2-4: Zeros of Polynomial Functions

Precalculus Mr. Gallo

Rational Zero (Root) Theorem

Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with integer coefficients. There are a limited number of possible roots of $P(x)=0$.

- Integer roots must be factors of a_{0}.
- Rational roots must have reduced form $\frac{p}{q}$ where p is an integer factor of a_{0} and q is an integer factor of a_{n}.

Factors of constant term (10)
Factors of leading coefficient (21)

[^0]Ex. 1: What are the rational roots of $x^{3}-2 x^{2}-5 x+6=0$?
Factors of a_{0} (6): $\pm 1, \pm 2, \pm 3, \pm 6 \quad$ Factors of $a_{n}(1): \pm 1$
$\frac{\text { Factors of } a_{0}(6)}{\text { Factors of } a_{n}(1)}: \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{3}{1}, \pm \frac{6}{1} \quad$ Possible Roots: $\pm 1, \pm 2, \pm 3, \pm 6$
Test possible roots using synthetic division \& $x^{3}-2 x^{2}-5 x+6=0$?

$-1 \mid 1$	-2	-5	6
	-1	3	2
1	-3	-2	8

Remainder $\neq 0$; Not a root.

$1 \mid 1$	-2	-5	6
	1	-1	-6
1	-1	-6	0

Remainder $=0$; Is a root.

Rewrite $x^{3}-2 x^{2}-5 x+6=0$ as $(x-1)\left(x^{2}-x-6\right)=0$ and use appropriate method to solve the quadratic (factoring, Quadratic Formula, etc.).

Factor $x^{2}-x-6 \Rightarrow(x-3)(x+2) \quad$ Linear Factors:
Zeroes: $x=-2,1,3$

$$
(x-1)(x-3)(x+2)
$$

Rational Zero (Root) Theorem Summary

1. Find all factors of constant term and lead coefficient.
2. Put them all in the ratio $\frac{\text { Constant Factors }}{\text { Lead Coeff.Factors }}$
3. Use synthetic division to find the roots
a) Repeat until you can solve the remaining polynomial or until you have a second-degree polynomial and can solve by factoring or the Quadratic Formula.

Conjugate Root Theorem

If $P(x)$ is a polynomial with rational coefficients, then irrational roots of $P(x)=0$ that have the form $a+\sqrt{b}$ occur in conjugate pairs. That is, if $a+\sqrt{b}$ is an irrational root with a and b rational, then $a-\sqrt{b}$ is also a root.

If $P(x)$ is a polynomial with real coefficients, then the complex roots of $P(x)=0$ occur in conjugate pairs. That is, if $a+b i$ is an irrational root with a and b real, then $a-$ $b i$ is also a root.

Ex. 2: A quintic polynomial $P(x)$ has rational coefficients. If $1, \sqrt{3}$ and $2-3 i$ are roots of $P(x)=0$, what are the remaining roots?
$-\sqrt{3}$ and $2+31$. 1 is neither irrational or complex so doesn't have a conjugate.

Ex. 3: What polynomial function $P(x)$ with rational coefficients so that $P(x)=0$ has roots 4 and $3 i$? Since $3 i$ is a root, so is $-3 i$.
Find the linear factors and write the polynomial in factored form.

$$
(x-4)(x-3 i)(x+3 i)=0
$$

Multiply the linear factors and write the polynomial in standard form.

$$
\begin{array}{r}
(x-4)(x-3 i)(x+3 i)=0 \\
(x-4)\left(x^{2}+9\right)=0 \\
x^{3}-4 x^{2}+9 x-36=0
\end{array}
$$

Write a polynomial function of least degree with real coefficients in standard form that has $-2,4$, and $3-i$ as zeros.

$$
\begin{aligned}
& x=-2 \quad x=4 \quad x=3-i \text { and } x=3+i \\
& (x+2)(x-4)(x-3-i)(x-3+i) \\
& \left(x^{2}-2 x-8\right)\left(x^{2}-3 x+i x-3 x+9-3 i-i x+3 i-i^{2}\right) \\
& x^{4}-6 x^{3}+10 x^{2}-2 x^{3}+12 x^{2}-20 x-8 x^{2}+48 x-80 \\
& x^{4}-8 x^{3}+14 x^{2}+28 x-80
\end{aligned}
$$

Homework: p. 127 \# 1, 3, 7, 10-16 43-46, 4954

[^0]: Use synthetic division and each combination of factors to find roots

