

Geometry of a Hyperbola

A. A hyperbola is the set of all points in a plane whose distances from two fixed points in the plane have a constant difference.
B. Vocabulary:

1. The fixed points are the foci of the hyperbola
2. The line through the foci is the focal axis.
3. The point on the focal axis midway between the foci is the center.
4. The distance between the center and the foci, this is c.
5. The points where the hyperbola intersects its focal axis are the vertices of the hyperbola.

C. HYPERBOLAS - Center at (0,0)

St. fm..	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$	$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
Focal axis	$x-a x i s$	$y-a x i s$
Foci	$(\pm c, 0)$	$(0, \pm c)$
Vertices	$(\pm a, 0)$	$(0, \pm a)$
Semi-Trans.	a	a
Semi-Conj.	b	b
Pyth. Rel.	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$
Asymptotes	$y= \pm \frac{b}{a} x$	$y= \pm \frac{a}{b} x$

D. HYPERBOLAS - Center at (h, k)

St. fm..	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Focal axis	$y=k$	$x=h$
Foci	$(h \pm c, k)$	$(h, k \pm c)$
Vertices	$(h \pm a, k)$	$(h, k \pm a)$
Semi-Trans.	a	a
Semi-Conj.	b	b
Pyth. Rel.	$c^{2}=a^{2}+b^{2}$	$c^{2}=a^{2}+b^{2}$
Asymptotes	$y= \pm \frac{b}{a}(x-h)+k$	$y= \pm \frac{a}{b}(x-h)+k$

F. Example 2: Determine the equation of a hyperbola with foci at $(-3,1)$ and $(5,1)$, and transverse axis of length 4.

$$
(h, k)=(1,1)
$$

$b^{2}=c^{2}-a^{2}$
$b^{2}=4^{2}-2^{2}$
$b^{2}=12$
$b=2 \sqrt{3}$
$\frac{(x-1)^{2}}{4}-\frac{(y-1)^{2}}{12}=1$

$$
a=2, c=4
$$

G. Example 3: Sketch the graph of the following equation

$$
\begin{gathered}
x^{2}-2 x-y^{2}+6 y-7=0 \\
\left(x^{2}-2 x\right)-\left(y^{2}-6 y\right)=7 \\
\left(x^{2}-2 x+1\right)-\left(y^{2}-6 y+9\right)=7+1-9 \\
(x-1)^{2}-(y-3)^{2}=-1 \\
-(x-1)^{2}+(y-3)^{2}=1 \\
\frac{(y-3)^{2}}{1^{2}}-\frac{(x-1)^{2}}{1^{2}}=1 \\
b
\end{gathered}
$$

II. The eccentricity of a Hyperbola
A. The eccentricity of a hyperbola is

$$
e=\frac{c}{a}=\frac{\sqrt{a^{2}+b^{2}}}{a}
$$

Where a is the semitransverse $a x i s, b$ is the semiconjugate $a x i s$, and c is the distance from the center to either focus.
B. Eccentricity of all conics:

Circle	$e=0$
Ellipse	$0 \leq e<1$
Parabola	$e=1$
Hyperbola	$e>1$

C. Astronomy Notes:

- The orbit of a comet or an asteroid is always a conic section.
" The eccentricity is proportional to the total energy of the comet.
- As a comet increases speed, it can move from an elliptical orbit to a parabolic, and finally to a hyperbolic orbit
III. General Equations of the Second Degree
A. Using the following general form, we can determine what kind of conic we have
* note that we leave out the $x y$ term, as it is outside the purview of our study.
- Also note that if both A and B are zero, we have a degenerate conic

$$
A x^{2}+B y^{2}+C x+D y+E=0
$$

Parabola	Either A or B is zero
Ellipse	A and B nonzero and of the same sign
Circle	An ellipse, in which $A=B$
Hyperbola	A and B nonzero and of opposite signs

B. Example 4: Determine which type of conic is the graph of each equation

1. $5 x^{2}+3 y^{2}-7 x+3 y=1 \quad$ Ellipse
2. $-5 x^{2}+3 y^{2}+12 x-4=0 \quad$ Hyperbola
3. $10 x^{2}+10 y^{2}+3 x-2 y-100=0$ Circle
4. $x+7 y^{2}+3 y+5=0 \quad$ Parabola
