7-2: CIRCLES AND ELLIPSES ELLIPSES
 CP Precalculus
 Mr. Gallo

Slice a cone with a plane on a slant and get an ellipse.

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

If $b>a$, then the ellipse lies vertically.

If $a>b$, then the ellipse lies horizontally.

If $\mathrm{a}=\mathrm{b}$, then the ellipse is a circle.

Graphing an Ellipse

- Graph $\frac{(x-2)^{2}}{9}+\frac{y^{2}}{25}=1$

1. Locate the center $(2,0)$
2. Count out "a" horizontally
3. Count out "b" vertically
4. Connect the dots
$a=\sqrt{9}=3$
$b=\sqrt{25}=5$

Determine the equation for and graph an ellipse centered at the origin with a horizontal axis of length 10 and a vertical axis of length 4.
$(\mathrm{h}, \mathrm{k})=(0,0)$
$\mathrm{a}=2 a=10$
$\mathrm{b}=2 b=4$
$a=5$
$b=2$
$\frac{(x-0)^{2}}{5^{2}}+\frac{(y-0)^{2}}{2^{2}}=1$
$\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$

Also written as: $4 x^{2}+25 y^{2}=100$

Graph the ellipse with the equation: $25 x^{2}+4 y^{2}=100$
$(h, k)=(0,0)$
$a=\sqrt{4}=2$
$b=\sqrt{25}=5$
$\frac{25 x^{2}}{100}+\frac{4 y^{2}}{100}=\frac{100}{100}$
$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

Closure

- Write an equation for the following ellipse.
- Center $=\underline{(0,0)}$
- $\mathrm{a}=\underline{3}$
- $\mathrm{b}=\underline{6}$
$\frac{x^{2}}{3^{2}}+\frac{y^{2}}{6^{2}}=1$
$\frac{x^{2}}{9}+\frac{y^{2}}{36}=1$

