

Slice a cone with a plane parallel to the vertical axis and get a hyperbola.

HYPERBOLAS

Equations:
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \quad \underline{\text { OR }} \quad \frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1$
-lies horizontally
-opens to the left and
lies vertically opens up and down

WHICHEVER VARIABLE COMES FIRST AFFECTS DIRECTION OF HYPERBOLA!

The Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Center $=(\mathrm{h}, \mathrm{k})$

- a = how far to count horizontally

■ b = how far to count vertically

Graphing the Hyperbola

3. Extend vertical segments through the points a units

$$
\begin{aligned}
& (h, k)=(0,0) \\
& a=5 \quad b=2
\end{aligned}
$$ from the center on the x axis.

4. Extend horizontal segments through the points b units from the center on the y-axis

Graphing the Hyperbola

6. Draw and extend the diagonals of the rectangle.

$$
(h, k)=(0,0)
$$

$$
a=5 \quad b=2
$$

7. Fit hyperbola onto rectangle so it fits within diagonals (asymptotes)

- Vertices of the hyperbola are $(-5,0)(5,0)$
- Asymptotes of the hyperbola are
$y= \pm \frac{b}{a} x$
$y= \pm \frac{2}{5} x$

$$
\begin{aligned}
& (h, k)=(0,0) \\
& a=5 \quad b=2
\end{aligned}
$$

Example 2:

Given $\quad \frac{(y+2)^{2}}{4}-\frac{(x-4)^{2}}{9}=1$
Center $=(4,-2)$
$a=\sqrt{9}=3$
$b=\sqrt{4}=2$
Vertices $=(4,-4)(4,0)$
Asymptotes = \qquad

$$
y+2= \pm \frac{2}{3}(x-4)
$$

Example 3

Given $\quad 16 y^{2}-4 x^{2}=400$

Center $=(0,0)$
$a=10$
b $=5$
Vertices $=\underline{(0,5)(0,-5)}$
Asymptotes = \qquad $y= \pm \frac{1}{2} x$

