

HYPERBOLAS

Equations:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \underline{OR} \qquad \frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

•lies horizontally

opens to the left and right

lies vertically opens up and down

WHICHEVER VARIABLE COMES FIRST AFFECTS DIRECTION OF HYPERBOLA!

The Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

- Center = (h, k)
- a = how far to count horizontally
- b = how far to count vertically

Example 1:

 $\frac{x^2}{25} - \frac{y^2}{4} = 1$ ■ Given

Center =
$$(0,0)$$

$$a = \sqrt{25} = 5$$

$$b = \sqrt{4} = 2$$

$$b = \sqrt{4} = 2$$

Graphing the Hyperbola

- To graph, draw the rectangle and its diagonals!
- 1. Locate center
- 2. Count out a and b (as you would for an ellipse)

$$(h, k) = (0, 0)$$

a = 5 b = 2

Graphing the Hyperbola

- Extend vertical segments through the points a units from the center on the xaxis.
- (h, k) = (0, 0)a = 5 b = 2
- Extend horizontal segments through the points b units from the center on the y-axis
- 5. Connect to form a rectangle

- Draw and extend the diagonals of the rectangle.
- (h, k) = (0, 0)a = 5 b = 2
- 7. Fit hyperbola onto rectangle so it fits within diagonals (asymptotes)

Graphing the Hyperbola

- Vertices of the hyperbola are (-5,0)(5,0)
- (h, k) = (0, 0)a = 5 b = 2

Asymptotes of the hyperbola are

$$y = \pm \frac{b}{a}x \qquad y = \pm \frac{2}{5}x$$

Example 2:

Given
$$\frac{(y+2)^2}{4} - \frac{(x-4)^2}{9} = 1$$

Center =
$$(4,-2)$$

$$a = \sqrt{9} = 3$$

$$b = \sqrt{4} = 2$$

Center =
$$\frac{(4,-2)}{a}$$

 $a = \sqrt{9} = 3$
 $b = \sqrt{4} = 2$
Vertices = $\frac{(4,-4)(4,0)}{(4,0)}$

$$y+2=\pm\frac{2}{3}(x-4)$$

Example 3

Given
$$16y^2 - 4x^2 = 400$$

Center =
$$(0,0)$$

$$a = 10$$

$$b = 5$$

a = 10
b = 5
Vertices =
$$\frac{(0,5)(0,-5)}{}$$

$$y = \pm \frac{1}{2}x$$

Homework: 7-3 Hyperbola Homework WS