7-2: CIRCLES AND ELLIPSES CIRCLES
 CP Precalculus
 Mr. Gallo

Slice a cone with a plane parallel to the base to get a circle.

Circles

Circle - the set of all points at a given distance from a central point

$$
\text { CENTER }=(\mathrm{h}, \mathrm{k}) \quad \text { RADIUS }=r
$$

Equation for circles:

$$
\begin{aligned}
r^{2}= & (x-h)^{2}+(y-k)^{2} \\
& h, k, r \text { are all NUMBERS } \\
& x, y \text { are VARIABLES }
\end{aligned}
$$

Given the equation $x^{2}+y^{2}=49$:

- What is the center?

$$
(0,0)
$$

- What is the radius?
$\sqrt{49}= \pm 7$ Answer: $r=7$
- Sketch it.

Given the equation $(x-4)^{2}+(y+3)^{2}=9$:

- What is the center?

$$
(4,-3)
$$

- What is the radius?
$\sqrt{9}= \pm 3$ Answer: $r=3$
■ Sketch it.

Given the equation $(x+2)^{2}+(y-2)^{2} \leq 9$:

- What is the center?

$$
(-2,2)
$$

- What is the radius?
$\sqrt{9}= \pm 3$ Answer: $r=3$
- Sketch it.

Given a circle with center at $(0,-1)$ and a radius of

1. Write a simplified equation for the circle.

■ $\mathrm{h}=\frac{0}{1} \quad 1=(x-0)^{2}+(y-(-1))^{2}$
■ $\mathrm{k}=\frac{-1}{1^{2}} \quad 1=x^{2}+(y+1)^{2}$

- $r^{2}=1^{2}=1$

Write the equation for a circle with a center at $(1,2)$ and containing the point $(3,4)$.
■ $(h, k)=(1,2) \quad r^{2}=(3-1)^{2}+(4-2)^{2}$
$\square(x, y)=(3,4) \quad \begin{aligned} & r^{2}=4+4=8 \\ & 8=(x-1)^{2}+(y-2)^{2}\end{aligned}$

Given the equation of a circle $x^{2}-6 x+3 y+y^{2}-6=0$:
■ What is the center?

$$
\left(3,-\frac{3}{2}\right)
$$

■ What is the radius?
Complete the square to find the square binomials.

$$
\begin{aligned}
r=\frac{\sqrt{69}}{2} \quad x^{2}-6 x+3 y+y^{2}-6 & =0 \\
x^{2}-6 x+3^{2}+y^{2}+3 y+\left(\frac{3}{2}\right)^{2} & =6+9+\frac{9}{4} \\
(x-3)^{2}+\left(y+\frac{3}{2}\right)^{2} & =\frac{69}{4}
\end{aligned}
$$

For the equation $x^{2}+y^{2}-4 x-32=0$:
Find the radius.

$$
r=\sqrt{36}=6
$$

$$
x^{2}-4 x+2^{2}+y^{2}=32+4
$$

Find the center.

$$
(x-2)^{2}+y^{2}=36
$$

$(2,0)$

- Sketch it.

