

Chapter 7: Sampling Distributions

Section 7.2
Sample Proportions
The Practice of Statistics, $4^{\text {th }}$ edition - For AP* STARNES, YATES, MOORE

Chapter 7
 Sampling Distributions

7.1 What is a Sampling Distribution?

- 7.2 Sample Proportions
- 7.3 Sample Means

Section 7.2
 Sample Proportions

Learning Objectives

After this section, you should be able to...
\checkmark FIND the mean and standard deviation of the sampling distribution of a sample proportion
\checkmark DETERMINE whether or not it is appropriate to use the Normal approximation to calculate probabilities involving the sample proportion
\checkmark CALCULATE probabilities involving the sample proportion
\checkmark EVALUATE a claim about a population proportion using the sampling distribution of the sample proportion

The Sampling Distribution of \hat{p}

How good is the statistic \hat{p} as an estimate of the parameter p ? The sampling distribution of \hat{p} answers this question.

Consider the approximate sampling distributions generated by a simulation in which SRSs of Reese's Pieces are drawn from a population whose proportion of orange candies is 0.45 .

What do you notice about the shape, center, and spread of each?

The Sampling Distribution of \hat{p}

Shape: In some cases, the sampling distribution of \hat{p} can be approximated by a Normal curve. This seems to depend on both the sample size n and the population proportion p.

Center: The mean of the distribution is $\mu_{\hat{p}}=p$. This makes sense because the sample proportion \hat{p} is an unbiased estimator of p.
$\mu_{\hat{p}}=p \quad \hat{p}$ is an unbiased estimator or p
Spread: For a specific value of p, the standard deviation $\sigma_{\hat{p}}$ gets smaller as n gets larger. The value of $\sigma_{\hat{p}}$ depends on both n and p.
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \quad$ As sample size increases, the spread decreases.

The Sampling Distribution of \hat{p}

We can summarize the facts about the sampling distribution of \hat{p} as follows:

Sampling Distribution of a Sample Proportion

Choose an SRS of size n from a population of size N with proportion p of successes. Let \hat{p} be the sample proportion of successes. Then:
The mean of the sampling distribution of \hat{p} is $\mu_{\hat{p}}=p$
The standard deviation of the sampling distribution of \hat{p} is

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

as long as the 10% condition is satisfied : $n \leq(1 / 10) N$.

As n increases, the sampling distribution becomes approximately Normal. Before you perform Normal calculations, check that the Normal condition is satisfied: $n p \geq$ 10 and $n(1-p) \geq 10$.

The Sampling Distribution of \hat{p}

We can summarize the facts about the sampling distribution of \hat{p} as follows:

Population proportion p of successes

Using the Normal Approximation for \hat{p}

Inference about a population proportion p is based on the sampling distribution of \hat{p}. When the sample size is large enough for $n p$ and $n(1-p)$ to both be at least 10 (the Normal condition), the sampling distribution of \hat{p} is approximately Normal.

A polling organization asks an SRS of 1500 first-year college students how far away their home is. Suppose that 35% of all first-year students actually attend college within 50 miles of home. What is the probability that the random sample of 1500 students will give a result within 2 percentage points of this true value?
STATE: We want to find the probability that the sample proportion falls between 0.33 and 0.37 (within 2 percentage points, or 0.02 , of 0.35).
PLAN: We have an SRS of size $n=1500$ drawn from a population in which the proportion $p=0.35$ attend college within 50 miles of home.

$$
\mu_{\hat{p}}=0.35 \quad \sigma_{\hat{p}}=\sqrt{\frac{(0.35)(0.65)}{1500}}=0.0123
$$

DO: Since $n p=1500(0.35)=525$ and $n(1-p)=$ $1500(0.65)=975$ are both greater than 10, we'll standardize and then use Table A to find the desired probability.

$$
z=\frac{0.33-0.35}{0.123}=-1.63 \quad z=\frac{0.37-0.35}{0.123}=1.63
$$

$P(0.33 \leq \hat{p} \leq 0.37)=P(-1.63 \leq Z \leq 1.63)=0.9484-0.0516=0.8968$ CONCLUDE: About 90% of all SRSs of size 1500 will give a result within 2 percentage points of the truth about the population.

Section 9.2

Sample Proportions

Summary

In this section, we learned that...
When we want information about the population proportion p of successes, we
\checkmark often take an SRS and use the sample proportion \hat{p} to estimate the unknown parameter p. The sampling distribution of \hat{p} describes how the statistic varies in all possible samples from the population.
The mean of the sampling distribution of \hat{p} is equal to the population proportion ${ }^{\vee} p$. That is, \hat{p} is an unbiased estimator of p.
The standard deviation of the sampling distribution of \hat{p} is $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ for an SRS of size n. This formula can be used if the population is at least 10 times as large as the sample (the 10% condition). The standard deviation of \hat{p} gets smaller as the sample size n gets larger.
When the sample size n is larger, the sampling distribution of \hat{p} is close to a Normal distribution with mean p and standard deviation $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$.
\checkmark In practice, use this Normal approximation when both $n p \geq 10$ and $n(1-p) \geq 10$ (the Normal condition).

