

Analyzing Function Graphs

- You should be able to:

1. Estimate a value from the graph.
2. Find the domain and range from the graph.
3. Find the y-intercepts.
4. Find the zeroes from the graph.

The function $f(x)=-5 x^{2}+50 x$ approximates the profit at a toy company, where x is the marketing costs and $f(x)$ is profit. Both costs and profits a re mea sured in tens of thousa nds of dollars.
a. Use the graph to estimate the profit when marketing costs are $\$ 30,000$. Confirm your estimate algebraically.

$$
f(30,000)=\$ 1,050,000
$$

b. What is the domain and range of the function?

$$
\text { D: }[0,100,000] \quad \text { R: }[0,125,000]
$$

c. Use the graph to estimate the y-intercept of the function. Confirm your estimate algebraic ally.

$$
y=0
$$

d. Use the graph to estimate the zeroes of the function. Confirm your estimate algebraic ally. $\quad x=0$ and $x=100,000$

Types of Symmetries

- Line Symmetry
- Can be folded along a line so the two halves match exactly
- Point Symmetry
- Can be rotated 180° with respect to a point and appear unchanged.
- Three types of symmetries:

1. With respect to the x-axis
2. With respect to the y-axis
3. With respect to the origin

Tests for Symmetry (on p. 16 in book)

Graphical Test
Symmetric with respect to the x-a axis iff. for every point (x, y) on the graph, the point $(x,-y)$ is also on the graph
Symmetric with respect to the y-axisiff. for every point (x, y) on the graph, the point $(-x, y)$ is a lso on the graph.

Symmetric with respect to the origin iff. for every point (x, y) on the graph, the point $(-x,-y)$ is also on the graph.

Model

Algebraic Test
Replacing y with $-y$ producesan equivalent equation.

Replacing x with $-x$ produces an equivalent equation.

Replacing x with $-x$ and y with $-y$ produces an equivalent equation.

Show that $y=x^{2}$ is symmetric to the y-axis-graphic ally and algebraic ally.
If symmetric to the y-axis, then $(-x)$ will produced the same value as (x).

Graphically:

Algebra ic a lly:

$$
\begin{array}{rl}
y=x^{2} & f(-x) \\
f(x)=x^{2} & \\
& =(-x)^{2}=(-1 \cdot x)^{2} \\
& =1 \cdot x^{2}(x)^{2} \\
& =x^{2}
\end{array}
$$

The answers are the same so $y=x^{2}$ is symmetric with respect to the y-axis.

Show that $x=|y|$ is symmetric to the x-axis-graphically and algebraically.
If symmetric to the x-axis, then $(-y)$ will produced the same value as (y).

$$
\begin{array}{ll}
\begin{array}{l}
\text { Algebbaically: } \\
x=|y| \\
f(y)=|y|
\end{array} & x=|y| \\
& f(y)=|y|
\end{array}
$$

The answers are the same so $x=|y|$ is symmetric with respect to the x axis.

Show that $y=x^{3}$ is symmetric to the origin-graphic ally and algebraic ally.
If symmetric to the origin, then $(-x)$ will produced $(-y)$.

Algebraically:

$$
\begin{array}{ll}
\begin{array}{ll}
y=x^{3} \\
f(x)=x^{3} & y=x^{3} \\
& f(x)=x^{3}
\end{array}, r(x)
\end{array}
$$

The answers are the opposites so $y=x^{3}$ is symmetric with respect to the origin.

Show that $y=2 x^{5}+x^{3}+x$ is symmetric to the origin-a lgebra ic ally.
If symmetric to the origin, then $(-x)$ will produced $(-y)$.
Algebraic ally:

$$
\begin{aligned}
f(x)=2 x^{5}+x^{3}+x \quad f(-x) & =2(-x)^{5}+(-x)^{3}+(-x) \\
& =2\left(-x^{5}\right)+\left(-x^{3}\right)+(-x) \\
& =-2 x^{5}-x^{3}-x
\end{aligned}
$$

factor out a -1 :

$$
=-\left(2 x^{5}+x^{3}+x\right)
$$

The answers are the opposites so $y=2 x^{5}+x^{3}+x$ is symmetric with respect to the origin.

Odd and Even Functions

- Power Functions
- Functions which take the form $y=x^{n}$, where n is an integerand $n \geq 2$.
- Even and Odd Functions

Type of Function
Functions which are symmetric with respect to the y-axis, are called Even Functions.
Functions which are symmetric with respect to the origin, are called Odd Functions.

Algebraic Test

For every x in the domain of f, $\boldsymbol{f}(-\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$

For every x in the domain of f, $\boldsymbol{f}(-\boldsymbol{x})=-\boldsymbol{f}(\boldsymbol{x})$

Prove that the following is an even orodd function or neither.

$$
\begin{aligned}
f(x) & =x^{3}-2 x \\
f(x) & =x^{3}-2 x \\
f(-x) & =(-x)^{3}-2(-x) \\
& =-x^{3}+2 x \\
& =-\left(x^{3}-2 x\right)
\end{aligned}
$$

The answer is the opposite of $f(x)$, therefore the function is odd.

Not every function with the highest exponent being even is

 an even function.a. Show by counterexample that $f(x)=x 4+x$ is not an even function.

$$
\begin{aligned}
f(1) & =1^{4}+1=2 \\
f(-1) & =(-1)^{4}+(-1)=1-1=0
\end{aligned}
$$

The a nswers are not the same so the function isn't even.
16. Prove that $f(x)=x 4+x$ is not an even function.

$$
\begin{aligned}
f(x) & =x^{4}+x \\
f(-x) & =(-x)^{4}+(-x) \\
& =x^{4}-x
\end{aligned}
$$

The answers are not the same so the function isn't even.

