Home

	Questions on SPUR Objectives See pages 73-79 for objectives.
LESSON MASTER	
Uses Objective D	
In 1 and 2, consider the following scenario: A soft-drink company tests its new strawberry lemonade by releasing it to a mid-size city. After a 2 -month trial period, the acceptance of the lemonade is evaluated.	
1. a. Identify the population. b. Identify the sample. c. Identify the variable.	National or world population
	Population of mid-size city
	Strawberry lemonade
2. Give one reason why the company might survey a sample rather than the entire population. Sample: It would be risky to distribute a	
new product to sur	such a large group.

Uses Objective E
In 3-5, use this table of percents.

Improper Driving as Factor in Accidents, 1993									
Kind of improper driving	Fatal accidents			Injury accidents			All accidents		
	Total	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural
Improper driving	57.7	54.7	59.4	72.7	74.3	69.6	68.6	69.8	66.1
Speed too fast or unsafe	16.5	14.4	17.7	13.5	11.8	17.6	12.2	11.1	15.4
Right of way	12.7	17.0	10.1	25.0	28.8	15.5	20.6	23.2	13.7
Failed to vield	7.8	9.4	6.8	17.3	19.3	12.3	15.1	16.6	11.3
Passed stop sign	2.7	2.7	2.7	2.7	3.0	1.9	2.0	2.1	1.4
Disregarded signal	2.2	4.9	0.6	5.0	6.5	1.3	3.5	4.5	1.0
Drove left of center	7.6	3.2	10.1	2.1	1.3	4.0	1.8	1.1	3.4
Improper overtaking	1.2	0.6	1.5	1.0	0.8	1.4	1.3	1.1	1.7
Made improper turn	2.9	2.7	3.0	3.4	3.3	3.7	4.5	4.6	4.2
Followed too closely	0.5	0.4	0.6	6.2	7.2	3.7	5.5	6.2	3.6
Other improper driving	16.3	16.4	16.4	21.5	21.1	23.7	22.7	22.5	24.1
No improper driving stated	42.3	45.3		27.3	25.7	30.4	31.4		
Total	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Suure: I996 Intormation Please Almanac									
3. Which numbers in the column for rural accidents resulting in injury total 15.5 ?						12.3, 1.9, 1.3			
4. What percent of all accidents involved improper turns?								5\%	

In 1-6, use the stemplot below, which gives the results
of Ginnie Davis's survey of a group of college students
majoring in music. Ginnie asked the number of music CDs
majoring in music. Ginnie asked the number of music CDs
each person owned.

Underclassmen		Upperclassmen
4	0	0
742	1	05
30	2	6
865411	3	2248
9772100	4	33578
750	5	0244557
	6	3
	7	28
2	8	5

Skills Objective A

memin	Undercl. - 4	Uppercl. - 0
b. the maximum	Undercl. - 82	Uppercl. - 85
cthe range	Undercl. - 78	Uppercl.-85

Uses Objective F

2. How many more underclassmen should

Ginnie survey to have equal numbers of
participants in each group?
3. What does the first row $4|0| 0$, represent?

4: units; 1st zero: tens; 2nd zero: units
4. How many upperclassmen in the survey have 4 uppercl.
5. Describe any similarities and differences between the two groups.Sample: Most people in both groups have $30-60 \mathrm{CDs}$. In general, upperclassmen have more CDs.
6. Which values, if any, appear to be outliers in each population?

Undercl. - 82

Name

- LESSON MASTER 1-1 page 2

5. In 1993, there were approximately 42,000 deaths
due to motor-vehicle accidents. Estimate the total
number of deaths caused by unsafe speeds or
right-of-way accidents.

6. Which food types have shown a consistent increase in consumption?

Why do you think their consumpion has inceased?
Chicken and turkey; people have become more health-conscious and prefer leaner meats.
7. In 1994, what was the approximate total percapita food consumption in pounds for these selected products?

Representations Objective J
8. Use the table below. Draw a circle graph showing the distribution of age groups visiting emergency rooms in 1994. Hospital Emergency-Room Visits by Age
(in thousands) Under 15 years old $\quad 23,751$ 15 to 24 years old $\quad 15,411$ 25 to 44 years old $\quad 28,219$ 45 to 64 years old $\quad 13,011$ $\begin{array}{ll}65 \text { to } 74 \text { years old } & 5,797 \\ 75 \text { years old and over } & 7,214\end{array}$ 75 years old and over 7,2
Source: Stasistical A Abstactot the United

2

Name

- LESSON MASTER 1-2 page 2

Representations Objective J
9. The following sets of data show the average number of points scored by players on the boys' and girls' basketball teams.

Boys: \begin{tabular}{rlrrrrrrrrr}
4.7 \& 0.3 \& 11.6 \& 0.3 \& 3.6 \& 6.2 \& 1.3 \& 1.1 \& Boys Girls

3.1 \& 7.6 \& 4.0 \& 20.5 \& 0.8 \& 2.5 \& 3.6 \& \& 8 \& 3 \&

\hline

 Girls:

7.0 \& 2.6 \& 9.8 \& 6.3 \& 5.7 \& 0.8 \& 6.5 \& 8.5 \& $\mathbf{8}$ \& $\mathbf{3}$ \& $\mathbf{0}$ \& $\mathbf{8}$

12.4 \& 7.2 \& 5.3 \& 7.9 \& 9.1 \& 7.6 \& 6.9 \& \& $\mathbf{3}$ \& $\mathbf{1}$ \& $\mathbf{1}$ \&
\end{tabular}

a. At the right, make a back-to-back stemplot $\quad \begin{array}{lllll}5 & 2 & 6\end{array}$ of these data.
b. Which scores, if any, appear to Boys: 20.5; girls: none
c. Identify the range for both sets of data. Boys: 20.2; girls: 11.6
10. Write several sentences comparing and contrasting the scores of the two teams. Include how the characteristics
found in Exercises 9 b and 9 c describe each basketball team Sample: Scoring on the boys' team is done primarily by one or two players. Scoring on the girls'team is more evenly distributed, with most players scoring 5 to 10 points.

- LESSON MASTER 1-3 page 2

6. a. Find \bar{x}.	b. Find$\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}$. $\approx 4.3$$\quad 2.9$

Properties Objective C
7. Find a counterexample to the following statement: For any set of three numbers, the Sample: 1, 10, 11
mean is equal to the median.
8. True or false. For any set of consecutive integers, the mean is equal to the median. Give examples to illustrate your answer.
True; sample examples: $\{5,6,7\}$ - mean, 6 ; median, 6; \{5, 6, 7, 8, 9, 10\} - mean, 7.5; median, 7.5

Uses Objective F
In 9 and 10, use the data below, which give the weights
in pounds of the crews participating in a rowing race
between Oxford and Cambridge
Cambridge: 188.5, 183, 194.5, 185, 214, 203.5, 186, 178.5, 109 Oxford: 186, 184.5, 204, 184.5, 195.5, 202.5, 174, 183, 109.5 Source: The Independent, March 31, 1992
9. On the average, which team has the lighter crew members? Use measures of center to justify your answer. The Oxford team is lighter with a mean of 180.4 and a median of 184.5 , while the Cambridge mean is 182.4 and median is 186.
10. Each crew has an outlier when it comes to weight. What is the effect of this outlier on the measures of center of the data sets?
Tell the purpose of this person on the crew team, if you know.
The outlier affects the mean more than the median. This person, the "coxswain," does not row, but keeps the rowers' rhythm steady.

6

Name

- LESSON MASTER $1-4$ page 2
c. The only two stocks which posted a decrease in price for 1996 were McDonald's, which started at 46 and Steel stock opened the year at 14 , what was its change for the year?
d. The Dow Jones Industrials is one of many indices used to gauge the entire stock market. Based on the above data, do you think the stock
The mean and the median both increased; in general, the shape has shifted upward. So, it seems the market increased during 1996.

Home

b. In what interval is the median? Justify your answer $\$ 5500-\$ 5999$; the median is the mean of the 25th and 26th states, which is in the interval containing the 22nd-30th states.
c. How could the frequency histogram be changed to become a relative frequency histogram? Each frequency could be divided by 50 to find a percent.
d. What percent of states spend more than $\$ 8000$ per pupil? 8\%

b. Which answer to part a better represents what happened betwen 1984 and 1988 ? Explain why.
PennsyIvania; between 1984 and 1988, Pennsylvania showed consistent decrease, but Maine nitrate levels were erratic.
c. Give two reasons why line graphs are good displays for
this set of data. easy to see the changes from year to year; it is easy to compare the two states' levels.
d. Calculate the mean nitrate levels for Maine and Pennsylvania from 1980 to 1990

M: 4.62; P: 5.50
e. Draw horizontal lines on the graph to show the mean for eac state. Then explain why this is helpful in reading the graph. It illustrates how each year compares to the mean.

Name

Representations Objective J
3. Below are the birth weights in pounds of a group of babies.

7.10	7.14	8.00	6.10	7.00	6.82	7.12	8.10	8.23
6.20	5.66	6.66	5.90	7.50	6.42	5.81	5.43	6.26
7.40	7.00	5.20	6.80	7.33	5.91	6.05	6.22	8.80
3.25	6.20	3.66	7.20	7.91	6.37	8.72	9.15	7.33
6.98	7.25	8.20	7.10	8.02	7.25	7.75	5.67	
9.22	7.78	5.36	6.50	5.55	6.88	7.55	6.70	

a. Determine each statistic from this data set.

i. minimum	ii. maximum	iii. range
3.25 lb	$\underline{9.22 \mathrm{lb}}$	$\underline{5.97 \mathrm{lb}}$

b. Use intervals of size 1 to draw a histogram representing the data

c. Use intervals of size 0.5 to draw a histogram representing the data.

d. Babies born weighing less than 5.5 pounds are at a higher risk of having developmental problems. \qquad
10

Name
-LESSON MASTER 1-6page 2

Representations Objective \downarrow
2. The following list displays the scores of the latest test in Ben Faire's algebra class.
$\begin{array}{lllllllllllll}83 & 76 & 82 & 62 & 57 & 82 & 83 & 72 & 76 & 74 & 90 & 84 & 76 \\ 88 & 91 & 54 & 79 & 75 & 72 & 67 & 93 & 87 & 80 & 68 & 95 & 72\end{array}$
Draw a graph that you feel best displays the range of
scores in B. Faire's algebra class.

3. Refer to the table below which shows the number of
active military personnel from 1960 to 1994 in each
branch of the United States armed forces.

Year	Army	Navy	Marine Corps	Air Force
1960	873,078	616,987	170,621	814,752
1965	969,066	669,985	190,213	824,662
1970	1,322,548	691,126	259,737	791,349
1975	784,333	535,085	195,951	612,751
1980	777,036	527,153	188,469	557,969
1985	780,787	570,705	198,025	601,515
1990	732,403	579,417	196,652	535,233
1994	541,343	468,662	174,158	426,327

a. Draw a graph that you feel best compares the distribution of military personnel over the branches in 1970 and 1994 Sample:
U.S. Military Personnel

b. Explain why you chose the type of graph you used.

Sample: Circle graphs show the relationships among the categories; you can compare the two years by comparing the sizes of the sectors.

Skills Objective A

1. Find the variance and standard deviation of each data set

$$
\begin{array}{ll}
\text { a. } 5,9,10,3,2,4,5,7,2,5 & \text { b. }-6,1,-2,0,-1,8,3,
\end{array}
$$

Var.: $\approx 7.51 ; s: \approx 2.74$ Var. $: \approx 16.29 ; s: \approx 4.04$
2. Consider the following two data sets
$\{1,2,3,4,5,6,7,8\} \quad\{1,1,1,1,8,8,8,8\}$
a. Without using a calculator, tell how the means and the
standard deviations of the two data sets compare.

Means are equal; standard deviation of second
b. Use a calculator to find the mean and the standard set is greater. deviation of each set to check your answer to part $\bar{X}: 4.5 ; s: \approx 2.45 \bar{X}: 4.5 ; s: \approx 3.74$

Properties Objective B
In 3-7, match each expression with a descriptor of the
data set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
I. mean
II. sum of the deviations
II. sum of the deviations
III. sum of the deviations square

IV. variance

III. sum of the deviations squared - V. standard deviation

3. $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	4. $\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$	5. $\frac{\sum_{i=1}^{n}}{n}$	
III	V	I	
6. $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$	7. $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)$		
IV	\\|		

Properties Objective C
8. Tell whether the statistic may be negative. Write yes or no.

a. the mean	yes	b. a deviation	yes
c. the variance	no		d. the standard deviation

1. True or false. Justify your answer. The following set of
ordered pairs is a function: $\{(1,1),(1,2), 1,3), 1,4)\}$. False; the x-value is paired with more than one y-value.

Skills Objective A

In 2 and 3 , let $h(x)=\frac{1}{2} x^{2}+1$
2. Evaluate.
a. $h(4) \quad 9$ 9 b. $h(-$ \qquad c. $h\left(\frac{1}{4}\right)$ $\frac{33}{32}$
3. True or false. Justify your answer

$$
\begin{array}{lr}
\text { a. } 0 \cdot h(4)=h(0 \cdot 4) \quad \text { False; } 0 \cdot h(4)=0, \boldsymbol{h}(0 \cdot 4)=1 \\
\text { b. For all } a, h(-a)=h(a) . & \text { False; } \boldsymbol{h (- 4) = 9 , - h (4) = - 9} \\
\text { c. If } a>b, \text { then } h(a)>h(b) . & \text { False; 4>-4,h(4)>h(-4)}
\end{array}
$$

4. Let $g(x)=\frac{12}{x^{2}}$. Evaluate.

a. $g(2)+g(1)$	$\frac{15}{x^{2}}$	b. $g(2+1)$
c. $g(2) \cdot g(3)$	$\frac{\frac{12}{9} \text {, or } \frac{4}{3}}{\frac{12}{36}, \text { or } \frac{1}{3}}$	

Properties Objective B
In 5-7, an equation for a function is given.
$\begin{array}{ll}\text { a. State the function's domain. } & \text { b. State the function's range }\end{array}$
5. $y=7 x-1$
a. All real numbers
All real numbers
6. $y=|7 x-1|$
a. All real numbers \qquad
7. $f(x)-\frac{1}{x^{2}-1}$
a. All real numbers \quad b. $\{y: y>0$ or $y \leq-1$ except 1 and -1

Uses Objective F
9. The following data give the total amount of snowfall, in
inches, recorded at New York's JFK Airport in the month of January for the years 1965 to 1996.

1965	17.4	1971	11.6	1977	13.4	1983	1.0	1989	4.7	1995	0.1
1966	10.1	1972	1.7	1978	20.1	1984	10.1	1990	1.4	1996	23.0
1967	2.8	1973	0	1979	7.4	1985	12.4	1991	5.7		
1968	4.5	1974	6.7	1990	3.0	1986	3.0	1992	1.9		
1969	0.6	1975	0.6	1981	7.7	1987	11.8	1993	0.8		
1970	5.5	1976	6.9	1982	12.5	1988	15.7	1994	7.1		

a. Find the mean and the standard deviation of $\bar{X}: 7.225 ; S: \approx 6.164$
the snowfall data using a statistics utility.
b. What percent of these data are within
c. The blizzard of January, 1996, which hit the

East Coast was one of the worst in history. How many standard deviations above the mean was the snowfall for January of 1996

10 and 11, use the following table, which lists the percents of
on-time flight arrivals and departures at major U.S. airports in 1994

Airport City	1st qtrr.	3rd qtr.	Airport City	1st qtr.	3rd qtr.
Atlanta	75.2	78.2	Newark	53.5	74.3
Boston	59.0	75.1	NY (Kennedy)	67.0	70.2
Charlotte	78.7	82.2	NY (LaGuardia)	70.3	77.9
Chicago (0'Hare)	73.8	85.9	Orlando	72.8	80.2
Cincinnati	77.7	83.7	Piladelphia	70.0	77.3
Dallas/Ft. Worth	77.5	84.9	Phoenix	80.7	87.4
Denver	71.9	86.8	Pittsburgh	69.9	82.0
Detroit	80.3	86.9	Raleigh/Durham	82.0	87.2
Houston	77.1	85.9	St. Louis	79.0	89.9
Las Vegas	79.5	84.1	Salt Lake City	82.3	86.0
Los Angeles	75.0	83.7	San Diego	78.5	87.5
Miami	73.3	78.7	San Francisco	71.4	84.3
Minneapolis/St. Paul	81.4	87.0	Seattle-Tacoma	72.9	84.4
Nashville	84.2	88.8	Tampa	72.5	78.6
			Washington, D.C.	72.4	81.6

10.
11. Find the mean and the standard deviation
a. of the first-quarter percents.

$$
\begin{aligned}
& \bar{X}: \approx 74.48 ; s: \approx 6.72 \\
& \bar{X}: \approx 82.78 ; s: \approx 4.82
\end{aligned}
$$

b. of the third-quarter percents.

Which set of percents is more variable? Explain why this seems reasonable. 1st-quarter; weather is more severe in winter.

LESSON MASTER $2-1$ page 2

Representations Objective J
In 8-11, a relation is graphed.
In 8-11, a relation is graphed.
a. State the relation's domain.
a. Itate the relation s domain.

b. State the relation's range.
a. All real numbers
b. $\{y: y>-2\}$
c. Yes

a. $\{-15,-10,0,5,10,15,20\}$
b. $\{-15,-10,-5,5,10,15\}$
c. No
10.

a. $\frac{\{x: x \geq-1\}}{\{y: y \geq-0.5\}}$
$\{y: y \geq-0.5\}$
c. No
a. All real numbers
b. $\{y:-20 \leq y \leq 5\}$
c. No

Home

Uses Objective E

a. Make a scatterplot of the data with the diameters on the horizontal axis.
b. Draw a line that fits the data reasonably well.
c. Use two points on the line in part b to write an equation for the line in the $y=562.5 x-3000$
d. Use the equation found in part c to estimate the breaking strength of a 25 -mm-diameter rope $11,062.5 \mathrm{lb}$

| Lame | |
| :--- | :--- | :--- |
| LESSON STER 2-3 | Questions on SPUR Objectives
 See pages 152-157 for objectives. |
| Vocabulary | |

1. Why is the process of finding the line of best fit sometimes

Sample: Because the line of best fit will give the least value for the sum of the squares of the errors.
2. Use \sum-notation to write an expression
for the center of gravity of the data set
$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$.

Properties Objective C
In 3 and 4, suppose a data set is modeled by two
lines m_{1} and m_{2}. Line m_{1} represents the linear
other linear model. Complete the sentence.
3. The sum of the squares of the deviations for m sum of the squares of the deviations for m
4. If all the points in the data set lie on m_{1}, then the If all the points in the data set lie on m_{1}, then the
sum of the squares of the deviations for this model is? (greater than 0 , less than 0 , equal to 0)
equal to 0
Uses Objective E

5. The table below contains breaking-strength data for polypropylene rope | Diameter (mm) | 5 | 6 | 8 | 10 | 11 | 12 | 14 | 16 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

a. Use a statistics utility to find an equation $y \approx 501.7 x-2153.2$
b. Find the error in the values predicted by the linear regression model for the breaking strength of ropes with diameters of 12 mm and 18 mm .
$12 \mathrm{~mm} \quad-87.2 \mathrm{lb} \quad 18 \mathrm{~mm} \quad 772.6 \mathrm{lb}$
c. Use the equation in part a to estimate the breaking strength of ropes with diameters of 13 mm and 25 mm . $13 \mathrm{~mm} \quad \mathbf{4 3 7 0} \mathrm{lb} \quad 25 \mathrm{~mm} \quad 10,389 \mathrm{lb}$
d. Which estimate in part c do you think is more accurate? Why?

Sample: The $13-\mathrm{mm}$ estimate, because it is an interpolation rather than an extrapolation

Name

- LESSON MASTER 2-2 page 2
e. Give a reason why your estimate in part d might not be accurate Sample:The model is not linear for ropes with large diameters.

Representations Objective

In 5-7, graph each function over the domain $\{x:-5 \leq x \leq 5\}$

$$
\begin{array}{lll}
\text { 5. } y=\frac{1}{3} x & \text { 6. } y=2 x+1 & \text { 7. } y=-x+5
\end{array}
$$

Representations Objective K
In 8-11, suppose a linear relation is used to model the
data in the given scatterplot. State whether the correlation
coefficient is likely to be negative, positive, or approximately zero.
8.

Approximately zero

11.

Positive

18

Name
LESSON MASTER 2-3 page 2

Representations Objective K
In 6 and 7, a student fit a line ℓ to the data point
$(2,6),(4,6),(5,5)$, and $(8,1)$, as shown below.
6. a. What is the observed value of

$$
y \text { at } x=4 ?
$$

6
b. What is the predicted value of y at $x=3$?

5
c. Estimate the error of each of the four points from line ℓ.

$(2,6): 0.3 ;(4,6):(1,7) ;(5,5): 1.5 ;(8,1):-0.4$
d. Find the sum of the squares of the deviations of the
four points from line ℓ.
$0.3^{2}+1.7^{2}+1.5^{2}+(-0.4)^{2}=5.39$
7. Using a statistics utility, the student found that an equation
of the line of best fit is $y=-0.88 x+8.68$
a. Graph the four data points and the line of best fit.
b. Find the sum of the squares of the deviations.
2.48
c. Verify that the center of gravity is on this line.
C. of g. is $\left(\frac{19}{4}, \frac{18}{4}\right)$
$\frac{18}{4}=-0.88\left(\frac{19}{4}\right)+8.68$

d. How do you know that this line is a better fit line than line ℓ ?

The sum of the squares of the deviations
is less for this line than for line ℓ.

$\begin{aligned} & \text { LESSSON } \\ & \text { MASTER } \end{aligned}$	Questions on SPUR Objectives See pages 152-157 for objectives.
Properties Objective B	
In 1 and 2, an equation for an exponential function is given. a. State the function's domain. b. State the function's range.	
1. $f(x)=0.32\left(12.6{ }^{\text {r }}\right.$)	2. $g(x)=4\left(0.15^{x}\right)$
a. All real numbers	a. All real numbers
$\{y: y>0\}$	$\{y: y>0\}$

Properties Objective D
In 3-6, consider an exponential function given by the equation
In 3-6, consider an exponential function given by the eq
$f(x)=a b^{x}$, where $a \neq 0, b>0$, and $b \neq 1$. True or false.
3. If $b=\frac{1}{2}$, then the graph of the True
4. If $b=\frac{1}{2}$, then the graph of the function never crosses the y-axis.

False
5. If $a=0.6$ and $b=3$, then f is strictly decreasing.
6. If $a=1.37$ and $b=0.85$, the function can model exponential decay.

True

Uses Objective F

7. In 1994, the population of the Las Vegas metropolitan area
was about $1,076,000$, with an average annual growth rate of
a. Estimate the population of Las Vegas in each year.

$$
\frac{1,146,000}{1995} \quad \frac{1,220,000}{1996} \quad \mathbf{1 , 3 0 0 , 0 0 0}
$$

b. Express the population P as a function $P=1,076,000\left(1.065^{n}\right)$
of n, the number of years after 1994 .
c. Estimate the population of Las Vegas in the year 2020.

5,532,000
8. A paticular prescription drug has an initial concentration in the blood of $50 \mathrm{mg} / \mathrm{ml}$ and is absorbed by the body so that each day its concentation drops by 68%. What is the drug's concentration $16 \mathrm{mg} / \mathrm{ml} \quad 5.12 \mathrm{mg} / \mathrm{m}$ $\frac{50\left(0.32^{d}\right) \mathrm{mg} / \mathrm{ml}}{d \text { days }}$

LESSON MASTER		2			Questions on SPUR Objectives See pages 152-157 for objectives.					
Uses Objective F										
1. The table below contains breaking strength data for new 3-strand polypropylene fiber rope.										
Diameter (mm)	5	8	12	14	16	22	30	36	40	48
Breaking strength (lb)	780	1,710	3,780	4,590		10,350	19,350	27,350	31,950	46,800
a. Use the data points $(12,3780)$ and $(14,4590)$ and a system of equations to determine an exponential model for the data.$y \approx 1179\left(1.1019^{x}\right)$										
$\begin{aligned} & \text { b. Using the entire data set and a statistics utility, } \\ & \text { determine an exponential model for the data. }\end{aligned}=1042\left(1.0922^{x}\right)$										
c. Which of these models better represents the data? Defend your answer.										
Sample: The equation in part b, because										
it is the exponential regression										
model for the entire data set										

d. Use the model you chose for part c to estimate the breaking strength of 44 -mm-diameter 3 -strand polypropylene fiber rope. Is your estimate consistent with the data in the table?
$\approx 50,500 \mathrm{lb}$;Sample:Yes, since the breaking strength of $44-\mathrm{mm}$ rope is not between those for $40-\mathrm{mm}$ and $48-\mathrm{mm}$ ropes
2. In 1995 , Edith purchased a $\$ 50$ U.S. Savings Bond for $\$ 25$.

Assume the bond has a constant annual yield of 4.75%.
Assume the bond has a constant annual yield of 4.75%.
(Note: The annual yield on bonds is not always constant. $\$ 50$
is the amount the bond is worth when it reaches maturity.)
a. Express the value of the bond A as a function $\quad A=25\left(1.0475^{n}\right)$
b. Use a calculator and the equation found in part a to estimate the doubling time for the value of the bond.

Representations Objective
In 9 and 10 , graph the exponential function
over the domain $\{x:-7 \leq x \leq 7\}$.

Representations Objective J
11. The equation graphed at the right is
of the form $g(x)=a b^{2}$
a. True or false. The function is
strictly decreasing.
False
b. Give a range of possible
values for b.
$b>1$
c. Find a.
$a=10$
d. Does g represent exponential growth or exponential decay?

Exponential growth
e. Give an equation for an asymptote
of the graph of g.
$y=0$

22

Name

- LESSON MASTER $\mathbf{2 - 5}$ page 2

3. The half-life of one isotope of the element lithium ($\left.{ }^{8} \mathrm{Li}\right)$ is 0.855 second.
a. How many seconds are in three half-life periods?
b. How much of an 8 -gram sample of ${ }^{8} \mathrm{Li}$ will be left after three half-life periods?
c. Use a statistics utility to find the regression equation which models the
decay of an 8 -gram sample of ${ }^{8} \mathrm{Li}$. $\quad y \approx 8\left(0.445^{x}\right)$
d. Use the equation found in part c to determine how much of an 8 -gram sample will be left after 15 seconds.
4.25×10^{-5} grams

Representations Objective K
4. Is a linear or exponential model more suitable for the data graphed

Sample: An exponential model, because the data points seem to approach the x-axis asymptotically

Home

Properties Objective D
3. Consider the function f with equation
$f(x)=2 x^{2}+x-15$.
a. Find its y-intercept.
b. Find its x-intercepts.
c. Tell whether the graph has a maximum or minimum point and find its coordinates

Min., $\left(-\frac{1}{4},-\frac{121}{8}\right)$

Uses Objective G
4. The inner surface of a round wooden bowl is carved so that the depth measured from the top of the bowl is given by $d=0.5 x^{2}-4 x+2$, where x (in inches) is the horizontal
distance from the outer edge of the bowl.
a. Graph the equation for the inner surface of the bowl on automatic grapher. What is an appropriate domain for this Sample: $\{x: 0 \leq x \leq 8\}$
b. How deep is the bowl at $x=2$? 4 inches
c. How deep is the bowl at its deepest point?
d. How wide (thick) is the wood at the top of the bowl?
e. What is the interior diameter at the top of the bowl?

$\begin{aligned} & \text { LESSSON } \\ & \text { MASTER } \end{aligned}$	Questions on SPUR Objectives See pages 152-157 for objectives.	
Skills Objective A		
1. Let $f(x)=\lfloor x\rfloor+\lfloor x-0.5\rfloor$. Evaluate a. $f(1)$ \qquad	b. $f(3)$ d. $f(-0.1)$	5
c. $f(2.3) \quad 3$		-2
2. Let $c(x)=\lceil x\rceil+\lfloor x-1\rfloor$. Evaluate. a. $c(75)$ \qquad	b. c (75.3)	150
c. $c\left(\frac{13}{4}\right) \longrightarrow 6$	d. $c\left(-\frac{3}{5}\right)$	-2

Properties Objective B
In 3 and 4, an equation for a step function is given.
In 3 and 4, an
Identify each.
a. its domain

Uses Objective H
In 5 and 6, multiple choice.
5. Which of the following gives the number B of 40 -seat buses that a field trip for s students will require?
(a) $B=\lfloor 40 s\rfloor$
(b) $B=\left\lceil\frac{s}{40}\right\rceil$
(c) $B=\left\lfloor\frac{s}{40}\right\rfloor$
(d) $B=40\lceil s\rceil$
6. A phone company charges 49 cents per minute for calls made from the U.S. to Manchester, England, and rounds all calls up to the nearest 6 seconds. Which formula gives the cost $c(t)$ of a phone call to Manchester lasting t seconds?
(a) $(t)=0.49\left\lceil\frac{t}{6}\right\rceil$
(b) $c(t)=0.49\left\lfloor\frac{t}{60}\right\rfloor$
(c) $c(t)=0.49 \frac{\left[\frac{t}{6}\right]}{10}$
(d) $c(t)=0.49 \frac{\left[\frac{t}{10}\right]}{6}$

Representations Objective I
In 5 and 6, graph the function over the given domain.
5. $g(x)=0.2 x^{2}+x-3,\{x:-5 \leq x \leq 5\}$ 6. $V=-0.3 s^{2}+2 s+4,\{s: 0 \leq s \leq 10\}$

Representations Objective J
In 7 and 8, a quadratic relation is graphed. a. State its domain. b. State its range. c. Tell whether the relation is a function. 7.

8.

a. $\{x: x \geq-20\}$
a. All real numbers
b. All real numbers
b. $\{y: y \leq-100\}$

Representations Objective K
9. Multiple choice. Which equation
best models the data in the
scatterplot at the right?

(a) $y=-x^{2}-5 x-2$	(b) $y=3 x^{2}-2 x-4$
(c) $y=6 x^{2}+7$	(d) $y=x^{2}+5 x+6$

26

LESSON MASTER $2-7$ page 2

Representations Objective I
 7. Sketch a graph of the function over the

 given domain$y=\lfloor x+1\rfloor-1,\{x:-6 \leq x \leq 6\}$

Representations Objective J
In 8 and 9 , a graph of a step function is given.
a. State the domain of the function. b. State the range
of the function. c. Identify any points of discontinuity
8.

b. Plot the residuals for each model in part a.

c. From the residual plots in part b, which do you believe is a more appropriate model for this data? Justify your answer. Sample:The quadratic model, since the residuals are much closer to zero and since there appears to be a pattern in the residuals for the linear model

1. Explain what is meant by a parent function.

Sample: a function from which other related functions can be derived.
2. Describe the asymptotes and point of discontinuity of the graph of the function $f(x)=\frac{1}{x^{2}-3 x-4}$. Use an automatic grapher if needed. Vertical
asymptotes: $x=4$ and $x=-1$; horizontal
asymptote: $y=0$; points of discontinuity:
$x=4$ and $x=-1$
Representations Objective J
In 3-5, give an equation of a parent function whose Samples are graph has the given features.
3. an asymptote but no points of discontinuity
4. points of discontinuity but no asymptotes

> given. $y=b^{x}$
> $y=\lfloor x\rfloor$
> $\overline{y=\frac{1}{x} \text { or } y=\frac{1}{x^{2}}}$
5. two asymptotes
$y=x^{2}$
Give an equation for the parent function of
a parabola with equation $y=3(x-2)^{2}+2$
Samples
b. Graph $y=3(x-2)^{2}+2$ and its parent function on an appropriate viewing window of an automatic grapher.
Give the intervals of x-and y-values for your window. are given.

- $-5 \leq y \leq 15$. $-5 \leq x \leq 5$ $-2 \leq y \leq 15$
c. In the screen at the right, sketch what you see on your window.
d. Describe the relationship between the two graphs.
The graph of
$y=3(x-2)^{2}+2$ is
shifted 2 units right and
2 units up from the

graph of its parent
function, $y=x^{2}$.

30

Uses Objective I
3. A meteorologist takes a number of air-temperature readings and finds that the mean temperature is $-24.66^{\circ} \mathrm{C}$ with a standard deviation of $2.27^{\circ} \mathrm{C}$. He then decides to convert all of his measurements from degrees Celsius to degrees Kelvin. To do this, he uses the formula $\mathrm{K}=\mathrm{C}-273.15$, where C is the temperature in deg.
the temperature in degrees Kelvin
a. What is the mean air-temperature reading in degrees Kelvin?
$-297.81^{\circ} \mathrm{K}$
b. What is the standard deviation of airtemperature readings in degrees Kelvin?
$2.27^{\circ} \mathrm{K}$
4. The box plot below displays the annual salaries of employees at Transformation Technologies, Inc., a

Suppose, due to profit sharing, each employee receives an end-of-year bonus of $\$ 5,000$. Which, if any, of the bonus? If they change, give their new values.
a. median annual income
b. interquartile range no change no change $\$ 3 \overline{0,000, \$ 72,000}$

Home

Representations Objective L
In 5 and 6, decide whether the function whose graph is given is even, odd, or neither.

odd
6.

odd

In 7 and 8, describe the symmetries of the graphed function.

180° rotation symmetry about
 reflection symmetry the origin

LESSON 3-6 MASTER	Questions on SPUR Objectives See pages 225-229 for objectives.
Properties Objective E	
In 1-4, suppose each element in a data set is multiplied by -7. Describe the effect of this transformation on each measure.	
1. mean multiplied by -7	2. mode multiplied by -7
3. median multiplied by -7	4. range multiplied by 7

5. A data set is rescaled so that its variance is multiplied
by 4 . What are two possible values for the scale factor?
$a=2$ and $a=-2$

Uses Objective I

4. Neil Vestor is trying to decide whether he should purchase stock in an American or a Japanese manufacturing company
He recorded the price of each stock over a 3 week period and computed the mean and standard deviation for each.
American Company Japanese Compa

Mean stock value	$\$ 39.60$	$¥ 6734$
Standard deviation	$\$ 2.50$	$¥ 187$

To compare the two stocks, Neil rescales his raw data by converting the stock prices in yen to dollars, using the exchange rate $\$ 1=¥ 127$. If Neil is trying to minimize his risk by choosing the stock with the least variability, which stock should he buy?
Justify your answer.
Sample: the Japanese company, as its standard deviation is $\frac{187}{127}=\$ 1.47$ so it
is less variable than that of the American company.

Properties Objective D
5. The graph of an equation has x-intercepts $\quad x$-intercepts: $-3,2,4$;
$-1.5,1$, and 2 , and y-intercept -3 . Give he x - and y-ntercepts for the image of the graph under the transformation y-intercept: -9 $S:(x, y) \rightarrow(2 x, 3 y)$
6. Describe the points of discontinuity on the image of the graph integral of $y=[x]$ under the scale change $S:(x, y) \rightarrow\left(2 x, \frac{1}{3} y\right)$. multiples of 8
7. Suppose the scale change $\mathrm{S}:(x, y) \rightarrow(4 x, 3 y)$ is applied to
the graph of $y=\frac{x}{x^{2}-9}$. What effect does this transformation have on the graph's asymptotes? Horizontal asymptote $y=0$ is unchanged; vertical asymptotes $x=3$ and $x=-3$ move to $x=\frac{3}{4}$ and $x=-\frac{3}{4}$

Representations Objective K
8. Sketch graphs of $y=\sqrt{x}$ and its image under the transformation $S:(x, y) \rightarrow\left(\frac{1}{4} x, y\right)$.

34

In 1 and 2 , let $f(x)=x^{2}+2 x+7$ and $g(x)=5 x-3$.

1. Evaluate each composite
a. $f(g(1))$
15
b. $g(f(1))$ \qquad 47
2. Find a formula for each composite

$$
\begin{array}{lr}
\text { a. } f(g(x)) \\
\underline{y}=25 x^{2}-20 x+10 & \text { b. } g(g(x)) \\
y & y=25 x-18
\end{array}
$$

3. Let $F=\{(1,7),(2,4),(3,2),(4,1)\}$ and
$G=\{(7,6),(1,3),(2,2),(4,1)\}$. Find each composite.
a. $\{(1,2),(2,4),(4,7)\}\{(1,6),(2,1),(3,2),(4,3)\}$
4. Consider the functions h mapping A to B and j mapping B to C

Evaluate each composition.
$\begin{array}{llll}\text { a. } h(j(a)) \\ \boldsymbol{b} & \text { b. } j(h(b)) & \boldsymbol{C} & \text { c. }(h \circ j)(d) \\ \boldsymbol{C}\end{array}$

Properties Objective G
5. Let $s(x)=\sqrt{x-1}$ and $n(x)=x^{2}-2$. Give the domain
of each composite.
b. $s \circ x$ set of all reals $>1 \quad$ set of all reals $>\sqrt{3}$
6. Let $p(t)=\frac{1}{t}-1$. True or false. The domain of p is
the same as the domain of $p \circ p$. Justify your answer
False; The domain of p is the set of all real numbers except 0 ; the domain of $p \circ p$ is the set of all real numbers except 0 and 1 .

In 5-7, convert to a radian measure without using a calculator.
\qquad
In 8-10, convert to a degree measure without using a calculator.
8. $\frac{11 \pi}{6} \quad 330^{\circ}$
9. $-\frac{\pi}{10}-18^{\circ}$
10. $3.14159 \approx 180^{\circ}$

In 11-14, use a calculator to convert the given angle measure to the indicated units. Give your answer correct to the nearest thousandth.

11. -42° a. to revolutions ≈ 0.12, clockwise	b. to radians ≈-0.733
12. 19π a. torevolutions	b. to degrees
95, counterclockwise	3420°
13. 19 a. to revolutions	b. to degrees
≈ 3.02, counterclockwise	1088.620°
14. 0.33 revolution clockwise a. to radians	b. to degrees
≈ 2.073 radians	-118.8°

LESSOON (3-9
Questions on SPUR Objectives

Properties Objective H

1. Explain how a z-score is calculated.

The mean is subtracted from the raw score; the difference is divided by the standard deviation.
2. A data set has a mean of 25.6 and a standard deviation
of 2.3. Find each for the data set's z-scores.
a. the mean \qquad
b. the standard deviation

In 3 and $4, a z$-score is given. Explain what it means in terms of the mean and standard deviation of the original data set.
3. $z=0.75 \frac{3}{4}$ of a standard deviation above the mean
4. $z=-1.25$ 5 $\frac{5}{4}$ of a standard deviation below the mean

Uses Objective I
5. The following sets of data show the average number of points
scored per game by players on the boys' and girls' basketball teams.

Boys	4.7	0.3	11.6	0.3	3.6	6.2	1.3	1.1
	3.1	7.6	4.0	20.5	0.8	2.5	3.6	
Girls	7.0	2.6	9.8	6.3	5.7	0.8	6.5	8.5
	12.4	7.2	5.3	7.9	9.1	7.6	6.9	

a. Convert the above data for the 15 boys and 15 girls to z-scores.
(When calculating z-scores, use the population standard deviation,
not the sample standard deviation.)

	-0.1	-0.86	1.33	-0.86	-0.22	0.28	-0.67

$*$	Boys	-0.32	0.55	-0.14	3.06	-0.77	-0.44	-0.22
	Girls	0.03	-1.61	1.08	-0.23	-0.45	-2.28	-0.15
		0.119						

Girls	2.05	0.11	-0.60	0.37	0.82	0.26	0
	2.0 .3						

b. Who did better relative to the rest of the team, the boy who averaged 6.2 points per game or the girl who averaged
7.9 points per game? Justify your answer in terms of z-scores
the girl; her z-score was 0.37 and boy's was 0.28
6. A student took two tests. On the first, she scored 87 and on the second she scored 80 . If the class mean was 80 and the standard deviation was 10 on the first test and the class mean was 72 with a standard deviation of 5 on the second, on which test did she do better compared to the other students?
second test (1st z-score: 0.7; 2nd z-score: 1.6)
38

Home

In 7-9, use a calculator to evaluate to the nearest thousandth.
$\begin{array}{llll}\text { 7. } \sin 112^{\circ} & 0.927 & \text { 8. } \tan \frac{\pi}{4} & 1\end{array}$
9. $\cos \left(-16^{\circ}\right) \underline{0.961}$ 10. The point $(1,0)$ is rotated $\frac{5 \pi}{4}$ about the origin. Find the coordinates of its image correct
(-0.707, -0.707)
Properties Objective D
11. True or false. For some integer values of k,
$\tan \left(k \cdot \frac{\pi}{2}\right)=1$. Justify your answer. False; for integral values
of $k, \sin \left(k \cdot \frac{\pi}{2}\right)$ and $\cos \left(k \cdot \frac{\pi}{2}\right)=0$ or 1 ; when
$\sin \left(k \cdot \frac{\pi}{2}\right)=0, \cos \left(k \cdot \frac{\pi}{2}\right)=1$ and when $\sin \left(k \cdot \frac{\pi}{2}\right)=$ $1, \cos \left(k \cdot \frac{\pi}{2}\right)=0$; so $\tan \left(k \cdot \frac{\pi}{2}\right)=0$ or undefined.

In 12-15, describe an interval between 0 and
Sample answers 2π in which θ satisfies the given requirements

Sample answers

12. $\cos \theta>0$ and $\sin \theta<0$	13. $\sin \theta>0$ and $\tan \theta<0$
$\frac{3 \pi}{2}<\boldsymbol{\theta}<\mathbf{2 \pi}$	$\frac{\pi}{2}<\boldsymbol{\theta}<\pi$
14. $\cos \theta=0$ and $\sin \theta>0$	13. $\tan \theta>0$ and $\cos \theta<0$
$\boldsymbol{\theta}=\frac{\pi}{2}$	$\pi<\boldsymbol{\theta}<\frac{3 \pi}{2}$

Representations Objective J

In 16-20, refer to the unit circle shown.
Which letter best represents the value given?
16. $\cos -270$ \qquad
(e,f)

1. The point $(1,0)$ is rotated about the origin such that $\cos \theta=-\frac{8}{17}$.
a. In what quadrant(s) could $R_{\theta}(1,0)$ lie? II and III
b. Justify your answer to part a by graphing $R_{\theta}(1,0)$ on the unit circle at the right
c. Find all possible values of $\sin \theta$.

$\frac{15}{17},-\frac{15}{17}$

Properties Objective E
2. If $\sin \theta=\frac{\sqrt{17}}{7}$, find all possible values for the following.

$$
\begin{array}{cr}
\text { a. } \cos \theta & \text { b. } \tan \theta \\
\pm \frac{4 \sqrt{2}}{7} & \pm \frac{\sqrt{34}}{8} \\
\hline
\end{array}
$$

3. If $\cos \theta=0.68$, evaluate the following.

$$
\begin{array}{ll}
\text { a. } \cos (-\theta) & \text { b. } \cos (\pi-\theta)
\end{array}
$$

0.68
-0.68
4. If $\sin \theta=-0.368$, and $\pi<\theta<\frac{3 \pi}{2}$, evaluate the following.
a. $\sin (\pi+\theta)$
b. $\sin \left(\frac{\pi}{2}-\theta\right)$ ≈-0.930
c. $\cos (-\theta)$
d. $\tan (\pi-\theta)$
≈-0.938 ≈-0.396
5. True or false. $\tan (k \cdot \pi+\theta)=\tan \theta$ for all integers k.

True or false. \tan (k.
True; by the Half-Turn Theorem, $\tan (\pi+\theta)=$ $\tan \theta$; another half-turn gives $\tan (\pi+(\pi+\theta))=$ $\tan (\pi+\theta)=\tan \theta$. So, $\tan (2 \pi+\theta)=\tan \theta$.
Repetition shows that $\tan (k \cdot \pi+\theta)=\tan \theta$ for all integers k.

42

Name LESSON MASTER		Questions on SPUR Objectives See pages 303-307 for objectives.	
Properties Objective D			
1. Complete the following table.			
	$f(\theta)=\sin \theta$	$g(\theta)=\cos \theta$	$\boldsymbol{h}(\boldsymbol{\theta})=\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$
Domain	all reals	all reals	all reals but odd multiples of $\frac{\pi}{2}$
Range	$-1 \leq y \leq 1$	$-1 \leq y<1$	all reals
Zeros	$k \pi$, for all integers \boldsymbol{k}	$k \pi$, for all integers k	$k \pi$, for all integers k
Period	2π	2π	π
Even, odd, or neither	odd	even	odd

are both $\cos x$ and $\tan x$ negative?
$\frac{\pi}{2}<x<\pi$
3. One solution to the equation $\sin \theta=0.732$
is $\theta \approx 0.821$. Find the three other solutions $\approx 2.32, \approx-3.96, \approx 7.10$
closest to this value.
Representations Objective K
In 4-11, identify which, if any, of the parent circular
functions have graphs with the given characteristic.
4. symmetry with respect to the origin
5. symmetry with respect to the x-axis
6. symmetry with respect to the y-axis
7. vertical asymptotes
8. horizontal asymptotes
9. points of discontinuity
10. x-intercepts at integral multiples of π
11. y-intercept -1

sine, tangent
none
cosine
tangent
none
tangent
sine, tangent
none

3. Consider the image of the graph of $y=\cos x$ under
the transformation $S(x, y)=\left(\frac{x}{4}, 5 y\right)$.
a. Find the amplitude of the image.
b. Find the period of the image.
c. Find an equation for the image under this transformation.
4. How many cycles does the graph of $y=\sin 3 x$ make for each cycle of the graph of $y=\sin x$?

5
$\frac{\pi}{2}$
$y=5 \cos 4 x$

3 cycles
5. How many cycles does the graph of $y=3 \sin x$ make for each cycle
of the graph of $y=\sin 3 x$? of the graph of $y=\sin 3 x$?

Uses Objective H
6. Suppose a tuning fork vibrates with a frequency of
approximately 370 cycles per second. If the vibration
displaces air molecules by a maximum of
displaces air molecules by a maximum of 0.22 mm ,
give a possible equation for the sound wave $y=0.22 \sin (740 \pi t)$
that is produced.
7. A certain sound wave has equation $y=15 \cos (110 \pi t)$.

Give an equation of a sound wave with pitch one
octave lower and three times as loud as this one.
Representations Objective L
In 8 and 9, sketch one cycle of the graph without an automatic grapher.
8. $y=\frac{\cos \left(\frac{4}{7}\right)}{3}$
9. $y=2 \sin \left(\frac{\pi}{3} x\right)$

Representations Objective M
In 10-15, match each equation with its graph below.

$\operatorname{in}\left(\frac{x}{2}\right)$
$\frac{\mathbf{e}}{\mathbf{a}}$
$2 x$

(b)

45

2. True or false. The graphs of the functions $g(x)=\sin (x+\pi)$ and $h(x)=\sin (x-\pi)$ are identical. Justify your answer.
True; $\sin (x-\pi)=\sin (x-\pi+2 \pi)=$ $\sin (x+\pi)$

Uses Objective H
3. For an electrical-power supply, the output potential (in volts) and current (in amps) as functions of time (in seconds) are given by $V=25 \cos t+25$ and $I=0.3 \cos \left(t-\frac{5 \pi}{4}\right)$, respectively.
$\begin{array}{ll}\text { a. What are the maximum and } & \text { b. What are the maximum }\end{array}$

a. What are the maximum and minimum output voltages? 50 volts, 0 volts		
		b. What are the maximum and minimum output currents?
		$0.3 \mathrm{amp},-0.3 \mathrm{amp}$
	What is the phase shift between output current and output voltage?	d. By about how many seconds does the maximum current lag
	$\frac{5 \pi}{4} \text { or } \frac{-3 \pi}{4}$	behind the maximum voltage? ≈ 2.36

Representations Objective L
In 4 and 5, sketch a graph of the function.
4. $f(x)=\sin \left(x+\frac{\pi}{2}\right)-3$
5. $y-2=\tan \left(x-\frac{\pi}{3}\right)$

46

Name
LESSON MASTER 4-8 page 2
6. Consider the translation
$T:(x, y) \rightarrow\left(x-\frac{3 \pi}{2}, y-1\right)$
a. Graph the image of the cosine function under T
b. Write an equation for the image of $y=\cos x$ under T.

$$
y=\cos \left(x+\frac{3 \pi}{2}\right)-1
$$

Representations Objective M
7. Write an equation for the translation image
of $y=\tan x$ shown at the right.
$y=\tan \left(x+\frac{3 \pi}{2}\right)$

$\begin{array}{cc}-2 \pi \leq x \leq 2 \pi & x \text {-scale }=\frac{\pi}{2} \\ -4 \leq y \leq 4 & y \text {-scale }=1\end{array}$
In 8 and 9 , use the designated parent function to write
an equation for its translation image graphed below.

8. parent function: $y=\cos x$

$$
y=\cos \left(x-\frac{\pi}{3}\right)+4 \quad y=\sin \left(x+\frac{\pi}{6}\right)+4
$$

9. parent function: $y=\cos x$

Home

LESSON MASTER	
	Questions on SPUR Objectives See pages 303-307 for objectives.
Properties Objective F	
In 1 and 2, a circular function is described. a. State the amplitude. b. State the period. c. State the phase shift.	
1. $y=2 \sin \left(\frac{x-4}{4}\right)$	2
	8π
	π
2. $y=\cos \left(\frac{2 x+\pi}{3}\right)-4$	1
	3π
	$-\frac{\pi}{2}$
3. Describe a scale change S and translation T whose composite maps the graph of $y=\sin x$ onto the graph of $y=3 \sin \left(2 x-\frac{\pi}{2}\right)+1$.$s(x, y) \rightarrow\left(\frac{1}{2} x, 3 y\right) ; T(x, y) \rightarrow\left(x+\frac{\pi}{4}, y+1\right)$	
4. Suppose the rubber band transformation $B:(x, y) \rightarrow\left(\frac{x-a}{h}, \frac{y}{k}\right)$ is applied to the graph of $y=\cos x$. a. State an equation for the image. $y=\underline{\frac{1}{k}} \cos (x h+a)$ b. Find the amplitude, period, phase shift, and vertical shift of the image. $\frac{1}{k}, \frac{2 \pi}{h}, \frac{-a}{h}$, no vertical shift	
In 5 and 6, write a function whose graph will have the given characteristics.	
5. parent $y=\sin x$, phase shift $\frac{\pi}{6}$, period $\pi, \quad y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{3}\right)$amplitude $\frac{1}{2}$	
6. parent $y=\cos x$ phase shift π, period $\frac{\pi}{3}$, amplitude 4$y=\underline{4 \cos (6 x-6 \pi)}$	

- LESSON MASTER 4-9 page 2

Representations Objective L

In 8 and 9, sketch a graph of the function described

Representations Objective M
10. Give an equation for the sine wave at the right.
$y=4 \sin \left(\frac{x}{2}-\frac{\pi}{8}\right)$

50

In 1-4, refer to $\triangle D E F$ at the right. Find each

1. | $\cos D$ | $\frac{1}{2}$ |
| :--- | :--- |
| | 3. $\cos F$ |
| | $\frac{\sqrt{3}}{2}$ |

In 5-8, approximate to the nearest hundredth.
5. $\tan 11.1^{\circ} \quad$ 6. $\cos 165^{\circ} 12$

10. Find the measure of $\angle D$ in $\triangle D E F$ above. 60°

Uses Objective G

11. The largest of the ancient Egyptian pyramids, built for the king Khufu, is a regular square pyramid with base edges of length 230.4 m and a pyramid make with the ground?
$\approx 51.9^{\circ}$

. What does your model predict as the average normal temperature for
September in Dodge City? City?
$\approx 56^{\circ} \mathrm{F}$

Name

-LESSON MASTER 5-3 page 2

b. The sun has a radius of 432,000 miles and is an average of $92,900,000$ miles from Earth. What angle, in minutes, does the sun subtend in the sky? The moon has a radius of 1,080 miles and its
center is an average of 235,000 miles from center is an average of 235,000 miles from
Earth's surface. At this distance, what angle ≈ 32 minutes (in minutes) does the moon subtend in the sky?
≈ 31 minutes
d. The center of the moon ranges from 217,500 to 248,700 miles from Earth's surface in its elliptica orbit. Explain why when it is farthest from Earth
here cannot be a total eclipse of the sun there cannot be a total eclipse of the sun
The angle subtended by the moon when it is farthest from Earth is about 30 minutes and the apparent size of the moon is not enough to cover the sun.

Representations Objective J
In 12 and 13, graph the function on the given set of axes.
12. $f(x)=\cos ^{-1} x$
13. $f(x)=\sin ^{-1} x$

14. True or false. The graph of the inverse cosine

False

In 4-6, use a calculator to approximate to the nearest hundredth of a degree.

4. $\cos ^{-1}(-0.38)$	5. $\cos ^{-1}\left(\frac{1}{9}\right)$	6. $\operatorname{Arccos} 0.999$
112.33°	83.62°	2.56°

Skills Objective D
In 7 and 8 , find $\boldsymbol{\theta}$, where $0 \leq \boldsymbol{\theta} \leq \pi$, to the nearest hundredth
7. $\cos \theta=0.5$
8. $2 \cos \theta=0.5$
1.05
1.32

Properties Objective F
In 9 and 10, the equation for a function is given.
In 9 and 10, the equation for a function is
a. State its domain.
9. $f(x)=\cos ^{-1} x$ a $\{x:-1 \leq x \leq 1\}$
10. $g(t)=3 \cos ^{-1} t$
b. $\{y: 0 \leq y \leq \pi\}$
b. $\{g: 0 \leq g \leq 3 \pi\}$

Uses Objective I
11. As viewed from Earth, any distant astronomical object subtends some angle θ, which depends on the object's radius r and
its distance d from Earth.

54

Properties Objective E
5. List three conditions for which the Law of Sines yields Angle Side a unique solution.
Angle; Angle Angle Side; Side Side Angle
6. In $\triangle P R L, P R=3 R L$. Find $\frac{\sin L}{\sin P}$. $\frac{1}{3}$

Uses Objective H

Uses Objective I
8. A 50 -foot flagpole is lifted into place with a 90 -foot rope as shown the ground) to $\angle \beta$ (the angle between the pole and the ground).

Home


```
LESSON MASTER 6-1 page2
```

Representations Objective I
15. Graph $f(x)=x^{\frac{1}{4}}, g(x)=x^{\frac{1}{3}}$, and $h(x)=x^{\frac{1}{2}}$ on the same window of an automatic grapher.
a. For what, if any, value(s) of x is $f(x)=g(x)=h(x)$?
$x=0$
b. For what, if any, value(s) of x is $f(x)>g(x)>h(x)$?
\qquad
c. For what, if any, value(s) of x is $h(x)>g(x)>f(x)$?
$x>1$
d. For what, if any, value(s) of x is $g(x)>f(x)>h(x)$?
none

Representations Objective J
16. The graph at the right is of the function defined by $f(x)=\sqrt[n]{x}$ Is n even or odd? Justify your answer.
odd; the function
$f(x)=\sqrt[n]{x}$ is not
defined for negative
values of x.

-LESSON MASTER 6-2 page 2

Representations Objective I
a. Use an automatic grapher to graph
b. On a new window, graph $y=\left(x^{2}\right)^{\frac{1}{6}}$ for $-10 \leq x \leq 10$.

c. Use your results to parts a and b and the Power of a Power Property to explain why negative bases are not used with
rational exponents. By the Power of a Power Property, $\left(x^{2}\right)^{\frac{1}{6}}=x^{\frac{1}{3}}=\left(x^{\frac{1}{6}}\right)^{2}$.
But, the graphs in parts a and b are not identical
for $\boldsymbol{x}<\mathbf{0}$, so $\boldsymbol{x}^{\frac{1}{3}}$ is defined only for $\boldsymbol{x} \geq 0$.
Representations Objective J
10. Multiple choice. Which is a graph of the

Multiple choice. Which is a graph of
equation $y=x^{a}$, where $-1<a<0$? \qquad

In 1-6, evaluate without using a calculator.

1. $\log _{\left(1 \times 10^{7}\right)}$	$\mathbf{7}$		
3. $\log _{53} \frac{1}{169}$	-2		3
		4. $\log _{8} 0.125$	$\mathbf{- 1}$

Properties Objective D

In 5-7, state the inverse of the function with
the given equation.
5. $f(x)=10 \log x^{f^{-1}}(x)=10^{\frac{x}{0}} \quad$ f. $g(x)=2^{x} \quad g^{-1}(x)=\log _{2} x$
7. $h(x)=\log _{5} x \quad h^{-1}(x)=5^{x}$

Representations Objective I
8. Let f and g be the functions defined by $f(x)=\log x$ and
$g(x)=10^{x}$, respectively. On separate windows of an automatic grapher, graph $y=f(g(x))$ and $y=g(f(x))$ for $-10 \leq x \leq 10$.
a. What do your graphs tell you about the relationship between the functions f and g ?
f and g are inverses.
b. Explain why the two graphs are different. g is defined for negative values of x, but f is not.

Representations Objective J
9. Multiple choice. Which equation best represents the graph at the right?
(a) $y=\log x$
(b) $y=\log (x-$
(c) $y=\log 2 x$
(d) $y=\log _{2} x$

Home

Skills Objective C

In 5-8, evaluate to the nearest thousandth.

In 5-8, evaluate to the nearest thousandth.	
5. $\log _{5} 100$	6. $\log _{2}\left(\frac{2}{7}\right)$
2.861	-1.807
7. $\log _{\sqrt{3}} 7$	8. $\log _{\pi} e$
3.542	0.874

Properties Objective E

In 9-10, true or false. Assume all variables are positive.

9. $\log _{a} b \cdot \log _{b} a=1$ True	10. $\frac{\log _{7} x}{\ln x}=\ln 7$
False	

In 1-6, evaluate without using a calculator.

In $1-6$, evaluate without using a calculator.		
1. $\log _{27} 3$ $\frac{1}{3}$ 2. $\log (1,000,000)^{\frac{1}{6}}$	$\frac{1}{13 \frac{31}{32}}$	
3. $\log _{9}\left(\frac{1}{3}\right)$	$-\frac{1}{2}$	4. $\ln \left(e^{13} \cdot e^{\frac{31}{22}}\right)$
5. $-\frac{1}{3} \log _{6} 36^{\frac{3}{4}}-\frac{1}{2}$	6. $2 \log _{0.5} 8-4 \log _{0.5} 2$	$\mathbf{- 2}$

Properties Objective D
7. What property of logarithms follows from the Zero Exponent Theorem?
Logarithm of 1 Theorem: $\log _{b} 1=0$ for any
nonzero base b

Properties Objective E
In 8-10, use the fact that $\log _{13} 6 \approx 0.6986$ and
$\log _{13} 3 \approx 0.4283$ to evaluate the expression.
8. $\log _{13} 2$
9. $\log _{13} 1458$
10. $\log _{13} \frac{1}{18}$
$\approx 0.2703 \approx 2.8401$ ≈ 1.1269

In 11-13, rewrite as a single logarithm.
11. $\ln y^{2}+\ln y^{5}$
12. $\ln 2 y-\ln 3 y$
13. $\ln 2^{y}+\ln 3^{y}$
In y^{5}
$\ln \frac{2}{3}$
In 6^{y}
14. Estimate 5^{2000}.
$\approx 8.71 \times 10^{1397}$
15. Recall that $n!$ (n factorial) is the product of the integers from 1 to n. Prove, for any base $b, \sum_{1}^{n} \log _{b} x=\log _{b}(n!)$. By the Logarithm of a Product Theorem, $\log _{b}(n!)=\log _{b}(1 \cdot 2 \cdot 3 \cdot \ldots \cdot n)$ and $\sum_{x=1}^{n} \log _{b} x=\log _{b} 1+\log _{b} 2+\log _{b} 3+\ldots+$ $\log _{b}(n-1)+\log _{b} n=$ $\log _{b}(1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n)$.

66

| Name |
| :--- | :--- |
| L E S S O N N |

M A S TE R

$\begin{aligned} & \text { LIESSON } 7-3 \\ & \text { MASTER } \end{aligned}$	Questions on SPUR Objectives See pages 482-485 for objectives.
Skills 0bjective B	
1. What is the probability of flip and getting 7 tails?	$\frac{1}{128} \approx 0.008$

Skills Objective C

2. Suppose a bag contains 5 balls numbered 1 through 5 . a. In how many ways can you select 5 balls from the bag if you replace the ball after each selection? 3125 ways
b. In how many ways can you select 5 balls from the bag if there is no replacement after selection? 120 ways
c. List one arrangement that you could get from the Sample: selection process in part a that you could not get 3, 4, 2, 3, 5
3. An octal (base 8) number is a number whose digits can be any of the numbers 0 through 7 . In each case, determine how many 4 -digit octal numbers are possible.
a. The first digit can be 0 . 4096 numbers
b. The first digit cannot be 0 . 3584 numbers

Skills Objective D

In 4-6, evaluate without using a calculator.

4. $1!$ 5. $\frac{1}{3!}$ $\frac{1}{6}$	6. $\frac{7958!}{795!!}$		
1 $\frac{7958}{1,560,780}$ 7. Evaluate $\frac{117!}{114!}$			

Uses Objective I
8. The first row of a football team picture includes the eleven starters in the offensive unit, the place kicker
and the coach. The coach stands in the center with six players to his right and six to his left. In how many different ways could the photographer arrange the group with the coach in the center? 479,001,600 ways
9. Each strand of human DNA consists of millions of nucleotides linked together to form a chain. bases-adenine, guanine, thymine, or cytosine. Sequences of these bases determine our genetic code. How many different possible sequences are
there for a segment of DNA 100 nucleotides long? $4^{100} \approx 1.607 \times$ 10^{60} sequences

LESSON 7. 7 MASTER	Questions on SPUR Objectives See pages 482-485 for objectives.	
Skills Objective B		
In 1-5, consider rolling a single fair die. Let A be the event $\{1,2,3\}$ and B be the event $\{2,4,5,6\}$. Suppose \bar{B} is the complement of event B. Find the probability.		
1. $P(A)$ 2. $P(A \cup B)$ $\frac{1}{2}$ 1	3. $\begin{array}{cr}P(A \cap B) & \text { 4. } P(\bar{B}) \\ \frac{1}{6} & \frac{1}{3}\end{array}$	5. $P(A \cap \bar{B})$ $\frac{1}{3}$
Properties Objective E		
In 6-8, let A and B be two events in a finite sample space. True or false.		
6. If $P(A)+P(B)=1$, then A	nd B must be complementary.	False
7. For all A and $B, P(A \cap B)$	$A \cup B)=P(A)+P(B)$.	True
8. If A and B are complementary also be mutually exclusive.	then A and B must	True
Properties Objective F		
In 9-12, multiple choice. Consider rolling a fair 6-sided die. Determine whether events A and B are (a) complementary, (b) mutually exclusive but not complementary, or (c) neither mutually exclusive nor complementary.		
9. A: rolling a number greater than 2 B : rolling a number less than 2 b 10. A: rolling a number greater than 3 B : rolling a number less than 6 C		
11. A : rolling a number 4 or greater B : rolling a number 4 or less 12. A: rolling a number 5 or greater B : rolling a number less than 5		
C	a	
Uses Objective H		
13. A pre-election poll suggests that the probability that the Republican candidate will win is 0.42 , and the probability that the Democratic candidate will win is 0.47 . Find the probability that a third-party candidate will win the election.		
14. A survey is conducted to determine the number of households that recycle in a certain city. It is found that 32% recycle aluminum cans, 47% recycle newspaper, and 28% recycle both aluminum cans and newspaper. What is the probability that a household recycles at least one of these resources?		
15. The estimated probability in the year 2000 that a randomly selected U.S. resident is over the age of 18 is about 74.2% and the probability that the person is under the age of 24 is 35.3%. What is the probability that the person is between the ages of 18 and 24?		0.095
70		

70

1. List all the permutations of all the letters $\mathrm{M}, \mathrm{I}, \mathrm{L}$, and K .

IKLM IMKL KLIM LIKM LMIK MKIL IKML IMLK KLMI LIMK LMKI MKLI ILKM KILM KMIL LKIM MILK MLIK ILMK KIML KMLI LKMI MIKL MLKI
2. How many permutations are there of all the letters $\approx 4.0329 \times 10^{26}$
in the English alphabet?
3. How many permutations consisting of 3 letters each can be formed from the letters of GRAPHIC?

Skills Objective D

In 4-6, evaluate.		
4. ${ }_{8} P_{7}$ $40,320$	5. ${ }_{100} P_{2} 9900$	6. ${ }_{49} P_{1}$ 498
7. True or false. ${ }_{10} P_{5}={ }_{5} P_{10}$		
		False

Skills Objective G
In 8-13, solve.

$\text { 8. } \begin{aligned} & \frac{x!}{8!}=90 \\ & \quad X=10 \\ & \hline \end{aligned}$	9. $\begin{aligned} & \frac{6}{x!}=\frac{1}{120} \\ & X=6\end{aligned}$	10. $\begin{array}{r}x! \\ (x+1)! \\ X=0\end{array}$
11. $\frac{x}{x}=(x-1)$!	12. ${ }_{n} P_{8}=13 \cdot{ }_{n} P_{7}$	13. ${ }_{n} P_{6}=90 \cdot$
x an intege	$n=20$	$n=14$

Uses Objective I
14. A researcher conducted an opinion poll in whic he asked people to rank their top 5 preferences for mayor from a list of 20 potential candidates How many such rankings are possible?
15. How many ways can 120 passengers be seated in an airplane with 150 seats? rankings

$$
\frac{\approx 2.154 \times}{10^{230} \text { ways }}
$$

2. True or false. Mutually exclusive events are never independent.
Justify your answer. False: sample: If at least one event is \varnothing, then the events are mutually exclusive and independent;
$A \cap \varnothing=\varnothing ; P(A \cap \varnothing)=P(\varnothing)=0$ and

$$
P(A) P(\varnothing)=0 \cdot P(A)=0
$$

Properties Objective F
In 5-7, consider the experiment of rolling two fair dice. Determine whether or not the two given events A and B are independent or dependent. Use the sample space shown on page 427 of your textbook if necessary.
5. A: rolling a sum of 7
B : rolling an even number independent
6. A: rolling doubles
B : rolling a 3 on the first die
independent
7. A : rolling doubles
$B:$ rolling a 3 on either die
dependent
Uses Objective H
8. During the 1996-97 season, Michael Jordan made 83.3% of
the free throws he attempted. Assume independence of free
throw attempts and find the probability that MJ would
a. make two of two free throws.
≈ 0.694
b. miss two of two free throws. ≈ 0.028
c. make at least one of two free throws. ≈ 0.972
9. Suppose a car manufacturer knows that the probability that a defect will cause an accident is 0.01 and that the probability an
accident will be caused by human error is 0.50 . If the probability hat an accident is caused by human error and a defect is 0.05 , ar the events independent? Justify your answer. No; sample explanation: $P(A)=0.01$ and $P(B)=0.5$, so $P(A) P(B)=0.005$ but $P(A \cap B)=0.05$.
 relative frequencies and estimate probabilities.

Uses Objective J
2. Suppose a basketball player makes free-throw shots $\frac{5}{6}$ of the time.
a. Design a simulation using a fair 6 -sided die which will estimate the probability that the basketball player will make at least 2 free throws in 3 attempts. Be sure to define a trial.
Sample: Let rolling a 1-5 be a free throw made and rolling a 6 a free throw missed. A trial is 3 rolls of the die. Calculate the $\%$ of trials in which 2 or 3 of the 3 rolls result in $1,2,3,4$, or 5 .
b. Use 25 trials to calculate the estimated probability of making at least 2 of 3 free throws.

Answers
c. The actual probability of making at least 2 free throws will vary. in 3 attempts is about 0.93 . How could you increase the accuracy of your estimation?
Sample: Increase the number of trials
3. A conservationist is attempting to repopulate a lake with
trout. Each fish released has a 0.4 chance of surviving.
Five fish are released at a time.
a. Use the Table of Random Numbers in the Appendix of your textbook to design a simulation to estimate the probability that all 5 fish in a release will survive. Be sure to define a trial
Sample: Let 0, 1, 2, 3 represent fish living and 4, 5, 6, 7, 8, 9 represent fish dying. Choose a random spot in the table and move in some direction. A trial is to read five consecutive digits. Calculate the percent of trials in which all five digits are numbers from 0 to 3 .

[^0]
2. A researcher collects the following data about the incubation time of a certain disease.

| $x=$ Number of days | 1 | 2 | 2 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $P_{(x)}$ | $\frac{1}{14} \frac{3}{28} \left\lvert\, \frac{3}{14} \frac{1}{28} \frac{1}{7} \frac{1}{7} \frac{1}{7}\right.$ |
| :--- | :--- |

a. What is the random variable? incubation time 4.5 days
3. Consider the experiment of rolling two fair 6 -sided dice

a. Construct a probability distribution table in which the value of the random variable is calculated by subtracting the value showing on the second die from the value showing on the first die | X | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X)$ | $\frac{1}{36}$ | $\frac{2}{36}$ | $\frac{3}{36}$ | $\frac{4}{36}$ | $\frac{5}{36}$ | $\frac{6}{36}$ | $\frac{5}{36}$ | $\frac{4}{36}$ | $\frac{3}{36}$ | $\frac{2}{36}$ | $\frac{1}{36}$ |

b. Graph the distribution in part a as a scatterplot.
c. Find the expected value of the probability distribution
\qquad

74

1. A college has places for 225 entering freshmen. The dean of admissions has statistics that show that about 32% of those students offered admission will choose to not enroll. To
compensate for this, the dean offers admission to 310 students.
a. Design a simulation using a computer or calculator to estimate
the probability that more than 225 students will try to enroll. Sample: Generate 310 random numbers between 0 and 1 . Numbers >0.32 represent students' enrolling; numbers ≤ 0.32 represent students' not enrolling. A trial is 310 numbers. Perform 100 trials, and calculate the percent of trials in which the number of students enrolling is > 225 .
b. Run your simulation and reco estimated probability
2. Estimate the area under the curve $y=x^{3}$ between $x=0$ and $x=1$.

Sample: ≈ 0.25
3. Estimate the area under the graph of $y=\cos x$ between 0 and $\frac{\pi}{4}$

Sample: ≈ 0.71
4. A pharmaceutical company reported that 83% of people afflicted with the flu recover within one week when given a certain antibiotic.
A doctor is currently treating 63 of his patients with this drug.
a. Design a simulation using a calculator or computer to estimate the average number of the doctor's patients who will recover
within one week of taking the antibiotic.
Sample: Generate 63 random numbers between 0 and 1. Numbers >0.17 represent patients' recovering; numbers ≤ 0.17 represent patients' not recovering. A trial is 63 numbers. Perform 50 trials and calculate the average of the numbers from the trials.

Sample: ≈ 52

9. Write explicit and recursive formulas for the geometric sequence $\frac{2}{3}, 1, \frac{3}{2}, \frac{9}{4}, \ldots$. Samples are given.

$$
g_{n}=\left(\frac{3}{2}\right)^{n-2} \quad\left\{\begin{array}{l}
g_{1}=\frac{2}{3} \\
g_{n-1}=\frac{3}{2} g_{n-1}, \text { for } n \geq 2
\end{array}\right.
$$

Properties Objective E
In 10-15, identify the sequences in Exercises 1-6,
respectively, as arithmetic, geometric, or neither.

respectively, as arithmetic, geometric, or neither.	
10. geometric	11.arithmetic 12. $\frac{\text { neither }}{\text { neither }}$ 14.

Uses Objective I
16. Cynthia is to begin training for a long-distance bicycle
ride. Her plan is to ride every day, starting with $25-\mathrm{km}$
rides the first week and increasing her distance by 7 km
each subsequent week.
a. What is the distance of Cynthia's rides in the second week of her training? $\quad 32 \mathrm{~km}$
b. Write a recursive formula for $\left\{d_{1}=25\right.$ the distance of Cynthia's $\quad\left\{d_{n}=d_{n-1}+7\right.$, for $n \geq 2$.

$$
\begin{aligned}
& \text { c. Write an explicit formula for the } \\
& \text { distance of Cynthia's training } \\
& \text { rides in the } n \text {th week. }
\end{aligned} \quad d_{n}=25+7(n-1)
$$

d. In what week will the distance of

Cynthia's training rides be 102 km ? week 12
17. A particular high-powered personal home computer system costs about $\$ 3,000$ new. However, due to rapid advance
in technology, it depreciates in value by 35% each year.
a. How much will the computer be worth $\begin{aligned} & \text { in its second year? }\end{aligned}$
in its second year?
$\left\{\begin{array}{l}v_{1}=3000 \\ v_{n}=0.65 v_{n-1}\end{array}\right.$, for $n>1$. $\begin{aligned} & \text { the value of the computer in } \\ & \text { its } n \text {th year. }\end{aligned} \quad\left\{v_{n}=0.65 v_{n-1}\right.$
$v_{n}=3000(0.65)^{n-1}$
c. Write an explicit formula for the value of the computer in its nth year
$v_{n}=3000(0.65)^{n-1}$
d. In what year will the value of the computer first drop below $\$ 500$? \qquad

78

Name	
$\begin{aligned} & \text { LESSON } \quad(8-2), ~ \\ & \text { MASTER } \end{aligned}$	Questions on SPUR Objectives See pages 551-553 for objectives.
Properties Objective F	
In 1-8, decide whether the sequence described is convergent or divergent. If it is convergent, give the limit.	
1. $-4,-2,-\frac{4}{3},-1,-\frac{4}{5}, \ldots,-\frac{4}{n}, \ldots$	convergent; 0
2. $k_{n}=-1.7$	convergent; -1.7
3. $\left\{a_{1}=-5\right.$	divergent
4. $1.8,1.9,1.9 \overline{3}, 1.95, \ldots, 2-\frac{1}{5 n}, \ldots$	convergent; 2
5. $t_{n}=2+\left(\frac{1}{100}\right)(n-1)$	divergent
6. $g_{n}=2\left(\frac{1}{100}\right)^{n-1}$	convergent; 0
7. $-\frac{4}{3},-\frac{13}{6},-\frac{27}{11},-\frac{23}{9}, \ldots, \frac{-5 n^{2}-3 n}{2 n^{2}+4}, \ldots$	convergent; - $\frac{5}{2}$
8. $z_{1}=6$	divergent
In 9-12, let $\lim _{n \rightarrow \infty} a_{n}=2, \lim _{n \rightarrow \infty} b_{n}=7$, and	
$\lim _{n \rightarrow \infty} c_{n}=8$. Find the limit.	
9. $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)$	-5
10. $\lim _{n \rightarrow \infty}\left(b_{n} \cdot c_{n}\right)$	56
11. $\lim \left(4 c_{n}\right)$	32
12. $\lim \left(\frac{a a_{n} b_{n}}{c_{n}}\right)$	$\frac{7}{4}, \text { or } 1 \frac{3}{4}$
13. Use an automatic grapher to graph $y=x^{\frac{1}{x}}$.	
a. Give an equation for the horizontal asymptote of the graph of $y=x^{\frac{1}{x}}$	$y=1$
b. Find $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$	1

79
In 1-6, evaluate the arithmetic series.

7. The sum of the first k positive multiples of 7 is
735. Find k.
Uses Objective I
8. Jack Deere made a deal with this father that he
would mow the lawn for the entire summer. For
the first mowing, he would charge a special
introductory rate of $\$ 2$ but for ach mowing
thereafter he would charge 50 cents more than
the previous rate. If Jack mowed the lawn atotal
of 48 times during the summer, how much did he
earn in all?
9. To build up endurance, Arnold started an
exercise program in which he exercised
30 minutes the first day, 34 minutes the next
day, then 38 minutes, 42 minutes, and so on, each
day extending his exercise time by 4 minutes. If
he continued at this rate, ending at 2 hours,
30 minutes, what was the total time he spent
exercising?
b. Find the total length of the joists used for both ends of the shed. $\approx 40.5 \mathrm{ft}$

80

Home

$\begin{aligned} & \text { LESSSON } \\ & \text { MASTER 8-6 } \end{aligned}$	Ouestions on spur objectivesSee pages $51-553$ for objectives.	
Vocabulary		
In 1-4, evaluate the expression.		
1. ${ }_{10} C_{3} \quad 120$	2. ${ }_{10} C_{7}$	120
3. ($\left.{ }^{13} \begin{array}{l}\text { a }\end{array}\right)$	4. ${ }_{23}^{24}$)	24
Uses Objective J		
5. Dr. Zweistein has 114 students in a physics class. like to arrange the lab groups so that every student has the opportunity to work with every other studen ab groups are there?		91 groups
6. The Rails Club, a group of 25 train fanatics, is to choose four of their members to be on the Board of Directors.		
a. How many different possible boards could the Rails choose?		12,650 bds.
b. How many different possible boards could the Rails choose if there are to be a Chair, Vice chair, Treasurer, and Secretary?		$303,600 \mathrm{bds}$.

7. At a burger specialty restaurant, the toppings options are catsup, mayonnaise, mustard, tomatoes, onions, lettuce, mushrooms, S wiss cheese, cheddar cheese, steak sauce, and guacamole. If you can choose between a 4 -oz burge or 6 -oz burger and want a mix of 4 toppings, how many different burgers can you order?

660 burgers
8. For a particular lottery, the winning numbers are selected by a machine that randomly chooses 5 table-tennis balls from among
45 , numbered 1 to 45 . The lotery pays off if you match 5,4 , or 3 of the number
a. How many different winning number combinations are there?
b. What is the probability that you will match all 5 of the winning numbers?
c. What is the probability that you will match exactly 4 of the 5 winning numbers?
$\frac{1,221,759}{\frac{1}{1,221,759},}$
or $\approx \frac{8.1849 \times 10^{-7}}{\frac{200}{1,221,759},}$
or $\approx 1.6370 \times 10^{-4}$
Skills Objective G
In 1-6, state whether or not the given infinite
geometric series is convergent or divergent.

1. $24+20+\frac{50}{3}+\frac{125}{9}+\ldots$ convergent; 144
2. $325+\frac{65}{2}+\frac{13}{4}+\frac{13}{40}+$
convergent; $\frac{3250}{9}$
3. $\sum_{n=1}^{\infty} 5(-1)^{n}$
divergent

$$
\text { 2. } \sum_{n=1}^{\infty}\left(-\frac{3}{2}\right)^{n-1}
$$

divergent
4. $\sum_{n=1}^{\infty}-6\left(\frac{2}{3}\right)^{n-1}$
convergent; -18
6. $\frac{13}{18}-\frac{13}{24}+\frac{13}{32}-$ convergent; $\frac{26}{63}$

In 7-9, use a computer or calculator to conjecture
whether the series is convergent or divergent. If
convergent, give what seems to be its limit.
$(e-1)$

7. $\sum_{n=1}^{\infty} \frac{1}{n!}$	convergent; $\approx \frac{1.718}{\text { convergent; } \approx \approx 1.645\left(\frac{\pi^{2}}{6}\right)}$
8. $\sum_{i=1}^{\infty} \frac{1}{i^{2}}$	divergent
9. $\sum_{k=1}^{\infty} k^{k^{\frac{1}{3}}}$	

10. Give a convincing argument supporting whether the following series is convergent or divergent: $3+\frac{3}{2}+1+\frac{3}{4}+\frac{3}{5}+\ldots+\frac{3}{n}+\ldots$
Sample: The series is divergent, since it is
3 times the harmonic series which is divergent.

Uses Objective I
11. Consider a window made from two panes
of glass, as pictured at the right. If each pane
allows 50% of the light to pass through and reflect
50%, what percent of the light hitting the window
from the outside is transmitted through to the inside?
Remember to consider the light that gets reflected
between the two panes as shown.
$33 \frac{1}{3} \%$

82

2. $\frac{\binom{n}{r}}{\binom{n}{n-r}}=1$, for all nonnegative integers r and n, where $r \leq n$.
$\binom{n}{r}$
$\frac{(r)}{\left(\frac{n}{n-r}\right)}$
$\binom{n}{r}$

In 3 and 4, find a value of $k \neq 9$ that will make

the statement true.
3. ${ }_{17} C_{9}={ }_{17} C_{k}$
5. Evaluate $\sum_{i=0}^{15}\binom{15}{r}$.

4. ${ }_{96} C_{k}={ }_{96} C_{9} \frac{\boldsymbol{k}=87}{\mathbf{2}^{15}=32,768}$

Representations Objective L
6. Describe the location of the term equal to $\binom{n}{r}$ in Pascal's Triangle

It is the $(r+1)$ st term in the nth row.
In 7-10, provide the identity involving combinations
which accounts for the given property of Pascal's Triangle. ${ }_{n} C_{r}={ }_{n} C_{n-r}$
8. The first and last term in each row is 1 .
9. The sum of the terms in row 9 is 512 .
$\frac{{ }_{n} C_{0}={ }_{n} C_{n}=1}{\sum_{r=0}^{n}{ }_{n} C_{r}=2^{n}}$
10. The sum of the third and fourth terms of row 5 is the fourth term of row 6 .
${ }_{n} C_{r}+{ }_{n} C_{r+1}={ }_{n+1} C_{r+1}$
11. Use the properties of Pascal's Triangle to complete rows 9 and 10 ,
$\begin{array}{lllllllllll}\text { row 9: } & 1 & 9 & 36 & 84 & 126 & \underline{126} & \underline{84} & \underline{36} & 9 & 1\end{array}$
row 10: $1 \quad 10 \quad \underline{45} \underline{120} \underline{210} \underline{252} \underline{210} \underline{120} \quad 45 \quad 10 \quad 1$

LESSON MASTER 8-8	Questions on SPUR Objectives See pages 551-553 for objectives.
Skills Objective D	
1. Use Σ-notation to write the expansion of $(p+q)^{25}$ as a series.	$\sum_{n=0}^{25}{ }_{25} C_{n} p^{25-n} q^{n}$
2. Rewrite $\sum_{r=0}^{12}{ }_{12} C_{r}(2 a)^{12-r}(2 b)^{r}$ in the form $(x+y)^{n}$.	m $\quad(2 a+3 b)^{12}$
In 3-7, expand each binomial.	
3. $(3 x-y)^{3}$$27 x^{3}-27 x^{2} y+9 x y^{2}-y^{3}$	
4. $(4 a+5 b)^{4}$$256 a^{4}+1280 a^{3} b+2400 a^{2} b^{2}+2000 a b^{3}+625 b^{4}$	
$\begin{aligned} & \text { 5. }\left(\frac{1}{4} f-\frac{1}{3} g\right)^{3} \\ & \frac{1}{64} f^{3}-\frac{1}{16} f^{2} g+\frac{1}{12} f g^{2}-\frac{1}{27} g^{3} \end{aligned}$	
$\begin{array}{cc} 6 .(1-3 p)^{8} & 6561 p^{8}-17,496 p^{7}+20,412 p^{6}- \\ 13,608 p^{5}+5670 p^{4}-1512 p^{3}+252 p^{2}-24 p+1 \end{array}$	
7. $\left(x+x^{2}\right)^{7} \quad \boldsymbol{X}^{14}+7 \boldsymbol{X}^{13}+$$21 x^{12}+35 x^{11}+35 x^{10}+21 x^{9}+7 x^{8}+x^{7}$	
8. What is the coefficient of $a^{2} b^{5}$ in the expansion of $(a+b)^{7}$?	21
9. What is the coefficient of $x^{4} y^{7}$ in the expansion of $(2 x-3 y)^{11}$?	-11,547,360
10. What is the middle term in the expansion of $(1+b)^{24}$?	n $\quad \underline{2,704,156 ~} \boldsymbol{b}^{12}$
11. Without using a calculator, evaluate $\sum_{r=0}^{4} 4^{4} C_{r} 1.8^{4-r} 1.2^{r} .$	81

3. Jay's company retirement plan has the employee contribute 3% and the employer contribute 2% of the employee's salary at the compounded monthly.
a. Jay has worked for 7 months and has a monthly salary of S dollars. Write a polynomial expression in x, where x is $1+\frac{r}{12}$, for the current balance in Jay's retirement account.
$.05 S x^{6}+.05 S x^{5}+.05 S x^{4}+.05 S x^{3}+$
$.05 S x^{2}+.05 S x+.05 S$

b. Use \sum-notation to write the expression in part a.	$\sum_{i=0}^{6} .05 S x^{i}$
	.05S(1-x ${ }^{7}$)
c. Give the series in part b as a single fraction.	$1-x$
d. Evaluate the expression in part c for a monthly salary of \$3600 and annual interest rate of 3.75%.	\$1271.87

Questions on SPUR Objective

Skills Objective K

1. Basketball free throws are generally considered independent events. During the 1996-97 NBA regular season, Mark Price of the Golden State Warriors had a free-throw percentage of 0.906 If he were to shoot 10 consecutive free throws, what is the $\quad \approx 0.0499$
2. Mr. and Mrs. Brown know that the probability that any child born to them will have blue eyes is $\frac{1}{4}$. If they plan to have 4 children, what is the probability that at least two of the children will have blue eyes?
3. In the game Yahtzee ${ }^{\circledR}$, five fair 6 -sided dice are rolled. a. What is the probability of rolling exactly threels?
b. What is the probability of rolling exactly three of any number?
c. What is the probability of rolling three, four, or five ≈ 0.0355
4. Sparky the Barbeque Man noted that on the average, 3 out of 5 picnickers prefer hamburgers to hot dogs. Find the probability that of 5 picnickers exactly 3 will want burgers. ≈ 0.3456
5. Suppose 8% of new computers malfunction within the first year. A school purchased 15 computers for its lab.
a. What is the probability that none of the new computers will malfunction within the first year?
b. What is the probability that more than 2 computers will malfunction within the first year?
≈ 0.113
6. For an upcoming quiz, you have studied enough so that you believe you have an 85% chance of answering each question Table $\begin{array}{ll}\text { believe you have an } 85 \% \text { chance of answering each question } & \text { Table } \\ \text { correctly. Suppose there are } 5 \text { questions on the quiz. } & \text { numbers are }\end{array}$ a. Complete the probability distribution table. approximate. | $\begin{array}{l}\boldsymbol{x} \text { (number of } \\ \text { correct answers) }\end{array}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{P (x)}$ | .000 | .002 | .024 | .138 | .392 | .444 |

b. What is the probability of your earning an

What is the probability of your failing the

quiz if failing is less than 60\% \qquad

86

Properties Objective F
In 3-5, true or false. Justify your answe
3. All polynomial functions have at least one relative extremum.

False; $f(x)=3 x+2$ increases from left to right.
4. The function of Exercise 2 increases on the interval $-1 \leq u \leq 4$ False; $q(-1)=11$ and $q(0)=-14$, so the function decreases between these two points.
5. The function $f(x)=4 x^{6}+3 x^{4}+2 x^{2}+1$ i salways positive.

True; the first three terms are always non-
negative for any value of x, so the sum is positive.
Representations Objective K
In 6 and 7, graph the given equation. a. Estimate any relative extrema to the nearest tenth. \quad b. Estimate all
x-intercepts to the nearest tenth.
6. $y=3 x^{3}-2 x+5 \quad$ a. max.: 5.6; min.: 4.4

\qquad
7. $y=5 x^{4}-2 x^{3}+7 x^{2}-x+1$
a. min.:1.0 b. none \qquad

88

Home

Name	Questions on SPUR Objectives See pages 622-625 for objectives.
LIESSON MASTER $\mathbf{- 3}$	
Skills Objective A	
In 1-4, determine if \boldsymbol{y} is a polynomial fun of degree less than 5 . If so, find an equati degree for y in terms of x.	tion of x n of least
y 5	
Yes; $y=x^{4}+3 x^{2}+1$	

2. | \boldsymbol{x} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 4 | 20 | 68 | 166 | 332 | 584 | 940 | 1418 | Yes; $y=3 x^{3}-2 x^{2}+x+2$
3. $\boldsymbol{x} |$| 0 | 2 | 4 | 6 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \boldsymbol{y} | 12 | 32 | 52 | 24 | -10 |

Yes; $y=-x^{3}+6 x^{2}+2 x+12$

4. | \boldsymbol{x} | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \boldsymbol{y} | 2 | 7 | 17 | 37 | 77 | 157 | 317 |

No

Uses Objective I
5. Consider a soup can display in which every layer except the first, is arranged in a pattern of concentri hexagons, as shown at the right. The first layer has 1 can, the second layer has 7 cans, the third layer has 19 cans, and so on.
a. Give a recursive formula

$$
\begin{aligned}
& \text { for the number of } \\
& \text { cans } c_{n} \text { in layer } n \text {. }
\end{aligned}
$$

$$
\int c_{1}=1
$$

$$
\frac{c_{n}=c_{n-1}+6(n-1),}{\text { for } n>1}
$$

b. Find an explicit polynomial expression for c

$$
c_{n}=3 n^{2}-3 n+1
$$

c. Give a recursive formula for the total number of cans t_{n} in a display having n layers. (HINT: The sum of the number of cans in a display having n - layer. Use the result from part b in th
d. Find an explicit polynomial expression for t_{n}.

$$
\begin{aligned}
& \left\{\begin{array}{l}
t_{1}=1 \\
t_{n}=t_{n-1}+ \\
3 n^{2}-3 n+1,
\end{array}\right. \\
& \text { for } n>1 \\
& \frac{t_{n}=n^{3}}{}
\end{aligned}
$$

Skills Objective C
In 1-4, determine the quotient and the remainder when

the first polynomial is divided by the second.	
1. $x^{3}-14 x^{2}+51 x-54, x-9$	
	$x^{2}-5 x+6 ; 0$ 2. $y^{6}-8 y^{4}-80, y-2$ $y^{4}-4 y^{3}-$ $\frac{8 y^{2}-16 y-32 ;-144}{\frac{1}{2} z^{2}-\frac{1}{2} z-\frac{15}{4} ;}$ 3. $z^{4}-z^{3}-9 z^{2}+3 z+18,2 z^{2}-3$ $\underline{\frac{3}{2} z+\frac{27}{4}}$

4. $a^{6}+5 a^{4}-21 a^{3}+20 a-100, a^{3}+4 \quad \underline{a^{3}}+5 \boldsymbol{a}-25 ; 0$

Properties Objective G
In 5-8, use the Remainder Theorem to find the remainder when the first polynomial is divided by the second.

5. $c^{5}-c^{4}+c^{3}-c^{2}+c-1, c-1$	0
6. $x^{5}-x^{4}+x^{3}-x^{2}+x-1, x+1$	
7. $8 t^{6}+8 t^{5}+8 t^{4}+8 t^{3}+8 t^{2}+8 t+8, t-\frac{1}{2}$	$\frac{-6}{8}$
8. $5 y^{4}+3 y^{2}-1, y-\sqrt{2}$	
9. When $2 x^{2}+x-5$ is divided by $x-c$, the	
remainder is -2 . Find c.	
10. When $x^{3}+b x^{2}-x+4$ is divided by $x+3$, the	
remainder is 7 . Find b.	

In 11 and 12, true or false. Use the Remainder Theorem to justify your answer. 11. $z^{79}-z$ is divisible by $z+1$

True; the remainder is $(-1)^{79}-(-1)=0$.
12. There exists some polynomial $q(x)$ such that
$q(x)(x-2)=4 x^{4}-2 x^{2}+2$.
False; $4(2)^{4}-2(2)^{2}+2=58 \neq 0$
90

Properties Objective G

4. Let $f(x)$ and $g(x)$ be two polynomials, with x a factor of
$f(x)$ and $(x-c)$ a factor of $g(x)$. Use the Factor Theorem
to prove that $(x-c)$ is a factor of $f(g(x))$.
Sample: Since $(x-c)$ is a factor of $g(x)$, by the Factor Theorem $g(c)=0$. Since x is a factor of $f(x), f(0)=0$. Thus $f(g(c))=f(0)=0$. Hence, by the Factor Theorem, $(x-c)$ is a factor of $f(g(x))$.

Properties Objective H
2. Find all solutions to $x^{4}-2 x^{3}+2 i^{2}-10 x+25=0$
given that one solution $x=2+$
$x=2+i, 2-i,-1+2 i,-1-2 i$
In 3-5, true or false. Justify your answer.
3. The equation $p(x)=x^{8}-1$ has eight complex zeros True; Number of Zeros of a Polynomial Theorem
4. Every polynomial function with real coefficients that has a zero $3+2 i$ also has a zero $3-2 i$. True; Conjugate Zeros Theorem
5. It is possible for the graph of a third-degree polynomial with real coefficients to cross the line $y=4$ exactly twice False; $p(x)-4=0$ is a polynomial with real coefficients. By the Conjugate Zeros Theorem, it has an even number of nonreal zeros.

Representations Objective K

In 6-8, a function f is given. $\begin{gathered}\text { a. Graph } f(x) \text { to find all the } \\ \text { real zeros. } \quad \text { b. Factor } f(x) \text { to determine all the nonreal zeros }\end{gathered}$ 6. $f(x)=x^{3}-4 x^{2}+9 x-10$
\qquad b. $1+2 i, 1-2$
7. $f(x)=x^{4}-8 x^{3}+23 x^{2}-30 x+18$ b. $1+i, 1-i$
8. $f(x)=x^{5}+19 x^{4}+140 x^{3}+506 x^{2}$

$$
\begin{gathered}
924 x+720 \\
-2+
\end{gathered}
$$

a.

$$
-4,-5,-6
$$

$$
\begin{aligned}
& 924 x+720 \\
& \text { b. }-2+\sqrt{2} i,-2-\sqrt{2} i
\end{aligned}
$$

In 3-10, factor the given polynomial completely
over the set of polynomials with integer coefficients.

3. $9-16 x^{2}$	$\frac{(3+4 x)(3-4 x)}{(5 n-3 m)\left(25 n^{2}+15 n m+9 m^{2}\right)}$
4. $125 n^{3}-27 m^{3}$	$\frac{\left(x^{2}-8\right)\left(x^{4}+8 x^{2}+64\right)}{(u)}$
5. $x^{6}-512$	$\frac{(u+v)(u-v)\left(u^{2}+v^{2}\right)\left(u^{4}+v^{4}\right)}{(7 x y+1)\left(49 x^{2} y^{2}-7 x y+1\right)}$
6. $u^{8}-v^{8}$	
7. $343 x^{3} y^{3}+1$	
8. $t^{6}-729$	$\left(t+\frac{\left(x^{2}\right)(t-3)\left(t^{2}+3 t+9\right)\left(t^{2}-3 t+9\right)}{m^{2}(m+6)\left(m^{2}-6 m+36\right)}\right.$
9. $m^{5}+216 m^{2}$	
10. $32 w^{3}-4$	$\underline{4(2 w-1)\left(4 w^{2}+2 w+1\right)}$

In 11-15, factor the given polynomial completely over the set of polynomials with rational coefficients.
11. $a^{5} b^{5}+c^{5}$

$$
(a b+c)\left(a^{4} b^{4}-a^{3} b^{3} c+a^{2} b^{2} c^{2}-a b c^{3}+c^{4}\right)
$$

$$
\text { 12. } c^{7}+128
$$

$$
(c+2)\left(c^{6}-2 c^{5}+4 c^{4}-8 c^{3}+16 c^{2}-32 c+64\right)
$$

13. $-r^{5}-t^{10}$

$$
\underline{\left(r+t^{-r^{2}}\right)\left(-r^{4}+r^{3} t^{2}-r^{2} t^{4}+r t^{6}-t^{8}\right)}
$$

14. $\frac{d^{0}}{512}+1$

$$
\frac{1}{512}(d+2)\left(d^{2}-2 d+4\right)\left(d^{6}-8 d^{3}+64\right)
$$

15. $g^{6}-g$

$$
g(g-1)\left(g^{4}+g^{3}+g^{2}+g+1\right)
$$

In 5-8, find all solutions.

5. $y^{3}+8 y^{2}-3 y=24$	
6. $27 m^{3}-18 m^{2}=12 m-8$	$\underline{\boldsymbol{y}=-8, \boldsymbol{y}=-\sqrt{3}, \boldsymbol{y}=\sqrt{3}}$
7. $20 x^{3}-4 x^{2}-25 x=-5$	$\boldsymbol{x}=\frac{1}{5}, \boldsymbol{x}=\frac{2}{3}$
8. $n^{6}-n^{4}=n^{2}-1$	$\boldsymbol{n}=-\mathbf{1}, \boldsymbol{n}=\boldsymbol{1}, \boldsymbol{x}=-\frac{\sqrt{5}}{2}$

In 9-14, factor the expression completely over the
set of polynomials with integer coefficients.

$$
\begin{array}{ll}
\text { 9. } 6 x^{2}+3 x y+2 x+y & \frac{(3 x+1)(2 x+y)}{\left(3 a^{2}+b\right)\left(a^{2}-2 b\right)} \\
\text { 10. } 3 a^{4}-5 a^{2} b-2 b^{2} &
\end{array}
$$

$$
\text { 13. } 12 x^{5}+4 x^{4} y-3 x^{3}-x^{2} y \quad x^{2}(2 x+1)(2 x-1)(3 x+y)
$$

In 15-17, solve for x.
15. $4 x^{2}+11 x y-3 y^{2}=0$

$$
\begin{aligned}
& x=\frac{y}{4}, x=-3 y \\
& x=\frac{5}{6}, x=\frac{3 W}{4} \\
& x=0, x=1, x=\frac{2 a}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. } x^{3} w^{2}-x^{3} z^{2}- \\
& y^{3} w^{2}+y^{3} z^{2}
\end{aligned}(w+z)(w-z)(x-y)\left(x^{2}+x y+y^{2}\right)
$$

$$
\text { 12. } a^{4}+a^{2} d+a^{2} b+b d \quad\left(\boldsymbol{a}^{2}+\boldsymbol{d}\right)\left(\boldsymbol{a}^{2}+\boldsymbol{b}\right)
$$

$$
\text { 14. } \begin{aligned}
& 2 n^{3}+n^{2} m+2 n m+m^{2}+(2 n+m)\left(n^{2}+\boldsymbol{m}+3\right) \\
& 6 n+3 m
\end{aligned}
$$

e. Describe how the domain and maximum value change if

Domain increases; maximum value decreases.
2. Show that for a binomial distribution B with a fixed number
of trials n and a fixed probability $p=0.5, B(k)=B(n-k)$
$B(k)={ }_{n} C_{k} \cdot 0.5^{*} \cdot 0.5^{n-k}={ }_{n} C_{k} \cdot 0.5^{n} ; B(n-k)=$
${ }_{n} C_{n-k} \cdot 0.5^{n-k} \cdot 0.5^{n-(n-k)}={ }_{n} C_{n-k} \cdot 0.5^{n}$. Since
${ }_{n} C_{k}={ }_{n} C_{n-k}, B(k)=B(n-k)$.
Uses Objective E
3. Suppose the Food and Drug Administration is testing a new prescription medication which the manufacturer claims has success rate of 60%. Assume this success rate and find the probability that at least 60% of the subjects given the medication will respond positively for the given number of people.

$$
\begin{array}{ll}
\text { a. } 10 \text { people } \approx 63.3 \% & \text { b. } 20 \text { people } \approx 59.6 \%
\end{array}
$$

4. Consider the spinner pictured at the right. Sectors A, B, D , and E have central angles of 45°, while sectors C and F have central angles of 90°
a. If the spinner is spun once, what
is the probability that it will land
in either sector A or sector C ?

b. Suppose the spinner is spun 6 times Construct a histogram for the probability distribution P, where $P(n)$ is the
probability that the spinner lands in
sector A or sector $\mathrm{C} n$ time
Bar heights: $0.06,0.21$,
0.32, 0.26, 0.12, 0.03, 0.003

96

$$
\text { 16. } 24 x^{2}-18 x w=20 x-15 w
$$

Home

	Questions on SPUR Objectives See pages 692-695 for objectives.	
Skills Objective A		
In 1-4, a binomial experiment is described. a. Find the mean number of successes.		
1. The number of trials is 30 and the probability of .	21	≈ 2.5
2. The number of trials is 100 and the probability of failure on each trial is ailure oneach trial is 0.85	15	b. ≈ 3.57
3. A student guesses randomly false questions.	25	b. ≈ 3.54
4. Two fair dice are tossed 180 times. A success is ossing a 7.	a. $\quad 30$	b.

Uses Objective E
5. A manufacturer of spark plugs has estimated that the probability that a spark plug will be defective is 0.0125 . A trucking company
recently bought ten gross (1440) of these spark plugs for their fleet
a. About how many spark plugs should the

18 spark plugs
b. What is the probability that the trucking company will find exactly the expected number of defective spark plugs?

$$
\approx 0.094
$$

6. Suppose you flip a quarter 16 times and count the times it lands heads up.
a. What is the expected number of heads?

8 heads
b. What is the probability that the number of heads is no more than one standard
7. Suppose the following experiment is conducted: A die with s sides marked 1 through s is tossed n times and the number of times a 1 is tossed is recorded. After many repetitions of the experiment, it is found that the number of is tossed has a mean of 33 and a standard deviation of 5.5 .
a. If the die is assumed to be fair, what is the most likely number of sides it has?
. If the die is assumed to be fair, how many 12 sides 396 times

In 3-7, true or false.
3. The parent and standard normal functions have the same domain.

True
4. The parent and standard normal functions have the same range.
5. The areas under the parent and standard normal curves are the same.
6. The parent and standard normal curves have the same inflection points.
7. The scale-change transformation
$S:(x, y) \rightarrow\left(\sqrt{2 \pi} x, \frac{y}{\sqrt{2}}\right)$ maps the parent normal curve onto the standard normal curve. normal cu

False
In $8-11$, let $f(x)=e^{-x^{2}}$ and $g(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}$.
8. $f(0)$
9. $g(0)$

10. $\lim _{x \rightarrow \infty} f(x)$

0
11. $\lim _{z \rightarrow \infty} g(z)$

0
12. What is the median of a standard normal distribution?
13. Consider the graph of the normal distribution functio given by $h(x)=\frac{1}{\sqrt{\pi}} e^{\frac{x^{2}}{3}}$.
a. Find the graph's inflection points.
 b. Find the area between the graph and the x-axis. $\sqrt{3}$

1. Roland and Diane are playing a board game with a 6 -sided die. Diane boasts that she has a lucky way of tossing the die which will give her a 6 more often than normal. Roland does not believe her, so he asks Diane to toss the die 12 times. She does so and gets five 6 .
a. State a null and an alternative hypothesis for testing

Diane's claim.
H_{0} : Diane has no effect on the outcomes.
H_{1} : Diane has an effect on the outcomes.
b. Can your null hypothesis be rejected at the 0.05 significance

Yes; the probability of tossing five or more 6 s in 12 times is $\approx 0.036 \leq 0.05$. So the null hypothesis can be rejected at the 0.05 level.
c. Roland, still doubting Diane's luck, does a test to see if the die is biased. He tosses it 12 times and gets three 6s. Test the claim that the die is biased at the 0.05 significance level.
H_{0} : The die is unbiased toward 6 s . H_{1} : The die is biased toward 6 s . The probability of tossing three or more 6 s in 12 times is $\approx 0.32>0.05$. So the null hypothesis cannot be rejected.
2. A thermometer manufacturer claims that at least 95% of its thermometers are accurate to within $0.1^{\circ} \mathrm{C}$.
a. State a null and an alternative hypothesis for $H_{0}:$ At least 95% of the thermometers are accurate. \boldsymbol{H}_{1} : Fewer than
95% of the thermometers are accurate.
b. Suppose that of 20 thermometers randomly selected and checked for accuracy, five are found to give temperature readings which are ofr by more than $0.1^{\circ} \mathrm{C}$. Test the
manufacturer's claim at the 0.01 significance level.
The probability that five or more thermometers are off by more than $0.1^{\circ} \mathrm{C}$ is $\approx 0.0026<0.01$. So, the claim can be rejected at the 0.01 level.
98

Properties Objective D
In 7-9, let z be a random variable with a standard normal
distribution and let a be some constant. True or false.

7. $P(z>a)=1-P(z<a)$	True
8. $P(z=a)=0$	True
9. $P(\|z\|<a)=P(z<a)-P(z>a)$	True

Representations Objective J
10. Refer to the standard normal curve graphed below.

a. Let the area of the shaded region for $z<0$ be 0.398 . Find a.
-1.27
1.27
b. What is the probability that a standard normal andom variable will be in the shaded region 0.8752

Questions on SPUR Objectives Questions on Spur objectives
See pages $692-695$ for objectives.

1. Explain why a binomial distribution with mean 16 and Since standard deviation 1.8 should not be approximated by $\quad \mu=n p=16$ and
a normal distribution. $\sigma=\sqrt{n p q}=1.8, q \approx 0.20$. So $p \approx 0.8$. Thus $n \approx 20$ and $n q \approx 4<5$. So $n q$ is not great enough for the binomial distribution to be approximated by a normal distribution.

Uses Objective E

2. Suppose a global computer network is able to transmit digital data at speeds of 1.5 Mbps (megabits per second). Assume this is the mean speed and that the speeds to send a data file of 400 Mb to an office in Japan, what is the probability
n that the data transmission will take less than 5 minutes? $\mathbf{0 . 2 0 3 3}$
3. A flask is divided in half by a permeable membrane which allows atoms of helium to pass freely from either side of the flask to the other side. The flask is filled with approximately 10° helium atoms. Assuming that there is an equal probability that a helium atom is on either side of the membrane, find the probability that at any moment either side of the flask $\quad \approx 0.0228$

Representations Objective J
4. Consider a normal probability distribution with mean 17 and standard deviation 3.5 .
a. Find an equation to model this distribution.
b. Draw a graph of the distribution.

c. What is the area under this graph between $x=13.5$ and $x=20.5$?

Questions on SPUR Objectives See pages 692-695 for objectives.

1. A military expedition using a GPS (Global Positioning System) receiver finds their altitude to be $1233 \pm 28 \mathrm{~m}$. If the margin of error represents the 95% confidence interval for the receiver, what is the probability
the expedition is above 1261 m ? \qquad 0.025
2. Suppose an astronomer has made many measurements of the distance to a distant star cluster and finds the data to be normally distributed with a mean of 624 kiloparsecs and a standard
deviation of 35 kiloparsecs. (1 kiloparsec $=3.08 \times 10^{19}$ meters)
a. What is the 90% confidence interval $566 \mathrm{kpc} \leq \mu \leq 682 \mathrm{kpc}$
for the distance to the cluster?
b. What is the 99% confidence interval $534 \mathrm{kpc} \leq \mu \leq 714 \mathrm{kpc}$
for the distance to the cluster?
3. A research team studying the dietary habits of American adult females charts the daily sodium intake of 100 randomly selected women over the course of 2 months. For their sample
group, they find the daily sodium intake to have a mean of $2,850 \mathrm{mg}$ with a standard deviation of 450 mg . Because the sample size is large, the researchers feel the standard deviation of the sample represents the standard deviation of the entire population of American women.
a. What should the research team repor as the 95% confidence interval for the mean daily sodium intake of
ther
American women?
b. If the research team had wanted to report the mean Sodium intake with a 95% confidence interval of 36 mg , what should their sample size have been?

2401
4. Standardized tests are called "standardized" because they are given to a large number of students whose scores serve as the standard scores for others. Initially, standardized tests must be given trials.
Suppose a standardized test with a total score of 40 is sampled with 200 randomly selected students from a population, and there is a mean of 16.7 and a standard deviation of 6.3 for the sample
a. Give the 90% confidence interval
$15.97 \leq \mu \leq 17.43$ for the population mean.
b. To reduce this confidence interval to one half its size, what size sample would be needed?

Questions on SPUR Objectives

1. Suppose a car manufacturer claimed its new economy car ha an average highway gas mileage of 37 mpg with a standard deviation of 5 mpg . After receiving numerous complaints, consumer group decided to test a random sample of 40 such be 35 mpg . At the 0.01 significance level, test whether the average gas mileage is less than the manufacturer claims. Be sure to state your hypotheses clearly.
H_{0} :The highway mileage is $37 \mathrm{mpg} . H_{1}$:The highway
highway mileage is not $37 \mathrm{mpg} \cdot \mu^{x}=35$ and
$\sigma^{\bar{x}}=\frac{5}{\sqrt{40}} \approx 0.791$, so $\frac{\bar{x}-\mu}{\sigma} \approx-2.53 . P(z \leq-2.53) \approx$
0.0057 < 1 , so H_{0} can be rejected.

Uses Objective G

2. In Ohio in 1995-1996 the scores of the seniors taking the mathematics section of the Scholastic Aptitude Test (SAT-M) had a mean of 535 and a standard deviation of 104 . What is the probability that a random sample of 40 of these students will have a mean SAT-M score less than 520 ?
3. a. Consider an experiment in which a fair six-sided die is tossed 400 times. Describe the distribution of the outcomes. Give the distribution's mean and standard deviation.
(Recall $\mu=\sum_{i=1}^{n} x_{i} \cdot P(x)$ and $\sigma^{2}=\sum_{i=1}^{n}\left(x_{i}^{2} \cdot P\left(x_{i}\right)\right)-\mu^{2}$.)
The distribution is uniform with a constant
probability of $\frac{1}{6}$. The mean is 3.5 ; the standard deviation is ≈ 1.708.
b. Suppose you repeat the experiment of part a many times. Describe the distribution of the means of these experiments.
The distribution of sample means is normal with a mean of 3.5 and a standard deviation of $\approx \frac{1.708}{\sqrt{400}} \approx 0.0854$.

102

Properties Objective D
In 5-8, A is a 2×4 matrix, B is 4×3, and C is
3×4. Determine the dimensions of the indicated
product matrix, if the product can be formed.

5. $B C$	4×4	6. $C B$	3×3
7. $A(B C)$	2×4	8. $A(C B)$	not possible

Uses Objective F
In 9 and 10, use the production matrix P and the
cost matrix C shown here

1st col.: production costs;
2nd col.: customer costs.
10. Find the profits made by each factory before marketing and other costs, assuming that all items produced are sold
Factory $11,075,000$ Factory $2 \underline{535,000}$ Factory 3630,000

Home

105

Representations Objective H

e. How does the answer to part d relate to A^{2} of Exercise 5?
$P_{4}=r_{y} \circ R_{30} \circ r_{y} \circ R_{30}(P) ; A$ is the composite matrix for $r_{y}{ }^{\circ} R_{30} . P_{4}=A^{2}(P) . A^{2}$ is the identity matrix so $P_{4}=(1,1)$

1. True or false. The matrix $\left[\begin{array}{ll}2 & 2 \\ 3 & 3\end{array}\right]$ can represent the transformation
$S:(x, y) \rightarrow(2 x, 3 y)$. Justify your answer. False;
$S(1,0)=(2,0)$ and $S(0,1)=(0,3)$. So by the $\left[\begin{array}{ll}2 & 0\end{array}\right]$
Matrix Basis Theorem S is represented by $\left.\begin{array}{ll}0 & 3\end{array}\right]$.

Representations Objective G
2. Suppose $T(1,0)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $T(0,1)=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
a. Find a 2×2 matrix that represents the transformation T. b. Find $T\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.$\quad\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$

Representations Objective H
In 3 and 4, two transformations are given. a. Represent the composite transformation as a product of two matrices and compute the matrix product. b. Describe the composite transformation.
3. a rotation of 270° clockwise, followed by a reflection over the y-axis
$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
reflection ove
line $y=x$
4. a reflection over the y-axis, followed by a rotation 270° clockwise

$$
\left[\begin{array}{ccc}
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & -1
\end{array}\right] \quad \text { reflection over }
$$

$$
\text { a. } \left.1 \begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 0
\end{array}\right] \text { b. } \quad \text { line } y=-x
$$

Representations Objective I
In 5 and 6 , let $\left[\begin{array}{cc}9 & -6 \\ -5 & 2\end{array}\right]$ represent the transformation t,
$\left[\begin{array}{ll}8 & 9 \\ 3 & 2\end{array}\right]$ represent the transformation u, and $\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 1 & 0\end{array}\right]$ represent $\triangle A B C$.

| 5. Calculate $t \circ u(\triangle A B C)$. | 6. Calculate $u \circ t(\triangle A B C)$. |
| :--- | :--- | :--- |
| $\left[\begin{array}{rrr}354 & 69 & 108 \\ -218 & -41 & -68\end{array}\right]$ | $\left[\begin{array}{lll}48 & -30 & 54 \\ 40 & -14 & 34\end{array}\right]$ |

106

In 5-7, simplify without using a calculator.
5. $\cos 71^{\circ} \cos 109^{\circ}-\sin 71^{\circ} \sin 109^{\circ}$
6. $\sin 28^{\circ} \cos 32^{\circ}+\cos 28^{\circ} \sin 32^{\circ}$
7. $\cos \left(\frac{3 \pi}{5}\right) \cos \left(\frac{7 \pi}{20}\right)+\sin \left(\frac{3 \pi}{5}\right) \sin \left(\frac{7 \pi}{20}\right)$

$$
\left[\begin{array}{cc}
\frac{\sqrt{6}-\sqrt{2}}{4} & \frac{-\sqrt{6}-\sqrt{2}}{4} \\
\frac{\sqrt{6}+\sqrt{2}}{4} & \frac{\sqrt{6}-\sqrt{2}}{4}
\end{array}\right]
$$

8. Find the exact matrix for R_{75}.
$\left.\begin{array}{r}\frac{\cos 180^{\circ}=-1}{\sin 60^{\circ}=\frac{\sqrt{3}}{2}} \\ \frac{\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}}{\left[\frac{\sqrt{6}-\sqrt{2}}{4} \frac{-\sqrt{6}-\sqrt{2}}{4}\right.} \\ \frac{\sqrt{6}+\sqrt{2}}{4} \frac{\sqrt{6}-\sqrt{2}}{4}\end{array}\right]$
n 9-12, A and B are acute angles with $\sin A=0.8$
and $\cos B=0.3$. Determine the value.

9. $\cos (A+B)$	-0.5832	10. $\cos (A-B)$
0.9432		

11. $\sin (A+B) \quad 0.8124$ 12. $\sin (A-B)$ -0.3324

In 13-18, simplify the expression.
13. $\sin \left(90^{\circ}+\theta\right) \quad$ COS $\boldsymbol{\theta} \quad$ 14. $\cos \left(90^{\circ}+\theta\right)-\sin \theta$
15. $\sin \left(\frac{3 \pi}{2}-\theta\right) \frac{-\cos \theta}{16} \cos \left(\frac{3 \pi}{2}-\theta\right)-\sin \theta$
17. $\sin \left(45^{\circ}+\theta\right) \underline{\frac{\sqrt{2}}{2}(\cos \theta+\sin \theta)}$
18. $\cos \left(45^{\circ}+\theta\right) \underline{\frac{\sqrt{2}}{2}(\cos \theta-\sin \theta)}$

2. Consider the ellipse pictured at the right, with foci F_{1} and F_{2}, where $F_{1} F_{2}=d$ point on the ellipse.
a. Use the Law of Cosines to prove that $P F_{1}=\frac{k^{2}-d^{2}}{2 k-2 d \cos \theta}$.

Let $P F_{1}=a$. Then $P F_{2}=\boldsymbol{k}-\boldsymbol{a}$. By the Law of
Cosines, $a^{2}+d^{2}-2 a d \cos \theta=(k-a)^{2}=$
$k^{2}-2 a k+a^{2}$. So, $2 a k-2 a d \cos \theta=k^{2}-d^{2}$;
$a(2 k-2 d \cos \theta)=k^{2}-d^{2} ; a=\frac{\left(k^{2}-d^{2}\right)}{(2 k-2 d \cos \theta)}$.
b. What are the maximum and minimum values for $P F_{1}$? maximum
$\left(\theta=0^{\circ}\right): \frac{k+d}{2}$; minimum $\left(\theta=180^{\circ}\right): \frac{k-d}{2}$

Properties Objective D
7. Prove that $\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]^{-1}=\left[\begin{array}{cc}x^{-1} & 0 \\ 0 & y^{-1}\end{array}\right]$ for $x \neq 0$ and $y \neq 0$.
$\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]=\frac{1}{x y}\left[\begin{array}{ll}y & 0 \\ 0 & x\end{array}\right]=\left[\begin{array}{cc}y & 0 \\ \frac{x y}{0} & \frac{x}{x y}\end{array}\right]=\left[\begin{array}{rr}x^{-1} & 0 \\ 0 & y^{-1}\end{array}\right]$
The determinant $\underline{a y x}-a y x=0$, so the matrix has no inverse.

Representations Objective H

In 6 and 7 , graph the ellipse with the given equation.
6. $\frac{(x-2)^{2}}{4}+\frac{(y-3)^{2}}{16}=1$
7. $(x-1)^{2}+(y+3)^{2}=1$

112

Home

LESSON MASTER
SKills Objective A
1. Find an equation for the hyperbola with foci $(5,0)$ and $(-5,0)$ and focal constant 8.
2.Give equations on for the aspur objectives the hyperbola $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$.

Properties Objective D

Representations Objective G
In 4 and 5, graph the equation. Include all asymptotes.
4. $\frac{x^{2}}{9}-y^{2}=1$
5. $4 y^{2}-9 x^{2}=1$

Representations Objective H
In 6 and 7 , graph the equation. Include all asymptotes.

LESSON	Questions on SPUR Objectives See pages $802-803$ for objectives.
skills Objective C	
In 1 and 2, rewrite the equation in the general form $A x^{2}+B x y+C y^{2}+D x+G y+F=0$. Then give values of A, B, C, D, E, and F for the equation.	
1. $\frac{x^{2}}{9}+\frac{y^{2}}{64}=1$	$+9 y^{2}-576=0$
$A=64, B=0, C=9, D=0, E=0, F=-576$	
$x^{2}-9 y^{2}-6 x-27=0$	
$A=1, B=0, C=-9, D=-6, E=0, F=-27$	

Properties Objective E
3. Where must a plane intersect a cone to form a degenerate conic section?
the cone's vertex
4. What geometric figure(s) can be a two intersecting lines degenerate hyperbola?

Representations Objective I In 6-10, describe the graph of the relation represented by the given equation. 6. $x^{2}+y^{2}+2 x-6 y+10=0$
7. $x^{2}-6 x y+9 y^{2}+8 x-6 y+1=0$
8. $21 x^{2}+10 \sqrt{3} x y+31 y^{2}-144=0$
9. $7 x^{2}-14 x y+2 y^{2}+6 x-3 y-5=0$
10. $x^{2}-y^{2}+2 y-1=0$
degenerate ellipse or point parabola ellipse
hyperbola hyperbola or two intersecting lines

7. Find an equation for the image of the parabola

$$
\begin{aligned}
& \frac{(x+2)^{2}+2(x+2)(y+5)+\sqrt{2}(x+2)+}{(y+5)^{2}-\sqrt{2}(y+5)=0} \\
& (y+5)
\end{aligned}
$$

8. Find an equation for the image of the hyperbola $\frac{y^{2}}{25}-\frac{x^{2}}{16}=1$ under a rotation of $\frac{\pi}{2}$ about the point $(1,0)$.
$\frac{(x-1)^{2}}{25}-\frac{(y+1)^{2}}{16}=1$

Properties Objective D
In 9-11, tell whether or not the hyperbola is a
rectangular hyperbola. Justify your answer.
9. $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1 \quad y=2 x$ and $y=-2 x$ not \perp
10. $3 x y=-5 \quad$ Yes; asymptotes $y=0$ and $x=0 \perp$
11. $\frac{y^{2}}{3}-\frac{x^{2}}{3}=1 \quad$ Yes; asymptotes $\boldsymbol{y}=\boldsymbol{x}$ and $\boldsymbol{y}=-\boldsymbol{x} \perp$

In 12 and 13, true or false.
12. All hyperbolas are similar.

False
13. All rectangular hyperbolas are similar. True

114

Properties Objective E

In 13 and 14, tell if the function with the given equation
is even, odd, or neither.
13. $f(\theta)=\sec \theta \quad$ even 14. $g(\theta)=\csc \theta \quad$ odd

In 15-18, true or false. Let f be the tangent function
and g be the cotangent function.
and g be the cotangent function.
15. f and g have the same domain.
16. f and g have the same range.
17. f and g have the same period.

18. The graphs of $y=f(x)$ and $y=g(x)$
have the same asymptotes.

19. Identify all points of discontinuity of the graph of $y=\csc x$. $x= \pm n \pi$, where n is an integer.
20. Find all values of x such that $\cot x=\tan x$ $x=\frac{\pi}{4} \pm \frac{n \pi}{2}$, where n is an integer.

[^0]: b. Use 50 trials to estimate the probability that all

 5 fish in a release will survive. (The actual Answers will vary.
 probability is close to 0.01 .) Pre

