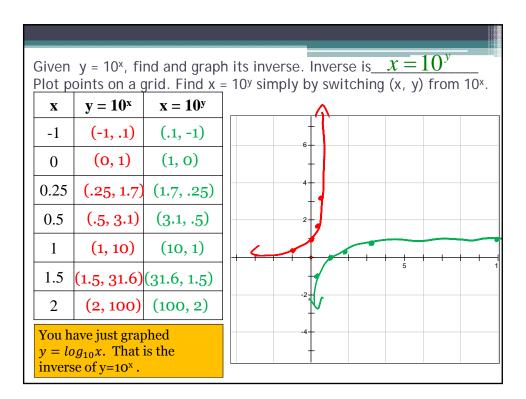
7-3: Logarithmic Functions as Inverses

Algebra 2 Mr. Gallo



Logarithm

- Exponent to which **b** must be raised to get **x**.
- Logarithm is inverse of exponential function.
 - Used to rewrite exponential functions so they can be evaluated.

Logarithm base \boldsymbol{b} of a positive number \boldsymbol{x} satisfies the following definition.

For
$$b > 0$$
, $b \ne 1$, $log_b x = y$ if and only if $b^y = x$.

(Read log base \boldsymbol{b} of \boldsymbol{x})

Writing Exponentials in Logarithmic Form

What is the logarithmic form of each equation?

$$1 = 8^{\circ}$$

$$64 = 4^3$$

Use the definition of logarithm to rewrite the equation.

If
$$x = b^y$$
, then $\log_b x = y$ $1 = 8^0$ $\log_8 1 = 0$

$$1 = 8^{0}$$

$$\log_8 1 = 0$$

$$64 = 4$$

$$64 = 4^3$$
 $\log_4 64 = 3$

Complete Got It? #1 p.452

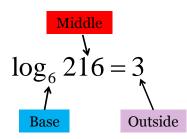
a.
$$log_6 36 = 2$$

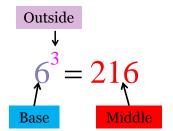
a.
$$log_6 36 = 2$$
 b. $log_{\frac{2}{3}27}^{8} = 3$ c. $log_3 1 = 0$

c.
$$log_3 1 = 0$$

Writing Logarithms in Exponential Form

- Use the BOM method
 - **B** -Base
 - O to the Outside
 - M -equals the Middle





Complete WS 7-3 K #4-6

Evaluating a Logarithm

- 1. Write a logarithmic equation
- 2. Write in exponential form and evaluate

1).
$$\log_{10} 1000$$

2).
$$\log_{10} \sqrt[3]{10}$$

$$\log_{10} 1000 = x$$

$$\log_{10} \sqrt[3]{10} = x \qquad \log_4 32 = x$$

$$\log_4 32 = x$$

$$10^x = 1000$$

$$10^x = \sqrt[3]{10}$$

$$4^x = 32$$

$$10^x = 10^3$$

$$\frac{1}{10^x}$$
 $\frac{1}{10^3}$

$$10^x = 10^{\frac{1}{3}} \qquad \left(2^2\right)^x = 2^5$$

$$x = 3$$

$$10^x = 10^3$$

$$2^{2x} = 2^5$$

$$x = \frac{1}{3}$$

$$2x = 5$$

$$x = \frac{5}{2}$$

Common Logarithms

• A logarithm with a base of 10

 $\log_{10} 1000$

 $\log_{10} \sqrt[3]{10}$

• Usually written without showing the 10

log1000

 $\log \sqrt[3]{10}$

• Evaluate with the LOG button on the calculator

log1000

In Calculator: log(1000)

Logarithmic Scales

- Used to cover a wide range of values
- Reported measurements logs of values not values themselves
 - Richter Scale, Decibel Scale, pH scale are all logarithmic scales
- pH Scale
 - $^{\circ}$ pH of a substance can range from 0 to 14
 - Formula: $pH = -\log(H^+)$

H⁺ stands for the concentration of hydrogen ions (in moles/liter) of the substance.

If pH < 7 it is acidic pH = 7 it is neutral pH > 7 it is alkaline Seawater has a pH of 8.5

- a) Is seawater acidic or alkaline? Because 7 < 8.5
- b) What is the concentration of hydrogen ions in seawater? $pH = -\log(H + 1)$

 $8.5 = -\log(H + 1)$ $-8.5 = \log(H + 1)$ $10^{-8.5} = H + 1$.000000003162 = H + 1

c) Rewrite your answer to part b in scientific notation

 3.162×10^{-9} moles / liter

Complete Got It? #3 p.453

≈16 times

Homework: p. 456 #13-35 odd, 47-53 odd, 61-67 odd

Graphing a Logarithmic Function

 $y = log_b x$ is the <u>inverse</u> of the exponential function $y = b^x$

$$y = 10^{x}$$

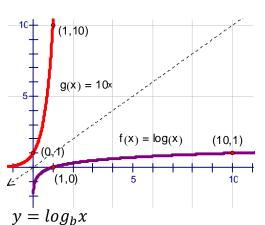
Domain: All Reals

Range: y > 0

$$y = log_b x$$

Domain: x > 0

Range: All Reals



No *y*-intercept

y=axis is an asymptote

Families of Logarithmic Functions

Families of Logarithmic Functions	
Parent Function	$y = \log_b x; b > 0, b \neq 1$
Stretch ($ a > 1$) Compression (Shrink) ($0 < a < 1$)	$y = a \log_b x$
Reflection($a < 0$) in x -axis Translations (Horizontal by h ; Vertical by k)	$y = \log_b\left(x - h\right) + k$
All transformations combined	$y = a \log_b (x - h) + k$

