6-7: I nverse Relations and Functions

Algebra 2
Mr. Gallo

of a Relation

Relation pairs an element from its domain with its range (a, b)

- Inverse relation "reverses or undoes" relation and pairs (b, a)

x	y
-2	2
-1	0
0	3
1	0

Relation

x	y
2	-2
0	-1
3	0
0	1

Switch x and y and solve for y .

$$
\begin{aligned}
& y=5 x^{2}+2 \\
& x=5 y^{2}+2 \\
& x-2=5 y^{2} \\
& \frac{x-2}{5}=y^{2} \\
& \pm \sqrt{\frac{x-2}{5}}=y
\end{aligned}
$$

of I nverse Relatio

Found by switching the x and y coordinates Reflections of each other over the equation $x=y$.

Consider the function $g(x)=-\frac{2}{3} x+7$.
a. What is the domain and range of f ?
b. What is g^{-1} ?
c. What are the domain and range of g^{-1} ?
d. Is g^{-1} a function?
a. The domain and range are both all real numbers.
c. The domain and range
b. $\quad y=-\frac{2}{3} x+7$
$x=-\frac{2}{3} y+7$ are both all real numbers.
d. Yes, for each x in the domain, there is only one value for y in the range.

$$
x-7=-\frac{2}{3} y
$$

$$
-\frac{3 x+21}{2}=y
$$

Functions

If the graph of a function passes the Horizontal Line Test, the inverse is also a function.

Function

I nverse

One Functions

Each member of the domain corresponds to one member in the range.
Each member of the range corresponds to one member in the domain.

- Has an inverse which is a function.
- f maps a to b, and f^{-1} maps b to a.

If f and f^{-1} are inverse functions, then

$$
\left(f^{-1} \circ f\right)(x)=x \text { and }\left(f \circ f^{-1}\right)(x)=x \text { for } x \text { in the }
$$ domains of f and f^{-1}, respectively.

Let $f(x)=-2 x-3$. What is each of the following?
a). $f^{-1}(x)$
b). $\left(f \circ f^{-1}\right)(x)$
C). $\left(f^{-1} \circ f\right)(x)$

$$
\begin{array}{rlrl}
x & =-2 y-3 & & =-2\left(\frac{x+3}{-2}\right)-3 \\
x+3 & =-2 y & & =\frac{(-2 x-3)+3}{-2} \\
\frac{x+3}{-2} & =y & & =x+3-3 \\
x+2 & & =\frac{-2 x}{-2}
\end{array}
$$

Proves whether a function is an inverse of another function.

Homework: p. 410 \#13-19 odd, 31-35 odd, 38-41, 79-91 odd

