## 7-3: Logarithmic Functions as Inverses

Algebra 2

Mr. Gallo

Given $y=10^{x}$, find and graph its inverse. Inverse is $x=10^{y}$ Plot points on a grid. Find $x=10^{y}$ simply by switching $(x, y)$ from $10^{x}$.

| $\mathbf{x}$ | $\mathbf{y}=\mathbf{1 0}^{\mathbf{x}}$ | $\mathbf{x}=\mathbf{1 0}^{\mathbf{y}}$ |
| :---: | :---: | :---: |
| -1 | $(-1, .1)$ | $(.1,-1)$ |
| 0 | $(0,1)$ | $(1,0)$ |
| 0.25 | $(.25,1.7)$ | $(1.7, .25)$ |
| 0.5 | $(.5,3.1)$ | $(3.1, .5)$ |
| 1 | $(1,10)$ | $(10,1)$ |
| 1.5 | $(1.5,31.6)$ | $(31.6,1.5)$ |
| 2 | $(2,100)$ | $(100,2)$ |

You have just graphed $y=\log _{10} x$. That is the inverse of $\mathrm{y}=10^{\mathrm{x}}$.

## Logarithm

- Exponent to which $\mathbf{b}$ must be raised to get $\mathbf{x}$.
- Logarithm is inverse of exponential function.
- Used to rewrite exponential functions so they can be evaluated.

Logarithm base $\mathbf{b}$ of a positive number $\mathbf{x}$ satisfies the following definition.

For $b>0, b \neq 1, \log _{b} x=y$ if and only if $b^{y}=x$.
(Read log base $\mathbf{b}$ of $\mathbf{x})$

## Writing Exponentials in Logarithmic Form

What is the logarithmic form of each equation?

$$
1=8^{0} \quad 64=4^{3}
$$

Use the definition of logarithm to rewrite the equation.

$$
\begin{array}{lll}
\text { If } x=b^{y}, \text { then } \log _{b} x=y & 1=8^{0} & \log _{8} 1=0 \\
& 64=4^{3} & \log _{4} 64=3
\end{array}
$$

Complete Got It? \#1 p. 452
a. $\log _{6} 36=2$
b. $\log _{\frac{2}{3}} \frac{8}{27}=3$
c. $\log _{3} 1=0$

Writing Logarithms in Exponential Form

- Use the BOM method

B -Base
O - to the Outside
M -equals the Middle


Complete WS 7-3 K \#4-6

## Evaluating a Logarithm

1. Write a logarithmic equation
2. Write in exponential form and evaluate
1). $\log _{10} 1000$
2). $\log _{10} \sqrt[3]{10}$
3). $\log _{4} 32$

$$
\begin{aligned}
\log _{10} 1000 & =x \\
10^{x} & =1000 \\
10^{x} & =10^{3} \\
x & =3
\end{aligned}
$$

$$
\log _{10} \sqrt[3]{10}=x
$$

$$
\log _{4} 32=x
$$

$$
10^{x}=\sqrt[3]{10}
$$

$$
4^{x}=32
$$

$$
10^{x}=10^{\frac{1}{3}}
$$

$$
\left(2^{2}\right)^{x}=2^{5}
$$

$$
x=\frac{1}{3}
$$

$$
2^{2 x}=2^{5}
$$

$$
2 x=5
$$

Complete WS 7-3 K \#7-9

$$
x=\frac{5}{2}
$$

## Common Logarithms

- A logarithm with a base of 10

$$
\log _{10} 1000 \quad \log _{10} \sqrt[3]{10}
$$

- Usually written without showing the 10

$$
\log 1000 \quad \log \sqrt[3]{10}
$$

- Evaluate with the LOG button on the calculator $\log 1000$ In Calculator: $\log (1000)$


## Logarithmic Scales

- Used to cover a wide range of values
- Reported measurements logs of values not values themselves
- Richter Scale, Decibel Scale, pH scale are all logarithmic scales


## - pH Scale

- pH of a substance can range from o to 14
- Formula: $p H=-\log \left(H^{+}\right)$
$\mathrm{H}^{+}$stands for the concentration of hydrogen ions (in moles/liter) of the substance.

If $\mathrm{pH}<7$ it is acidic
$\mathrm{pH}=7$ it is neutral
$\mathrm{pH}>7$ it is alkaline

Seawater has a pH of 8.5
a) Is seawater acidic oralkaline? Because $7<8.5$
b) What is the concentration of hydrogen ions in seawater?

$$
\begin{aligned}
p H & =-\log (H+) \\
8.5 & =-\log (H+) \\
-8.5 & =\log (H+) \\
10^{-8.5} & =H+ \\
.000000003162 & =H+
\end{aligned}
$$

c) Rewrite your answer to part bin scientific notation

$$
3.162 \times 10^{-9} \text { moles / liter }
$$

Complete Got It? \#3 p. $453 \approx 16$ times

Homework: p. 456 \#13-35 odd, 47-53 odd, 61-67 odd

## Graphing a Logarithmic Function

$y=\log _{b} x$ is the inverse of the exponential function $y=b^{x}$
$y=10^{x}$
Domain:All Reals
Range: $y>0$


Domain: $x>0$
Range: All Reals
$\mathrm{y}=$ axis is an asymptote

## Families of Logarithmic Functions

## Families of Logarithmic Functions

| Parent Function | $y=\log _{b} x ; b>0, b \neq 1$ |
| :--- | :---: |
| Stretch $(\|a\|>1)$ <br> Compression (Shrink) $(0<\|a\|<1)$ <br> Reflection $(a<0)$ in x-axis | $y=a \log _{b} x$ |
| Translations <br> (Horizontal by h; Vertical by ) | $y=\log _{b}(x-h)+k$ |
| All transformations combined | $y=a \log _{b}(x-h)+k$ |

## Families of Logarithmic Functions




Reflection
( $a<0$ )


Compression
$(0<|a|<1)$

## Families of Logarithmic Functions



Vertical
Translation
$y=\log _{b} x+k$


Horizontal
Translation
$y=\log _{b}(x-h)$

All Transformations combined gives the form:

$$
y=\operatorname{alog}_{b}(x-h)+k
$$



Homework: p. 456 \#40-45, 85-94

