

ANGLES IN STANDARD POSITION

Vertex at origin; one ray on positive x - axis.
Parts of angles

- Initial side
- Ray on (+) x-axis
- Terminal side
" Other ray

Measure of angle from initial side to terminal side

- Counterclockwise (+ measure)
- Clockwise (- measure)

What is the measure of each angle?
1.

2.

What is a sketch of each angle in standard position?

1.

2.

-215°

What is a sketch of each angle in standard position?
a. 85°
b. -320°
c. 180°

CONVERTING BETWEEN DMS (DEGREE-MINUTE-SECOND) FORM AND DEGREES

```
Decimal degrees can be converted to Degrees-Minutes-Seconds (DMS)
form
- 1 }\mp@subsup{1}{}{\circ}=60\mathrm{ minutes }1\mathrm{ Degree = 60'
```

- 1 minute $=60$ seconds 1 Minute $=60$ "

Write each decimal degree measure in DMS form and each DMS measure in decimal form to

$$
\begin{aligned}
& \text { the nearest thousandth. } \\
& \begin{aligned}
329.125^{\circ} & =329^{\circ}+.125^{\circ}\left(\frac{60^{\prime}}{1^{\circ}}\right) \\
& =329^{\circ}+7.5^{\prime} \\
& =329^{\circ}+7^{\prime}+.5\left(\frac{60^{\prime \prime}}{1^{\prime}}\right) \\
& =329^{\circ}+7^{\prime}+30^{\prime \prime} \\
329.125^{\circ} & =329^{\circ} 7^{\prime} 30^{\prime \prime}
\end{aligned}
\end{aligned}
$$

RADIAN

Another way to measure a central angle
The intercepted arc has a length equal to the radius of the circle Measures the amount of rotation from the initial side to the terminal side of an angle

The radian measure of a circle is 2π radians and a semicircle is π radians.

CONVERTING BETWEEN RADIANS AND DEGREES

To convert degrees to radians, multiply degrees by:

$$
\frac{\pi \text { radians }}{180^{\circ}}
$$

To convert radians to degrees, multiply radians by:

$$
\frac{180^{\circ}}{\pi \text { radians }}
$$

1. What is the degree measure of an angle of $-\frac{7 \pi}{30}$ radians?

$$
-\frac{7 \pi}{30} \cdot \frac{180}{\pi}=-42^{\circ}
$$

2. What is the radian measure of angle of 81° ?

$$
\text { 81• } \frac{\pi}{180}=\frac{9 \pi}{20} \text { radians }
$$

Complete Guided Practice p. 233
a. $\frac{7 \pi}{6}$
b. $-\frac{\pi}{3}$
c. 240°
d. -30°

COTERMINAL ANGLES

Two angles in standard position with the same terminal side.

Unlimited number can be identified by adding or subtracting 360°.

$$
360+360+100=820^{\circ}
$$

Find the angles of smallest possible positive measure coterminal with each angle.

1. 908°
2. -75°
3. Add or subtract 360° as many times as needed to obtain an angle with measure greater than 0° but less than 360°.

$$
\begin{aligned}
& 908-360=548 \\
& 548-360=188
\end{aligned}
$$

An angle of 188° is coterminal with an angle of 908°.
2. Add or subtract 360° as many times as needed to obtain an angle with measure greater than 0° but less than 360°.

$$
-75+360=285
$$

An angle of 285° is coterminal with an angle of -75°.
Complete Guided
Practice p. 234
a. $-30^{\circ}+360 n^{\circ} ; 330^{\circ} ;-390^{\circ}$
b. $\frac{3 \pi}{4}+2 n \pi ; \frac{11 \pi}{4} ;-\frac{5 \pi}{4}$

Homework: p.238 \#1-25 odd, 26

ARC LENGTH

If θ is a central angle (measured in radians) in a circle of radius r, the the length of the intercepted arc s, is given by:

$$
\mathrm{s}=r \theta
$$

1. In a circle with radius 30 cm , what is the arc length formed by an angle measuring $\frac{\pi}{3}$ radians?

$$
\mathrm{s}=r \theta=\frac{\pi}{3}(30)=10 \pi \approx 31.4 \mathrm{~cm}
$$

2. Find the exact radius of an intercepted arc of a circle measuring $\frac{\pi}{2}$ radians with an arc length of 16π meters.

$$
16 \pi=\frac{\pi}{2} r \Rightarrow 32 m=r
$$

ARC LENGTH

For a circle of radius r and a central angle of measure θ (in radians), the length s of the intercepted arc is:

What is length dio the nearest tenth?

$$
\begin{aligned}
& s=r \theta \\
& s=3\left(\frac{3 \pi}{2}\right)
\end{aligned}
$$

$$
s=r \theta
$$

$s=2.5\left(225 \cdot \frac{\pi}{180}\right)=2.5\left(\frac{5 \pi}{4}\right)$
$s=\frac{9 \pi}{2}$
$s=\frac{12.5 \pi}{4}$
$s \approx 14.1 \mathrm{in}$.
$s \approx 9.8 \mathrm{~cm}$

A satellite in geosynchronous orbit travels one Earth circumference in a full day. From a point on the ground. The satellite appears stationary overhead. The orbital height for a geosynchronous satellite is about $36,000 \mathrm{~km}$. The radius of Earth is 6400 km . About how far does the satellite travel in 8 hours? Assume the length of an Earth day is exactly 24 hours.

$$
\begin{aligned}
\theta=8\left(\frac{2 \pi}{24}\right) & & s=r \theta \\
\theta=\frac{2 \pi}{3} & & s=42,400\left(\frac{2 \pi}{3}\right) \\
& & s=88,802.35 \\
& s & \approx 89,000 \mathrm{~km}
\end{aligned}
$$

LINEAR AND ANGULAR SPEED

Suppose an object moves at a constant speed along a circular path of radius r.

If s is the arc length traveled by the object during time t, then the object's linear speed v is given by:

$$
v=\frac{s}{t}
$$

If θ is the angle of rotation (in radians) through which the object moves during time t, then the angular speed ω of the object is given by:

$$
\omega=\frac{\theta}{t}
$$

A typical vinyl record has a diameter of 30 cm . When played on a turn table, the record spins at $33 \frac{1}{3}$ revolutions per minute.
a. Find the angular speed, in radians per minute, of a record as it plays. Round to the nearest tenth.
$\theta=\frac{100}{3} \cdot 2 \pi=\frac{200 \pi}{3} \quad \omega=\frac{\theta}{t}=\frac{\frac{200 \pi}{3}}{1 \min }=\frac{200 \pi}{3} \approx 209.4$ radians/minutes
b. Find the linear speed at the outer edge of the record as it spins, in centimeters per second.
$\mathrm{s}=r \theta=\frac{200 \pi}{3}(15)=1000 \pi \quad v=\frac{s}{t}=\frac{1000 \pi}{60 \mathrm{sec}}=\frac{50 \pi}{3} \approx 52.36 \mathrm{~cm} / \mathrm{sec}$

AREA OF A SECTOR

Sector:

"region bounded by 2 radii and an arc of a circle.

- Area A, of a sector of a circle with radius r, and central angle θ, measured in radians is:

$$
A=\frac{1}{2} r^{2} \theta
$$

1. Find the area of a sector of a circle with a central angle measuring $\frac{\pi}{4}$ radians and a radius of 12 ".

$$
A=\frac{1}{2}(12)^{2}\left(\frac{\pi}{4}\right)=18 \pi \approx 56.55 \mathrm{in}^{2}
$$

Homework: p.238 \#27-33 odd, 43-49 odd, 51-54, 58-60

