Pre Calc II

2.7 (Part 1) Exponent Review WS

Simplify the following leaving answers as exact values. No Calculator. Assume all variables represent non-zero real numbers.

Part 1:

1.
$$a^9 \cdot a^{12}$$

2.
$$(-2x^2y)(-8x^3y^9)$$
 3. $3x^0$ 4. $-2p^0+8z^0$

3.
$$3x^0$$

4.
$$-2p^0 + 8z^0$$

Part 2:

3.
$$(3x)^{-2}$$

4.
$$3^{-1} + 4^{-1}$$

Part 3: Write using only positive exponents.

1.
$$\frac{4^8}{4^2}$$

2.
$$\frac{7^3}{7^{-5}}$$
 3. $\frac{s^2}{s^9}$ 4. $\frac{r^{-8}}{r^{-3}}$

$$3. \quad \frac{s^2}{s^9}$$

4.
$$\frac{r^{-8}}{r^{-3}}$$

Part 4:

1.
$$(3x^2y^5)^2$$

$$2. \left(\frac{2t^4}{u^7}\right)^4$$

3.
$$x^{-4}$$

4.
$$\left(\frac{2}{3}\right)^{-3}$$

Part 5:

1.
$$z^{-4} \cdot z^{-11} \cdot z^{5}$$

2.
$$(2^{-3})^{\frac{1}{2}}$$

2.
$$(2^{-3})^2$$
 3. $x^{-4} \cdot x^6 \cdot x^{-2}$

$$4. \ \frac{p^{-11}q^3}{p^{-5}q^4}$$

Part 6

1.
$$100^{\frac{1}{2}}$$

2.
$$-625^{\frac{3}{4}}$$

$$3. \quad 27^{\frac{-2}{3}}$$

4.
$$-125^{\frac{-2}{3}}$$

Part 7:

1.
$$9^{\frac{1}{6}} \cdot 9^{\frac{1}{3}}$$

$$2. \left(3\frac{3}{4}\right)^2$$

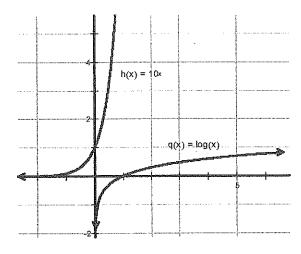
3.
$$\left(a^2b^{\frac{3}{5}}\right)^{10}$$
 4. $\sqrt[12]{64^4}$

4.
$$\sqrt[12]{64^4}$$

Logistic Growth WS

Pre Calc II

Show work on loose leaf.


- 1. The logistic model $P(t) = \frac{1500}{1 + 24e^{-0.75t}}$ models the growth of a population. Use the equation to
 - (a) Find the value of k
 - (b) Find the carrying capacity
 - (c) Find the initial population (let t = 0 and simplify)
 - (d) Determine when the population will reach 50% of its carrying capacity
- 2. Suppose a population is infected with a virus. The number of people infected is modeled by the logistic equation $P(t) = \frac{2000}{1 + 249e^{-0.97t}}$ where p is the population infected (number of people) and t is the number of days since it started spreading.
 - (a) How many people are infected initially? (at time t = 0)
 - (b) Determine the number of people infected after 1 day, two days and five days.
 - (c) Graph the function p(t) and describe its behavior.

- 3. A population of rabbits is given by the formula $P(t) = \frac{1000}{1 + 122e^{-0.7t}}$
 - (a) How many rabbits do they start with?
 - (b) What is the carrying capacity?
 - (d) How many rabbits will there be after 5 days?
 - (d) How long will it take until there are 500 rabbits?
- 4. The number of students infected by measles in a certain school is given by the formula $P(t) = \frac{2000}{1 + 1999e^{-.8t}}$ where t is the number of days after students are first exposed to an infected student.
 - (a) How many students have measles initially?
 - (b) How many will have measles after 3 days?
 - (c) What does the 2000 in the numerator represent?
 - (d) How long will it be until 175 students are infected?
- 5. A 2000 gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank.
 - (a) Use t = 0 and the initial value of P = 6 to solve for A. Use k = 0.225. Keep 4 decimal places.
 - (b) Write your logistic model using the info. found in (a).
 - (c) How long will it take for the guppy population to reach 100? 125?

2.9: (part 1) Review of Rules of Logarithms

Pre Calc II (CP)

EX 1: Given $y = 10^x$, find and graph its inverse: Inverse is y = log(x)

<u>**DEF**</u>: $y = log_{10} x$ (also written y = log(x)) is the logarithm of x to the base 10. iff $10^y = x$.

To write in exponential form, make $\log_{10} x = y$ into $10^y = x$.

Often written as a "common log" without the base. log (x) mean base 10.

EX 2: Evaluate $\log_{10} 10,000 = y$

(REMEMBER $\log_{10} x = y \text{ means } 10^y = x$)

EX 3: Evaluate $log_{10} 0.01 (= y)$

(First write: 0.01 as a power of 10):

EX 4: Solve for x: $\log x = 3.5$

6

Logarithms to Bases Other Than 10

<u>Def:</u> If b > 0 and $b \ne 1$, then (n) is the log of m to base b written $n = \log_b m$ iff $b^n = m$.

The log of a negative number is not defined.

EX 5: Evaluate log₂ 64

EX 6: Evaluate log₉ 27

EX 7: Solve for x: $log_4 32 = x$

EX 8: Solve for x: $log_x 81 = 4$

EX 9: Solve for x: $log_3 x = 5$

Think of these properties of logs just like exponents:

For every base b, $\log_b 1 = 0$

For every base b and any real number n, $\log_b b^n = n$

For any base b and for any positive real numbers x, y, $\log_b(xy) = \log_b x + \log_b y$

For any base b and for any positive real numbers x, y, $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$

For any base b and for any positive real number x, $\log_b(x^n) = n \log_b x$

EX 10: Find $\log_{12} 1$

EX 11: Solve: $\log_6 36 = y$

EX 12: Simplify: $\log_{15} 5 + \log_{15} 45$

EX 13: Rewrite using rule for quotients and solve:

 $\log_2\left(\frac{32}{8}\right)$

8

EX 14: Solve: $\log_3 x = \log_3 15 - \log_3 6$

EX 15: Solve for x:
$$\log_7 5x = 2\log_7 3 + \log_7 5$$

Natural Logs: a log with a base of (e) is a natural log, written $\ln m = \ln m$ is the <u>natural log</u> of m. It is a log with base e.

(ie:
$$\ln m = \log_e m$$
 and $m = e^n$)

EX 16: Solve for x:
$$\ln x = 4$$
 EX 17: Solve: $\ln e^{-7}$

CHANGE OF BASE RULE:
$$\log_b a = \frac{\log_t a}{\log_t b}$$

("log of the number" over "log of the base")

HW: Log WS

2.9 (part 1)

Log WS

Pre Calc II

Find each logarithm without using a calculator

1. log₇49

2. log₂16

3. $\log_2 \frac{1}{5}$

4. $\log_5 \frac{1}{5}$

5. $\log_5 \sqrt{5}$

Solve each equation (Do not use a calculator)

6.
$$\log_5 x = 2$$

7.
$$\log_6 x = 2$$

8.
$$log x=2$$

9.
$$\ln x = 2$$

10.
$$\log_x 121 = 2$$

11.
$$\log_x 64 = 3$$

12.
$$\log_x \left(\frac{1}{2}\right) = -1$$

13.
$$\log_x \sqrt{6} = \frac{1}{2}$$

Find each logarithm. (Do not use a calculator)

15. log 10,000

16. log 0.01

17. log 0.0001

19. log₂32

20. log_264

21. $\log_2 2^{10}$

23. log₃27

24. log₃243

25. log₃88

27.
$$\log_5 \frac{1}{125}$$

28, $\log_5 \sqrt[3]{5}$

29. log₅1

31.
$$\log_4 \frac{1}{64}$$

35.
$$\log_{6} 6$$

36.
$$\log_6 6\sqrt{6}$$

37.
$$\log_6 \sqrt[3]{\frac{1}{6}}$$

2.9 (part 2): Solving Exponential Equations

Pre Calc II (CP)

Take logs of both sides (or ln) to drop the exponent in front of the log, then solve.

EX 1: Solve
$$3^x = 57$$

EX 2: Solve
$$3^{2x} = 50$$

EX 3:
$$3e^{2x} = 48$$

EX 4: Suppose you invest \$5000 in an account at 4% compounded continuously. How long will it take for the money in the account to reach \$6000 if it is not touched?

EX 5: Suppose the half life of a substance is 400 years. If you start today with 2 grams, how long will it take until 1.78 grams remain?

1.
$$10^{-x} = 2$$

2.
$$3^{2x-1} = 5$$

3.
$$2e^{12x} = 17$$

4.
$$4(1+10^{5x})=9$$

5.
$$2^{3x} = 34$$

6.
$$3^{x/14} = 0.1$$

7.
$$e^{3-5x} = 16$$

8.
$$10^{1-x} = 6^x$$

9. A farmer's tractor valued at \$50,000 depreciates at an annual rate 10% (yearly). When will its value be \$15,000?

10. If John invests \$2300 in a savings account with a 6% interest rate compounded annually, how long will it take until John's account has a balance of \$4150?

11. How much time is required to double your money if it is invested at 6.25% compounded continuously?

- 12. Suppose that in any given year, the number of cases of a disease is reduced by 20%. If there are 10,000 cases today, how many years will it take
 - a) to reduce the number of cases to 1000?
 - b) to eliminate the disease; that is, to reduce the number of cases to less than 1?

PC II

Practice with exponential and logarithmic equations

Name _____ Hour____

Find the solutions to the exponential equation, correct to 4 decimal places.

2.
$$3^{2x-1} = 5$$

3.
$$2e^{12x} = 17$$

4.
$$4(1+10^{5x})=9$$

5.
$$2^{3x} = 34$$

6.
$$3^{x/14} = 0.1$$

7.
$$e^{3-5x} = 16$$

8.
$$10^{1-x} = 6^x$$

9.
$$x^210^x - x10^x = 2(10^x)$$

10.
$$x^2e^x + xe^x - e^x = 0$$

Solve the logarithmic equation for \times .

11.
$$ln(2 + x) = 1$$

12.
$$\log(x-4)=3$$

13.
$$\log_3 (2 - x) = 3$$

14.
$$\log_2(x^2-x-2)=2$$

15.
$$2\log x = \log 2 + \log (3x - 4)$$

16.
$$\log_5 x + \log_5 (x + 1) = \log_5 20$$

17
$$\log x + \log (x - 3) = 1$$

18.
$$\ln (x-1) + \ln (x+2) = 1$$

**Solve for x:
$$log_2 (log_3 x) = 4$$

(15)

PC II Applications of Exponential and Le	Name: ogarithmic Function	ns ·
Recall formulas for calculating cor	npounding interest a	and continuous rates of change:
	T: 1/1 /	
1. \$5000 is invested at 9% per year the interest is compounded a) sem		continuously.

2. The population of the world in 1995 was 5.7 billion, and the estimated relative growth rate is 2% per year. If the population continues to grow at this rate, when will it reach 57 billion?

- 3. A bacteria culture starts with 10,000 bacteria. The number doubles every 40 minutes.
- a) Write a formula for the number of bacteria at time t.
- b) Find the number of bacteria after one hour.
- c) After how many minutes will there be 50,000 bacteria?

