3-4: Exponential and Logarithmic Equations

CP Precalculus
Mr. Gallo

Solving Exponential Equations (Common Base)

- Rewrite terms with a common base
- If two numbers with the same base are equal, the exponents are equal.
1). $4^{x}=32$

$$
\begin{aligned}
\left(2^{2}\right)^{x} & =2^{5} \\
2^{2 x} & =2^{5} \\
2 x & =5 \\
x & =\frac{5}{2}
\end{aligned}
$$

2). $256^{2 x}=64$
$\left(4^{4}\right)^{2 x}=4^{3}$

$$
4^{8 x}=4^{3}
$$

$$
8 x=3
$$

$$
x=\frac{3}{8}
$$

Solving Exponential Equations (Different Bases)

- Take log of each side (logs of equal numbers are also equal)
- Use Power Property to solve
1). $6^{4 x}=512$
$\log 6^{4 x}=\log 512$
$4 x \log 6=\log 512$

$$
\begin{aligned}
& x=\frac{\log 512}{4 \log 6} \\
& x \approx .8704
\end{aligned}
$$

2). $6^{x-3}=2^{x}$
$\log 6^{x-3}=\log 2^{x}$

$$
(x-3) \log 6=x \log 2
$$

$$
x \log 6-3 \log 6=x \log 2
$$

$$
x \log 6-x \log 2=3 \log 6
$$

$$
x(\log 6-\log 2)=3 \log 6
$$

$$
x=\frac{3 \log 6}{\log 6-\log 2}
$$

$$
x \approx 4.8928
$$

Your MP3 player has about 126,000,000 bytes of memory. Each month you plan to use 5% of the memory remaining. How many months will it take you to use $1 / 4$ of the memory?

Let $\mathbf{m}=$ number of months it takes to use $1 / 4$ of the memory
Let $\mathbf{T}(\mathbf{m})=$ amount of memory remaining after \mathbf{m} months

$$
\begin{aligned}
T(m) & =126,000,000\left(\frac{3}{4}\right) \\
a & =126,000,000 \\
r & =0.05 \\
b & =0-0.05=0.95 \\
T(m) & =126,000,000(.95)^{m}
\end{aligned}
$$

$$
\begin{aligned}
T(m) & =126,000,000(0.95)^{m} \\
94,500,000 & =126,000,000(0.95)^{m} \\
\frac{94,500,000}{126,000,000} & =0.95^{m} \\
\log \frac{94,500,000}{126,000,000} & =\log 0.95^{m} \\
\log \frac{94,500,000}{126,000,000} & =m \log 0.95 \\
\log \frac{94,500,000}{126,000,000} & =m \\
\frac{\log 0.95}{5.61} & \approx m
\end{aligned}
$$

Solving Logarithmic Equations

What is the solution of the following exponential equation?
1). $\log 2 x^{2}-\log 5=1 \quad \log \frac{2 x^{2}}{5}=1$

$$
\begin{aligned}
\frac{2 x^{2}}{5} & =10^{1} \\
\frac{2 x^{2}}{5}-10 & =0 \\
2 x^{2}-50 & =0 \\
x^{2} & =25 \\
x & = \pm 5
\end{aligned}
$$

Homework: p. 196 \#1-7 odd, 11-19 odd, 23-37 odd

