Mr. Gallo
Algebra 2

4-2: STANDARD FORM OF A QUADRATIC FUNCTION

Graph: $f(x)=2 x^{2}+8 x-2$
What is the vertex?

$$
(-2,-10)
$$

What is the axis of symmetry?

$$
x=-2
$$

What is the maximum or minimum value?

$$
-10 \text { is the minimum value }
$$

What is the range of the function?

$$
\{y: y \geq-10\}
$$

What is the y-intercept of the function?

$$
(0,-2)
$$

STANDARD FORM FOR QUADRATICS

- $f(x)=a x^{2}+b x+c, a \neq 0$
+ Shape is a parabola
* If $a>0$; the parabola opens upward.
* If $a<0$; the parabola opens downward.
\times The axis of symmetry is the line: $x=-\frac{b}{2 a}$
* The x-coordinate of the vertex is $\frac{x=-\frac{b}{2 a} \text {; the }}{}$ y-coordinate is found by substituting the x value.
x The y-intercept is : $(0, c)$

Graphing: $f(x)=4 x^{2}-16 x+10 \quad f(x)=a x^{2}+b x+c$
Step 1
Identify a, b and c.

$$
a=4 \quad b=-16 \quad c=10
$$

Step 2

> Sketch the axis of symmetry.

$$
\begin{gathered}
x=-\frac{b}{2 a}=-\frac{(-16)}{2(4)} \\
x=2
\end{gathered}
$$

Step 3: \square Calculate the vertex. $(2,-6)$

$$
x=2 \quad \begin{aligned}
& f(2)=4(2)^{2}-16(2)+10 \\
& \\
& \\
& f(2)=-6
\end{aligned}
$$

Step 4: Since $c=10$, the y-intercept is $\underline{(0,10)}$ The reflection across $x=2$ is $(4,10)$

Convert $f(x)=2 x^{2}-3 x+2$ to Vertex Form

Step 1: \longrightarrow Identify a and b.

$$
a=2 \quad b=-3
$$

Step 2: \square
Calculate the vertex. $(.75, .875)$

$$
\begin{array}{cl}
x=-\frac{b}{2 a}=-\frac{(-3)}{2(2)} & f(.75)=2(.75)^{2}-3(.75)+2 \\
x=\frac{3}{4}=.75 & f(.75)=.875
\end{array}
$$

Step 3:
Write in vertex form. $f(x)=a(x-h)^{2}+k$
$f(x)=(x-)^{2}+$

$$
y=-(x-2)^{2}-1
$$

The New River Gorge Bridge in West Virginia is the world's largest steel single arch bridge. You can model the arch with the function: $y=-.000498 x^{2}+.847 x$, where x and y are in feet. How high above the river is the arch? How long is the section of bridge above the arch?

$$
\begin{aligned}
x=-\frac{b}{2 a}=-\frac{.847}{2(-.000498)} \approx 850 \quad \begin{array}{l}
y \\
=-.000498(850)^{2}+.847(850) \\
y \\
y
\end{array} \\
\end{aligned}
$$

$(850,360)$
Calculate the height of the arch above the river.
$360+516=876 \mathrm{ft}$.
Calculate the length of the bridge above the arch.

```
850+850=1700 ft.
```


Homework: p. 206 \#9-25 odd, 54, 58, 60

