7-1: Exploring Exponential Models

Algebra 2 Mr. Gallo

You have just won the grand prize on a game show. The game show host tells you that you may choose from one of two cash prizes, but you only have 30 seconds to decide. Your choices are:

Choice #1: \$10,000 per day for 30 days.Choice #2: \$.01 the first day. Each of the following day's pay is double the pay of the previous day.

Which choice do you make?

Choice #1:	\$10,000 per day for 30 days		-		
	\$10,000 x	30 days = \$300,000			
Choice #2:	Begin with 1¢ and	louble the amount each day	14	\$81.92	\$163.8
			15	\$163.84	\$327.6
1	\$0.01	\$0.01	16	\$327.68	\$655.3
2	\$0.02	\$0.03	17	\$655.36	\$1,310.7
3	\$0.04	\$0.07	18	\$1,310.72	\$2,621.4
4	\$0.08	\$0.15	19	\$2,621.44	\$5,242.8
5	\$0.16	\$0.31	20	\$5,242.88	\$10,485.7
6	\$0.32	\$0.63	21	\$10,485.76	\$20,971.5
7	\$0.64	\$1.27	22	\$20,971.52	\$41,943.0
8	\$1.28	\$2.55	23	\$41,943.04	\$83,886.0
9	\$2.56	\$5.11	24	\$83,886.08	\$167,772.1
10	\$5.12	\$10.23	25	\$167,772.16	\$335,544.3
11	\$10.24	\$20.47	26	\$335,544.32	\$671,088.6
12	\$20.48	\$40.95	27	\$671,088.64	\$1,342,177.2
13	\$40.96	\$81.91	28	\$1,342,177.28	\$2,684,354.5
13	ψ40.90	η ψ01.91	29	\$2.684.354.56	\$5,368,709.1

If you begin with the penny and then double it each day, you end up with \$10.7 million dollars after 30 days.

Choice 2 would be the correct choice.

Exponential Function

For the function $y = ab^x$,

• if a > 0 and b > 1, the function represents:

exponential growth

• if a > 0 and 0 < b < 1, the function represents:

exponential decay

In either case, the *y*-intercept is (0, a), the domain is **all real numbers**, the <u>asymptote</u> is y = 0 and the range is $\{y: y > 0\}$

Identify $y = 0.7^x$ as an example of exponential growth or decay. What is the **y**- intercept? a = 1 b = 0.7

Since a > 0 and 0 < b < 1, this is decay. y-intercept is (0,1)

Exponential Growth and Decay

In the equation $y = ab^x$,

- **a** is the <u>initial amount</u>.
- Exponential Growth: b > 1
 - **b** is the **growth factor**.
 - Increase written as a decimal is r, <u>rate of increase</u> or <u>growth rate</u> b = 1 + r for exponential growth
- Exponential Decay: 0 < b < 1
 - **b** is the <u>decay factor</u>.
 - Decay written as a decimal is r, <u>rate of decay</u>.

b = 1 + r for exponential decay because \mathbf{r} is expressed as a <u>negative</u> quantity.

Exponential Growth or Decay

You can model exponential growth or decay using this model:

For growth or decay to be *exponential*, a quantity changes by a fixed percentage each time period.

You buy a savings bond for \$25 that pays a yearly interest rate of 4.2%. What will the savings bond be worth after fifteen years?

Let t= number of years since the money was invested. Let A(t)= amount in account after t years.

$$A(t) = a(1+r)^{t}$$

$$a = 25 \quad r = .042 \quad x = 15$$

$$A(t) = 25(1+.042)^{15}$$

$$A(t) = 25(1.042)^{15}$$

$$A(t) \approx 46.339$$

The savings bond will be worth \$46.34.

Complete Got It? #3 p.436 It will be worth \$593.84

Exponential Functions

- Are often discrete.
 - Not a continuous graph
- To model using $y = ab^x$,
 - Use two consecutive y values to find r.

$$r = \frac{y_2 - y_1}{y_1}$$

This is the percent increase or decrease.

The initial value of a car is \$30,000. After one year, the value of the car is \$20,000. Estimate the value of the car after five years?

Let t = number of years since the car was bought. $A(t) = a(1+r)^t$ Let A(t) = value of the car after t years.

$$a = 25$$
 $r = \frac{y_2 - y_1}{y_1} = \frac{20,000 - 30,000}{30,000} = -.33$ $x = 5$

$$A(t) = 30,000 \left(1 + \left(\frac{20k - 30k}{30k}\right)\right)^{5}$$

$$A(t) = 30,000 \left(1 + \left(-.33\right)\right)^{5}$$

$$A(t) = 30,000 \left(.67\right)^{5}$$

$$A(t) = 30,000 \left(.67\right)^{5}$$

$$A(t) \approx 3950.38$$
 More Precise

$$A(t) = 30,000(1+(-.33))^{\frac{1}{2}}$$

$$A(t) = 30,000(.67)^5$$

$$A(t) \approx 4050.38$$

The car will be worth \$3950.38.

Complete Got It? #5 p.438 a). ≈3

b). No, the pop. would be negative.

Homework: p. 439 #10, 16, 19-25 odd, 26-29, 31, 32, 46-48, 54-56