5-9:
 TRANSFORMING POLYNOMIAL FUNCTIONS

Mr. Gallo
Algebra 2

PARENT FUNCTIONS OF QUADRATIC FUNCTIONS

- Parent Function: $y=x^{2}$
- Basic function you started with.
$-a$: Reflection
$a>1$: Narrower
$0<a<1$: Wider

This is the Vertex Form of a Parabola.

What is an equation of the graph of $y=x^{2}$ under:

1. A vertical compression by the factor 2 .

$$
y=2 x^{2}
$$

2. Followed by a reflection across the x-axis.

$$
y=-2 x^{2}
$$

3. Followed by a horizontal translation 1 unit to the left.

$$
y=-2(x+1)^{2}
$$

4. Followed by a vertical translation 3 units up.

$$
y=-2(x+1)^{2}+3
$$

PARENT FUNCTIONS OF CUBIC FUNCTIONS

○ Parent Function: $\quad y=x^{3}$

- Basic function you started with.
$-a$: Reflection
$a>1$: Narrower
$0<a<1$: Wider

What is an equation of the graph of $y=x^{3}$ under:

1. Vertical stretch by the factor of 3 .

$$
y=3 x^{3}
$$

2. Reflection in the x-axis.

$$
y=-3 x^{3}
$$

3. Vertical translation 5 units up.

$$
y=-3 x^{3}+5
$$

What is an equation of the graph of $y=x^{3}$ under:

1. A vertical stretch by the factor 2 .

$$
y=2 x^{3}
$$

2. Followed by a horizontal translation 3 units to the left.

$$
y=2(x+3)^{3}
$$

3. Followed by a vertical translation 4 units down.

$$
y=2(x+3)^{3}-4
$$

FINDING ZEROS OF ATRANSFORMED CUBIC FUNCTION

$\odot A$ "zero" is also called an \mathbf{x}-intercept so $y=0$

What are all the real zeros of $y=\frac{1}{2}(x-2)^{3}-3$?

$$
\begin{aligned}
0 & =\frac{1}{2}(x-2)^{3}-3 \\
3 & =\frac{1}{2}(x-2)^{3} \\
6 & =(x-2)^{3} \\
\sqrt[3]{6} & =x-2
\end{aligned}
$$

$$
3.82 \approx \sqrt[3]{6}+2=x
$$

Note: Transformed cubic functions have only one real root.

NOTE: Not all cubic functions are obtained by transforming $y=x^{3}$.
$y=x^{3}-2 x^{2}-5 x+6$ has three x-intercepts and cannot be obtained by transforming $y=x^{3}$.

Remember: If the function is a transformation of the parent function it will only have one real zero. It will be of the form:

$$
y=a(x-h)^{3}+k
$$

POWER FUNCTIONS

\odot A function of the form $y=a \cdot x^{b}$, where \boldsymbol{a} and b are nonzero real numbers.

Examples:

$$
y=0.5 x^{6} \quad y=\frac{1}{2} x^{2} \quad y=-4 x^{\frac{2}{3}} \quad y=x^{0.25}
$$

- These examples are similar to direct \qquad
variations , but with powers greater than 1. - a is called the constant of _proportionality

The power P (in kilowatts) generated by a wind turbine varies directly as the cube of the wind speed v (in meters per second). A wind turbine generates 1200 kW of power in a $20 \mathrm{~m} / \mathrm{s}$ wind. How much power does this turbine generate in a $12 \mathrm{~m} / \mathrm{s}$ wind to the nearest kW ?

$$
\text { 1). } P=a v^{3} \quad \begin{aligned}
\text { 2). Find } a & \text { when } P=1200, v=20 \\
1200 & =\left(20^{3}\right) a \\
1200 & =8000 a \\
\frac{3}{20}=\frac{1200}{8000} & =a
\end{aligned}
$$

3). $P=\frac{3}{20} v^{3}$

$$
\text { 4). } P=\frac{3}{20}\left(12^{3}\right)=259.2 \approx 259 \mathrm{~kW}
$$

Homework: p. 343 \#7-17 odd, 25, 26

