4-6: Inverse Trigonometric Functions CP Precalculus
 Mr. Gallo

The graphs of sine and arcsine

- The graph of $y=\sin \theta$

Fails horizontal line test

- Not 1 to 1
- $y=\sin ^{-1} x$ not a function
- Restrict doma in of $y=\sin x$ to make $y=\sin ^{-1} x$ a function
-Domain: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad$ Range: $[-1,1]$

Graph of $y=\sin ^{-1} x$

- Remember inverses are reflections of the graph over the line $y=x$.

- $y=\sin ^{-1} x$ is the reflection of
$y=\sin x$ over the line $y=x$
- Domain: $[-1,1]$
- Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Using the Unit Circle to Evaluate Inverse Functions

- Possible a ngle measures of $y=\sin ^{-1} x$ located on right half of unit circle because of restricted domain.
$\sin \left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4}$
What are the possible valuesfor θ ?

$$
\frac{5 \pi}{4} \text { and } \frac{7 \pi}{4}
$$

Neither is in the domain so we use a negative angle measure instead.
Therefore,

$$
\frac{7 \pi}{4}=-\frac{\pi}{4}
$$

The graphs of cosine a nd arccosine

- The graph of $y=\cos \theta$
- Fails horizontal line test
- Not 1 to 1
- $y=\cos ^{-1} x$ not a function
- Restrict domain of $y=\cos x$ to make $y=\cos ^{-1} x$ a function
-Domain: $[0, \pi]$ Range:[-1,1]

Graph of $y=\cos ^{-1} x$

- Remember inverses are reflections of the graph over the line $y=x$.
- $y=\cos ^{-1} x$ is the reflection of
$y=\cos x$ over the line $y=x$
- Doma in: [-1,1]
- Range: $[0, \pi]$

Using the Unit Circle to Evaluate Inverse Functions

- Possible angle measures of $y=\cos ^{-1} x$ located on top half of unit circle because of restricted domain.

$$
\cos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}
$$

What are the possible valuesfor θ ?

$$
\frac{\pi}{6} \text { and } \frac{11 \pi}{6}
$$

Only one is in the domain.

The graphs of tangent and arctangent

- The graph of $y=\tan \theta$
- Fails horizontal line test
- Not 1 to 1
- $y=\tan ^{-1} x$ not a function

Restrict doma in of $y=\tan x$ to make $y=\tan ^{-1} x$ a function

- Domain: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad$ Range: $(-\infty, \infty)$

Graph of $y=\sin ^{-1} x$

- Remember inverses are reflections of the graph over the line $y=x$.

- $y=\sin ^{-1} x$ is the reflection of
$y=\sin x$ over the line $y=x$
- Domain: [-1,1]
- Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Using the Unit Circle to Evaluate Inverse Functions

- Possible a ngle measures of $y=\sin ^{-1} x$ located on right half of unit circle because of restricted domain.

$$
\tan \left(-\frac{\sqrt{3}}{3}\right)=-\frac{\pi}{4}
$$

What are the possible valuesfor θ ?

$$
\frac{5 \pi}{4} \text { and } \frac{7 \pi}{4}
$$

Neither is in the domain so we use a negative angle measure instead.
Therefore,

$$
\frac{7 \pi}{4}=-\frac{\pi}{4}
$$

