Pre Calc II

2.7 (Part 1) Exponent Review WS

Simplify the following leaving answers as exact values. No Calculator. Assume all variables represent non-zero real numbers.

Part 1:

2.
$$(-2x^2y)(-8x^3y^9)$$

3.
$$3x^{0}$$

4.
$$-2p^0 + 8z^0$$

Part 2:

3.
$$(3x)^{-2}$$

$$\frac{1}{3^{2}x^{2}} = \sqrt{9x^{2}}$$

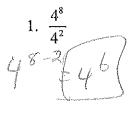
4.
$$3^{-1} + 4^{-1}$$

$$\frac{1}{3} + \frac{4}{4}$$

$$\frac{1 \cdot 4}{3 \cdot 4} + \frac{1 \cdot 3}{4 \cdot 3}$$

$$\frac{4}{4} + \frac{3}{4} + \frac{4}{4} + \frac{4}{4}$$

Part 3: Write using only positive exponents.



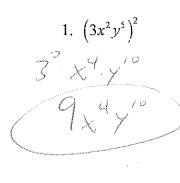
2.
$$\frac{7^3}{7^{-5}}$$

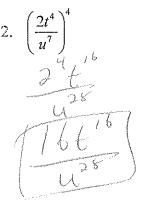
3.
$$\frac{s^2}{s^9}$$

$$\leq \frac{s^2}{s^9}$$

4.
$$\frac{r^{-8}}{r^{-3}}$$
 -8 - (-3)

Part 4:





4.
$$\left(\frac{2}{3}\right)^{-3} = \left(\frac{3}{3}\right)^{-3}$$

Part 5:

1.
$$z^{-4} \cdot z^{-11} \cdot z^{5}$$

$$= -4 + -4 + 5$$

$$= -4 \cdot z^{-11} \cdot z^{5}$$

Part 6

1.
$$100^{\frac{1}{2}}$$

2. -6

2.
$$(2^{-3})^2$$
 $(2^{-3})^3$

3.
$$x^{-4} \cdot x^{6} \cdot x^{-2}$$

$$(3. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(4. \frac{p^{-11}q^{3}}{p^{-5}q^{4}} = p$$

$$(5. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(7. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(7. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(8. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(9. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(9. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(1. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(1. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(2. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(3. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(4. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(5. x^{-4} \cdot x^{6} \cdot x^{-2})$$

$$(7. x^{-4} \cdot x^{-4} \cdot x^{-2})$$

$$(7. x^{-4} \cdot x^{-4} \cdot x^{-4})$$

$$(7. x^{-4} \cdot x^{$$

1.
$$100^{\frac{1}{2}}$$

2.
$$-625^{\frac{3}{4}}$$

$$((605)^{\frac{3}{4}})^{\frac{3}{4}}$$

$$(-125)$$

3.
$$27^{\frac{-2}{3}}$$

$$(27^{\frac{-2}{3}})^{3}$$

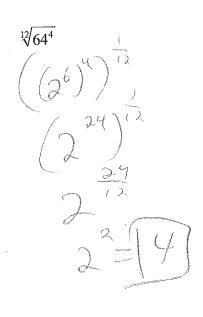
$$(125^{\frac{3}{3}})^3$$

Part 7:

1.
$$9^{\frac{1}{6}} \cdot 9^{\frac{1}{3}}$$
 $\frac{1}{6} + \frac{2}{6}$

2.
$$\left(3^{\frac{3}{4}}\right)$$
 $3^{\frac{6}{4}} = 3^{\frac{3}{4}}$

$$\left(a^{2}b^{\frac{3}{5}}\right)^{10}$$



Logistic Growth WS

Pre Calc II

Show work on loose leaf.

- 1. The logistic model $P(t) = \frac{1500}{1 + 24e^{-0.75t}}$ models the growth of a population. Use the equation to
 - (a) Find the value of k 0.75
 - (b) Find the carrying capacity 1500
 - (c) Find the initial population (let t = 0 and simplify)

(d) Determine when the population will reach 50% of its carrying capacity
$$750 = \frac{1500}{1+24} = 0.757$$

$$\frac{1500}{1+24} = 0.757$$

$$\frac{1}{1+24} = 0.757$$

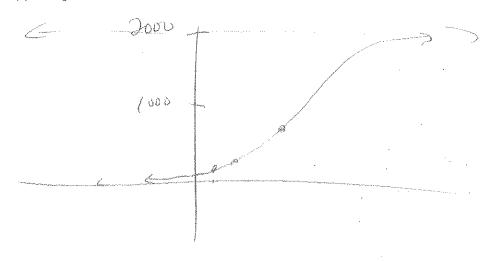
$$\frac{1}{1+24} = 0.757$$

$$\frac{1}{1+24} = 0.757$$

- 2. Suppose a population is infected with a virus. The number of people infected is modeled by the logistic equation $P(t) = \frac{2000}{1 + 249e^{-0.97t}}$ where p is the population infected (number of people) and t is the number of days since it started spreading.
 - (a) How many people are infected initially? (at time t = 0)

(a) How many people are intected initially. (at time t o)
$$\frac{2.000}{1.249} = 0.9\%$$
(b) Determine the number of people infected after 1 day, two days and five days.

(c) Graph the function p(t) and describe its behavior.



- 3. A population of rabbits is given by the formula $P(t) = \frac{1000}{1 + 122e^{-0.7t}}$ (a) How many rabbits do they start with? $\frac{1000}{1 + 122e^{-0.7t}} \approx 8.13 \approx 8$
 - (b) What is the carrying capacity?
 - (d) How many rabbits will there be after 5 days? $P(5) \approx 213.49 \approx 213$ RABBITS

(d) How long will it take until there are 500 rabbits? $\frac{500 - \frac{1000}{1 + 1000}}{1 + 1000} = 0.74 = \frac{1}{1000} = 0.74 = \frac$

 $P(t) = \frac{2000}{1 + 1999e^{-.8t}}$ where t is the number of days after students are first exposed to an infected student.

- (a) How many students have measles initially? $(\frac{2000}{11999e})^{-0.5(0)} = 1$
- (b) How many will have measles after 3 days? $\frac{\partial o s \circ}{(F/4) \epsilon} = 0.8(3) \approx 10.77 \approx 11$
- (c) What does the 2000 in the numerator represent? CANYING CAPACITY
- (d) How long will it be until 175 students are infected?

175 =
$$\frac{3080}{1+1991}e^{-08}$$
 14/999e = 0.80 = 11.429 = 36.5%

- 5. A 2000 gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank.
 - (a) Use t = 0 and the initial value of P = 6 to solve for A. Use k = 0.225. Keep 4 decimal

$$p(t) = \frac{150}{1 + bt}$$

(a) Use
$$t = 0$$
 and the initial value of $P = 6$ to solve for A . Use $k = 0.225$.

places.
$$\rho(t) = \frac{150}{1 + b \cdot e^{-0.335}}$$

$$\frac{b = \frac{150}{1 + b \cdot (1)}}{1 + b = \frac{150}{1 + b \cdot (1)}}$$

$$\frac{b = 24}{1 + b = 25}$$

(b) Write your logistic model using the info. found in (a).

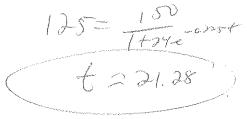
(c) How long will it take for the guppy population to reach 100? 125?

$$100 = \frac{150}{1+24e^{-0.3457}}$$

$$1+24e^{-0.3258} = \frac{150}{700}$$

$$e^{-0.3258} = 0.02085$$

$$= \frac{150}{17.2}$$

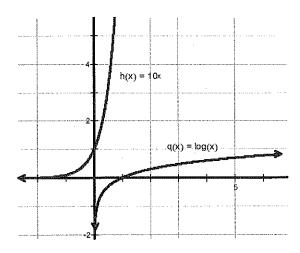


(3)

2.9: (part 1) Review of Rules of Logarithms

Pre Calc II (CP)

EX 1: Given $y = 10^x$, find and graph its inverse: Inverse is y = log(x)



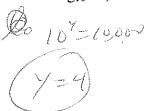
<u>DEF:</u> $y = log_{10} x$ (also written y = log(x)) is the logarithm of x to the base 10. iff $10^y = x$.

To write in exponential form, make $\log_{10} x = y$ into $10^y = x$.

Often written as a "common log" without the base. log (x) mean base 10.

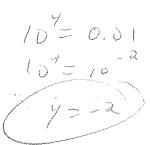
EX 2: Evaluate $log_{10} 10,000 = y$

(REMEMBER $log_{10} x = y means 10^y = x$)

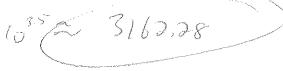


EX 3: Evaluate $log_{10} 0.01 (= y)$ (First write

(First write: 0.01 as a power of 10):



EX 4: Solve for x: $\log x = 3.5$

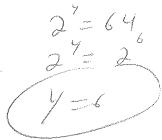


Logarithms to Bases Other Than 10

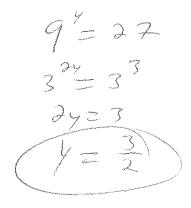
<u>Def:</u> If b > 0 and $b \ne 1$, then (n) is the log of m to base b written $n = \log_b m$ iff $b^n = m$.

The log of a negative number is not defined.

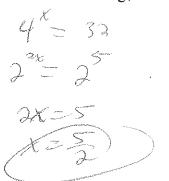
EX 5: Evaluate log₂ 64



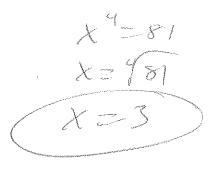
EX 6: Evaluate log₉ 27



EX 7: Solve for x:
$$log_4 32 = x$$



EX 8: Solve for x:
$$\log_x 81 = 4$$



EX 9: Solve for x: $log_3 x = 5$



Think of these properties of logs just like exponents:

For every base b, $\log_b 1 = 0$

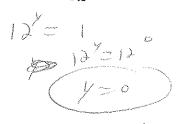
For every base b and any real number n, $\log_b b^n = n$

For any base b and for any positive real numbers x, y, $\log_b(xy) = \log_b x + \log_b y$

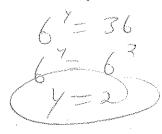
For any base b and for any positive real numbers x, y, $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$

For any base b and for any positive real number x, $\log_b(x^n) = n \log_b x$

EX 10: Find log₁₂ 1



EX 11: Solve: $\log_6 36 = y$



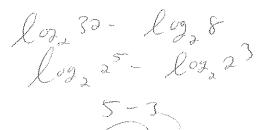
EX 12: Simplify:
$$\log_{15} 5 + \log_{15} 45$$

$$\log_{15} (5.45)$$

$$\log_{15} (5.45)$$

EX 13: Rewrite using rule for quotients and solve:

$$\log_2\left(\frac{32}{8}\right)$$



EX 14: Solve:

 $\log_3 x = \log_3 15 - \log_3 6$ log x = log, 6

EX 15: Solve for x:

 $\log_{7} 5x = 2\log_{7} 3 + \log_{7} 5$ $\log_{7} 5x = \log_{7} 3^{2} + \log_{7} 5$ $\log_{7} 5x = \log_{7} 3^{2} + \log_{7} 5$

Natural Logs: a log with a base of (e) is a natural log, written ln

 $n = \ln m$ is the natural log of m. It is a log with base e.

 $\ln m = \log_e m$ and $m = e^n$)

EX 16: Solve for x:

EX 17: Solve:

CHANGE OF BASE RULE:

("log of the number" over "log of the base")

EX 18: Find log₄ 100

HW: Log WS

2.9 (part 1)

Log WS

Pre Calc II

Find each logarithm without using a calculator

- 1. log-49
- $2. \log_2 16$
- 3. $\log_2 \frac{1}{9}$
- 4. $\log_5 \frac{1}{5}$
- 5. $\log_5 \sqrt{5}$

Solve each equation (Do not use a calculator)

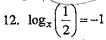
6. $\log_5 x = 2$

7. $\log_6 x = 2$

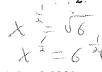
11. $\log_x 64 = 3$

8. $\log x=2$

9. $\ln x = 2$



 $13. \log_x \sqrt{6} = \frac{1}{2}$



Find each logarithm. (Do not use a calculator)

14. log 100

15. log 10,000

16. log 0.01

17. log 0.0001

18. log₂4

20. log₂64

21. log₂2¹⁰

19. log₂32

23. $log_3 27$

24. log₃ 243

25. log₈88

27. $\log_5 \frac{1}{125}$

29. log₅1

31. $\log_4 \frac{1}{64}$

33. log_41

35. $\log_6 6$

2.9 (part 2): Solving Exponential Equations

Pre Calc II (CP)

Take logs of both sides (or ln) to drop the exponent in front of the log, then solve.

EX 1: Solve
$$3^{x} = 57$$

1: Solve
$$3^{2}=57$$

$$\lim_{\lambda \to 0} 3^{\lambda} = \lim_{\lambda \to 0} 57$$

$$\chi = \lim_{\lambda \to 0} 57$$

$$\chi = \lim_{\lambda \to 0} 57$$

EX 3:
$$3e^{2x} = 48$$

$$e^{2x} = 16$$

$$2x = 2c \cdot 16$$

$$x = \frac{1}{2} \cdot 1 - 16$$

$$x = (1.39)$$

EX 2: Solve
$$3^{2x} = 50$$

$$l_{3}^{2x} = l_{50}^{2x}$$
 $2x l_{3} = l_{50}^{2x}$
 $2x = l_{50}^{2x}$
 l_{3}^{2x}
 $x = \frac{l_{50}}{l_{50}^{2x}}$
 $x = \frac{l_{50}}{l_{50}^{2x}}$

EX 4: Suppose you invest \$5000 in an account at 4% compounded continuously. How long will it take for the money in the account to reach \$6000 if it is not touched?

$$6000 = 5000 e^{0.04t}$$

$$1.2 = e^{0.04t}$$

$$l_{1.2} = 0.04t$$

$$l_{1.3} = t$$

$$0.04$$

£24,564PS)
£244PS 7,0001H3

EX 5: Suppose the half life of a substance is 400 years. If you start today with 2 grams, how long will it take until 1.78 grams remain?

1. $78 = 2(\frac{1}{2})^{\frac{1}{400}}$ $0.89 = (\frac{1}{2})^{\frac{1}{400}}$ $\log_{\frac{1}{2}} 0.89 = \frac{1}{400}$

£ 567.25 yrs

WS: Solving Exponential Equations

Pre Calc II

1.
$$10^{-x} = 2$$

$$x = \log 2$$

$$x = -\log 2$$

$$x = -0.301$$

3.
$$2e^{12x} = 17$$

$$e^{12x} = \frac{17}{2}$$

$$12x = \frac{17}{2}$$

$$x = \frac{1}{2} \cdot \frac{17}{2}$$

$$x = \frac{1}{2} \cdot \frac{17}{2}$$

$$x = \frac{1}{2} \cdot \frac{17}{2}$$

5.
$$2^{3x} = 34$$
 $3x = \log_{2} 34$
 $x = \frac{1}{3} \log_{2} 34$
 $x = \frac{1}{3} \log_{2} 34$
 $x = 1,696$

7.
$$e^{3-5x} = 16$$

3. $5x = 1.16$

3. $1.16 = 3$

4. $1.16 = 3$

5. $1.16 = 3$

2.
$$3^{2x-1} = 5$$

$$2x = log_3 + l$$

$$x = log_3 + l$$

$$x = log_3 + l$$

$$x = log_3 + l$$

4.
$$4(1+10^{5x}) = 9$$
 $1+10^{5x} = \frac{9}{4}$
 $10^{5x} = \frac{9}{4} - 1$
 $10^{5x} = \frac{9}{4} - 1$

6.
$$3^{x/14} = 0.1$$

$$\frac{2}{14} = \begin{cases} 0.1 \\ 0.1 \\ 0.1 \end{cases}$$

$$\frac{2}{14} = \begin{cases} 0.1 \\ 0.1 \\ 0.1 \end{cases}$$

$$\frac{2}{14} = \begin{cases} 0.3 \\ 0.1 \\ 0.1 \end{cases}$$

8.
$$10^{1-x} = 6^x$$
 $log10 = log6$

(1x) $log10 = x log6$

1 = $x log6$

PC II

Practice with exponential and logarithmic equations

Name _____ Hour ____

Find the solutions to the exponential equation, correct to 4 decimal places.

2.
$$3^{2x-1} = 5$$

3.
$$2e^{12x} = 17$$

4.
$$4(1+10^{5x})=9$$

6.
$$3^{\times/14} = 0.1$$

9.
$$x^210^x - x10^x = 2(10^x)$$

(X=2,-1)

10.
$$x^{2}e^{x} + xe^{x} - e^{x} = 0$$

$$e^{x} (x^{2} + x - 1) \ge 0$$

Solve the logarithmic equation for x.

11.
$$ln(2 + x) = 1$$

13.
$$\log_3(2-x)=3$$

15.
$$2\log x = \log 2 + \log (3x - 4)$$

$$\log x^{2} = \log_{2}(3x-4)$$

$$x^{2} = 3(3x-4)$$

$$x^{2} = 6x-8$$

$$x^{3} - 6x + 8 = 0$$

$$(x-4)(x-2) = 0$$

17
$$\log x + \log (x - 3) = 1$$

17
$$\log x + \log (x-3) = 1$$

 $\log (x-3) = 1$
 $\log (x-3) = 1$
 $\log (x-3) = 1$
 $\log (x-3) = 1$
 $\log (x-3) = 1$

**Solve for x: $log_2(log_3 x) = 4$

$$log_3 x = 2^4$$

 $log_3 x = 16$
 $x = 3^{16}$

14.
$$\log_2 (x^2 - x - 2) = 2$$

$$\begin{array}{cccc}
\chi^2 - \chi - \lambda &=& 2 \\
\chi^2 - \chi - \lambda &=& 4 \\
\chi^2 - \chi &=& 6 &=& 9 \\
(\chi - 3)(\chi + 2) &=& 0 \\
\chi &=& 3, -3
\end{array}$$

16.
$$\log_{5} x + \log_{5} (x + 1) = \log_{5} 20$$

(X-1)(X+3)= E

7		TT
- 5.7		
	•	13

Name:

Applications of Exponential and Logarithmic Functions

Recall formulas for calculating compounding interest and continuous rates of change:

$$A(t) = P(1+\frac{\pi}{n})^{n+1}$$

1. \$5000 is invested at 9% per year. Find the time required for the money to double if

(a)
$$10000 = 5000 \left(1 + \frac{0.09}{2}\right)$$

$$2 = \left(1 + \frac{0.09}{2}\right)^{2+}$$

$$l_{12} = l_{1} \left(1 + \frac{0.09}{2}\right)^{2+}$$

1. \$5000 is invested at 9% per year. Find the time required for the money to double if the interest is compounded a) semiannually b) continuously.

a)
$$10000 = 5000 \left(1 + \frac{0.09}{2}\right)^{2+}$$

b) $10000 = 5000 \left(1 + \frac{0.09}{2}\right)^{2+}$
 $10000 = 50$

2. The population of the world in 1995 was 5.7 billion, and the estimated relative growth rate is 2% per year. If the population continues to grow at this rate, when will it reach 57 billion?

100.024
$$57 = 5.7e^{0.02t}$$

$$10 = e^{0.02t}$$

$$10 = 0.02t$$

$$10 = 0.02t$$

- 3. A bacteria culture starts with 10,000 bacteria. The number doubles every 40 minutes.
- a) Write a formula for the number of bacteria at time t.
- b) Find the number of bacteria after one hour.
- c) After how many minutes will there be 50,000 bacteria?

be 50,000 bacteria?

()
$$50,000 = $0,000 (3)$$
 $5 = 3$
 $1.5 = 40$
 $1.5 = 40$
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40
 1.40