I-6: Function Operations

Mr. Gallo
Precalculus

Function Operations

Addition	$(f+g)(x)=f(x)+g(x)$
Subtraction	$(f-g)(x)=f(x)-g(x)$
Multiplication	$(f \cdot g)(x)=f(x) \bullet g(x)$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$

The domains of the sum, difference, product and quotient functions consist of the \boldsymbol{x}-values that are in the domains of both f and g. Also, the domain of the quotient function does not contain any x-value for which $g(x)=0$.

Adding and Subtracting Functions

Let $f(x)=5 x^{3}+1$ and $g(x)=x^{2}-4$.What are $f+$ g and $f-g$? What are their domains?

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=\left(5 x^{3}+1\right)+\left(x^{2}-4\right)=5 x^{3}+x^{2}-3 \\
& (f-g)(x)=f(x)-g(x)=\left(5 x^{3}+1\right)-\left(x^{2}-4\right)=5 x^{3}-x^{2}+5
\end{aligned}
$$

The domains of both functions are all real numbers.
Complete Guided Practice IA on p. 58 for $(f+g)(x)$ and $(f-g)(x)$

$$
\begin{array}{ll}
(f+g)(x)=x-4+\sqrt{9-x^{2}} & \text { Domain: }[-3,3] \\
(f-g)(x)=x-4-\sqrt{9-x^{2}} & \text { Domain: }[-3,3]
\end{array}
$$

Multiplying and Dividing Functions

Let $f(x)=x^{2}+x-6$ and $g(x)=x-2$. What are $f \cdot g$ and f / g ? What are their domains?

$$
\begin{aligned}
&(f \cdot g)(x)= f(x) \cdot g(x)=\left(x^{2}+x-6\right)(x-2)=x^{3}-x^{2}-8 x+12 \\
&\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\left(x^{2}+x-6\right)}{(x-2)}=x+3
\end{aligned}
$$

The domain of $(f \cdot g)(x)$ is all real numbers;
The domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers except $x=2$.
Complete Guided Practice IA on p. 58 for $(f \cdot g)(x)$ and $(f \div g)(x)$

$$
\begin{array}{ll}
(f \cdot g)(x)=x \sqrt{9-x^{2}}-4 \sqrt{9-x^{2}} & \text { Domain: }[-3,3] \\
\left(\frac{f}{g}\right)(x)=\frac{x-4}{\sqrt{9-x^{2}}} & \text { Domain: }(-3,3)
\end{array}
$$

Homework: p. 61 \#I-I3 odd, I4, 6I-66

Composite Function

- The composite $\boldsymbol{g} \circ \boldsymbol{f}$ of two functions f and g is the function that maps x onto $g(f(x))$, and whose domain is the set of all values in the domain of f for which $f(x)$ is in the domain of g.
${ }^{\circ} g(f(x))$ can also be written as:

$$
g \circ f(x) \quad \text { or } \quad(g \circ f)(x)
$$

- This notation tells the user to apply _X_to the function $f(x)$ and then use the result to apply to the function $g(x)$.

$$
\begin{aligned}
\text { Let } g(x) & =x+1 \text { and } f(x)=x^{2} \text {. Evaluate } g \circ f(3) \text {. } \\
g(f(3)) & =g\left(3^{2}\right) \\
& =9+1 \\
& =10
\end{aligned}
$$

Given $f(x)=2 x^{2}-1$ and $g(x)=x+3$, find each of the following:
a. $[f \circ g](x)=2(x+3)^{2}-1=2 x^{2}+12 x+17$
b. $[g \circ f](x)=\left(2 x^{2}-1\right)+3=2 x^{2}+2$
c. $[f \circ g](2)=2(2)^{2}+12(2)+17=49$

Domains of Composed Functions

- When domains of f or g are restricted, the domain of $f \circ g$ is restricted to all x values in the domain of g whose range values, $g(x)$ are in the domain of f.
Find $f \circ g$ and its domain.
$f(x)=\sqrt{x-1} \quad g(x)=(x-1)^{2}$
$[f \circ g](x)=\sqrt{(x-1)^{2}-1}=\sqrt{x^{2}-2 x}$
$D=(-\infty, 0] \cup[2, \infty)$

$$
\begin{aligned}
& f(x)=\frac{1}{x} \quad g(x)=\sqrt{x^{2}-1} \\
& {[f \circ g](x)=\frac{1}{\sqrt{x^{2}-1}}=\frac{\sqrt{x^{2}-1}}{x^{2}-1}} \\
& D=(-\infty,-1) \cup(1, \infty)
\end{aligned}
$$

An animator starts with an image of a circle with a radius of 25 pixels. The animator then increases the radius by 10 pixels per second.
a. Find functions to model the radius (R) and area (A).

$$
R(t)=25+10 t \quad A(R)=\pi R^{2}
$$

b. Find $A \circ R$. What does the function represent?

$$
A(R(t))=\pi(25+10 t)^{2}=100 \pi t^{2}+500 \pi t+625 \pi
$$

The area of the circle as a function of time.
c. How long does it take for the circle to quadruple its original size? \quad initial $=625 \pi \quad$ quad $=2500 \pi$

$$
\begin{aligned}
& 2500 \pi=100 \pi t^{2}+500 \pi+625 \pi \\
& 2500=100 t^{2}+500+625 \\
& 0=100 t^{2}+500-1875 \quad t=2.5 \text { seconds }
\end{aligned}
$$

Is Function Composition Commutative?

Let $g(x)=\frac{1}{x}$ and $f(x)=2 x-1$.

Find $f(g(5))$

$$
g(5)=\frac{1}{5}
$$

$f\left(\frac{1}{5}\right)=2\left(\frac{1}{5}\right)-1=-\frac{3}{5}$

Find $g(f(5))$

$$
f(5)=2(5)-1=9
$$

$$
g(9)=\frac{1}{9}
$$

Composition of functions is not commutative. It matters which function you evaluate first.

Decomposing a Composite Function

- Separating a function into two simpler functions
- When composed, the two simpler functions create the original function

Find two functions f and g such that $h(x)=[f \circ g](x)$. Neither function may be the identity function $f(x)=x$.
a. $h(x)=\frac{1}{(x+2)^{2}}$
b. $h(x)=3 x^{2}-12 x+12$
$f(x)=\frac{1}{x^{2}}$
$f(x)=3 x^{2}$
$g(x)=x+2$
$g(x)=x-2$

