newton’s 2" law to find the minimum TTTTTET 777777
coefficient of static friction that will

prevent the vase from slipping. YF, =mg
Apply > F = mai to the vase to LF =f =ma, (1)
obtain: and

2F,=F, -mg=0

Relate the static friction force fs to fs =t min F
the minimum coefficient of static or, because F, = mg,
friction f4 min that will prevent the f=u, Mg

vase from slipping:

Substituting for f; in equation (1)
yields:

X

a
lus,minmg = max = Ius,min = E

Because a, =0.50g : _0.50g

s,min 0.50
8
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A 4.5-kg block slides down an inclined plane that makes an angle of

28° with the horizontal. Starting from rest, the block slides a distance of 2.4 m in
5.2 s. Find the coefficient of kinetic friction between the block and plane.

Picture the Problem The forces that
act on the block as it slides down the
incline are shown on the free-body
diagram to the right. The acceleration of
the block can be determined from the
distance-and-time information given in
the problem. The application of
Newton’s 2™ law to the block will lead
to an expression for the coefficient of
kinetic friction as a function of the
block’s acceleration and the angle of
the incline.

Apply ZF = Ma to the block:

Set fx = 14F, in equation (1) to obtain:

Solve equation (2) for F, and
substitute in equation (3) to obtain:

Solving for g yields:
Using a constant-acceleration

equation, relate the distance the
block slides to its sliding time:

Substitute for ay in equation (4)
to obtain:

D F.=mgsind—f =ma (1)

and

D F,=F,—mgcosd=0  (2)

mgsin@— u F, =ma, 3)

mgsin @ — 1, Mg cosd =ma,
gsind—a

Hy gcosd (4)

Ax =V, At+1a (At)
or, because Vox = 0,

Ax=1a (At =a, = 28x

(aty
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Substitute numerical values and evaluate z4:

(9.81m/s” )sin 28° - 224 n;)
= B2 g5
(9.81m/s )cos28°

122 = You plan to fly a model airplane of mass 0.400 kg that is attached to a
horizontal string. The plane will travel in a horizontal circle of radius 5.70 m.
(Assume the weight of the plane is balanced by the upward "lift” force of the air
on the wings of the plane.) The plane will make 1.20 revolutions every 4.00 s.
() Find the speed at which you must fly the plane. (b) Find the force exerted on
your hand as you hold the string (assume the string is massless).

Picture the Problem The force exerted
on your hand as you hold the string is
the reaction force to the tension F in
the string and, hence, has the same
magnitude. The speed of the plane can
be calculated from the data concerning
the radius of its path and the time it
takes to make one revolution. The
application of Newton’s 2™ law will
give us the tension F in the string.

(a) Express the speed of the airplane 271
in terms of the circumference of the T
circle in which it is flying and its

period:

Substitute numerical values and B 271(5.70m) B
=————>=110.7m/s
evaluate v: 4.00s

1.20rev

(b) Applyz F, = ma, to the model ( 2ar
airplane: Vv _
r r T’

Substitute numerical values and Fo 47°(0.400kg )(5.70 m)

evaluate F: 4.00s \
(1.20 revj

=| 8.10N
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123 e Your moving company is to load a crate of books on a truck
with the help of some planks that slope upward at 30.0°. The mass of the crate is
100 kg, and the coefficient of sliding friction between it and the planks is 0.500.

You and your employees push horizontally with a combined net force F . Once
the crate has started to move, how large must F be in order to keep the crate
moving at constant speed?

Picture the Problem The free-body

diagram shows the forces acting on the y
crate of books. The kinetic friction F, x
force opposes the motion of the crate _ g
up the incline. Because the crate is 91/>
moving at constant speed in a straight >N X/ F
line, its acceleration is zero. We can Jx 0\
determine F by applying Newton’s 2™ /\\
law to the crate, substituting for fy, ng
eliminating the normal force, and
solving for the required force.
ApplyZF = ma to the crate, with Z F, =Fcos@d—f, —mgsind=0
both ay and ay equal to zero, to the and
crate: ZFy=Fn—Fsin6’—mgcost9=0
Because f, = u4 F,, the X-equation Fcos@—pu F, —mgsind=0 (1)
becomes:
Solving the y-equation for F, yields: F, =Fsind+mgcosd
Substitute for F, in equation (1) and = mg(sin @ + 4, cos)
solve for F to obtain: cos@— u, sind
Substitute numerical values and evaluate F:
2 : o o
e (100kg)(9.81m/s* )(sin30° +(0.500)c0s30.0°) _ WETEN

¢0s30.0°—(0.500)sin30°

124 --  Three forces act on an object in static equilibrium (Figure 5-83). (a) If
Fi, F», and F5 represent the magnitudes of the forces acting on the object, show

that Fy/sin 63 = Fa/sin 6 = F3/sin @),. (b) Show thatF* = F; + F;} + 2F,F, cos 6, .
[

Picture the Problem The fact that the object is in static equilibrium under the
influence of the three forces means thatI:“1 + F, + F, = 0. Drawing the
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corresponding force triangle will allow us to relate the forces to the angles
between them through the law of sines and the law of cosines.

(a) Using the fact that the object is in static equilibrium, redraw the force diagram
connecting the forces head-to-tail:

Appling the law of sines to the F B F, _ F
triangle yields: sin(;z — 623) sin(ﬂ — (913) sin(ﬂ — 6’12)
Use the trigonometric identity F F, F,

sin(z— @) = sina to obtain:

sin@,; sin6,; sinf,

(b) Appling the law of cosines to F’=F’+F -2FF, cos(;r — 923)
the triangle yields:
Use the trigonometric identity F2=| F} +F? +2F,F, cosf,,

cos(7— a) = —cosa to obtain:

125 e+ Inacarnival ride, you sit on a seat in a compartment that rotates with
constant speed in a vertical circle of radius 5.0 m. The ride is designed so your
head always points toward the center of the circle. (a) If the ride completes one
full circle in 2.0 s, find the direction and magnitude of your acceleration. (b) Find
the slowest rate of rotation (in other words, the longest time T, to complete one
full circle) if the seat belt is to exert no force on you at the top of the ride.

Picture the Problem We can calculate your acceleration from your speed that, in
turn, is a function of the period of the motion. To determine the longest period of
the motion, we focus our attention on the situation at the very top of the ride when
the seat belt is exerting no force on you. We can use Newton’s 2™ law to relate
the period of the motion to your acceleration and speed.



(a) Because the motion is at constant
speed, your acceleration is entirely
radial and is given by:

Express your speed as a function of
the radius of the circle and the period
of the motion:

Substitute for v in the expression for
a. to obtain:

Substitute numerical values and
evaluate a.:

(b) Apply ZF = ma to yourself

when you are at the top of the
circular path and the seat belt is
exerting no force on you:

Express the period of your motion as
a function of the radius of the circle:

Substituting for v and simplifying
yields:

The slowest rate of rotation is the
reciprocal of Tp,:
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Substitute numerical values and 2
luate 71 T = (2B 5png1 808
cvaluate 1, 27\ 5.0m min

~| 13 rev/min

Remarks: The rider is "weightless” under the conditions described in Part

(b).

126 e A flat-topped toy cart moves on frictionless wheels, pulled by a rope
under tension T. The mass of the cart is m;. A load of mass m; rests on top of the
cart with the coefficient of static friction g between the cart and the load. The cart
is pulled up a ramp that is inclined at angle & above the horizontal. The rope is
parallel to the ramp. What is the maximum tension T that can be applied without
causing the load to slip?

Picture the Problem The pictorial
representation to the right shows the
cart and its load on the inclined plane.
The load will not slip provided its
maximum acceleration is not exceeded.
We can find that maximum acceleration
by applying Newton’s 2™ law to the
load. We can then apply Newton’s 2"
law to the cart-plus-load system to
determine the tension in the rope when
the system is experiencing its
maximum acceleration.

/‘ﬁ

Draw the free-body diagram for the
cart and its load:

\
(m1 +m2)g

Apply z F, =ma, to the cart plus T —(m, +m,)gsing = (m, +m, )ax,max
its load: (1)
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Draw the free-body diagram for the
load of mass m, on top of the cart:

Apply Zﬁ‘ =ma to the load on top Z Fo=fom —M,gsind=m,a, .

of the cart: and
Z F,=F,,—m,gcosf =0

Because f,

s, max

=uF,,, the x M Fn,2 —m,gsinf = M, 2, ax 2)

equation becomes:

Solving the y equation for F,, yields: F., =m,gcosd

Substitute for Fy,, in equation (2) to 4,m,gcos@—m,gsind=m,a, ..
obtain:

Solving for a_ . and simplifying A max = 9(z, cos@—sin6) 3)
yields:

Substitute for a, . in equation (1) T ={ (m, +m,)g, cosd

and solve for T to obtain:

127 e A sled weighing 200 N that is held in place by static friction, rests on a
15° incline (Figure 5-84). The coefficient of static friction between the sled and
the incline is 0.50. (a) What is the magnitude of the normal force on the sled?

(b) What is the magnitude of the static frictional force on the sled? (c) The sled is
now pulled up the incline at constant speed by a child walking up the incline
ahead of the sled. The child weighs 500 N and pulls on the rope with a constant
force of 100 N. The rope makes an angle of 30° with the incline and has negligible
mass. What is the magnitude of the kinetic frictional force on the sled? (d) What
is the coefficient of kinetic friction between the sled and the incline? () What is
the magnitude of the force exerted on the child by the incline?
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Picture the Problem The free-body
diagram for the sled while it is held
stationary by the static friction force
is shown to the right. We can solve
this problem by repeatedly applying
Newton’s 2™ law under the
conditions specified in each part of

the problem.

(@) Applyz F, =ma, to the sled: F..—mgcosd=0

Solve for Fy ;: F..=mgcosd

Substitute numerical values and F., =(200N)cos15°=| 0.19kN
evaluate Fy

(b) Applyz F, =ma, to the sled: f.—mgsin@=0=f =mgsind
Substitute numerical values and f = (2()() N)sinl 5°=| 52N

evaluate fg:

(c) Draw the free-body diagram for
the sled when it is moving up the
incline at constant speed:

ApplyZFx = 0 to the sled to Fcos30°—m,gsind— f, =0
obtain:

Solving for f, yields: f, = Fcos30°—m,gsiné
Substitute numerical values and f, = (1 00 N)cos 30° - (200 N)sin 15°

evaluate f, : =3484N=|35N




(d) The coefficient of kinetic friction
between the sled and the incline is
given by:

Apply z F, = 0 to the sled to obtain:

Solve for F,;:

Substituting for F, in equation (1)
yields:

Substitute numerical values and
evaluate g,

(e) Draw the free body diagram
for the child:

Express the net force F, exerted on
the child by the incline:

Noting that the child is stationary,
applyZF = Ma to the child:

Solve the x equation for f; max and
the y equation for F:
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fi

e =—— (D

n,1

F.. +Fsin30°-mgcos@d=0

F.. =mgcos®—Fsin30°

_ fk
H m,g cosé — F sin30°
) 34.84N
4 =200 N)cos15°— (100 N)sin 30°

=|0.24

(1

z F, = fom — Fc0s30°—m,gsin15°

=0

and
ZFY =F,-m,gsin15°-Fsin30°=0

f

=Fcos30°+m,gsinl5°

s,max

and
F,, =m,gsin15°+ Fsin30°
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Substitute numerical values and Somax = (500N)cos30°+ (100N )sin15°
evaluate Fy and F,»: =458 9N
and
F,, =(100N)sin15°+ (500N )sin 30°
=2759N
Substitute numerical values in F = \/ (275.9N) +(458.9N)’

equation (1) and evaluate F:
=] 0.54kN

128 <= In 1976, Gerard O’Neill proposed that large space stations be built for
human habitation in orbit around Earth and the moon. Because prolonged free-fall
has adverse medical effects, he proposed making the stations in the form of long
cylinders and spinning them around the cylinder axis to provide the inhabitants
with the sensation of gravity. One such O’Neill colony is to be built 5.0 miles
long, with a diameter of 0.60 mi. A worker on the inside of the colony would
experience a sense of "gravity, " because he would be in an accelerated frame of
reference due to the rotation. (&) Show that the “acceleration of gravity”
experienced by the worker in the O’Neill colony is equal to his centripetal
acceleration. (Hint: Consider someone "looking in” from outside the colony.)

(b) If we assume that the space station is composed of several decks that are at
varying distances (radii) from the axis of rotation, show that the "acceleration of
gravity” becomes weaker the closer the worker gets to the axis. (C) How many
revolutions per minute would this space station have to make to give an
"acceleration of gravity” of 9.8 m/s” at the outermost edge of the station?

Picture the Problem Let v represent the speed of rotation of the station, and r the
distance from the center of the station. Because the O’Neill colony is,
presumably, in deep space, the only acceleration one would experience in it would
be that due to its rotation.

(a) The acceleration of anyone who is standing inside the station is a = v*/r . This
acceleration is directed toward the axis of rotation. If someone inside the station
drops an apple, the apple will not have any forces acting on it once released, but
will move along a straight line at constant speed. However, from the point of
view of our observer inside the station, if he views himself as unmoving, the apple
is perceived to have an acceleration of v¥/r directed away from the axis of rotation
(a "centrifugal" acceleration).

(b) Each deck must rotate the central 2rr
axis with the same period T. Relate v T
the speed of a person on a particular

deck to his/her distance r from the

center:



Applications of Newton’s Laws 513

Express the "acceleration of gravity" v:  Ax?

r
perceived by someone a distance r de=""="p 2 result that tells us

r
from the center: that the "acceleration of gravity”

decreases as r decreases.

(c) Relate the desired acceleration to Azr AT
the radius of Babylon 5 and its a=-— T=
. T a
period:
Substitute numerical values and ,  1.609km
evaluate T: 4 (0.30 mi x mlj
T= 5
9.8m/s
=445~ (.74 min
Take the reciprocal of this time to T =1 4rev/min

find the number of revolutions per
minute Babylon 5 has to make in
order to provide this "earth-like"”
acceleration:

129 e A child of mass m slides down a slide inclined at 30° in time t;. The
coefficient of kinetic friction between her and the slide is z4. She finds that if she
sits on a small sled (also of mass m) with frictionless runners, she slides down the
same slide in time 1¢,. Find 4.

Picture the Problem The following free-body diagram shows the forces acting
on the child as she slides down the incline. We’ll first use Newton’s 2™ law to
derive an expression for z4 in terms of her acceleration and then use Newton’s 2™
law to find her acceleration when riding the frictionless cart. Using a constant-
acceleration equation, we’ll relate these two accelerations to her descent times and
solve for her acceleration when sliding. Finally, we can use this acceleration in
the expression for .
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Apply ZF = Ma to the child as she

slides down the incline:

Because f, = y F,, the X-equation

can be written:

Solving the y-equation for F, yields:

Substitute for F, in equation (1) to
obtain:

Solving for g4 yields:

Apply > F, =ma, to the child as

she rides the frictionless cart down
the incline and solve for her
acceleration a, , :

Letting s represent the distance she
slides down the incline, use a
constant-acceleration equation to
relate her sliding times to her
accelerations and distance traveled
down the slide :

Equate these expressions, substitute
t, = 3 t; and solve for a; x:

Substitute for a; x in equation (2) to
obtain:

Substitute numerical values and
evaluate g4

130 [X1)

given by 7 = xi+vyj=(Rsinwt)i+(Rcosat) ], whereR=4.0 mand =275 .

D F,=mgsind—f, =ma,,
and
sz =F, —-mgcosd =0

mgsin® - F, =ma,, (1)

F, =mgcosé

mgsin — Mg cosd =ma, ,

a1 X
’ )

=tan30°————
He gcos30°

mgsin30°=ma,,

and
a,, =gsin30°

- 1 2 -
s =Vt +5a,,t wherev,, =0
and

- 1 2 -
s =V,,t, +3a,,t; wherev,, =0

a,, =1a,, =50sin30°
1gsin30°

4, =tan30°—- 9smoT _ 3 tan30°
gcos30°

4, =3tan30°=| 0.43

The position of a particle of mass m = 0.80 kg as a function of time is
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(a) Show that the path of this particle is a circle of radius R, with its center at the
origin of the Xy plane. (b) Compute the velocity vector. Show that vy/vy = —y/X.

(c) Compute the acceleration vector and show that it is in directed toward the
origin and has the magnitude v*/R. (d) Find the magnitude and direction of the net
force acting on the particle.

Picture the Problem The path of the particle is a circle if r is constant. Once we
have shown that it is, we can calculate its value from its components and
determine the particle’s velocity and acceleration by differentiation. The direction
of the net force acting on the particle can be determined from the direction of its
acceleration.

(a) Express the magnitude of 7 in r=.r¥+r y2
terms of its components:

Evaluate r with r, = Rsin@? and r= \/[Rsin wt]’ +[Rcoswt]’

r, = Reosot: =\/R2(sin2a)t+cos2 a)t)=R

This result shows that the path of the particle is a circle of radius R centered at the
origin.
(b) Differentiate ¥ with respect to time to obtain v :

2

V =dr/dt =[Rwcoswt]i +[- Rosin wt] ]

=| [(8.0z cos27t)m/s]| T —[(8.07sin 277t)m/s]]

. \' .
Express the ratio Ye : X = M =—cotwt (1)
v, v, —8.0zsinwt
. R t
Express the ratio Y : Y —& =—cotot (2)
X X Rsinwt
From equations (1) and (2) we have: v, Y
Vy X

(c) Differentiate v with respect to time to obtain a :

dt

a=

[(— 167 m/s* )sin a)t] i+ [(— 167 m/s* )cos ® t]}'
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Factor —4.07%/s*> from a to obtain:

a= (—4.07[2 s_z)[(4.0 sin@t)i +(4.0 cosa)t)}']= (— 4.07° s );7

Because a is in the opposite direction from F, it is directed toward the center of the
circle in which the particle is traveling.

2 2 2
Find the ratio V—: a:V—:M: 1677% m/s>
R R 4.0m
(d) Apply 3" F = mi to the particle: F.. =ma=(0.80kg)167> m/s*)
=|137°N

Because the direction of F._ is the same as that of @, F. is toward the center of

net

the circle.

131 eee You are on an amusement park ride with your back against
the wall of a spinning vertical cylinder. The floor falls away and you are held up
by static friction. Assume your mass is 75 kg. (a) Draw a free-body diagram of
yourself. (b) Use this diagram with Newton’s laws to determine the force of
friction on you. (C) If the radius of the cylinder is 4.0 m and the coefficient of
static friction between you and the wall is 0.55. What is the minimum number of
revolutions per minute necessary to prevent you from sliding down the wall?
Does this answer hold only for you? Will other, more massive, patrons fall
downward? Explain.

Picture the Problem The application of Newton’s 2™ law and the definition of
the maximum static friction force will be used to determine the period T of the
motion. The reciprocal of the period will give us the minimum number of
revolutions required per unit time to hold you in place.

(@) The free-body diagram showing JI’

the forces acting on you when you

are being held in place by the fi
maximum static friction force is '
shown to the right. ’ F



(b) Apply 217“ = Mma to yourself

while you are held in place by
friction:

Solve equation (2) for f__

s, max

Substitute numerical values and
evaluate f :

s, max

(c) The number of revolutions per
minute N is the reciprocal of the
period in minutes:

Because f

s,max

= u F_, equation (1)

can be written:

Your speed is related to the period of
your motion:

Substitute for v in equation (4) to
obtain:

Solving for T yields:

Substitute for T in equation (3) to
obtain:

Substitute numerical values and
evaluate N:
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2
SF, =F, = mVT (1)
and
D F, = fi —Mg =0 )
fs,max = mg

Fo = (75kg)(0.81m/s%)=[0.74 kN

N=— 3)

e TS o= @)
H H r
2rr
v="r
T
2rr ?
mg \T 47’ mr
K, r T
/ r
T=2x ML
g
Ne_ b+ 1 ]9
2 r
2 [0 27V
g
1 9.81m/s?

=— | =0.336Tev/
2721(0.55)(4.0m) v

=| 20 rev/min

Because your mass does not appear in the expression for N, this result holds for all

patrons, regardless of their mass.
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132 ee= An object of mass m; is on a horizontal table. The object is attached to
a 2.5-kg object (my) by a light string that passes over a pulley at the edge of the
table. The object of mass m; dangles 1.5 m above the ground (Figure 5-85). The
string that connects them passes over a frictionless, massless pulley. This system
is released from rest at t = 0 and the 2.5-kg object strikes the ground at t = 0.82 s.
The system is now placed in its initial configuration and a 1.2-kg object is placed
on top of the block of mass m;. Released from rest, the 2.5-kg object now strikes
the ground 1.3 s later. Determine the mass m; and the coefficient of kinetic
friction between the object whose mass is m; and the table.

Picture the Problem The free-body diagrams below show the forces acting on
the objects whose masses are m; and m,. The application of Newton’s 2™ law and
the use of a constant-acceleration equation will allow us to find a relationship
between the coefficient of kinetic friction and m;. The repetition of this procedure
with the additional object on top of the object whose mass is m; will lead us to a
second equation that, when solved simultaneously with the former equation, leads
to a quadratic equation in m;. Finally, its solution will allow us to substitute in an
expression for z4 and determine its value.

y
) .
El,l A 1'2
m,
/i Kk |[m, T, Qo
- < > P —X
m,g
\
|
mlg X
Y
Using a constant-acceleration Ax = v, At+1a, (At)
equation, relate the displacement of or, because Voy = 0
the system in its first configuration 5 2Ax
- ; - Ax=1a (At) =a, =
as a function of its acceleration and 2%x)1 xl ( A t)2
fall time:
i i 2(1.
Substitute m.lmerlcal values and a, = ( 5m2) — 4.4616m/s’
evaluatea,: (0.82 S)
Apply Z F, =ma, to the object m,g-T,=m,a,, =T = mz(g - alx)

whose mass is my:



Substitute numerical values and
evaluate T;:

Apply ZF = Ma to the object

whose mass is m;:

Using fi = wF,, eliminate F,

between the two equations to obtain:

Find the acceleration a_, for the

second run:

T, is given by:

Apply Z F, =ma, to the system
with the 1.2-kg object in place:

Solve equation (1) for zx:

Substitute for g4 in equation (2) and
simplify to obtain the quadratic
equation in m:

Use your graphing calculator or the
quadratic formula to obtain:
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T, =(2.5kg)9.81m/s> —4.4616m/s’)
~13.37IN

ZFX =T, - fk =ma,,

and

ZFy = Fn,l_mlg =0

T, — Mg =ma,, (1)

_ 2Ax  2(1.5m)

_ = =1.775m/s*
a2 (ar)  (1.3s) e

T2 = m2(g _a‘x,2)
= (2.5kg)(9.81rn/s2 —1.775m/sz)
=20.1N

T, — 1 (ml +1.2 kg)g

2

=(m, +1.2kga, , @
T —-ma

U, = 1 17°x,1 (3)
m,g

2.686m? +9.940m, —16.05=0

m, =1215kg=|1.2kg

Substitute numerical values in equation (3) and evaluate z:

_13375N-(1.215kg)(4.4616m/s?)

=1 0.67

H (1.215kg)(9.81m/s?)

133 [11)

Sally claims flying squirrels do not really fly; they jump and use folds

of skin that connect their forelegs and their back legs like a parachute to allow
them to glide from tree to tree. Liz decides to test Sally’s hypothesis by
calculating the terminal speed of a falling outstretched flying squirrel. If the
constant b in the drag force is proportional to the area of the object facing the air
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flow, use the results of Example 5-12 and some assumptions about the size of the
squirrel to estimate its terminal (downward) speed. Is Sally’s claim supported by

Liz’s calculation?

Picture the Problem A free-body

diagram showing the forces acting on y

the squirrel under terminal-speed I\

conditions is shown to the right. .
We’ll assume that b is proportional Fy =bvj
to the squirrel’s frontal area and that

this area is about 0.1 that of a human O

being. Further, we’ll assume that the
mass of a squirrel is about 1.0 kg.
Applying Newton’s 2™ law will lead F, = -mgj
us to an expression for the squirrel’s Y
terminal speed.

Apply 2 F, = ma to the squirrel: F,—F,=ma,

or, because ay =0,

F,-F, =0
Substituting for F4 and F, yields:

¢ bvf—mg=0:>vt=1/% (1)
Assuming that Asquirret = (0.1)Anuman: b= (0_ l)bhuman
From Example 5-12: Biuman = 0.251kg/m
Substitute numerical values in 2
1.0kg)|19.81 m/s

equation (1) and evaluate V: S \/ EO 1))%3(251 kg/m)) ~| 20 m/s

Because the squirrel’s terminal speed is approximately 80 km/h and this value is
less than half that of the skydiver in Example 5-12, Sally’s claim seems to be
supported by Liz’s calculation.

134 e After a parachutist jumps from an airplane (but before he pulls the rip
cord to open his parachute), a downward speed of up to 180 km/h can be reached.
When the parachute is finally opened, the drag force is increased by about a factor
of 10, and this can create a large jolt on the jumper. Suppose this jumper falls at
180 km/h before opening his chute. (a) Determine the parachutist’s acceleration
when the chute is just opened, assuming his mass is 60 kg. (b) If rapid
accelerations greater than 5.0g can harm the structure of the human body, is this a
safe practice?
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Picture the Problem The free-body y
diagram shows the drag force Fd ‘
exerted by the air and the F,=10bv’j

gravitational force ﬁg exerted by the

Earth acting on on the parachutist
just after his chute has opened. We
can apply Newton’s 2™ law to the
parachutist to obtain an expression v N

for his acceleration as a function of
his speed and then evaluate this |
expression for v =v,.

(a) Apply z Fy = may to the 10bV2 - mg = machute open
parachutist immediately after the
chute opens:
Solving fora, pen yields: e o = OBVZ _g 0
m
Before the chute opened: bv’ —mg = ma,
Under terminal speed conditions, ) 3 9
ay =0 and: bvt_mg_()ﬁE—W
Substitute for b/m in equation (1) to 1),
Obtain: achute open = 10 g V_2 A g
t
= 10(%}% -11g
Evaluating . .., forVv =V, yields: (1Y), ]
achute open 10 V_2 Vt -1 g= 99
t

(b) Because this acceleration exceeds the safe acceleration by 4g, this is not a safe
practice.

135 - Find the location of the center of mass of the Earth-moon system
relative to the center of Earth. Is it inside or outside the surface of Earth?

Picture the Problem We can use the definition of the location of the center of
mass of a system of particles to find the location of the center of mass of the
Earth-moon system. The following pictorial representation is, of course, not
shown to scale.
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The center of mass of the Earth- myx
moon system is given by: em =

+m M xcm,M

cm,E

mg +my,

Substitute numerical values and evaluate Xcp:

~ (5.98x10* kg)(0)+(7.36x102 kg)(3.84x10* m)
om 5.98x10* kg +7.36x102 kg -

4.67x10° m

Because the radius of the Earth is 6.37 x 10° m, the center of mass of the Earth-
moon system is inside Earth.

136 -» A circular plate of radius R has a circular hole of radius R/2 cut out of
it (Figure 5-86). Find the center of mass of the plate after the hole has been cut.
(Hint: The plate can be modeled as two disks superimposed, with the hole
modeled as a disk negative mass.)

Picture the Problem By symmetry, X., = 0. Let o be the mass per unit area of
the disk. The mass of the modified disk is the difference between the mass of the
whole disk and the mass that has been removed.

Start with the definition of Yen: Z m.y,
ycm ) M - mhole
— Miisk Yaisk ~ Mhote Ynole
M - Mpore
Express the mass of the complete M=ocA=orr’
disk:
Express the mass of the material r\ 1 .
removed: My =07 = | =307r" =4M
Substitute and simplify to obtain: M(0)-(AM)(=1r) 1
ycm = = gr
M—-1IM
4
137 e An unbalanced baton consists of a 50-cm-long uniform rod of

mass 200 g. At one end there is a 10-cm-diameter uniform solid sphere of mass
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500 g, and at the other end there is a 8.0-cm-diameter uniform solid sphere of
mass 750 g. (The center-to-center distance between the spheres is 59 cm.)

(a) Where, relative to the center of the light sphere, is the center of mass of this
baton? (b) If this baton is tossed straight up (but spinning) so that its initial center
of mass speed is 10.0 m/s, what is the velocity of the center of mass 1.5 s later?
(c) What is the net external force on the baton while in the air? (d) What is the
baton’s acceleration 1.5 s following its release?

Picture the Problem The pictorial representation summarizes the information
concerning the unbalanced baton and shows a convenient choice for a coordinate
system.

y,em

I m, =500¢g m,=750g

| r=50cm r,=4.0cm

|

: | m, =200g ;

|

I | | | |

I | | | |

R fo-mm oo - - -]- - x.om

0 5 30 55 59
() The X coordinate of the center of oMo, X, HmX
mass of the unbalanced baton is em

: m,+m,+m,
given by:

Substitute numerical values and evaluate X.p:

(500 g)(0)+(200 g)(30 cm)+ (750 g)(59 cm)

X, = =] 35cm
500g+200g+750g
(b) Because the center of mass of the v(t)= Vo, ta,t
baton acts like a point particle, use a _
. . or, because ay = —0,
constant-acceleration equation to (t) —y —opf
express is velocity as a function of =%, 8
time:
Substitute numerical values and v(l 5 s) =10.0m/s— (9,81 m/s’ )(l 5 s)
evaluate V(1.5 s): —47m/s
=| 4.7 m/s downward

(¢) The net external force acting on F,.=F,= (m, +m,+m,)g

the baton is the gravitational force
(weight) exerted on it by the earth:
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Substitute numerical values and F._ =(500g+200g+750 g)(9.81 m/sz)
evaluate Fpe:
=|14.2kN

(d) Again, because the center of
mass acts like a point particle, its
acceleration is that of a point particle
in flight near the surface of the earth:

a, =g=|-9.81m/s’

138 <= You are standing at the very rear of a 6.0-m-long, 120-kg raft that is at
rest in a lake with its prow only 0.50 m from the end of the pier (Figure 5-87).
Your mass is 60 kg. Neglect frictional forces between the raft and the water. (a)
How far from the end of the pier is the center of mass of the you-raft system? (b)
You walk to the front of the raft and then stop. How far from the end of the pier is
the center of mass now? (C) When you are at the front of the raft, how far are you
from the end of the pier?

Picture the Problem Let the origin be at the edge of the pier and the positive X
direction be to the right as shown in the pictorial representation immediately

below.
-

. ml’ o
pier

In the following pictorial representation, d is the distance of the end of the raft
from the pier after you have walked to its front. The raft moves to the left as you
move to the right; with the center of mass of the you-raft system remaining fixed
(because Fexinet = 0). The diagram shows the initial (Xy;) and final (Xyr) positions
of yourself as well as the initial (X; m;) and final (X; m ) positions of the center of
mass of the raft both before and after you have walked to the front of the raft.

-

. m, o I_
pier

————————— F--------F--------} xm
0 d d+3.0m d+6.0m
(a) Xem before you walk to the front mXx,, +mx, .,
. . xcm = : —
of the raft is given by: m, +m
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Substitute numerical values and evaluate X__ :

(60kg)(7.5m)+(120kg)(4.5m)

=|55m

o 60 kg +120 kg

(b) Express the distance of the raft
from the pier after you have walked
to the front of the raft:

Express X, before you walk to the
front of the raft:

Express X, after you have walked
to the front of the raft:

Because Fexinet = 0, the center of
mass remains fixed and we can
equate these two expressions for X_

to obtain:

Solving for X, r yields:

From the figure it can be seen
that Xt em,f — Xr_em,i = Xy,f-
Substitute Xy ¢ for X; cm,r— Xt cmi
to obtain:

Substitute numerical values and
evaluate Xy s

Substitute for X, r in equation (1)
to obtain:

(c) x,, after you’ve walked to the
front of the raft is given by:

d =0.50m+x,, (1)

_ myxy,i +m X

rvr_cm,i

cm

m,+m,

_ myxy,f + mrxrfcm,f

cm

m,+m,

myxy’i +m X

rvr_cm,i y vy

=mXx, . +mx

rvr_cm,f

_ m, ( )
xy,f - xy,i - xrﬁcm,f - xrﬁcm,i
mY

. myxy’i
xy,f -
m,+m,

- (60kg)(6.0m)_,
© 60kg+120kg

d=200m+050m=|25m

. - myd +mr(d + xricm)

cm

m,+m,
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Substitute numerical values and evaluate X, :

_ (60kg)(2.50m)+(120kg)(2.50m+3.0m) _ o
m 60 kg +120 kg :

139 <=  An Atwood’s machine that has a frictionless massless pulley and
massless strings has a 2.00-kg object hanging from one side and 4.00-kg object
hanging from the other side. (a) What is the speed of each object 1.50 s after they
are released from rest? (b) At that time, what is the velocity of the center of mass
of the two objects? (C) At that time, what is the acceleration of the center of mass
of the two objects?

Picture the Problem The forces acting Jl’ I\ T,

on the 2.00-kg (m;) and 4.00-kg (m,) AT

objects are shown in the free-body

diagrams to the right. Note that the two i
objects have the same acceleration and m,

common speeds. We can use constant-

acceleration equations and Newton’s | Fg,] =mg B
2" law in the analysis of the motion of y Fy, =m.g
these objects. ;,

(a) Use a constant-acceleration v(t) =v,, +a,t

equation to relate the speed of the or, because Voy = 0,

objects to their common acceleration: v(t) =at (1)
Apply 2 F, = ma to the object T,-mg=ma,

whose mass 1s mMy:

Apply 2 F, = ma to the object m,g-T,=m,a,

whose mass 1s My:

Because T; = T, adding these m,g—-m,g=m,a, +ma,
equations yields:

Solve for ay to obtain: —
y ay — ( m2 ml ] (2)

m, +m,
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Substituting for ay in equation (1) m, —m
- v(t)=| —=— |gt
yields: m, +m,

Substitute numerical values and evaluate »(1.50s):

v(1.505)=| +00ke=2.00ke \(g o1 /2 )1 50) = 4.905 m/s = 4.9Tms
4.00 kg +2.00 kg

(b) The velocity of the center of mass 5 = my, +m,v,

cm

is given by: m, +m,

Substitute numerical values and evaluate v, (1.50s):

v (1.505)= (2.00 kg)(4.905 m/s); +(4.00 kg )(- 4.905 m/s)j _ (-1.64m)s)]

2.00kg +4.00 kg

The velocity of the center of mass is | 1.64 m/s downward.

(c) The acceleration of the center of - ma, +m,a,

cm

mass is given by: m, +m,

Substituting for ay from equation (2) and simplifying yields:

Substitute numerical values and evaluate agy,:

~n
.

2
j (9.81m/s?)j = (~1.09 m/s?)j

cm

_ (4.00kg-2.00kg
4.00kg+2.00 kg

The acceleration of the center of mass is | 1.09 m/s*> downward.
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