

Unit 5: Hypothesis Testing

The Practice of Statistics, $4^{\text {th }}$ edition - For AP* STARNES, YATES, MOORE

Unit 5: Hypothesis Testing

-9.1 Significance Tests: The Basics
9.2 Tests about a Population Proportion
9.3 Tests about a Population Mean
-9.1 \& 9.2 Errors and the Power of a Test

Section 9.2
 Tests About a Population Proportion

Learning Objectives

After this section, you should be able to...
\checkmark CHECK conditions for carrying out a test about a population proportion.
\checkmark CONDUCT a significance test about a population proportion.
\checkmark CONSTRUCT a confidence interval to draw a conclusion about a two-sided test about a population proportion.

Introduction

Confidence intervals and significance tests are based on the sampling distributions of statistics. That is, both use probability to say what would happen if we applied the inference method many times.

Section 9.1 presented the reasoning of significance tests, including the idea of a P-value. In this section, we focus on the details of testing a claim about a population proportion.

We'll learn how to perform one-sided and two-sided tests about a population proportion. We'll also see how confidence intervals and two-sided tests are related.

Carrying Out a Significance Test

Recall our basketball player who claimed to be an 80% free-throw shooter. In an SRS of 50 free-throws, he made 32. His sample proportion of made shots, 32/50 $=0.64$, is much lower than what he claimed.

Does it provide convincing evidence against his claim?
To find out, we must perform a significance test of

$$
\begin{aligned}
& H_{0}: p=0.80 \\
& H_{a}: p<0.80
\end{aligned}
$$

where $p=$ the actual proportion of free throws the shooter makes in the long run.

Check Conditions:

Random We can view this set of 50 shots as a simple random sample from the population of all possible shots that the player takes.
\checkmark Normal Assuming H_{0} is true, $p=0.80$. then $n p=(50)(0.80)=40$ and $n(1-p)=(50)(0.20)=10$ are both at least 10 , so the normal condition is met.
\checkmark Independent In our simulation, the outcome of each shot is determined by a random number generator, so individual observations are independent.

Carrying Out a Significance Test

If the null hypothesis $H_{0}: p=0.80$ is true, then the player's sample proportion of made free throws in an SRS of 50 shots would vary according to an approximately Normal sampling distribution with mean
$\mu_{\hat{p}}=p=0.80$ and standard deviation $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{(0.8)(0.2)}{50}}=0.0566$

Calculations: Test statistic and P-value A significance test uses sample data to measure the strength of evidence against H_{0}. Here are some principles that apply to most tests:

- The test compares a statistic calculated from sample data with the value of the parameter stated by the null hypothesis.
- Values of the statistic far from the null parameter value in the direction specified by the alternative hypothesis give evidence against H_{0}.

Definition:

A test statistic measures how far a sample statistic diverges from what we would expect if the null hypothesis H_{0} were true, in standardized units. That is

$$
\text { test statistic }=\frac{\text { statistic }- \text { parameter }}{\text { standard deviation of statistic }}
$$

Carrying Out a Hypothesis Test

The test statistic says how far the sample result is from the null parameter value, and in what direction, on a standardized scale. You can use the test statistic to find the P-value of the test. In our free-throw shooter example, the sample proportion 0.64 is pretty far below the hypothesized value $H_{0}: p=0.80$. Standardizina we det

$$
\begin{aligned}
\text { test statistic } & =\frac{\text { statistic }- \text { parameter }}{\text { standard deviation of statistic }} \\
z & =\frac{0.64-0.80}{0.0566}=-2.83
\end{aligned}
$$

The shaded area under the curve in (a) shows the P-value. (b) shows the corresponding area on the standard Normal curve, which displays the distribution of the z test statistic. Using Table A, we find that the P-value is $P(z \leq-2.83)=0.0023$.

So if H_{0} is true, and the player makes 80% of his free throws in the long run, there's only about a 2 -in-1000 chance that the player would make as few as 32 of 50 shots.

The One-Sample z Test for a Proportion

Significance Tests: A Four-Step Process

State: What hypotheses do you want to test, and at what significance level? Define any parameters you use.
Plan: Choose the appropriate inference method. Check conditions.
Do: If the conditions are met, perform calculations.

- Compute the test statistic.
- Find the P-value.

Conclude: Interpret the results of your test in the context of the problem.

When the conditions are met-Random, Normal, and Independent, the sampling distribution of \hat{p} is approximately Normal with mean
$\mu_{\hat{p}}=p$ and standard deviation $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$.
When performing a significance test, however, the null hypothesis specifies a value for p, which we will call p_{0}. We assume that this value is correct when performing our calculations.

The One-Sample z Test for a Proportion

The z statistic has approximately the standard Normal distribution when H_{0} is true. P-values therefore come from the standard Normal distribution. Here is a summary of the details for a one-sample z test for a proportion.

One-Sample z Test for a Proportion

Choose an SRS of size n from a large population that contains an unknown proportion p of successes. To test the hypothesis $H_{0}: p=p_{0}$, compute the z statistic

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

Find the P-value by calculating the probability of getting a z statistic this large or larger in the direction specified by the alternative hypothesis H_{a} :

$$
H_{a}: p>p_{0}
$$

$H_{a}: p<p_{0}$
$H_{a}: p \neq p_{0}$

The One-Sample z Test for a Proportion

The z statistic has approximately the standard Normal distribution when H_{0} is true. P-values therefore come from the standard Normal distribution. Here is a summary of the details for a one-sample z test for a proportion.

One-Sample z Test for a Proportion
Choose an SRS of size n from a large population that contains an unknown proportion p of successes. To test the hypothesis $H_{0}: p=p_{0}$, compute the z statistic

Use this test only when the expected numbers of successes and failures $n p_{0}$ and $n\left(1-p_{0}\right)$ are both at least 10 and the population is at least 10 times as large as the sample.

- Example: One Potato, Two Potato

A potato-chip producer has just received a truckload of potatoes from its main supplier. If the producer determines that more than 8% of the potatoes in the shipment have blemishes, the truck will be sent away to get another load from the supplier. A supervisor selects a random sample of 500 potatoes from the truck. An inspection reveals that 47 of the potatoes have blemishes. Carry out a significance test at the $\alpha=0.10$ significance level. What should the producer conclude?

State: We want to perform a test at the $\alpha=0.10$ significance level of

$$
\begin{aligned}
& H_{0}: p=0.08 \\
& H_{a}: p>0.08
\end{aligned}
$$

where p is the actual proportion of potatoes in this shipment with blemishes.
Plan: If conditions are met, we should do a one-sample z test for the population proportion p.
\checkmark Random The supervisor took a random sample of 500 potatoes from the shipment.
\checkmark Normal Assuming $H_{0}: p=0.08$ is true, the expected numbers of blemished and unblemished potatoes are $n p_{0}=500(0.08)=40$ and $n\left(1-p_{0}\right)=500(0.92)=$ 460 , respectively. Because both of these values are at least 10, we should be safe doing Normal calculations.
\checkmark Independent Because we are sampling without replacement, we need to check the 10% condition. It seems reasonable to assume that there are at least $10(500)=5000$ potatoes in the shipment.

- Example: One Potato, Two Potato

Do: The sample proportion of blemished potatoes is $\hat{p}=47 / 500=0.094$.

$$
\text { Test statistic } \quad z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.094-0.08}{\sqrt{\frac{0.08(0.92)}{500}}}=1.15
$$

P-value Using Table A or normalcdf(1.15,1E99), the desired P value is

$$
P(z \geq 1.15)=1-0.8749=0.1251
$$

Conclude: Since our P-value, 0.1251 , is greater than the chosen significance level of $\alpha=0.10$, we fail to reject H_{0}. There is not sufficient evidence to conclude that the shipment contains more than 8% blemished potatoes. The producer will use this truckload of potatoes to make potato chips.

Two-Sided Tests

According to the Centers for Disease Control and Prevention (CDC) Web site, 50\% of high school students have never smoked a cigarette. Taeyeon wonders whether this national result holds true in his large, urban high school. For his AP Statistics class project, Taeyeon surveys an SRS of 150 students from his school. He gets responses from all 150 students, and 90 say that they have never smoked a cigarette. What should Taeyeon conclude? Give appropriate evidence to support your answer.
State: We want to perform at test at the $\alpha=0.05$ significance level of

$$
\begin{aligned}
& H_{0}: p=0.50 \\
& H_{a}: p \neq 0.50
\end{aligned}
$$

where p is the actual proportion of students in Taeyeon's school who would say they have never smoked cigarettes.
Plan: If conditions are met, we should do a one-sample z test for the population proportion p.
\checkmark Random Taeyeon surveyed an SRS of 150 students from his school.
\checkmark Normal Assuming $H_{0}: p=0.50$ is true, the expected numbers of smokers and nonsmokers in the sample are $n p_{0}=150(0.50)=75$ and $n\left(1-p_{0}\right)=150(0.50)=$ 75. Because both of these values are at least 10 , we should be safe doing Normal calculations.
\checkmark Independent We are sampling without replacement, we need to check the 10% condition. It seems reasonable to assume that there are at least 10(150) $=$ 1500 students a large high school.

Two-Sided Tests

Do: The sample proportion is $\quad \hat{p}=90 / 150=0.60$.

Conclude: Since our P-value, 0.0142 , is less than the chosen significance level of $\alpha=0.05$, we have sufficient evidence to reject H_{0} and conclude that the proportion of students at Taeyeon's school who say they have never smoked differs from the national result of 0.50 .

Why Confidence Intervals Give More Information

The result of a significance test is basically a decision to reject H_{0} or fail to reject H_{0}. When we reject H_{0}, we're left wondering what the actual proportion p might be. A confidence interval might shed some light on this issue.

Confidence Intervals and Two-Sided Tests

There is a link between confidence intervals and two-sided tests. The 95\% confidence interval gives an approximate range of p_{0} 's that would not be rejected by a two-sided test at the $\alpha=0.05$ significance level. The link isn't perfect because the standard error used for the confidence interval is based on the sample proportion, while the denominator of the test statistic is based on the value p_{0} from the null hypothesis.

\checkmark A two-sided test at significance level α (say, $\alpha=0.05$) and a 100(1a) \% confidence interval (a 95\% confidence interval if $\alpha=0.05$) give similar information about the population parameter.
\checkmark If the sample proportion falls in the "fail to reject H_{0} " region, like the green value in the figure, the resulting 95\% confidence interval would include p_{0}. In that case, both the significance test and the confidence interval would be unable to rule out p_{0} as a plausible parameter value.

Confidence Intervals and Two-Sided Tests

There is a link between confidence intervals and two-sided tests. The 95\% confidence interval gives an approximate range of p_{0} 's that would not be rejected by a two-sided test at the $\alpha=0.05$ significance level. The link isn't perfect because the standard error used for the confidence interval is based on the sample proportion, while the denominator of the test statistic is based on the value p_{0} from the null hypothesis.

\checkmark A two-sided test at significance level α (say, $\alpha=0.05$) and a 100(1a) \% confidence interval (a 95\% confidence interval if $\alpha=0.05$) give similar information about the population parameter.
\checkmark However, if the sample proportion falls in the "reject H_{0} " region, the resulting 95\% confidence interval would not include p_{0}. In that case, both the significance test and the confidence interval would provide evidence that p_{0} is not the parameter value.
Naidilietei value.

Section 12.1
 Tests About a Population Proportion

Summary

In this section, we learned that...
\checkmark As with confidence intervals, you should verify that the three conditionsRandom, Normal, and Independent-are met before you carry out a significance test.
\checkmark Significance tests for $H_{0}: p=p_{0}$ are based on the test statistic

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

with P-values calculated from the standard Normal distribution.
\checkmark The one-sample z test for a proportion is approximately correct when
(1) the data were produced by random sampling or random assignment;
(2) the population is at least 10 times as large as the sample; and
(3) the sample is large enough to satisfy $n p_{0} \geq 10$ and $n\left(1-p_{0}\right) \geq 10$ (that is, the expected numbers of successes and failures are both at least 10).

Section 12.1
 Tests About a Population Proportion

Summary

In this section, we learned that...
\checkmark Follow the four-step process when you carry out a significance test:
STATE: What hypotheses do you want to test, and at what significance level?
Define any parameters you use.
PLAN: Choose the appropriate inference method. Check conditions.
DO: If the conditions are met, perform calculations.

- Compute the test statistic.
- Find the P-value.

CONCLUDE: Interpret the results of your test in the context of the problem.
\checkmark Confidence intervals provide additional information that significance tests do not-namely, a range of plausible values for the true population parameter p. A two-sided test of $H_{0}: p=p_{0}$ at significance level α gives roughly the same conclusion as a $100(1-\alpha) \%$ confidence interval.

