3-3: Properties of Logarithms

Precalculus
Mr. Gallo

Properties of Logarithms

- Allows expressions and equations to be simplified

For any positive numbers m, n and b where $\boldsymbol{b} \neq \mathbf{1}$, the following properties apply:

Product Property

$$
\log _{b} m n=\log _{b} m+\log _{b} n
$$

Quotient Property

$$
\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n
$$

Power Property

$$
\log _{b} m^{n}=n \log _{b} m
$$

What is each expression written as a single logarithm?
If possible, simplify the single logarithm.

$$
\begin{aligned}
\log _{3} x-2 \log _{3} 7 & =\log _{3} x-\log _{3} 7^{2} \text { Power Property } \\
& =\log _{3} \frac{x}{49} \\
\log _{8} 48+\log _{8} \frac{4}{3} & =\log _{8}\left(48 \cdot \frac{4}{3}\right) \text { Quotient Property } \\
& =\log _{8} 64 \\
8^{x} & =64 \quad \text { Product Property } \\
x & =2
\end{aligned}
$$

What is each expression written as a single logarithm? If possible, simplify the single logarithm.

$$
\begin{aligned}
\log _{5} \frac{125}{x y} & =\log _{5} 125-\log _{5} x y \\
& =3-\log _{5} x-\log _{5} y
\end{aligned}
$$

$$
\begin{aligned}
& \log x^{2} y^{2} z^{-1}=\log x^{2}+\log y^{2}+\log z^{-1} \\
&=2 \log x+2 \log y-\log z \\
& \text { Product Property } \\
& \text { Power Property }
\end{aligned}
$$

Change of Base Formula

- Used to change the base
- Will allow to change to base 10 so the calculator can be used

For any positive numbers $\mathrm{m} . \mathrm{b}$ and c , with $b \neq 1$ and $c \neq 1$.

$$
\log _{b} m=\frac{\log _{c} m}{\log _{c} b}
$$

c is the base you want to change to.

What is the value of each expression?

$$
\begin{aligned}
& \log _{9} 111=\frac{\log _{c} m}{\log _{c} b}=\frac{\log 111}{\log 9} \approx 2.14 \\
& \log _{216} 36=\frac{\log _{c} m}{\log _{c} b}=\frac{\log 36}{\log 216} \approx .667
\end{aligned}
$$

Homework: p. 185 \#1-7 odd, 39-49 odd, 53, 57

