4-3:MODELING WITH QUADRATIC FUNCTIONS

Mr. Gallo
Algebra 2

A parabola contains points $(0,0),(-1,1)$ and $(1,5)$. What is the equation of this parabola in standard form?

Draw the rectangular number next in the series:

1. The following pictures illustrate the first five numbers in a sequence we shall call the "rectangular numbers."

Find the next two rectangular numbers:

				4×5	5×6	6×7
	1×2	2×3	3×4		$\because: \bullet: ~$	$\because \bullet: \bullet$
			- ••	$\because \bullet$ -		$\because \because:$
	- -	$\because:$	$\because:$		$\bullet \bullet \bullet$ •*	$\because: 0$
\# of Dots	2	6	12	20	30	- ${ }^{\text {- }}$
Term \#	1	2	3	4	5	6
		7×8	8×9			
\# of Dots		56	72			

Complete the table for the values given and graph the data:

Term Number	Total dots
1	2
2	6
3	12
4	20
5	30

1) What equation does the graph suggest? A Quadratic (parabola)

2) Plot the data in your calculator.

Press: STAT>EDIT>L ${ }_{1}$
Enter the data under Term Number. The equation is of the form:
3) Use the arrow keys to move through
$y=a x^{2}+b x+c$ to $\mathbf{L}_{\mathbf{2}}$ Enter the data you found under Total Dots.
$a=\frac{1}{2}$
$b=\frac{1}{0}$
$c=0$ your hand made graph?
5) Calculate the equation of the line of

Final equation:

$$
x^{2}+x
$$ best fit:

Press: STAT>CALC>\#5 QuadReg
6) Choose the Lists that your data is stored under. (Ex. $\mathrm{L}_{1}, \mathrm{~L}_{2}$) Press: Enter
7)Enter the equation of the line under $Y=$

$$
x^{2}+x
$$

8)Graph the equation. Does it fit the data?

Yes, the parabola graphed goes through the points.
9) Use your equation to calculate the $100^{\text {th }}$ term in the series.

$$
x^{2}+x=100^{2}+100=10,100
$$

4-5: QUADRATIC EQUATIONS

Algebra 2
Mr. Gallo

Ways to Solve Quadratic Equations

1. Solve by Factoring

- Set the equation equal to 0 and factor

2. Solve with Tables

- Enter the equation into $\mathrm{Y}=$
- Create a Table and look for x value when $y=0$

3. Solve by Graphing

- Enter equation into $\mathrm{Y}=$
- Graph equation and use zero function to find x value when $y=$ 0 .

Solve by Factoring

What are the solutions of the quadratic equation
$x^{2}+3 x-18=0$

$$
\begin{aligned}
& x^{2}+3 x-18=0 \\
& (x+6)(x-3)=0 \\
& x+6=0 \\
& x=-6 \\
& x-3=0 \\
& x=3
\end{aligned}
$$

The solutions to $x^{2}+3 x-18=0$ are $(-6,0)$ and $(3,0)$

Solve Using a Table

What are the solutions of the quadratic equation $10 x^{2}+2 x-46=x-4$

Enter the quadratic equation $10 x^{2}+x-42=0$ into the calculator and create a table.

Find the x values which have a y value of 0 .

The solutions to $10 x^{2}+2 x-46=x-4$
are $(2,0)$ and $(-2.1,0)$

Solve by Graphing

What are the solutions of the quadratic equation $5 x^{2}-8=18 x$

$$
\begin{aligned}
5 x^{2}-8 & =18 x \\
5 x^{2}-18 x-8 & =0
\end{aligned}
$$

Enter the quadratic equation $5 x^{2}-18 x-8=0$ into the calculator and graph it.

Use the zero function to find the x values which have a y value of 0 .

The solutions to $5 x^{2}-18 x-8=0$ are $(-0.4,0)$ and $(4,0)$

Solve by Graphing

What are the solutions of the quadratic equation $5 x^{2}-8=18 x$

Enter the quadratic equation $5 x^{2}-8$ into the calculator as Y_{1} and $18 x$ into the calculator as Y_{2} and graph them.

Use the Intersect function to find the x values where the lines intersect.

The solutions to $5 x^{2}-8=18 x$ are $(-0.4,0)$ and $(4,0)$

The function $f(x)=-0.002 x^{2}+0.77 x$ models the path of a baseball, where $f(x)$ gives the height of the ball and x gives the distance from where it is hit in feet.
a. How far does the ball travel before hitting the ground?

385 feet

b. How high does the ball go?

about 74 feet

c. What is a reasonable domain and range for such a function?

$$
\text { Domain }=[0,400] \text { and Range }=[0,100]
$$

