1. Which of the following represent (list all that qualify for each and be able to support your answer)
(a) relations \qquad and (b) functions \qquad
a. $\{(1,2),(2,3),(-1,4),(-3,-2)\}$
b. $\{(-3,2),(1,3),(-5,4),(-3,-2)\}$
c. $f(x)=x+2$
d. $f(x)=x^{2}-3 x+4$
e.

f.

2. Find the domain and range for each of the following functions. (Use appropriate set builder notation)
a. $\mathrm{y}=\lceil x\rceil$
b. $\mathrm{f}(\mathrm{x})=5\left(2^{\mathrm{x}}\right)$
c. $y=\frac{2}{-x}$
d. $f(t)=-2 t^{2}-18$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Let $f(x)=9 x-2 \quad g(x)=2 x$
$h(x)=x^{2}-3 x$
$d(x)=\frac{1}{x+1}$
$k(x)=\frac{1}{2} x$
a. Evaluate $\mathrm{f}(\mathrm{g}(-1))$
b. Evaluate $\mathrm{g}(\mathrm{f}(-1))$
c. Evaluate $g(d(3))$
d. Find the simplified equation for $\mathrm{f}(\mathrm{g}(\mathrm{x}))$
e. Find the simplified equation for $\mathrm{h}(\mathrm{g}(\mathrm{x})$)
f. Are $g(x)$ and $f(x)$ inverses? (show work)
g. $\operatorname{Are} \mathrm{g}(\mathrm{x})$ and $\mathrm{k}(\mathrm{x})$ inverses? (show work)
4. Which translation has the effect on a graph of moving each point 3 units down and 8 units to the right? (Circle one)
a. $T(x, y)=(x-3, y+8)$
b. $T(x, y)=(x+8, y-3)$
c. $T(x, y)=(x-8, y+3)$
d. $T(x, y)=(x-8, y-3)$
5. Which dilation/scale change has the effect on a graph of stretching horizontally by a factor of 15 and shrinking vertically by a factor of 6 ? (Circle one)
a. $S(x, y)=(15 x, 6 y)$
b. $S(x, y)=\left(\frac{x}{15}, 6 y\right)$
c. $S(x, y)=\left(15 x, \frac{y}{6}\right)$
d. $S(x, y)=\left(\frac{x}{15}, \frac{y}{6}\right)$
6. Find an equation (in $\mathrm{y}=$ form) for the image of $\mathrm{y}=\mathrm{x}^{2}$ under the transformation:
a. $T(x, y)=(x+3, y-2)$
b. $S(x, y)=\left(5 x, \frac{y}{2}\right)$

Describe in words what happened to the parent function after each transformation:
a. \qquad
b. \qquad
7. Find the equation (in $\mathrm{y}=$ form) for the image of $\mathrm{y}=|\mathrm{x}|$ under the transformation.
a. $T(x, y)=(x-3, y+4)$
b. $S(x, y)=\left(\frac{x}{3}, 4 y\right)$
8. What is the rule for the transformation that maps $y=\sqrt{x}$ onto the graph $y=\sqrt{10 x}$
a. Describe: \qquad b. $(\mathrm{x}, \mathrm{y}) \rightarrow$ \qquad
9. What is the rule for the transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{3}{2 x}$?
\qquad
a. Describe:
b. $(x, y) \rightarrow$ \qquad
10. What transformation maps the graph of $y=5^{x}$ onto the graph of $y=5^{x}+9$?
a. Describe:
b. $(\mathrm{x}, \mathrm{y}) \rightarrow$ \qquad
11. What transformation maps the graph of $y=\sqrt{x}$ onto the graph of $y=\sqrt{x+25}-18$?
a. Describe: \qquad b. $(\mathrm{x}, \mathrm{y}) \rightarrow$ \qquad
12. Determine if each function is odd, even, or neither. If the function is odd or even, prove it.
a. $\mathrm{f}(\mathrm{x})=8 \mathrm{x}^{3}$
b. $f(x)=5 x^{2}-x^{4}$
c. $f(x)=|3 x-4|$
d. $f(x)=|x|-3$
\qquad
\qquad
\qquad
\qquad
13. If (p, q) is a point on the graph of a relation, what point must be on the graph of its inverse? (Circle one)
a. (-p,q)
b. $(p,-q)$
c. $(-p,-q)$
d. (q, p)

Use the graph to the right to answer questions 14-18.

14. Give the formal name and equation for this parent function.
15. What kind of symmetry does this graph have?
16. Justify your answer to \#15.

17. Which graph is the inverse of this function?

18. Is the inverse a function? Justify your answer.
19. Find the equation of the inverse to the following equations:
a. $y=2 x+7$
b. $y=\frac{2}{x+1}$
c. $y=5 x^{2}$

Function: Y or N
Function: Y or N
Function: Y or N
20. Write the inverse of the given relation: $\{(0,1),(1,1),(2,2),(3,3),(4,5)\}$
21. a) A manufacturing company packs boxes of whiteboard marker 4-packs to be shipped to various retail stores such as Staples. Each box can fit 36 packs. Write an equation that would represent the number of boxes B to hold x number of whiteboard marker packets.
b) Use your equation to determine how many boxes will be needed for 375 packs of markers.
c) Sketch a graph of this situation.

North Hunterdon High School
Precalculus

