

WRITING A POLYNOMIAL IN FACTORED FORM

What is the factored form of $x^{3}+x^{2}-12 x$?
$x^{3}+x^{2}-12 x=x\left(x^{2}+x-12\right)$ Factor out the GCF, x $=x(x+4)(x-3)$ Factor $x^{2}+x-12$

The factored form of $x^{3}+x^{2}-12 x$ allows you to
find the \qquad zeros , \qquad and
__x-intercepts__ of the polynomial.

The following are equivalent statements about a real number \mathbf{b} and a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$

- $x-b$ is a linear factor of the polynomial $\mathrm{P}(\mathrm{x})$.
- b is a zero of the polynomial function $\mathrm{y}=\mathrm{P}(\mathrm{x})$.
- b is a _root (solution) of the polynomial equation $\mathrm{P}(\mathrm{x})=0$.
- b is an x-intercept of the graph $y=P(x)$.

FINDING ZEROS OF A POLYNOMIAL FUNCTION

What are the zeros of $y=(x-3)(x+4)(x-1)$? Graph the function.

Use the Zero Product Property
$0=(x-3)(x+4)(x-1)$
The zeros are: $3,-4$ and 1
Find points for x-values between the zeros: $-2,0$ and 2 .
$(-2-3)(-2+4)(-2-1)=30$
$(0-3)(0+4)(0-1)=12$
$(2-3)(2+4)(2-1)=-6$
What is the end behavior.
Falls to the left, rises to the right

Sketch the graph.

WRITING A POLYNOMIAL FUNCTION FROM ITS ZEROS

The expression $x-a$ is a factor of a polynomial if and only if the value a is a zero of the related polynomial function.

- Allows factors of a polynomial to be written from the zeros
- Multiply the factors to write the polynomial function.

What is a polynomial function in standard form with zeros $1,-1$ and 4 ?

1	-1	4
\downarrow	\downarrow	\downarrow
$f(x)=(x-1)(x+1)(x-4)$	Write a linear factor for each zero.	
$f(x)=(x-1)\left(x^{2}-3 x-4\right)$	Multiply (x+1) and (x-4).	
$f(x)=x^{3}-4 x^{2}-x+4$	Multiply (x-1) and $\left(x^{2}-3 x-4\right)$.	

Complete Got It? \#3 a \& b p. 290
a. $f(x)=x^{2}-9$
b. $\mathrm{P}(x)=x^{3}-3 x^{2}-9 x+27$

MULTIPLICITY OF ZERO

- a is a zero of multiplicity n

- Means that $x-a$ appears n times as a factor
$f(x)=x^{4}-2 x^{3}-8 x^{2}$
$f(x)=x^{2}(x-4)(x+2)$
The zeroes are -2, 0, 4
Multiplicity of each:
-2 \& 4- Multiplicity of 1
0 - Multiplicity of 2

- a is a zero of even multiplicity
- Graph touches x-axis at a and turns around
- a is a zero of odd multiplicity
- Graph crosses x-axis at a

HOMEWORK: p. 293 \#7-33 odd, 57-59

GRAPISS OF POLYNOMIAL FUNCTIONS

- Relative Maximum:
- The value at an up-to-down turning point.
- Relative Minimum:
- The value at a down-to-up turning point.

A designer wants to make a rectangular prism box with maximum volume, while keeping the sum of its length, width and height 12 in. The length must be 3 times the height. What should each dimension be?
$x=$ height of box $\quad 3 x=$ length of box
$12-(x+3 x)=$ width of box
$V=l \times w \times h$

$V=x(3 x)(12-(x+3 x))$
$V=x(3 x)(12-4 x)$
$V=3 x^{2}(12-4 x)$
$V=36 x^{2}-12 x^{3}$

$$
\begin{array}{|l}
2 \mathrm{in} .=\text { height } \\
6 \text { in. = length } \\
4 \mathrm{in}=\text { width } \\
\hline
\end{array}
$$

HOMEWORK: p. 293 \#35-39, 44-47, 61-69 odd

