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Chapter 12: More About Regression
Section 12.1
Inference for Linear Regression



+ Inference for Linear Regression

In Chapter 3, we examined data on eruptions of the Old Faithful geyser. 
Below is a scatterplot of the duration and interval of time until the next 
eruption for all 222 recorded eruptions in a single month. The least-
squares regression line for this population of data has been added to 
the graph. It has slope 10.36 and y-intercept 33.97. We call this the 
population regression line (or true regression line) because it uses 
all the observations that month.

Inference for Linear R
egression

    

Suppose we take an SRS of 20
eruptions from the population and
calculate the least - squares
regression line ˆ	y	 a bx for the
sample data. How does the slope
of the sample regression line
(also called the estimated 
regression line) relate to the slope
of the population regression line?



+Sampling Distribution of b
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The figures below show the results of taking three different SRSs of 20 Old 
Faithful eruptions in this month. Each graph displays the selected points and 
the LSRL for that sample.

Notice that the slopes of the sample regression 
lines – 10.2, 7.7, and 9.5 – vary quite a bit from 
the slope of the population regression line, 
10.36.
The pattern of variation in the slope b is 
described by its sampling distribution.



+ The Sampling Distribution of b
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Spread :   b 


sx n 1


6.159

1.083 201
1.30

For all 222 eruptions in a single month, the population regression line for predicting 
the interval of time until the next eruption y from the duration of the previous 
eruption x is µy = 33.97 + 10.36x. The standard deviation of responses about this 
line is given by σ = 6.159. 

If we take all possible SRSs of 20 eruptions 
from the population, we get the actual 
sampling distribution of b.

Shape: Symmetric, follows a t distribution

Center : µb = β = 10.36 (b is an unbiased 
estimator of β)

In practice, we don’t know σ for the population regression line. So we estimate it 
with the standard deviation of the residuals, s. Then we estimate the spread of 
the sampling distribution of b with the standard error of the slope:

	(We	get	from	Minitab)
1b

x

sSE
s n



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The slope b and intercept a of the least-squares line are statistics. That is, we 
calculate them from the sample data. These statistics would take somewhat different 
values if we repeated the data production process. To do inference, think of a and b 
as estimates of unknown parameters α and β that describe the population of interest.

Suppose we have n observations on an explanatory variable x and a 
response variable y. Our goal is to study or predict the behavior of y for 
given values of x.
•  Linear The (true) relationship between x and y is linear. For any fixed 
value of x, the mean response µy falls on the population (true) regression 
line µy= α + βx. The slope b and intercept a are usually unknown 
parameters.
•  Independent Individual observations are independent of each other.
•  Normal For any fixed value of x, the response y varies according to a 
Normal distribution.
•  Equal variance The standard deviation of y (call it σ) is the same for all 
values of x. The common standard deviation σ is usually an unknown 
parameter.
•  Random The data come from a well-designed random sample or 
randomized experiment.

Conditions for Regression Inference
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The figure below shows the regression model when the conditions are 
met. The line in the figure is the population regression line µy= α + βx.

The Normal curves show 
how y will vary when x is 
held fixed at different values. 
All the curves have the same 
standard deviation σ, so the 
variability of y is the same for 
all values of x. 

The value of σ determines 
whether the points fall close 
to the population regression 
line (small σ) or are widely 
scattered (large σ).

For each possible value 
of the explanatory 
variable x, the mean of 
the responses µ(y | x) 
moves along this line. 
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You should always check the conditions before doing inference about the 
regression model. Although the conditions for regression inference are a bit 
complicated, it is not hard to check for major violations.

Start by making a histogram or Normal probability plot of the residuals and also a 
residual plot. Here’s a summary of how to check the conditions one by one.

•  Linear Examine the scatterplot to check that the overall pattern is roughly linear. 
Look for curved patterns in the residual plot. Check to see that the residuals 
center on the “residual = 0” line at each x-value in the residual plot.

•  Independent Look at how the data were produced. Random sampling and 
random assignment help ensure the independence of individual observations. If 
sampling is done without replacement, remember to check that the population is 
at least 10 times as large as the sample (10% condition).

•  Normal Make a stemplot, histogram, or Normal probability plot of the residuals 
and check for clear skewness or other major departures from Normality.

•  Equal variance Look at the scatter of the residuals above and below the 
“residual = 0” line in the residual plot. The amount of scatter should be roughly 
the same from the smallest to the largest x-value.

•  Random See if the data were produced by random sampling or a randomized 
experiment.

How to Check the Conditions for Regression Inference
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The slope β of the population (true) regression line µy = α + βx is the rate of change 
of the mean response as the explanatory variable increases. We often want to 
estimate β. The slope b of the sample regression line is our point estimate for β. A 
confidence interval is more useful than the point estimate because it shows how 
precise the estimate b is likely to be. The confidence interval for β has the familiar 
form

statistic ± (critical value) · (standard deviation of statistic)

When the conditions for regression inference are met, a level C confidence interval for 
the slope βof the population (true) regression line is

b ± t* SEb

In this formula, the standard error of the slope is

and t* is the critical value for the t distribution with df = n - 2 having area C between -t* 
and t*.

t Interval for the Slope of a Least-Squares Regression Line

	(we	get	from	Minitab)
1b

x

sSE
s n




Because we use the statistic b as our estimate, the confidence interval is

b ± t* SEb
We call this a t interval for the slope. 
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Mrs. Barrett’s class did a helicopter experiment. Students randomly assigned 14 
helicopters to each of five drop heights: 152 centimeters (cm), 203 cm, 254 cm, 
307 cm, and 442 cm. Teams of students released the 70 helicopters in a 
predetermined random order and measured the flight times in seconds. The class 
used Minitab to carry out a least-squares regression analysis for these data. A 
scatterplot, residual plot, histogram, and Normal probability plot of the residuals 
are shown below. Construct and interpret a 95% confidence interval for the slope 
of the population regression line.
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 Linear The scatterplot shows a clear linear form. For each drop height used in the 
experiment, the residuals are centered on the horizontal line at 0. The residual plot 
shows a random scatter about the horizontal line.
 Independent Because the helicopters were released in a random order and no 
helicopter was used twice, knowing the result of one observation should give no 
additional information about another observation.
 Normal The histogram of the residuals is single-peaked, unimodal, and 
somewhat bell-shaped. In addition, the Normal probability plot is very close to 
linear.
 Equal variance The residual plot shows a similar amount of scatter about the 
residual = 0 line for the 152, 203, 254, and 442 cm drop heights. Flight times (and the 
corresponding residuals) seem to vary more for the helicopters that were dropped 
from a height of 307 cm.
 Random The helicopters were randomly assigned to the five possible drop heights.

Except for a slight concern about the equal-variance condition, we should be 
safe performing inference about the regression model in this setting.

State: We want to estimate the true slope β of the population regression line 
relating helicopter drop height to free fall time at the 95% confidence level.
Plan: If the conditions are met, we will use a t interval for the slope to 
estimate β. 



+Example: Helicopter Experiment
Inference for Linear R

egression

SEb = 0.0002018, from the “SE Coef ” column in the computer output. 

Do: Because the conditions are met, we can calculate a t interval for the 
slope β based on a t distribution with df = n - 2 = 70 - 2 = 68. Using the more 
conservative df = 60 from Table B gives t* = 2.000. 
The 95% confidence interval is

b ± t* SEb = 0.0057244 ± 2.000(0.0002018) 
= 0.0057244 ± 0.0004036 
= (0.0053208, 0.0061280)

Conclude: We are 95% confident that the interval from 0.0053208 to 0.0061280 
seconds per cm captures the slope of the true regression line relating the flight 
time y and drop height x of paper helicopters.
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Computer output from the least-squares regression analysis on the helicopter 
data for Mrs. Barrett’s class is shown below.

  

The least - squares regression line for these data is

flight time= -0.03761+0.0057244(drop height)

The slope β of the true regression line says how much the average flight 
time of the paper helicopters increases when the drop height increases by 
1 centimeter.
Because b = 0.0057244 estimates the unknown β, we estimate that, on 
average, flight time increases by about 0.0057244 seconds for each 
additional centimeter of drop height.
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Computer output from the least-squares regression analysis on the helicopter 
data for Mrs. Barrett’s class is shown below.

  

The least - squares regression line for these data is

flight time= -0.03761+0.0057244(drop height)

We need the intercept a = -0.03761 to draw the line and make predictions, 
but it has no statistical meaning in this example. No helicopter was dropped 
from less than 150 cm, so we have no data near x = 0.
We might expect the actual y-intercept α of the true regression line to be 0 
because it should take no time for a helicopter to fall no distance.
The y-intercept of the sample regression line is -0.03761, which is pretty 
close to 0.
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Computer output from the least-squares regression analysis on the helicopter 
data for Mrs. Barrett’s class is shown below.

  

The least - squares regression line for these data is

flight time= -0.03761+0.0057244(drop height)

Our estimate for the standard deviation σ of flight times about the true 
regression line at each x-value is s = 0.168 seconds.
This is also the size of a typical prediction error if we use the least-squares 
regression line to predict the flight time of a helicopter from its drop height.



+ End of Day 1…

Worksheet on Confidence Intervals

Homework…
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When the conditions for inference are met, we can use the slope b of the 
sample regression line to construct a confidence interval for the slope β of 
the population (true) regression line. We can also perform a significance 
test to determine whether a specified value of β is plausible. The null 
hypothesis has the general form H0: β = hypothesized value. To do a test, 
standardize b to get the test statistic:

  

test statistic =  statistic -  parameter
standard deviation of statistic

t  b  0
SE b

To find the P-value, use a t distribution with n - 2 degrees of freedom. Here 
are the details for the t test for the slope.

Suppose the conditions for inference are met. To test the hypothesis H0 : β = 
hypothesized value, compute the test statistic

Find the P-value by calculating the probability of getting a t statistic this large 
or larger in the direction specified by the alternative hypothesis Ha. Use the t 
distribution with df = n - 2.

t Test for the Slope of a Least-Squares Regression Line

t 
b  0
SE b
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Infants who cry easily may be more easily stimulated than others. This may be a sign of higher 
IQ. Child development researchers explored the relationship between the crying of infants 4 to 
10 days old and their later IQ test scores. A snap of a rubber band on the sole of the foot caused 
the infants to cry. The researchers recorded the crying and measured its intensity by the number 
of peaks in the most active 20 seconds. They later measured the children’s IQ at age three years 
using the Stanford-Binet IQ test. A scatterplot and Minitab output for the data from a random 
sample of 38 infants is below.

Do these data provide convincing evidence that there is a positive linear 
relationship between crying counts and IQ in the population of infants?
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State: We want to perform a test of

H0 : β = 0 
Ha : β > 0

where β is the true slope of the population regression line relating crying count to IQ 
score. No significance level was given, so we’ll use α = 0.05.

Plan: If the conditions are met, we will perform a t test for the slope β. 
•  Linear The scatterplot suggests a moderately weak positive linear relationship between crying 
peaks and IQ. The residual plot shows a random scatter of points about the residual = 0 line.

•  Independent Later IQ scores of individual infants should be independent. Due to sampling 
without replacement, there have to be at least 10(38) = 380 infants in the population from which 
these children were selected.
•  Normal The Normal probability plot of the residuals shows a slight curvature, which suggests that 
the responses may not be Normally distributed about the line at each x-value. With such a large 
sample size (n = 38), however, the t procedures are robust against departures from Normality.
• Equal variance The residual plot shows a fairly equal amount of scatter around the horizontal line 
at 0 for all x-values.
•  Random We are told that these 38 infants were randomly selected.
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Do: With no obvious violations of the conditions, we proceed to inference. 
The test statistic and P-value can be found in the Minitab output.

Conclude: The P-value, 0.002, is less than our α = 0.05 significance level, so we 
have enough evidence to reject H0 and conclude that there is a positive linear 
relationship between intensity of crying and IQ score in the population of infants.

t 
b  0
SE b


1.49290
0.4870

 3.07

The Minitab output gives P = 0.004 as the 
P-value for a two-sided test. The P-value 
for the one-sided test is half of this,
P = 0.002.



+ Looking Ahead…

Worksheet on Significance Testing.

Homework…


