

Common Parent Function: $y=x^2$ Name: Quadratic

Domain: $(-\infty,\infty)$ Range: $[0,\infty)$ Asymptotes: None

Points of Discontinuity: None

Common Parent Function: $y = \sqrt{x}$ Name: Square Root

Domain: $0, \infty$ Range: $0, \infty$ Asymptotes: None

Points of Discontinuity: None

Common Parent Function: $y = b^x$

Name: **Exponential**

Domain: $(-\infty, \infty)$

Range: $(0,\infty)$

Asymptotes: y = 0

Points of Discontinuity: None

Common Parent Function: $y = \frac{1}{x}$

Name: Inverse (Reciprocal)

Domain: $(-\infty,0)\cup(0,\infty)$

Range: $(-\infty,0)\cup(0,\infty)$

Asymptotes: x = 0, y = 0

Points of Discontinuity: x = 0

Common Parent Function: $y = \frac{1}{x^2}$

Name: Inverse Squared

Domain: $(-\infty,0)\cup(0,\infty)$

Range: $(0,\infty)$

Asymptotes: x = 0, y = 0

Points of Discontinuity: x = 0

Common Parent Function: $y = \lfloor x \rfloor$

Name: **Greatest Integer (Floor)**

Domain: $(-\infty, \infty)$

Range: $\{y \mid y \in \mathbb{Z}\}$

Asymptotes: None

Points of Discontinuity:

Integral Values or x

Common Parent Function: $y = \log x$ Name: Logarithmic

Domain: $(0,\infty)$ Range: $(-\infty,\infty)$ Asymptotes: x = 0Points of Discontinuity: x = 0

I. Transformations

- A.) Performed on Parent Fns.
- B.) Rigid SIZE and SHAPE stay the same.
- C.) Non-rigid –Distorted shape

II. Translations

A.) Vertical Translation –

$$y = f(x) \pm c$$
 - Up or Down c units

B.) Horizontal Translation -

$$y = f(x \pm c)$$
 - Left or Right c units

NOTE: Horizontal movements are always opposite the sign!!!!

C.) Ex.- Describe the translation of the following function: f(x) = |x-2| + 4

Translate f(x) 2 units to the right horizontally And up 4 units vertically

D.) Ex.- Find the equation of the following translation of

$$y = \frac{1}{x}$$

$$y = \frac{1}{x+4} - 4$$

III. Reflections

- A.) A FLIP of the graph of f over the x-axis or y-axis.
- B.) Across the x-axis y = -f(x)
- C.) Across the y-axis y = f(-x)

D.) Ex: Find an equation for the reflection of the following function across both axes.

$$f(x) = 2^x$$

$$f(x) = 2^{x}$$
$$f(x) = -2^{(-x)}$$

IV. Stretches and Shrinks

Let c be a positive real number

A.) Horizontal –
$$y = f(cx)$$

- 1.) A SHRINK by a factor of c if c > 1
 - 2.) A STRETCH by a factor of c if c < 1
- β .) Vertical y = cf(x)
 - 1.) A STRETCH by a factor of c if c > 1
 - 2.) A SHRINK by a factor of c if c < 1

$$y = f(x) = \log x$$

1.) Vert. stretch by 2.
$$f(x) = 2 \log x$$

2.) Hor. shrink by 2
$$f(x) = \log(2x)$$

3.) Vert. shrink by 2
$$f(x) = \frac{1}{2} \log x$$

4.) Hor. stretch by 2.
$$f(x) = \log\left(\frac{x}{2}\right)$$

V. Combining Transformations

Perform transformations in the order given to you.

Ex: Complete the following transformations to the graph of $f(x) = x^2$.

- Reflection over the x-axis. $f(x) = -(x)^2$
- Stretch vertically by a factor of 4. $f(x) = -4x^2$
- Translate vertically by -2 and horizontally right 1.

$$f(x) = -4(x-1)^2 - 2$$

VI. Identifying Transformations

RST!!! - Reflect - Str./Shrink - Trans.

(ALWAYS GET COEFFICIENT OF x TO BE +1

Ex: Identify, in order, the transformations applied to the graph of $f(x) = x^2$ that would result in the function

$$f(x) = -2(x+4)^2 - 7$$

- Reflection over the x-axis.
- Stretch vertically by a factor of 2.
- Translate vertically down 7 and horizontally left 4.

Ex: Identify, in order, the transformations applied to the graph of $f(x) = \lfloor x \rfloor$ that would result in the function

$$f(x) = \frac{1}{2} \lfloor 3 - 3x \rfloor + 2$$

$$f(x) = \frac{1}{2} \left\lfloor -3(x-1) \right\rfloor + 2$$

- Reflection over the y-axis.
- Shrink horizontally by a factor of 3.
- Shrink vertically by a factor of 2.
- Translate vertically up 2 and horizontally right 1.

VII. Absolute Value Transformations

$$A.) \quad y = |f(x)|$$

Reflection of any parts of the graph below the x-axis.

$$f(x) = x^2 - 4$$

$$y = \left| f\left(x\right) \right|$$

