

RATIONAL EXPRESSIONS

- Quotient of two polynomials
- Can think of as ratios, fractions or quotients
- Simplest Form
- Numerator and denominator have no common divisors
- Rational expression and simplest form must have same domain.

$$
\frac{x^{2}+8 x+16}{x^{2}-2 x-24}=\frac{(x+4)(x+4)}{(x-6)(x+4)}=\frac{(x+4)}{(x-6)}
$$

Domain: $\{x: x \neq-4$ and $x \neq 6\}$.
This is because both -4 and 6 would cause the denominator of the original function to equal 0

SIMPLIFYING A RATIONAL EXPRESSION

What is $\frac{9 x^{2}+6 x}{36 x+2}$ in simplest form? State any restrictions on the variables.

$$
\frac{9 x^{2}+6 x}{36 x+24}=\frac{3 x(3 x+2)}{12(3 x+2)}=\frac{x}{4}
$$

Domain: $\left\{x: x \neq-\frac{2}{3}\right\}$.
This is because $-\frac{2}{3}$ would cause the denominator of the original function to equal 0

What is the simplest form of the following? Be sure to state any restrictions.

$$
\begin{array}{ll}
=\frac{3 x(3 x+2)}{12(3 x+2)}=\frac{x}{4} & \frac{12-4 x}{x^{2}-9} \\
\frac{x+4}{x-3} ; x \neq 2 \text { or } x \neq 3 & \frac{-4}{x+3} ; x \neq \pm 3 \\
\hline
\end{array}
$$

MULTIPLYING RATIONAL EXPRESSIONS

What is the product $\frac{x^{2}-3 x+2}{x+2} \cdot \frac{x^{2}-3}{x^{2}+5 x-6}$ in simplest form? State any restrictions on the variable.

$$
\begin{aligned}
\frac{x^{2}-3 x+2}{x+2} \cdot \frac{x^{2}-36}{x^{2}+5 x-6} & =\frac{(x-2)(x-1)}{x+2} \cdot \frac{(x-6)(x+6)}{(x+6)(x-1)} \\
& =\frac{(x-2)(x-6)}{x+2}
\end{aligned}
$$

Domain: $\{x: x \neq-6, x \neq-2, x \neq 1\}$.
This is because $--6,-2$, 1 would cause the denominator of the original function to equal 0

What is the product below in simplest form? Be sure to state any restrictions.

$$
\frac{2 x-8}{x^{2}-16} \cdot \frac{x^{2}+5 x+4}{x^{2}+8 x+16} \quad \frac{2(x+1)}{(x+4)^{2}} ; x \neq \pm 4
$$

DIVIDING RATIONAL EXPRESSIONS

What is the quotient $\frac{6 x-3^{2}}{36-x^{2}} \div \frac{x^{3}-x^{2}-2 x}{x^{2}-5 x-6}$ in simplest form?
State any restrictions on the variable.

$$
\frac{6 x-3 x^{2}}{36-x^{2}} \div \frac{x^{3}-x^{2}-2 x}{x^{2}-5 x-6}=\frac{6 x-3 x^{2}}{36-x^{2}} \cdot \frac{x^{2}-5 x-6}{x^{3}-x^{2}-2 x}
$$

Domain: $\left\{\begin{array}{c}x: x \neq 0, x \neq \pm 6, x \neq \\ 2, x \neq-1\}\end{array} \quad=\frac{3 x \nmid x-2)}{(6-x)(6+x)} \cdot \frac{(x-6)(x+1)}{x(x-2)(x+1)}\right.$
This is because $0, \pm 6,2,-1$ would cause the denominator of the original function to equal 0

$$
\begin{aligned}
& =\frac{3}{(x-6} \\
& =\frac{3}{6+x}
\end{aligned}
$$

What is the product below in simplest form? Be sure to state any restrictions.

$$
\frac{x^{2}+5 x+4}{x^{2}+x-12} \div \frac{x^{2}-1}{2 x^{2}-6 x} \quad \frac{2 x}{x-1} ; x \neq 0, \pm 1,-4,3
$$

Homework: WS HW \#1 \& 2 odds

ADDING RATIONAL EXPRESSIONS

- Find LCM of denominators and use as the Least Common Denominator (LCD).
- Use LCD just like you did to add fractions.

$$
\frac{1}{8}+\frac{1}{10}=\frac{1}{2^{3}}+\frac{1}{2 \cdot 5}=\frac{5}{5} \cdot \frac{1}{2^{3}}+\frac{1}{2 \cdot 5} \cdot \frac{2^{2}}{2^{2}}=\frac{5}{40}+\frac{4}{40}=\frac{9}{40}
$$

- Make sure answer is in simplest form

ADDING RATIONAL EXPRESSIONS

What is the sum $\frac{4}{x^{2}+3 x}+\frac{x-2}{x^{2}+6 x+}$ in simplest form? State any restriction on the variables.

$$
\begin{aligned}
\frac{4}{x^{2}+3 x}+\frac{x-2}{x^{2}+6 x+9} & =\frac{4}{x(x+3)}+\frac{x-2}{(x+3)^{2}} \\
\text { LCM: } x(x+3)^{2} & =\frac{(x+3)}{(x+3)} \cdot \frac{4}{x(x+3)}+\frac{x-2}{(x+3)^{2}} \cdot \frac{x}{x} \\
& =\frac{4 x+12}{x(x+3)^{2}}+\frac{x^{2}-2 x}{x(x+3)^{2}} \\
& =\frac{x^{2}+2 x+12}{x(x+3)^{2}} \quad \mathrm{x} \neq 0 \text { or }-3
\end{aligned}
$$

Find the following sum. State any restrictions

$$
\frac{x}{x^{2}-4}+\frac{1}{x+2} \quad \frac{2 x-2}{(x-2)(x+2)} ; x \neq \pm 2
$$

SUBTRACTING RATIONAL EXPRESSIONS

What is the difference $\frac{x+1}{x^{2}+2 x-}-\frac{x}{4 x-8}$ in simplest form? State any restrictions on the variable.

See next slide for solution
$\frac{x+1}{x^{2}+2 x-8}-\frac{x}{4 x-8}=\frac{x+1}{(x+4)(x-2)}-\frac{x}{4(x-2)}$

$$
=\frac{4}{4} \cdot \frac{x+1}{(x+4)(x-2)}-\frac{x}{4(x-2)} \cdot \frac{x+4}{x+4}
$$

LCM:

$$
\begin{aligned}
4(x-2)(x+4) & =\frac{4 x+4}{4(x+4)(x-2)}-\frac{x^{2}+4 x}{4(x+4)(x-2)} \\
& =\frac{4 x+4-\left(x^{2}+4 x\right)}{4(x+4)(x-2)} \\
& =\frac{-x^{2}+4}{4(x+4)(x-2)}=\frac{-\left(x^{2}-4\right)}{4(x+4)(x-2)} \\
& =\frac{-(x-2)(x+2)}{4(x+4)(x-2)}=\frac{-(x+2)}{4(x+4)} \quad x \neq-4 \text { or } 2
\end{aligned}
$$

SIMPLIFYING A COMPLEX FRACTION

Complex Fractions:

- A rational expression with at least one fraction in the numerator, denominator or both.
- Two methods to simplify complex fractions:

1. Multiply both numerator and denominator by the LCD of all the rational expressions.
2. Combine the fractions in the numerator and the fractions in the denominator. Multiply the new numerator by the reciprocal of the new denominator.

SIMPLIFYING A COMPLEX FRACTION

What is a simpler form of

- Method 1: $\frac{3 x-\frac{1}{y}}{\frac{y^{2}}{x}+x}$

$$
\frac{3 x-\frac{1}{y}}{\frac{y^{2}}{x}+x}=\frac{\left(3 x-\frac{1}{y}\right) x y}{\left(\frac{y^{2}}{x}+x\right) x y}
$$

LCD of all rational expressions:
$x y$

SIMPLIFYING A COMPLEX FRACTION

- Method 2:

$$
\frac{3 x-\frac{1}{y}}{\frac{y^{2}}{x}+x}=\frac{\frac{y}{y}(3 x)-\frac{1}{y}}{\frac{y^{2}}{x}+(x) \frac{x}{x}} \quad \begin{gathered}
\text { Combine rational expressions in } \\
\text { numerator and denominator }
\end{gathered}
$$

LCD of
numerator: y
LCD of
denominator: \mathcal{X}

$$
=\frac{\frac{3 x y-1}{y}}{\frac{y^{2}+x^{2}}{x}}
$$

$$
\begin{aligned}
& =\frac{3 x y-1}{y}\left(\frac{x}{y^{2}+x^{2}}\right) \\
& =\frac{3 x^{2} y-x}{y^{3}+x^{2} y}
\end{aligned}
$$

Homework: HW \#3 \& 4 WS odds

SOLVING RATIONAL EQUATIONS

Rational Equations

- Contain at least one rational expressions
$\frac{2 x}{x-2}+\frac{1}{x+2}=\frac{3 x+1}{x^{2}-4}$
Rational Equation
Not A Rational Equation
- Solve by clearing equation of denominators first.
- Use LCD of the rational expressions
- Must check for extraneous solutions.

SOLVING A RATIONAL EQUATION

What are the solutions of this rational equation?

$$
\begin{aligned}
\frac{4}{x+2} & =\frac{5}{2 x+3} \\
\frac{4}{x+2} & =\frac{5}{2 x+3} \\
(x+2)(2 x+3)\left(\frac{4}{x+2}\right) & =(x+2)(2 x+3)\left(\frac{5}{2 x+3}\right) \\
4(2 x+3) & =5(x+2) \\
8 x+12 & =5 x+10 \\
3 x & =-2 \\
x & =-\frac{2}{3}
\end{aligned}
$$

SOLVING A RATIONAL EQUATION

What are the solutions of this rational equation?

$$
\begin{aligned}
& \frac{1}{x^{2}-5 x}+\frac{x-7}{x}=\frac{4}{x^{2}-5 x} \\
& x\left(x^{2}-5 x\right)\left(\frac{1}{x^{2}-5 x}+\frac{x-7}{x}\right)=x\left(x^{2}-5 x\right)\left(\frac{4}{x^{2}-5 x}\right) \\
& x+\left(x^{2}-5 x\right)(x-7)=4 x \\
& x+x^{3}-5 x^{2}-7 x^{2}+35 x=4 x \\
& x^{3}-12 x^{2}+32 x=0 \\
& x\left(x^{2}-12 x+32\right)=0 \\
& x(x-8)(x-4)=0 \\
& x=0 \quad x=8 \quad x=4
\end{aligned}
$$

After checking for extraneous solutions, $x=4$ and $x=8$ are the solutions. If $x=0$, there would be division by 0 in the original problem.

USING A GRAPHING CALCULATOR TO SOLVE

1. Enter one side of the equation as Y_{1} and the other side of the equation as Y_{2}.
2. Graph the equations.
3. Use the INTERSECTION function to find the solutions.

Solve

$$
\frac{x+2}{1-2 x}=5 \quad x=0 . \overline{27}
$$

LIMITS AND ASYMPTOTES

Find the vertical and horizontal asymptotes for each of the following and describe the behavior at each vertical asymptote.

SLANT ASYMPTOTES

The end behavior asymptote of a rational function when the highest power is in the numerator.
Find the slant asymptote of $f(x)=\frac{x^{2}+2 x-3}{x+2}$

$$
x + 2 \longdiv { x ^ { 2 } + 2 x - 3 } = x - \frac { 3 } { x + 2 }
$$

Therefore, the line $y=x$ is the slant asymptote of the graph of $f(x)$.

This means the graph of $f(x)$ will act like the line $y=x$ as x approaches $\pm \infty$

Using intercepts and asymptotes graph $f(x)=\frac{x^{2}+2 x-3}{x+2}$

$$
\begin{array}{ll}
x \text {-intercepts }:(-3,0) \text { and }(1,0) & \text { V.A.: } x=-2 \\
y \text {-intercept: }(0,-3 / 2) & \text { H.A.: None } \\
& \text { S.A.: } y=x
\end{array}
$$

How do we graph it?

1. Plot the intercepts on the plane.
2. Draw dashed lines for all asymptotes.
3. Determine the behaviors at each V.A.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}}=\frac{(x+3)(x-1)}{x+2}=\frac{(+)(-)}{(+)}=-\infty \\
& \lim _{x \rightarrow-2^{-}}=\frac{(x+3)(x-1)}{x+2}=\frac{(-)(-)}{(-)}=\infty
\end{aligned}
$$

Ex - Find all the asymptotes of

$$
\begin{gathered}
f(x)=\frac{x^{4}-2 x+1}{x-2} \\
x-2 \sqrt{x^{4}-2 x+1}=x^{2}+2 x+2+\frac{5}{x-2}
\end{gathered}
$$

V.A.: $x=2$
H.A.: None
S.A.: $y=x^{2}+2 x+2$ (quadratic asymptote)

Analyze and graph $f(x)=\frac{x^{2}+9 x+20}{x-4}$
x-intercepts : $(-5,0)$ and $(-4,0)$
y-intercept: $(0,-5)$
V.A.: $x=4$
H.A.: None
S.A.: $y=x+13$
$\lim _{x \rightarrow 4^{+}}=\frac{(x+5)(x+4)}{x-4}=\frac{(+)(+)}{(+)}=\infty$
$\lim _{x \rightarrow 4^{-}}=\frac{(x+5)(x+4)}{x-4}=\frac{(+)(+)}{(-)}=-\infty$

Homework: Graphing Rational Expressions WS \#1-8

